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Abstract

The aim of this article is to present and reformulate systematically
what is known about surfaces in the projective 3-space, in view of trans-
formations of surfaces, and to complement with some new results. Special
emphasis will be laid on line congruences and Laplace transformations. A
line congruence can be regarded as a transformation connecting one focal
surface with the other focal surface. A Laplace transformation is regarded
as a method of constructing a new surface from a given surface by relying
on the asymptotic system the surface is endowed with. A principal ob-
ject in this article is a class of projectively minimal surfaces. We clarify
the procedure of getting new projectievely minimal surfaces from a given
one, which was found by F. Marcus, as well as the procedure of Demoulin
transformation of projective surfaces.
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Introduction

Transformations of surfaces have been a subject of strong interest to mathemati-
cians for many years, from a geometric point of view as well as from an analytic
point of view. G. Darboux opened his four-volume book “Leçons sur la théorie
générale des surfaces,” with a preface saying that his aim was to investigate new
applications to geometry of the theory of partial differential equations. In his
book, we can find several ways of extracting geometric conclusions from struc-
tures lying in systems of differential equations, which still stimulate us. Classical
transformations such as the Darboux transformation and Bäcklund transforma-
tion are still even within the last ten years being found to be fundamental to
knowing the structure of linear and/or nonlinear differental equations associated
to geometric objects, and to constructing surfaces with special properties; this
has lead to a renewal of interest in the theory of surfaces.

The aim of this article is to present and reformulate systematically what is
known about surfaces in the projective 3-space, in view of transformations of
surfaces, and to complement with some new results. Special emphasis will be
laid on line congruences and Laplace transformations. A line congruence can be
regarded as a transformation connecting one focal surface with the other focal
surface. A Laplace transformation is regarded as a method of constructing a
new surface from a given surface by relying on the asymptotic system the surface
is endowed with.
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A principal object in this article is a class of projectively minimal surfaces.
By definition, a surface is projectively minimal if and only if the area functional,
constructed in a projectively invariant way, attains an extremal value for this
surface. The class of such surfaces includes the class of affine spheres that are
fundamental in affine differential geometry and the class of Demoulin surfaces
that are characterized by degeneracy of the envelope of Lie quadrics. In the last
section of this article, we show that the class of projectively minimal surfaces
fits nicely into the framework of line congruences and Laplace transformations
which we prepare in the foregoing sections.

The contents are as follows: In Section 2, we give a formulation of projec-
tive surfaces and introduce several notions such as Wilczynski frame, Demoulin
frame, projectively applicable surfaces and projectively minimal surfaces. This
is a short introduction to the projective differential geometry of surfaces. Sec-
tion 1 is a preparation for Section 2. In Section 3, we introduce the notion of
line congruence and W -congruence, and in Section 6 we formulate a projective
theory of line congruences.

In Section 4, we give a summary of Laplace transformations, mainly rely-
ing on the books by Darboux. First, in terms of line congruence, the notion
of Laplace transformation is introduced and its fundamentals are given. Sec-
ond, sequences of consecutive Laplace transformations are treated. Third, we
turn our attention to the Euler-Darboux-Poisson equation, and we treat the hy-
pergeometric systems by Appell as examples. A characterization of Demoulin
surfaces by Godeaux sequences, a classical result, is then presented. Section
5 is a digression to affine spheres. The definition of affine spheres, the differ-
ential system describing affine spheres, and properties relative to the Laplace
transformation will be given.

A line congruence can be regarded as a surface in the projective 5-space
that is the moduli space of projective lines. It lies in a 4-dimensional quadratic
hypersurface defined by the Plücker relation. A line congruence is said to belong
to a linear complex if it lies, regarded as a surface, in a hyperplane. This is
explained in Section 7. In Section 8, we treat Laplace transformations of line
congruences.

A line congruence is described by a pair of two focal surfaces. In Section 9,
the projective invariants of focal surfaces are explicitly given, and a characteri-
zation of line congruences for which both focal surfaces are quadrics, found by
E. J. Wilczynksi, is proved.

There are a number of classical books on projective differential geometry.
Among others, the books [FC1] and [FC2] by G. Fubini and E. Čeck, the book [L]
by E. P. Lane, the three-volume book [Bol] by G. Bol, the book on nets [Tz1924]
by G. Tzitzeica, and the book [W1906] by E. J. Wilczynski are fundamental. In
his book [FC2], Fubini gave a method for constructing W -congruences, which
will be reproduced here in Section 10. Section 11 treats Demoulin transforma-
tions by introducing Demoulin lines and Demoulin congruences. Explicit forms
will be given by relying mainly on the works of [Fi1930] and [Su1957]. Section 12
treats again Demoulin transformations intrinsically by appealing to Demoulin
coframes.
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Section 13 gives a characteristic property of W -congruences between projec-
tively minimal surfaces, and presents a transformation formula of projectively
minimal surfaces originally due to F. Marcus [Mar1980].

In Appendix A, an example of a line congruence derived from one of Ap-
pell’s systems is given; in Appendix B, we recall a fundamental formulation
of line congruences in the Euclidean 3-space and show that W -congruence, or
orginally Weingarten congruence, comes from the normal congruence associated
with Weingarten surfaces. Appendix C gives a proof of a statement in Sect. 4.8.

Notation: Pn denotes the n-dimensional projective space with homogeneous
coordinates [z0, z1, . . . , zn]. Pn+1 denotes its dual projective space. The ∧-
product is frequently used in this article. For two vectors z = [z0, z1, . . . , zn]
and w = [w0, w1, . . . , wn], the vector z ∧ w = [ziwj − zjwi] (0 ≤ i 6= j ≤ n)

defines a vector in P(n+1

2 )−1. The multi-wedge product z ∧ w ∧ · · · is similarly
defined. The coefficeint number field is R or C throughout this article.

Remarks on references: The books mentioned above are used in several places
without mention. The formulation in Section 1 is due to [W1906] and [Sa1999],
and Section 2 is based on [Sa1988, Sa1999], [Fe2000a, Fe1999], [L]. Formulations
in Section 4 are based essentially on [D], except for some additional matters
in Sections 4.7-4.8. We refer the reader to [NS1994] for the affine differential
geometry described in Section 5. A part of Section 7 and the contents of Sections
8 and 9 depend on [W1911]. The material of Section 10 comes from [FC1]; we
refer also to [L]. Section 11 relies on [Fi1930]. Section 12 was written in part
by using the work of [Su1957]. At the end of each section, more information on
references will be given. In References, we list related books and papers that
are not directly cited in the article.
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would like to espress his gratitude to the institute. Financial support is due in
part to JSPS-Kakenhi (Grant-in-Aid for Scientific Research) C17540076.

1 Ruled surfaces

A projective surface is an immersion of a two-dimensional manifold into a 3-
dimensional projective space P3. It is given locally by a map (x, y) 7→ z(x, y) ∈
P3. To study the immersion, it is fundamental to consider the ruled surface
consisting of tangent lines to the family of curves, say, x 7→ z(x, y). In this
section, we provide fundamental invariants of ruled surfaces and discuss a prop-
erty of the Plücker embedding of a ruled surface. We start with recalling the
fundamental invariants of space curves.
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1.1 Space curves

It was G.H. Halphen who developed a projective theory of linear ordinary differ-
ential equations by introducing geometric invariants of curves defined by these
equations. We give a sketch of his theory for space curves, without proofs.

Let us consider the linear differential equation

z(n+1) + p1z
(n) + · · · + pnz

′ + pn+1z = 0,

where z(t) is an unknown function and p1, . . ., pn+1 are scalar functions of the
variable t. We choose arbitrarily a set of independent solutions, say, z1(t), . . .,
zn+1(t). Then, the map

t 7−→ [z1(t), . . . , zn+1(t)]

defines a curve into the projective space Pn. Any other set of solutions defines a
curve which is a projective transformation of the original curve. Hence, we can
say that the ordinary differential equation above defines a curve uniquely up to
a projective transformation. Conversely, given a curve in the projective space
Pn, we can find an ordinary differential equation satisfied by each coordinate
function of the associated mapping. However, the equation is not uniquely
defined because the homogeneous coordinates are determined only up to scalar
multiplication. We also have the ambiguity in the choice of parameter t, when
we are starting with only the curve’s image in Pn. Hence, we can admit a
change of variables such as

(z, t) 7−→ (y = λ(t)z, s = f(t)) (1.1)

in order to get geometrical information from the associated curve. This rea-
soning is essential for developing the projective theory of curves in relation to
linear differential equations. Later, this was generalized by E. J. Wilczynsky to
develop the projective differential geometry of submanifolds in relation to linear
differential systems.

To illustrate the above reasoning, let us consider a space curve that is a
mapping t 7→ [z(t)] ∈ P3, where z(t) is a vector in the homogeneous coordinate
space of 4-dimension. At a point of the curve where det(z ′′′, z′′, z′, z) 6= 0, each
component is a solution of an ordinary differential equation

z′′′′ + p1z
′′′ + p2z

′′ + p3z
′ + p4z = 0, (1.2)

where the pj ’s are functions of t. By multiplying z by a scalar factor, the
equation is changed to the form

z′′′′ + q2z
′′ + q3z

′ + q4z = 0. (1.3)

Performing the transformation (1.1), the transformed equation has the form

....
y +{4λ′/(λf ′) + 6f ′′/(f ′)2}

...
y + · · · = 0,

6



where {·} denotes the derivation with respect to s. Hence, by choosing λ so
that λ′/λ = −(3/2)f ′′/f ′, we get the equation into the form

....
y +(q2 − 10{f ; t})/(f ′)2

..
y + · · · = 0,

where {f ; t} = (f ′′/f ′)′/2 − (f ′′/f ′)2/4 is the Schwarzian derivative of f with
respect to t. We now solve the equation q2 = 10{f ; t} to get a function f . Using
this f , we finally have the equation in the form

....
y +r3

.
y +r4y = 0.

Here note that the parameter s is not unique, but is determined uniquely up
to a fractional linear transformation in view of the fractional invariance of the
Schwarzian derivative. This means that the curve has a unique projective struc-
ture.

It is known that the two differential forms

ψ3 = r3ds
3, ψ4 = (r4 −

1

2
r′3)ds

4

are defined canonically with respect to the first equation (1.2), and are called
fundamental invariants of the space curve. Relative to Equation (1.3), we see
that ψ3 = (q3 − q′2)dt

3. When r3 6= 0, or equivalently when q3 6= q′2, we can
choose a special parameter t so that ψ3 = dt3, which is called the projective
length parameter of the space curve.

Among several known geometrical interpretations of these invariants, we cite
one for later use. At each point of the curve we associate the tangent line that
can be regarded as the vector

ξ = y∧
.
y,

in the space P5 ≡ 2∧ P3. By successive differentiation, we get

L := ξ(5) + r3
..

ξ −2(2r4−
.
r3)

.

ξ −(2
.
r4 − ..

r3)ξ = 2r3
.
y ∧

..
y,

and
r3

.

L − .
r3 L− r23(

...

ξ +r3ξ) = 0.

The last equation defines a 6th order differential equation relative to ξ. However,
when r3 = 0 this equation degenerates and ξ satisfies the equation L = 0, which
is a 5th order equation. Namely, there exists a linear relation amongst the six
components of the vector ξ.

When the Plücker image of the set of tangent lines in P5 is lying in a hy-
perplane, then the curve is said to belong to a linear complex. Hence, we can
state the following.

Proposition 1.1 (G.H. Halphen [Ha1883, p.332]) The space curve defined by
(1.3) belongs to a linear complex if and only if q3 = q′2.
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1.2 Ruled surfaces

A surface in 3-dimensional projective space P3, simply called a projective sur-
face, is an immersion denoted by

(x, y) −→ z(x, y) ∈ P3.

Before entering into the general treatment of projective surfaces in the next
section, we recall a projective treatment of ruled surfaces.

We call a 1-parameter family of lines in 3-dimensional projective space P3

a ruled surface. In practice, it is given by a pair of curves {z1(x), z2(x)} with
curve parameter x: we associate a ruled surface with

(x, y) −→ z(x, y) = z1(x) + yz2(x).

Here we are regarding any point in P3 as a vector in the homogeneous coordinate
space of 4-dimension. The curves z1 and z2 are called generating curves.

Example 1.2 (1) Let z1(x) = [1, x, 0, 0] and z2(x) = [0, 0, 1, x] in the ho-
mogeneous coordinates. Then z(x, y) = [1, x, y, xy], which denotes a quadric
z1z4 = z2z3 relative to the homogeneous coordinates [z1, z2, z3, z4].
(2) For a given curve z1(x), define a second curve z2(x) by z2(x) = A+ kz1(x),
where A is a fixed vector and k a scalar. Then the surface is nothing but a cone.
(3) Given a space curve c(x), the pair {c(x), c′(x)} defines a ruled surface con-
sisting of tangent lines of the curve c(x), which is called a tangent developable
surface.

Definition 1.3 A ruled surface {z1, z2} is said to be developable if

z1 ∧ z2 ∧ z′1 ∧ z′2 = 0.

A developable surface is locally a cone or a tangent developable surface. In
the latter case, a generating space curve is called a directrix curve. A directrix
curve is written as c(x) = αz1(x) + βz2(x) for certain scalars α(x) and β(x),
with the property that c′(x) ≡ 0 (mod z1, z2).

In the following, we always assume that the ruled surface is not developable.
With this assumption, we will have the following system of differential equations.

z′′i =
∑

j

pj
i z

′
j +

∑

j

qj
i zj 1 ≤ i, j ≤ 2. (1.4)

Conversely, a system of this form defines a ruled surface: we can see that this
system has four independent solutions that define a pair of curves in P3, which
in turn defines a ruled surface. The surface is defined uniquely up to a projective
transformation.
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However, the surface itself does not define the system uniquely, it still has
the freedom of change of variables and generating curves. In fact, the change of
variables (x, z) → (y, w) given by

wi =
∑

j

aj
i (x)zj , det(aj

i ) 6= 0 (1.5)

keeps the surface unchanged. With this freedom of choice, let us try to simplify
the expression of the system (1.4).

Definition 1.4 Let z(x, y) be a surface. A curve on this surface defined by
x = x(t) and y = y(t) is called an asymptotic curve if the four vectors z, zx, zy,
and ztt are linearly dependent:

z ∧ zx ∧ zy ∧ ztt = 0.

For a ruled surface z = z1(x) + yz2(x), we have

z ∧ zx ∧ zy = z1 ∧ z′1 ∧ z2 + y z1 ∧ z′2 ∧ z2,
zt = (z′1 + y z′2)ẋ+ z2ẏ,

ztt = (z′1 + y z′2)ẍ + (z′′1 + y z′′1 )(ẋ)2 + 2z′2ẋẏ + z2ÿ,

where {·} denotes the derivation with respect to t. Hence

z ∧ zx ∧ zy ∧ ztt = 2ẋ ẏ z1 ∧ z′1 ∧ z2 ∧ z′2 − ẋ2A,

where

A = z1 ∧ z2 ∧ z′1 ∧ z′′1 +y(z1 ∧ z2 ∧ z′2 ∧ z′′1 + z1 ∧ z2 ∧ z′1 ∧ z′′2 )+y2z1 ∧ z2 ∧ z′2 ∧ z′′2 .

Therefore, the asymptotic curves are determined by the equation

ẋ{2ẏ z1 ∧ z′1 ∧ z2 ∧ z′2 − ẋ A} = 0,

which has always two different solutions, i.e. two asymptotic curves pass through
each point. One of these is a ruling line defined by ẋ = 0 and the other is given
by a differential equation of Riccati type

2z1 ∧ z′1 ∧ z2 ∧ z′2dy −Adx = 0.

Now we reparametrize the surface assuming that both z1 and z2 are asymp-
totic curves. In this case we see that

z1 ∧ z2 ∧ z′1 ∧ z′′1 = z1 ∧ z2 ∧ z′2 ∧ z′′2 = 0,

which implies that p2
1 = p1

2 = 0 in the system (1.4). We next replace z1 and
z2 by their scalar multiples λz1 and µz2. Then the coefficients p1

1 and p2
2 are

changed by adding λ′/λ and µ′/µ respectively. So we can always find λ and µ
so that p1

1 = p2
2 = 0. Hence we have proved the following:
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Proposition 1.5 A nondevelopable ruled surface is given by a system of differ-
ential equations

z′′1 = p z1 + q z2,

z′′2 = r z1 + s z2.
(1.6)

Example 1.6 (1) Any nondegenerate quadric is a ruled surface given by the
system

z′′1 = z′′2 = 0.

(2) Cayley’s cubic scroll is by definition

(z2)3 + z1(z1z4 + z2z3) = 0,

relative to the coordinates [z1, z2, z3, z4]. It is ruled by two generating curves
z1 = [1,−x,−x2, 0] and z2 = [0, 0, 1, x]. Hence the system of equations is

z′′1 = −2z2 + 2xz′2, z′′2 = 0.

If we set

z3 = z1 −
1

2
x2z2 + a z2 = [1,−x,−3

2
x2 + a,−1

2
x3 + a x],

where a is any constant, then the system is written in the form asserted in the
proposition:

z′′3 = −3z2, z′′2 = 0.

1.3 Fundamental invariants of a ruled surface

Let us check the covariance of the system (1.6) relative to the transformation
(1.5). Setting, for simplicity,

X =

(

z1
z2

)

, Q =

(

p q
r s

)

,

the system is written as
X ′′ = QX.

Relative to the transformation y = f(x) and Y = AX , where A = (aj
i ), the

variable Y satisfies

(f ′)2Ÿ = (2f ′A′A−1 − f ′′)Ẏ + (A′′A−1 +AQA−1 − 2A′A−1A′A−1)Y,

where {̇} = d/dy and {′} = d/dx. Then B = (f ′)−1/2A should satisfy B′ = 0
in order that the coefficient of Ẏ vanishes. In this case, the system becomes

(f ′)2Ÿ = (2{f ;x}+BQB−1)Y,

where {f ;x} is the Schwarzian derivative of f relative to the variable x. Since the
trace of the coefficient matrix of Y is trQ+4{f ;x}, we can assume this coefficient
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vanishes by choosing f appropriately. Then any transformation preserving this
condition is of the form

A = (f ′)1/2B, {f ;x} = 0;

i.e.,

f =
αx + β

γx+ δ
, A = (γx+ δ)−1B, where B is a constant matrix. (1.7)

The matrix-valued quadratic form Qdx2 changes under this transformation as

Qdx2 −→ B(Qdx2)B−1.

Definition 1.7 We call Qdx2 the fundamental invariant of a ruled surface.

Note that the condition Q = 0 holds only if the ruled surface is a quadric; see
Example 1.6. Summarizing the argument, we have seen the following theorem.

Theorem 1.8 (1) Any ruled surface can be written as a solution of a system
of the form

X ′′ = QX ; X = t(z1, z2) , trQ = 0.

(2) The transformation (1.5) preserving this normalization is given by (1.7) and
the conjugate class of the matrix-valued quadratic form Qdx2 is invariant; in
particular, (detQ)dx4 is an absolute invariant.
(3) For two ruled surfaces given respectively by curves (z1(x), z2(x)) and curves
(w1(y), w2(y)), let Qdx2 and Rdy2 denote the fundamental invariants. If both
are projectively equivalent, then there exists a diffeomorphism between the pa-
rameters, y = f(x), and a non-singular constant matrix B such that

f∗(Rdy2) = B(Qdx2)B−1.

Conversely, if there exists a mapping f and a matrix B satisfying this identity,
then the ruled surfaces z and w are projectively equivalent.

Remark 1.9 Since the parameter is determined up to a fractional linear trans-
formation, we can say that any ruled surface has a 1-dimensional projective
structure.

1.4 Differential invariants of a ruled surface

Let Ix be a differential polynomial defined by using the matrix Q relative to the
variable x. With Iy denoting the polynomial of the same form relative to y, we
say I is an invariant of weight k if

Iy = Ix(f ′)−k.
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The following is a list of some examples of such differential invariant poly-
nomials; we refer the reader to [W1906].

θ4 = −4 det Q,

θ6 = 9 det(Q′) − 2(detQ)′′,

θ10 = −4 detQ det(Q′) + ((detQ)′)2,

θ9 = det





p q r
p′ q′ r′

p′′ q′′ r′′



 .

The weights are 4, 6, 10, and 9, respectively.
As we have done for space curves, let us consider the Plücker coordinates of

the line z1z2 joining the points z1 and z2 represented by the vector ξ = z1 ∧ z2.
Its components are ξij = zi

1z
j
2 − zj

1z
i
2, where zk = [z1

k, z
2
k, z

3
k, z

4
k]. Then the point

ξ lies on the quadratic hypersurface in P5 determined by the Plücker relation

ξ12ξ34 − ξ13ξ24 + ξ14ξ23 = 0.

Furthermore, we have

Proposition 1.10 The invariant θ9 vanishes if and only if ξ lies in a hyper-
plane.

Proof. Differentiating ξ = z1∧z2, we get ξ′ = z′1∧z2 +z1∧z′2 and ξ′′ = 2z′1∧z′2.
Then, it is easy to see the following:

1
2ξ

′′′ + pξ′ = 2pz1 ∧ z′2 + qz2 ∧ z′2 − rz1 ∧ z′1,
1
2ξ

′′′′ + p′ξ′ + 2(p2 + qr)ξ = 2p′z1 ∧ z′2 + q′z2 ∧ z′2 − r′z1 ∧ z′1,
1
2ξ

(5) + (p′′ + 2(p2 + qr))ξ′ + 3(p2 + qr)′ξ = 2p′′z1 ∧ z′2 + q′′z2 ∧ z′2 − r′′z1 ∧ z′1.

Hence, ξ satisfies a 5th order equation if and only if the right-hand sides of the
above equations are linearly dependent, namely, if θ9 vanishes.

Remark 1.11 Investigation of the fundamental invariants of curves in projec-
tive space was done by Laguerre and Forsyth. A modern treatment was given
by A. Se-ashi [Se1987]. For more details regarding the contents of this section,
we refer the reader to [W1906] and [Sa1999].

2 Projective theory of surfaces

This section aims at describing the theory of surfaces in the 3-dimensional pro-
jective space and introduces some typical classes of surfaces, such as Demoulin
surfaces, projectively applicable surfaces and projectively minimal surfaces. To
define invariants appropriately, we need to associate special frames to the sur-
faces, called normalized frames. The normalization process works also in higher
dimensions, and we start with a description of invariants on hypersurfaces.
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2.1 Projective invariants of hypersurfaces

Let e0 : Mn → Pn+1 be an immersion of an n-dimensional manifold, which
defines a hypersurface. We identify it with its (arbitrary) lift to Rn+2 − {0}
or Cn+2 − {0}. We choose linearly independent tangent vector fields to e0(M)
denoted by e1, . . ., en, which are locally defined on M and linearly independent
of e0. Let en+1 be a vector field, also defined locally, which are linearly inde-
pendent of e0, e1, . . ., en. The ordered set e = (e0, e1, . . . , en, en+1) is called a
(projective) frame along the immersion. It satisfies a differential equation

de = ωe, i.e., deα =
∑

β

ωβ
αeβ ;

thus defining an (n + 2) × (n + 2)-matrix valued 1-form ω. Here and in the
following, the index range of Greek letters is from 0 to n + 1 and the index
range of roman letters is from 1 to n. The form ω satisfies the integrability
condition

dω = ω ∧ ω. (2.1)

If we consider only frames e with the property det(e0, e1, . . . , en, en+1) = 1, then
it also holds that

∑

α

ωα
α = 0,

which we assume in the following. When necessary, we will denote ω(e) for the
1-form ω corresponding to a given frame e. Two frames, say e and ẽ, are related
by

ẽ = ge,

where g is a mapping (locally) from M to the projective linear group PGLn+2.
Then, we see that

ω(ẽ) = dg g−1 + gω(e)g−1. (2.2)

We now further restrict the choice of e. We first look at the condition ωn+1
0 = 0,

which follows from the definition of en+1. By taking exterior derivation, we get

n
∑

i=1

ωi ∧ ωn+1
i = 0,

where ωi = ωi
0; by definition, these are independent basic forms. We can write

ωn+1
i =

∑

j hijω
j for a symmetric tensor hij and define a symmetric 2-form

ϕ2 =
∑

i,j

hijω
iωj .

The conformal class of ϕ2 can be seen to be unique. In order to see this, we
need to know how the invariants transform under a change of the frame e to a
new frame ẽ = ge, where g is given by

g =





λ 0 0
b a 0
µ c ν



 .
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By the assumption made above, det g = 1. Let us denote by adding tildes to
the invariants relative to the frame ẽ and let A denote the inverse matrix of a.
Then, a calculation using (2.2) shows

ω̃i = λ
∑

j

Ai
jω

j and ω̃n+1
i = ν−1

∑

k

ak
i ω

n+1
k ,

from which we obtain
h̃ = (λν)−1a h ta, (2.3)

where h = (hij). Hence, we see that ϕ̃2 = λν−1ϕ2. We say that the immersion e0
is nondegenerate when the matrix (hij) is nonsingular; we assume this property
in the following. Then, the equation (2.3) implies that there exists a frame such
that | dethij | = 1. In particular, |λν| = 1. The formula (2.2) shows that

ω̃0
0 + ω̃n+1

n+1 = ω0
0 + ωn+1

n+1 + ν−1
∑

i

ciωn+1
i −

∑

i,j

biA
i
jω

j

and we can assume ω0
0 + ωn+1

n+1 = 0 and then, b and c are related by

b = ν−1a h tc. (2.4)

The exterior derivation of ω0
0 + ωn+1

n+1 = 0 gives





n
∑

j=1

hijω
j
n+1 − ω0

i



 ∧ ωi = 0.

Hence we can define `ij so that

n
∑

j=1

hijω
j
n+1 − ω0

i =
n
∑

j=1

`ijω
j ; `ij = `ji. (2.5)

We set

` =
1

n

∑

i,j

hij`ij ,

where (hij) is the inverse of the matrix h = (hij).
We will next treat the third-order information of the immersion. Define hijk

by the equation

∑

k

hijkω
k = dhij −

∑

k

hkjω
k
i −

∑

k

hikω
k
j . (2.6)

It is seen that hijk is symmetric relative to all indices and satisfies the so-called
apolarity condition:

∑

i,j

hijhijk = 0
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for each k, which follows from the condition | deth| = 1. We define a symmetric
cubic form by

ϕ3 =
∑

i,j,k

hijkω
iωjωk

and a scalar called the Fubini-Pick invariant by

F =
∑

i,j,k,p,q,r

hijkhpqrh
iphjqhkr.

The cubic form has the invariance

λ2νh̃ijk = hpqra
p
i a

q
ja

r
k;

namely,
ϕ̃3 = λν−1ϕ3.

Together with the invariance (2.3) we can conclude that Fϕ2 is an absolutely-
invariant 2-form, which is called the projective metric form. We lastly set

ω0
n+1 = −

∑

j

ρjω
j .

Thus we have quantities {hij , hijk , `ij , ρj}. These are canonically defined for a
nondegenerate hypersurface and define invariants in the following sense. Con-
tinuing the computation of the form ω̃, we can see the formula

λ2 ˜̀
ij =

∑

p,q

ap
i `pqa

q
j + (2µ− ν−1c h tc)hij − ν−1

∑

p,q,r

hpqrc
paq

ia
r
j ,

from which we get
λ˜̀= λ−1`+ (2µ− ν−1c h tc).

Hence, we can find a frame so that ` = 0.
Summarizing the arugument above, we have seen the following.

Proposition 2.1 (1) There exists a frame e with the properties

det(e) = 1, ωn+1
0 = 0, ω0

0 + ωn+1
n+1 = 0, | dethij | = 1, and ` = 0.

(2) For such two frames, the connecting transformation g has the form




λ 0 0
b a 0
µ c ν





|λν| = 1
b = ν−1ah tc

µ = (1/2)ν−1ch tc,

where a is an n× n-matrix of | det a| = 1.

The second property implies that to any nondegenerate hypersurface is as-
sociated canonically a conformal connection.

Further, the invariance is summarized in the following way.
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Proposition 2.2 Let {h̃ij , h̃ijk , ˜̀ij , ρ̃j} be such invariants defined for the frame
ge, where g is a matrix given in Proposition 2.1(2) with components λ, ν, and
a = (aj

i ) and c = (ci). Set

ρ =
∑

ρiω
i, L =

∑

`ijω
iωj , L(c) =

∑

`ijω
icj/ν,

H(c) =
∑

hijkω
iωjck/ν, H(c, c) =

∑

hijkω
icjck/ν2.

Then the following transformation formulas hold:

ϕ̃2 = λν−1ϕ2, ϕ̃3 = λν−1ϕ3,

L̃ = L −H(c), λν−1ρ̃ = ρ+ L(c) − 1

2
H(c, c).

It can be proved that the set of invariants {hij , hijk , `ij , ρj} determines the
immersion up to a projective transformation. In the case n ≥ 3, the quantities
`ij and ρj are given in terms of hij , hijk and their derivatives. But in the case
n = 2, the situation is different. See Sect. 2.6.

The invariance in Proposition 2.1 means geometrically the following. Any
point P in the space can be written as

P = p0e0 + p1e1 + · · · + pnen + pn+1en+1

and thus we define the coordinates p = (p0, p1, . . . , pn, pn+1) relative to the
frame e: P = pe. We then set

H =





0 0 1
0 −h 0
1 0 0





and define a quadratic hypersurface as the set Q = {P | X(P ) = 0}, where
X(P ) = pH tp. For the frame ẽ, we see P = p̃ẽ, where p = p̃g. It is easy to
see gHtg = ±H̃ in view of the invariance (2.3) and (2.4). This implies that the
quadratic hypersurface Q is well-defined independent of frames. It is called the
Lie quadratic hypersurface and, by definition, tangent to the given hypersurface
up to the second order.

We next see how the Lie quadratic hypersurface Q depends on the point
of the given hypersurface. We fix a point P and consider it a function on the
given hypersurface. Since it does not move, dP is proportional to P itself,
which means that dp = −pω − κp for some 1-form κ. Hence, we can see that
dX = pΩtp− 2κpH tp, where

Ω =
∑

k

Hkω
k, Hk =







0 0 0

0 −hijk `ik

0 `jk 2ρk






. (2.7)

We now assume that ϕ3 = 0. Then, the exterior derivation of (2.6) shows
that `ij = 0 by use of the integrability condition (2.1) and then the exterior
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derivation of (2.5) when `ij = 0 shows that ρi = 0. Hence dX(P ) = 0 for the
point P on Q, which means that the quadratic hypersurface remains unchanged;
namely, we have the following:

Theorem 2.3 Assume that ϕ2 is nondegenerate and ϕ3 = 0. Then the hyper-
surface is projectively equivalent to a quadratic hypersurface.

Given an immersion e0 : Mn → Pn+1 and an associated projective frame
e = (e0, e1, . . . , en, en+1), we define the dual frame E = {E0, E1, . . . , En+1} by

Eα = (−1)αe0 ∧ · · · ∧ ěα ∧ · · · ∧ en+1.

We have 〈eα, E
β〉 = δβ

α. The frameE satisfies the equation dE = −Eω. The vec-
tor En+1 can be identified with the tangent hyperplane of the given hypersurface
and also can be regarded as an immersion into the dual projective space, called
the dual immersion. A projective frame associated to this dual immersion is
given by Ě = (En+1, E1, . . . , En, E0), and if we set dĚ = ΩĚ, then Ωi = −ωn+1

i ,

Ωn+1
i = −ωi, Ωj

i = −ωj
i , Ωj

0 = −ωj
n+1, ω

j
n+1 = −ω0

j , and Ω0
n+1 = −ω0

n+1. When
we denote the invariants of the dual immersion by adding asterisks, we can see
that h∗ij = hij , h∗ijk =

∑

hiphjqhkrhpqr, `
∗
ij = −∑hiphjq`pq , and ρ∗i =

∑

hipρp.
Consequently ϕ∗

2 = ϕ2 and ϕ∗
3 = ϕ3.

Remark 2.4 For the Lie quadratic hypersurface, we refer to [Bol, vol. 3, p.
438]. The case when n = 2 will be considered again in Sect. 11.2. For further
details on the contents of this section, we refer to [Sa1988, Sa1999].

2.2 Projective invariants of surfaces

Let us consider the case n = 2. We start with the system defined by an immer-
sion

z : (x, y) −→ z(x, y) ∈ P3.

Assume that the vector zxy considered as a mapping to R4 − {0} or C4 − {0}
is linearly independent of z, zx, and zy. Then the system has the form

zxx = `zxy + azx + bzy + pz, zyy = mzxy + czx + dzy + qz.

Relative to a frame {e0 = z, e1 = zx, e2 = zy, e3 = zxy}, the coframe has the
form

ω =







0 dx dy 0
pdx adx bdx `dx+ dy
qdy cdy d dy dx+mdy
∗ ∗ ∗ ∗






.

Hence we see that
ϕ2 = `dx2 + 2dx dy +mdy2.

In the following, we assume 1 − `m 6= 0 so that ϕ2 is nondegenerate. If the
coordinates are chosen to be conjugate relative to ϕ2 (see Sect. 4.1), then we
get ` = m = 0 and the system is reduced to

zxx = azx + bzy + pz, zyy = czx + dzy + qz.
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Here in the real case, we have assumed that ϕ2 is indefinite. The associated
coframe is

ω =















0 dx dy 0

pdx adx bdx dy

qdy cdy d dy dx

(bq + py)dx (ay + bc)dx (bd+ by + p)dx adx+ d dy
+(cp+ qx)dy +(ac+ cx + q)dy +(bc+ dx)dy















.

In particular, we have d(e0∧e1∧e2∧e3) = 2(adx+d dy)e0∧e1∧e2∧e3. Hence,
adx+ d dy is an exact form and there exists a function θ such that a = θx and
d = θy. Then,

zxx = θxzx + bzy + pz, zyy = czx + θyzy + qz. (2.8)

The integrability condition of the system is dω = ω ∧ ω, which consists of
three equations:

Ly = −2bcx − cbx,
Mx = −2cby − bcy,

bMy + 2Mby + byyy = cLx + 2Lcx + cxxx,
(2.9)

where L and M are traditional notations defined by

L = θxx − 1

2
θ2x − bθy − by − 2p, M = θyy − 1

2
θ2y − cθx − cx − 2q. (2.10)

We can simplify the system (2.8) by replacing e−θ/2z with w; then we get

wxx = bwy + pw, wyy = cwx + qw,

where

b = b, c = c, p = p− 1

2
θxx+

1

4
θ2x+

1

2
bθy, q = q− 1

2
θyy+

1

4
θ2y+

1

2
cθx. (2.11)

The invariants L and M remain the same under this change of the unknown
from z to w.

The dual surface is defined by the immersion ξ = z ∧ zx ∧ zy. It satisfies the
system

ξxx = θxξx − bξy + pξ, ξyy = −cξx + θyξy + qξ,

where
p = p+ by + bθy, q = q + cx + cθx.
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2.3 Wilczynski frame of a surface

In this section, we treat the system

zxx = bzy + pz, zyy = czx + qz, (2.12)

which we call the canonical system of the given immersion. Relative to this
system, the integrability condition (2.9) simplifies to

py = bcx + 1
2bxc− 1

2byy, qx = cby + 1
2bcy − 1

2cxx,

byyy − bcxy − 2bqy − 2bycx − 4qby
= cxxx − cbxy − 2cpx − 2bxcy − 4pcx.

(2.13)

We now choose a frame defined by

e0 = z, e1 = zx, e2 = zy, e3 = zxy − 1

2
bcz. (2.14)

Then the coframe ω for the canonical system (2.12) is

ω =















0 dx dy 0

pdx+ 1
2bcdy 0 bdx dy

qdy + 1
2bcdx cdy 0 dx

(bq + py)dx + (cp+ qx)dy (q + cx)dy (p+ by)dx 0
− 1

2d(bc) + 1
2bcdx + 1

2bcdy















.

From this expression, we have

h11 = h22 = 0, h12 = h21 = 1,
h111 = −2b, h222 = −2c, h112 = h122 = 0,

F = 8bc,
`11 = by, `12 = `21 = 0, `22 = cx,

ρ1 = 1
2 (bc)x − bq − py, ρ2 = 1

2 (bc)y − cp− qx.

(2.15)

In particular, the condition b = c = 0 is necessary and sufficient for the surface
to be quadratic. The surface is ruled if and only if F = 0, i.e. bc = 0. In
fact, assume c = 0. Then by (2.13), q is independent of x and we may assume
q = 0 by multiplying z by some factor. Checking again (2.13), it is seen that
the system has the form

zxx = (αy2 + βy + γ)zy + (−αy + δ)z, zyy = 0, (2.16)

where α, β, γ and δ are functions of x. This shows that z is linear relative to
y and has the form u(x) + yv(x), where u and v are solutions of the system
uxx = δu + γv and vxx = −αu+ (β + δ)v; thus z defines a ruled surface. The
converse is shown similarly.

In some cases, it is useful to adopt another frame {z, z1, z2, η} as far as
bc 6= 0, called the Wilczynski frame, defined by

z = z, z1 = zx − cx
2c
z, z2 = zy − by

2b
z,

η = zxy − cx
2c
zy − by

2b
zx +

(

bycx
4bc

− 1

2
bc

)

z.
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We introduce notations

κ1 =
bc− (log b)xy

2
, κ2 =

bc− (log c)xy

2
, (2.17)

and

P = p+
by
2

− cxx

2c
+

c2x
4c2

, Q = q +
cx
2

− byy

2b
+

b2y
4b2

. (2.18)

Then the system (2.12) can be written in the Pfaffian form

d











z

z1

z2

η











=









































cx
2c

1 0 0

P −cx
2c

b 0

κ1 0
cx
2c

1

bQ κ1 P −cx
2c



















dx+























by
2b

0 1 0

κ2
by
2b

0 1

Q c − by
2b

0

cP Q κ2 − by
2b























dy

































z

z1

z2

η











For this expression of the coframe, the invariants are given as follows:

h11 = h22 = 0, h12 = h21 = 1,

h111 = −2b, h222 = −2c, h112 = h122 = 0,

`11 = `12 = `21 = `22 = 0, ρ1 = −bQ, ρ2 = −cP.

One merit of using the Wilczynski frame is that we can suppose all `ij = 0.
This is due to that the dimension is 2.

2.4 Demoulin frames of a surface

According to the invariance stated in Proposition 2.1, the expressions of invari-
ants are dependent on the frame. In this section, we continue the procedure in
Sect. 2.1 and try to find a frame so that ρi = 0.

To simplify notations, we assume that the surface is indefinite and choose a

frame with the properties in Proposition 2.1(1) so that h =

(

0 1
1 0

)

. Then,

the apolarity condition and the condition ` = 0 imply h112 = h122 = 0 and
`12 = 0. Referring to the choice of frames in the previous subsection, we set
h111 = −2b and h222 = −2c. Then the transformation rule of Proposition 2.1
applied to the transformation g with a = I2 and λ = ν = 1 shows that the
condition ρ̃i = 0 is written as follows:

b(c1)2 + `11c
1 + ρ1 = 0, c(c2)2 + `22c

2 + ρ2 = 0. (2.19)

Here (c1, c2) is a vector appearing in a change of the frame in Proposition 2.1.
c2 here is not (c)2.

Proposition 2.5 Assume that the surface is indefinite and non-ruled. Then,
there is a frame so that ρi = 0. The number of such frames is at most four.
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Let us denote by ∆1 and ∆2 the discriminants of the equations of (2.19):

∆1 = (`11)
2 − 4ρ1b and ∆2 = (`22)

2 − 4ρ2c,

respectively. We remark that, when ∆1 and/or ∆2 are negative or when h is
definite, we need to make considerations in the complex number field.

Definition 2.6 We call such a frame a Demoulin frame.

Once a Demoulin frame is chosen, the remaining freedom of choice is very
restricted. For simplicity consider the case λν = 1. Then the only possible form
of the frame change g is









λ 0 0 0
λαc2 α 0 0
λα−1c1 0 α−1 0
λc1c2 c1 c2 λ−1









and the values c1 and c2 must satisfy the conditions

b(λc1)2 + `11λc
1 = 0, c(λc2)2 + `22λc

2 = 0.

For each solution, the new ˜̀
ij ’s are given by

˜̀
11 = `11 + 2bλc1, ˜̀

22 = `22 + 2cλc2,

and the last vector of the new frame is

λ−1(e3 + (λc1)e1 + (λc2)e2 + (λ2c1c2)e0).

Definition 2.7 When the vector e3 of a Demoulin frame defines a surface, we
call it a Demoulin transform of the original surface.

For a Demoulin frame, we set
∑

j

hijω
j
3 =

∑

j

qijω
j , ω0

i =
∑

j

pijω
j . (2.20)

(The letters p and q are reserved for denoting the coefficients of the system;
the usage here for the matrices can be distingushed from the context.) The
condition for e3 to define a surface is that ω1

3 and ω2
3 are linearly independent,

because de3 = ω3
3e3 + ω1

3e1 + ω2
3e2. In other words,

det q 6= 0 , q = (qij).

Under this condition, a set e = (e3, e1, e2, e0) in this order defines a projective
frame of e3, and the coframe ω is

ω =











ω3
3 ω1

3 ω2
3 0

ω3
1 ω1

1 ω2
1 ω0

1

ω3
2 ω1

2 ω2
2 ω0

2

0 ω1 ω2 ω0
0
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Therefore, the associated fundamental form ϕ2 is ω1
3 · ω0

1 + ω2
3 · ω0

2 , which is
nondegenerate when

det p 6= 0 , p = (pij).

Since `ij = qij − pij satisfies the condition ` = tr`ij = 0, we see that

p12 = q12 , p21 = q21, (2.21)

from which we have

ϕ2 = p21(p11 + q11)ω
1ω1 +(2p12p21 +p11q22 + q11p22)ω

1ω2 +p12(p22 + q22)ω
2ω2.

(2.22)
Moreover, ω0

3 = 0 implies
∑

i ω
i
3 ∧ ω0

i = 0. Hence

p11q22 − p22q11 = 0. (2.23)

Let us continue our consideration of the system (2.12) by assuming bc 6= 0.
By the expression in (2.15), a Demoulin frame is given by the change of the
frame (2.14) by the tranformation









1 0 0 0
c2 1 0 0
c1 0 1 0
c1c2 c1 c2 1









,

where

c1 =
−by ±

√
∆1

2b
, c2 =

−cx ±
√

∆2

2c
,

and

∆1 = (by)2 + 4b (bq + py − 1

2
(bc)x), ∆2 = (cx)2 + 4c (cp+ qx − 1

2
(bc)y).

Hence, the Demoulin transforms w of the surface z are given by

w = (c1c2 − 1

2
b c)z + c1zx + c2zy + zxy.

An explicit computation of Demoulin frames will be given in Sect. 11.6.
By the integrability (2.9), a simple computation shows

∆1 = 4b2Q, ∆2 = 4c2P. (2.24)

By use of the Wilczynski frame {z, z1.z2, η}, the transform w is given by

w = η + σz1 + τz2 + στz, (2.25)

where σ = ±√
Q and τ = ±

√
P .

Definition 2.8 We call a surface satisfying the conditions bc 6= 0 and det q 6= 0
a Demoulin surface if it has only one Demoulin transform, equivalently if P =
Q = 0. A surface with P = 0 or Q = 0 is called a Godeaux-Rozet surface.
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The condition P = Q = 0 determines the coefficients p and q in terms of b
and c by (2.18) and then the third equation of the integrability (2.13) turns out
to be satisfied. The first and the second equations of the integtability (2.13)
then give a system of nonlinear differential equations relative to b and c:

b2bxyy − bbxbyy − bbybxy + bxby
2 − 2cb3by − b4cy = 0,

c2cxxy − ccxcxx − ccxcxy + cx
2cy − 2bc3cx − c4bx = 0.

(2.26)

Moreover, this system can be integrated as follows:

(log b)xy = bc+
r(x)

b
, (log c)xy = bc+

s(y)

c
(2.27)

by using indeterminate functions r of x and s of y. Hence, we have seen that a
Demoulin surface is defined by the system

zxx = bzy +

(

cxx

2c
− c2x

4c2
− by

2

)

z, zyy = czx +

(

byy

2b
−

b2y
4b2

− cx
2

)

z, (2.28)

where b and c are satisfying the system (2.27).

Remark 2.9 Relative to a Demoulin frame, any Godeaux-Rozet surface for
which bc 6= 0 is characterized by the condition `11 = 0 and `22 6= 0, or, `11 6= 0
and `22 = 0. Further, in view of (2.23), we must have p11 = q11 = 0 or
p22 = q22 = 0, respectively.

2.5 Remarks on higher dimensional hypersurfaces

Let An+1 be the (n + 1)-dimensional affine space and f0 : Mn → An+1

an immersion defining an affine hypersurface. We choose a set of vectors
{f1, . . . , fn+1} along the immersion so that f1, . . . , fn are tangent to the hy-
persurface and det(f1, . . . , fn+1) = 1. Then we have a Pfaff equation dfα =
∑

β τ
β
αfβ (0 ≤ α, β ≤ n + 1) and the connection form τ = (τβ

α ). The compo-
nents of the form τ are





0 τ j τn+1
0

0 τ j
i τn+1

i

0 τ j
n+1 τn+1

n+1



 .

The integrability condition dτ = τ ∧ τ is satisfied. Similarly to the argument
of Sect. 2.1, we have τn+1

0 = 0 and τn+1
i =

∑

hijτ
j , where τ j denotes τ j

0 .
We may assume | deth| = 1 and τn+1

n+1 = 0. Thus we get a quadratic form
∑

hijτ
iτ j . We define a tensor mij by

∑

hijτ
j
n+1 =

∑

mijτ
j . It is called

the affine mean curvature tensor, and m = 1
n

∑

hijmij is called the affine mean
curvature. When we regard the affine hypersurface as a projective hypersurface,
the invariant hij remains the same, the invariant `ij is given by `ij = mij−mhij ,
and the invariant form ω0

n+1 equals − 1
2dm. It suffices to normalize the frame

by a transformation




1 0 0
0 In 0

− 1
2m 0 1



 .
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When an affine hypersurface satisfies mij − mhij = 0, it is called an affine
hypersphere and then m turns out to be constant. Namely, we have `ij = 0
and ρi = 0 for affine hyperspheres. In the 2-dimensional case, this property is
equivalent to the definition of a Demoulin surface. We introduce the following
definition.

Definition 2.10 A projective hypersurface is called a Demoulin hypersurface
if it has a frame so that `ij = 0 and ρi = 0.

The property that `ij = 0 and ρi = 0 for one frame is equivalent to the
property that for any frame described in Proposition 2.1, there exists a vector
ak such that

`ij =
∑

hijka
k and ρi = −1

2

∑

hijka
jak,

due to the invariance in Proposition 2.1.
We further consider whether there exists a frame so that ρi = 0 for a general

hypersurface. To find such a frame is equivalent to solving the equation

ρi +
∑

j

`ijc
j − 1

2

∑

j,k

hijkc
jck = 0 (1 ≤ i ≤ n) (2.29)

relative to ci; see Proposition 2.2. If the quadratic forms Hi(c, c) =
∑

hijkc
jck

are in general position, then it is possible to solve the equations and the num-
ber of solutions is 2n. However in our case the coefficients satisfy algebraic
conditions

∑

i,j

hij`ij = 0,
∑

i,j

hijhijk = 0

and also the conditions that the `ij and hijk are totally symmetric. A computer
test done by M. Noro for the case n = 3 shows that the number of solutions is
eight. Furthermore, when n = 3, the identities

∑

hijkc
jck = 0 imply c1 = c2 =

c3 = 0, and especially the identities
∑

hijkc
k = 0 imply c1 = c2 = c3 = 0. This

means that, for a Demoulin hypersurface, such a frame is unique. The author
wonders if this also holds generically.

Remark 2.11 The equation (2.29) has the following geometrical meaning. Let
us recall the definition of the Lie quadratic hypersurface Q defined by the equa-
tion E = 0 in Sect. 2.1. The set of hypersurfaces Q is stationary at a point
P if and only if dE = 0 also at P . As we have seen, the condition dE = 0 is
pHi

tp = 0 for each i and this is written as

ρi(p
n+1)2 +

∑

j

`ijp
jpn+1 − 1

2

∑

j,k

hijkp
jpk = 0 (1 ≤ i ≤ n),

which is a homogeneous form of the equation (2.29). We refer to Sect. 11.3 and
11.4 for the detailed study of the 2-dimensional case.
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2.6 Projectively applicable surfaces

Relative to the Wilczynski frames, the invariants κ1 = (bc − (log b)xy)/2 and
κ2 = (bc− (log c)xy)/2 have played important roles. In this section, we examine
their geometric meaning. For this purpose, we consider a space curve z(x, y) by
fixing the variable y. Set w(x) = b−1/2z. Then a calculation shows

wxxxx + q2wxx + q3wx + q4w = 0,

where

q2 = 2(log b)xx − ((log b)x)2/2− by − 2p,

q3 = 2(log b)xxx − (log b)x((log b)xx + by) − 2px − b2c.

Hence the invariant form ψ3 introduced in Sect. 1.1 is given by

ψ3 = −b(bc− (log b)xy)dx3 = −2bκ1dx
3. (2.30)

We give here a lemma without proof.

Lemma 2.12 Set

K1 = log(bκ1) = log(b(bc− (log b)xy)/2),

K2 = log(cκ2) = log(c(bc− (log c)xy)/2).
(2.31)

Then
Py = 2κ2K

2
x, Qx = 2κ1K

1
y .

In particular, for a Demoulin surface with κ1κ2 6= 0,

(log cκ2)x = 0, (log bκ1)y = 0.

For a Godeaux-Rozet surface, one of (c(bc − (log c)xy))x = 0 and (b(bc −
(log b)xy))y = 0 will hold. When the former identity holds, we can set c(bc −
(log c)xy) = Y (y) and, when this does not vanish, we can assume Y = 1 by a
simple argument on the coordinate dependence. On the other hand, this says
that the parameter y is proportional to the projective length parameter. Hence,
we have:

Proposition 2.13 For any Demoulin surface, the coordinates (x, y) can be cho-
sen so that x and y are projective length parameters of both coordinate curves.

From (2.30), we can also conclude the following proposition.

Proposition 2.14 Let z be a non-ruled surface. Then, (1) the space curve with
parameter x (resp. parameter y) belongs to a linear complex if and only if κ1 = 0
(resp. κ2 = 0). (2) If both curves belong to linear complexes, then the system
reduces to the case

b = c, (log b)xy = b2. (2.32)
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Proof. Part (1) follows directly from Proposition 1.1. For the second part (2),
we have

bc = (log b)xy = (log c)xy.

In particular, (log b/c)xy = 0. Hence, we can write b/c = X(x)Y (y) for non-
vanishing functions X and Y . Since, by coordinate change from (x, y) to
(x̄ = f(x), ȳ = g(y)) the invariants b and c are changed to bg′/f ′2 and cf ′/g′2,
we can assume b = c and the conclusion follows.

We next treat the surface with the property (2.32). First, note that

L = −by − 2p, M = −cx − 2q.

Differentiating (2.32), we get the identity

((log b)xx +
1

2
(log b)2x)y = 3bbx

and we see that Ly = −3bbx, by (2.9). Hence, there exists a function X1(x)
such that

L = −(log b)xx − 1

2
(log b)2x +X1(x).

Similarly, we can set

M = −(log b)yy − 1

2
(log b)2y + Y1(x).

Then, from the third formula of the integrability (2.9), it holds that

(b2Y1)y = (b2X1)x. (2.33)

On the other hand, any solution of the equation (log b)xy = b2 is written as

b =
(X ′Y ′)1/2

X + Y
, where X = X(x), Y = Y (y).

Hence, integrating the form b2Y1dx+ b2X1dy, which is closed by (2.33), we get
the identity

− Y ′Y1

X + Y
+ Y2 = − X ′X1

X + Y
+X2,

for appropriate functions X2(x) and Y2(y). By differentiation relative to x and
y, we get

Y ′
2X

′ = Y ′X ′
2.

This implies that there exist constants k1, k2, and k3 so that

X2 = k1X + k2, Y2 = k1Y + k3.

Then, we see that

X ′X1 − k1X
2 − (k2 − k3)X = Y ′Y1 − k1Y

2 − (k3 − k2)Y,
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which must be constant, and let us call this constant c3. By setting k2−k3 = c2
and k1 = c1, we finally get

X ′X1 = c1X
2 + c2X + c3, Y ′Y1 = c1Y

2 − c2Y + c3.

Now we have explicit forms of p and q in terms of two functions X and Y and
three constants:

2p = −by + (log b)xx +
1

2
(log b)2x − c1X

2 + c2X + c3
X ′

,

2q = −bx + (log b)yy +
1

2
(log b)2y − c1Y

2 − c2Y + c3
Y ′

.

(2.34)

This fact says that, for a surface with the property (2.32), the possible choices
for p and q can include three arbitrary constants. Since this is a remarkable
property, we recall the following definition.

Definition 2.15 Given two surfaces S1 and S2, a mapping f : S1 → S2 is
called a projective deformation if, for any point p in S1, there exists a projective
transformation T such that T (p) = f(p) and that, for any curve C on S1 passing
through p, its image T (C) has a second-order contact with the curve f(C). A
surface is said to be projectively applicable if it has a nontrivial projective
deformation.

Proposition 2.16 If f : S1 → S2 is a projective deformation, then the asymp-
totic directions are preserved by f . Also, b1 = b2 and c1 = c2 when denoting the
invariants for S1 by b1 and c1 and for S2 by b2 and c2, relative to the common
asymptotic directions. These conditions are conversely sufficient for the two
surfaces to be related by a projective deformation.

Proof. From the second-order contactedness, it immediately follows that the
asymptotic directions are preserved. Hence, both surfaces can be assumed
to be given by systems like (2.12): Assume that S1 is given by the system
(z1)xx = b1(z1)y + p1z1 and (z1)yy = c1(z1)x + q1z1 and that S2 is given by the
system (z2)xx = b2(z2)y + p2z2 and (z2)yy = c2(z2)x + q2z2. Up to a projective
transformation, we have z2 = ρz1, (z2)x = ρxz1 + ρz1x, (z2)y = ρyz1 + ρz1, and
(z2)xx = ρxxz1+2ρx(z1)x +ρ(z1)xx at the contact point. Hence, we can see that
(z2)xx = b1(z2)y +2ρx/ρ(z2)x +(p1 +ρxx/ρ− b1ρx/ρ−2ρ2

x/ρ
2)z2, which implies

b1 = b2. Similarly, c1 = c2. The converse statement is seen by reversing the
argument, since derivatives of ρ can take arbitrary values at the contact point.

Any (nondegenerate) ruled surface is projectively applicable, because the
coefficient p includes an arbitrary function δ in the representation (2.16).

Next we assume bc 6= 0 and consider a surface given by the system (2.12).
We want to find distinct surfaces with the same b and c. Let L1, M1 and L2,
M2 be the quantities for two surfaces that are deformable to each other. By
setting

λ = L2 − L1, µ = M2 −M1 (2.35)

27



and checking the integrability, we get the conditions

λy = µx = 0, bµy + 2µby = cλx + 2λcx. (2.36)

Then, introducing ν by
νbc = bµy + 2µby,

we get the compatibility condition

2λ(log c)xy = (νb)y , 2µ(log b)xy = (νc)x. (2.37)

If the system of the linear differential equations (2.36) and (2.37) relative to λ,
µ, and ν is solvable, then we have at most three independent solutions. We
denote them by (λi, µi) for i ≤ 3. General solutions are written as λ =

∑

ciλi

and µ =
∑

ciµi, where ci are integration constants.

Proposition 2.17 Assume bc 6= 0 and the number of independent solutions is
three. Then the Gaussian curvature of the form bcdxdy is constant.

Proof. We compute νxy from (2.37) in two different orders (νx)y and (νy)x and
get the identity

2cλ((log c)xy/bc)x − 2bµ((log b)xy/bc)y = ν(log b/c)xy.

Since we have assumed the existence of three independent solutions of the triple
(λ, µ, ν), this equation should be trivial. Namely, we have

(log b/c)xy = 0, ((log c)xy/bc)x = 0, ((log b)xy/bc)y = 0. (2.38)

The latter two equations show that (log bc)xy/bc is constant, since (log b)xy =
(log c)xy, namely, the Gaussian curvature of the metric form bcdxdy is constant.

Remark 2.18 The first relation of (2.38) shows that we can assume b = c by
a suitable coordinate change. A surface with the condition b = c was called an
isothermic-asymptotic surface by Fubini.

Example 2.19 The system

zxx = zy + (kx+ k1)z, zyy = zx + (kx+ k2),

where k, k1, and k2 are constants, is integrable. Any surface defined by this
system is called a coincidence surface. When these constants are all zero, the
surface is equivalent to XY Z = 1 in affine space. By Proposition 2.16, any
coincidence surface is projectively applicable to the surface XY Z = 1.
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Example 2.20 The system called the Appell’s system (F4) is the following:

zxx =
2y

1 − x− y
zxy +

(a+ b+ 1)x− c1(1 − y)

x(1 − x− y)
zx

+
(a+ b+ 1 − c2)y

x(1 − x− y)
zy +

ab

x(1 − x− y)
z,

zyy =
2x

1 − x− y
zxy +

(a+ b+ 1 − c1)x

y(1 − x− y)
zx

+
(a+ b+ 1)y − c2(1 − x)

y(1 − x− y)
zy +

ab

y(1 − x− y)
z,

where a, b, c1 and c2 are complex constants. An asymptotic coordinate system
(u, v) is defined by the coordinate change (x, y) = (u(1 − v), v(1 − u)). Relative
to the new unknown function w = (u(1−v))c1(v(1−u))1−c2(1−u−v)−ez where
e = c1 + c2 − a− b− 1, the system is changed to

zuu = − ev(1 − v)

u(1− u)(1 − u− v)
zv + pz,

zvv = − eu(1− u)

v(1 − v)(1 − u− v)
zu + qz,

where

p = p0 +
a1

u(1− u)
+
a2

u2
+

a3

(1 − u)2
,

q = q0 +
a1

v(1 − v)
+
a3

v2
+

a2

(1 − v)2
,

p0 =
e

2(1− u− v)2
+
e2

4

(

2

u(1 − v)
+

2

v(1 − u)

− 2(1 − 2v)

v(1 − v)(1 − u− v)
+

3

(1 − u− v)2

)

,

q0 =
e

2(1− u− v)2
+
e2

4

(

2

u(1 − v)
+

2

v(1 − u)

− 2(1 − 2u)

u(1 − u)(1 − u− v)
+

3

(1 − u− v)2

)

,

and

a1 = (2ab− c1c2 + (a+ b+ 1)e)/2, a2 = c1(−2 + c1)/4, a3 = c2(−2 + c2)/4.

This shows that the system above defines projectively applicable surfaces with
three parameters for each constant e = c1 + c2 − a − b − 1. The Gaussian
curvature referred to in Proposition 2.17 is equal to −2/e2.
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Now we go back to the general situation. It is easy to see that λ and µ
defined in (2.35) change to λ/f ′2 and µ/g′2 by the coordinate change from
(x, y) to (x̄ = f(x), ȳ = g(y)). Therefore, when λµ 6= 0, we can reduce the
system to one where λ = µ = 1 and, when λ 6= 0 and µ = 0, to one where
λ = 1 and µ = 0. The corresponding conditions on b and c are either cx = by
or cx = 0.

Definition 2.21 The surface with cx = by is called an R-surface and the surface
with cx = 0 is called an R0-surface.

For an R-surface, λ = µ can be any constant. Namely, the integrability
condition holds for p + k and q + k for any constant k with the same cubic
invariants b and c. For an R0-surface, µ = 0 and λ can be any constant. Hence,
the integrability condition holds for p+ k and q with the same cubic invariants
for any constant k.

2.7 Projectively minimal surfaces

In Sect. 2.2 we saw that the form Fϕ2 is well-defined independent of the frames.
When F 6= 0, Fϕ2 defines an area functional and any critical surface relative to
this functional is called a projectively minimal surface.

It is known that, relative to the system (2.12), the condition for projective
minimality is written as

bMy + 2Mby + byyy = 0, cLx + 2Lcx + cxxx = 0. (2.39)

By the integrability (2.9), each of the above equations is equivalent to the other.
In terms of the invariants P and Q, the equation is rewritten as

bQy + 2byQ = 0, cPx + 2cxP = 0 (2.40)

and, equivalently by (2.24),

(∆1)y = 0, (∆2)x = 0. (2.41)

We assume that the surface is of indefinite type and non-ruled, and let e be
a Demoulin frame. Then the condition (2.41) is seen to be equivalent to

det p = det q, (2.42)

where the matrices p and q are as defined in (2.20). For a proof we need explicit
formulas of p and q in terms of the coefficients of the system, which will be
given in (11.13). For the notations used in this formula, we refer to Sect. 11.3.
Further, by the identities (2.21) and (2.23), the condition in (2.42) is equivalent
to each one of

(1) `22(p11 + q11) = 0 and (2) `11(p22 + q22) = 0. (2.43)

More generally, we can state the following proposition.
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Proposition 2.22 A non-degenerate surface is projectively minimal if and only
if

∑

i,j

`ij(pij + qij) = 0, where `ij :=
∑

k,m

hikhjm`km,

for a Demoulin frame.

The computation of the condition (2.39) was given in [Th1926]. The differen-
tial equation of projective minimality in general dimension was given in [Sa1987]
in terms of affine invariants and by use of the formulation in [Sa1987] the above
proposition was proved in [Sa1999]. Equivalence of (2.41) and (2.42) follow
more directly from (11.8), (11.11), (11.12), and (11.13) by using an explicit
form of a Demoulin frame. The next theorem states a fundamental property of
projectively minimal surfaces relative to Demoulin transform:

Theorem 2.23 Let S be a nondegenerate surface of indefinite type. Assume
the conditions bc 6= 0, `11`22 6= 0 and det p 6= 0 for a Demoulin frame. Then:
(1) If S is projectively minimal, then the conformal structure of a Demoulin
transform of S is the same as the conformal structure of S. (2) Conversely, if
the conformal structure of a Demoulin transform is the same as the conformal
structure of the original surface, then the original surface is projectively minimal
or a surface with the property p12p21 = 0.

Proof. Since `11`22 6= 0 by assumption, the conditions in (2.43) show that ϕ2 is
conformal to ϕ2 = ω1ω2 in (2.22). The converse is also immediate.

Remark 2.24 A correspondence that preserves conformal structures in the the-
orem defines a W -congruence in the terminology explained in Sect. 3.2. The
surface with p12p21 = 0 is called a Q-surface in [Bol, vol. 2, p. 318].

Example 2.25 By Definition 2.8 and (2.40) or by (2.43), a Godeaux-Rozet
surface is projectively minimal. In particular, a Demoulin surface is also pro-
jectively minimal.

Remark 2.26 The books [FC1, FC2] and [L] as well as [Bol, AG] are good
references to the theory of projective surfaces. We refer to [Sa1988, Sa1999] for
further details regarding Sects. 2.1 to 2.5, and to [L] for Sect.2.2. A generaliza-
tion of the subject in Sect. 2.1 is given in [Se1988, MSY1993, SYY1997]. The
proof of Proposition 2.22 is given in [Sa1999]. The projective minimality in terms
of affine invariants is given in [Sa1987]. We refer also to [Th1926, May1932].
The notations L and M were introduced in [FC2]. See [Sa2001] for further
details on Example 2.20. For projective applicability and its further develop-
ment, we refer to [FC2, Chap. 6] and [Ca1920]. J. Kanitani [Ka1922] classified
projectively applicable surfaces with three parameters by determining the corre-
sponding systems. Example 2.20 gives an explicit representation of such systems
for the nonflat case. We refer also to Fubini [FC1, §69]. Demoulin surfaces were
introduced by Demoulin [Dem1924]. For a general theory of R-surfaces and
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R0-surfaces, we refer to [FC2] and [Fe2000a]; the latter serves as a good intro-
duction to the theory of projective surfaces in view of integrable systems. We
refer also to [Fe1999].

3 Line congruences (1)

Line congruences and Laplace transformations are central notions treated in this
article. In this section, we introduce elementary terminology on line congruences
and explain what a W-conguence is, and in the next section we give fundamental
properties of Laplace transformations.

3.1 Line congruences

We call a 2-parameter family of lines in 3-dimensional projective space P3 a
line congruence. Given a surface in 3-dimensional Euclidean space, the family
of normal lines to the surface is a typical example of a line congruence and is
called the normal congruence. Its study was begun by Kummer [Ku1860]. We
give a sketch of an elementary treatment of normal congruences in Appendix B.

Another method of constructing a line congruence is given as follows: Given
a family of curves on a surface such that through any point passes a curve
belonging to this family, the set of tangent lines to the curves form a family
of lines parametrized by points of the surface. This congruence is called the
tangent congruence associated to the family of curves.

A practical way of presenting a line congruence is to give a pair of surfaces
{z(x, y), w(x, y)} with surface parameters x and y. Then to these parameters
we associate the line zw joining the two points z(x, y) and w(x, y), and thus
obtain a line congruence. We denote it simply by {z, w}.

Let t 7→ (x(t), y(t)) be a curve in the parameter space (x, y). Then we get a
ruled surface {z(x(t), y(t)), w(x(t), y(t))}. The condition for this surface to be
developable is

z ∧ w ∧ d

dt
z ∧ d

dt
w = 0,

which is equivalent to

P

(

dx

dt

)2

+ 2Q
dx

dt

dy

dt
+R

(

dy

dt

)2

= 0,

where

P = z ∧ w ∧ zx ∧ wx,

2Q = z ∧ w ∧ zx ∧ wy + z ∧ w ∧ zy ∧ wx,

R = z ∧ w ∧ zy ∧ wy .

Hence, generally, there exist two directions on the parameter space so that, along
the integral curves of these direction fields, the ruled surface is developable and
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its directrix curves for each family of directions comprise a surface; this surface
is called the focal surface of the line congruence. We remark that the integral
curves for normal congruence of a surface in Euclidean space are nothing but
the curvature lines. We refer to Appendix B.

Let ∂/∂x be one of the degenerate directions, i.e., let us assume P = 0, and
let z be the corresponding focal surface. We then have

zx ≡ 0 (mod z, w). (3.1)

The tangent plane of z is generated by {z, w, zy}. If wx ≡ 0 (mod z, w)
throughout, then (z ∧ w)x = λz ∧ w; namely, the line z ∧ w is stationary in the
direction ∂/∂x. To exclude this degenerate case, we assume now that wx 6≡ 0
(mod z, w).

We next let ∂/∂y be the other degenerate direction, i.e., R = 0, and let w
be the focal surface. We see that

wy ≡ 0 (mod z, w) (3.2)

and the tangent plane is generated by {z, w, wx}. Here we need the condition
Q 6= 0:

z ∧ w ∧ zy ∧ wx 6= 0, (3.3)

which we assume in the following.

3.2 W -congruences

We write (3.1) and (3.2) more explicitly as

zx = mw + rz,

wy = sw + nz,

where we assume m 6= 0 and n 6= 0 so that z and w really do depend on x and
y, respectively. Further, we set

zyy ≡ pwx (mod z, w, zy),
wxx ≡ qzy (mod z, w, wx).

Then we have

zxx ≡ mwx (mod z, w),
zxy ≡ 0 (mod z, w, zy),
wxy ≡ 0 (mod z, w, wx),
wyy ≡ nzy (mod z, w).

We now compute the induced conformal structures on the surfaces. Set

E = z ∧ zx ∧ zy ∧ zxx = m2z ∧ w ∧ zy ∧ wx,

F = z ∧ zx ∧ zy ∧ zxy = 0,

G = z ∧ zx ∧ zy ∧ zyy = mpz ∧ w ∧ zy ∧ wx,
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then Edx2 + 2Fdxdy +Gdy2 defines the conformal structure on the surface z,
which turns out to be

ϕz = mdx2 + pdy2. (3.4)

Similarly, we get
ϕw = qdx2 + ndy2, (3.5)

which defines the conformal structure on the surface w. For the surfaces to be
nondegenerate, the condition

mnpq 6= 0 (3.6)

is necessary and sufficient.

Definition 3.1 We say that the line congruence {z, w} is a W -congruence (W
is after Weingarten) if the conformal class of ϕz is equal to the conformal class
of ϕw. Namely, if it holds that

W := mn− pq = 0. (3.7)

Remark 3.2 If we say that two vectors X and Y are conjugate relative to
a nondegenerate 2-form ϕ when ϕ(X,Y ) = 0, then a W-congruence is a line
congruence that preserves conjugate directions relative to ϕz and ϕw. We refer
to Sect. 4.1 for an intrinsic definition of a conjugate system.

Given a line congruence {z, w}, we define a surface ξ lying in P5 by

ξ = z ∧ w,

which lies in the quadratic hypersurface of P5 defined by the Plücker relation.

Theorem 3.3 (G. Darboux) A congruence is a W-congruence if and only if
the second osculating space of the surface ξ is of codimension greater than 1.

Proof. The second osculating space of ξ is a space spanned by the derivatives
of ξ up to second order. It is enough to show that there exists a linear relation
among the six vectors ξ, ξx, ξy, ξxx, ξxy, and ξyy if and only if W = 0. By a
computation, we see that

ξx = z ∧ wx (mod ξ),

ξy = zy ∧ w (mod ξ),

ξxx = mw ∧ wx + qz ∧ zy (mod ξ, ξx),

ξxy = zy ∧ wx (mod ξ, ξx, ξy),

ξyy = pwx ∧ w + nzy ∧ z (mod ξ, ξy).

Hence, for a linear relation such as

Aξxx + 2Bξxy + Cξyy ≡ 0 (mod ξ, ξx, ξy)
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to exist, it is enough to solve

(Aq − Cn)z ∧ zy + 2Bzy ∧ wx + (Am− Cp)w ∧ wx

≡ 0 (mod z ∧ w, z ∧ wx, zy ∧ w).

Since z ∧w ∧ zy ∧wx 6= 0 by the assumption (3.3), this identity is equivalent to

Aq − Cn = 0, B = 0, Am− Cp = 0.

Therefore, W = 0 is necessary for nontrivial A and C to exist, and vice versa.

4 The Laplace transformation

This section treats the Laplace transformation of the differential equation

zxy + azx + bzy + cz = 0,

which sends any solution of this equation to a solution of another differential
equation of the same form. We first interpret it in terms of tangent congruence
when z is regarded as an immersion of a surface, and then give fundamental
notions relative to the Laplace transformation following Darboux [D].

4.1 Laplace invariants

Let S be a surface in P3 defined by an immersion z(x, y) with parameter {x, y}
and the tangent planes T(x,y).

Definition 4.1 The coordinate system {x, y} is called a conjugate system if the
limit of the line T(x,y)∩T(x+dx,y), as dx → 0, tends to a line that is parallel to the
vector zy, or equivalently, as seen below, if the limit of the line T(x,y)∩T(x,y+dy),
as dy → 0, tends to a line that is parallel to the vector zx.

We can interpret this definition in terms of z as follows. Let Z denote the
coordinate vector of P3. Then, for each (x, y), there exists a vector A(x, y) in
the dual space such that the tangent plane is written as

T(x,y) : 〈A(x, y), Z〉 = 0,

where 〈·, ·〉 denotes the dual pairing, and z satisfies

〈A, z〉 = 〈A, zx〉 = 〈A, zy〉 = 0.

Since
T(x+dx,y) : 〈A(x, y) +Ax(x, y)dx, Z〉 = 0,

the limit of the intersection of these planes is defined by the equation

〈A,Z〉 = 〈Ax, Z〉 = 0.
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Hence the condition of the coordinates being conjugate is

〈A, zy〉 = 〈Ax, zy〉 = 0.

Therefore, we also have

0 = 〈Ax, zy〉 = 〈A, zy〉x − 〈A, zxy〉 = −〈A, zxy〉.

Hence, we see that the four vectors z, zx, zy, and zxy are linearly dependent.
Also, because the surface is regular, the first three are linearly independent.
This implies an equation of the form

(E) zxy + azx + bzy + cz = 0

holds. Conversely, this differential equation characterizes conjugate systems.

However, the derivation of the equation (E) is not unique. This is because
the system of homogeneous coordinates is determined only up to a scalar mul-
tiple and, in the definition above, only the directions of the coordinates are
considered. Namely, we have the following freedom:

1) we can choose w = λ−1z in place of z, where λ is a scalar function,

2) we may choose coordinates (s, t), for which s = s(x) and t = t(y).

Though exchange of x and y is also possible, for the sake of simplicity we do
not consider it. Relative to the freedom above the equation (E) is changed as
folows:

1) wxy + (a+ (logλ)y)wx + (b+ (logλ)x)wy

+(c+ a(logλ)x + b(logλ)y + λxy/λ)w = 0,

2) zst + a
dy

dt
zs + b

dx

ds
zt + c

dx

ds

dy

dt
z = 0.

Now let us set
h = ab+ ax − c, k = ab+ by − c. (4.1)

Then, if we denote the h and k for the new equations by h′ and k′, we have the
identities

h = h′, k = k′

for 1) and
hdxdy = h′dsdt, kdxdy = k′dsdt

for 2). Hence, we have

Proposition 4.2 The 2-forms hdxdy and kdxdy are invariantly defined for the
conjugate system.
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Definition 4.3 We call these two 2-forms (h and k for short) the Laplace in-
variants.

Remark 4.4 (1) According to 1), the quantity ab− c is changed into ab− c−
(logλ)xy. Hence, we can always reduce the equation to the form ab = c by
choosing λ appropriately. In this case, the invariants are h = ax and k = by.

(2) If h = k, then ax = by. Hence

a+ (log λ)y = 0, b+ (logλ)x = 0

is solvable. This implies that the equation (E) can be reduced to

zxy + cz = 0.

(3) If we choose λ so that a + (logλ)y = 0, then the new c, which is equal to
c+ a(logλ)x + b(logλ)y + λxy/λ, turns out to be h itself. Hence, if h = 0, then
the equation is reduced to a simpler equation of the form

zxy + bzy = 0. (4.2)

Furthermore, if h = 0, then the equation (E) is solvable as follows. Since the
equation (E) is written as (zy +az)x = −b(zy +az) and the equation z1

x = −bz1

is solved by z1 = Y (y)e
R

bdx where Y (y) is a space curve, z has the form

z = e−
R

ady

{

X(x) +

∫ y

Y (t)e
R

ady−
R

bdxdt

}

,

where X is an arbitrary space curve.

4.2 The Laplace transformation

We define the Laplace transformation in terms of tangent congruence. Let z be
a surface with a conjugate system of coordinates {x, y}. We choose a point w
on each tangent line in the direction y; it is written as

w = zy + λz

with parameter λ. We assume that the point w draws a surface and that the
line zw is again tangent to the surface w; this implies that, relative to the
congruence {z, w}, the two surfaces z and w are focal surfaces. Since

wx = (λ− a)zx − bzy + (λx − c)z,

this assumption is satisfied if
λ = a.

Thus we can introduce the following definition.

Definition 4.5 The surface z1 = zy + az is called the first Laplace transform
of z and, similarly, the surface z−1 = zx + bz is called the minus-first Laplace
transform.
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We give some remarks on the definition. From (E) we see that

z1
x = −bz1 + hz,

where h is one of the Laplace invariants, and

z1
xy + a1z

1
x + b1z

1
y + c1z

1 = 0,

where
a1 = a− (log h)y,

b1 = b,

c1 = c− ax + by − b(logh)y.

(4.3)

Hence,
(z1)−1 = hz

and, if h 6= 0, the surface (z1)−1 is the same as the surface z. Similarly, if k 6= 0,
the surface (z−1)1 is the same as z.

Let us next examine the case when z1 is degenerate. This is the case where

Az1
x +Bz1

y + Cz1 = 0

for certain scalar functions A, B, and C. If B is identically zero, then we have
A(−bz1 + hz) + Cz1 = 0, which holds only if h = 0. If B is not vanishing,
then (z1)y ≡ 0 (mod z1, (z1)x); hence, (z1)y ≡ 0 (mod z, zy). Since z1

y =
zyy + (az)y, we have zyy ≡ 0 (mod z, zy). This means that z is ruled. If we
further have h 6= 0, then z1 is a curve and the ruling lines are tangent to this
curve, hence the surface z is developable.

Proposition 4.6 The transform z1 is degenerate if and only if h = 0 or if the
surface z is developable.

Remark 4.7 The osculating plane of z1 along the x-curve is z1∧z1
x∧z1

xx. Since

z1
x = −bzy + (ax − c)z,

z1
xx = hzx + (b2 − bx)zy + (bc+ axx − cx)z,

we have
z1 ∧ z1

x ∧ z1
xx = h2z ∧ zx ∧ zy,

i.e., the osculating plane coincides with the tangent plane of z, unless h = 0.

Example 4.8 Consider the equation

(x − y)
∂2z

∂x∂y
+ n

∂z

∂x
−m

∂z

∂y
= 0,

where m and n are constants. A surface satisfying this equation is, for example,
given by

z = [(x − a)m(y − a)n, (x− b)m(y − b)n, (x− c)m(y − c)n, (x − d)m(y − d)n]
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for arbitrary constants a, b, c and d. Then we see that

z1 = zy +
n

x− y
z =

n

x− y

[

(x− a)m+1(y − a)n−1, (x− b)m+1(y − b)n−1,

(x− c)m+1(y − c)n−1, (x− d)m+1(y − d)n−1
]

.

Remark 4.9 S. S. Chern [Ch1944, Ch1947] first considered the Laplace trans-
formation when the dimension n is greater than 2. A systematic new treatment
was given in [KT1996].

4.3 Recursive relations of Laplace invariants

It is interesting to know how the Laplace invariants vary with Laplace transfor-
mations. We denote by zi the successive transforms, namely zi±1 = (zi)±1, and
we denote the Laplace invariants of zi by hi and ki. The sequence {zi}, when
well-defined, is called the Laplace sequence.

Proposition 4.10 The Laplace invariants satisfy the following relations.

(1) hi+1 = 2hi − ki −
∂2 loghi

∂x∂y
,

ki+1 = hi,

ki = 2ki+1 − hi+1 −
∂2 log ki+1

∂x∂y
;

(2) hi+1 + hi−1 = 2hi −
∂2 loghi

∂x∂y
,

ki+1 + ki−1 = 2ki −
∂2 log ki

∂x∂y
;

(3) hi+1 = hi + h− k − (log(hh1 · · ·hi))xy,
ki+1 = ki + h− k − (log(k1 · · · ki))xy.

Proof. It is enough to check the identities when i = 0 for (1). Set H = logh.
Then we have, by (4.1) and (4.3),

h1 = (a−Hy)x − (c− ax + by − bHy) + b(a−Hy)
= 2(ab+ ax − c) − (ab+ by − c) −Hxy,
= 2h− k −Hxy,

k1 = by − (c− ax + by − bHy) + b(a−Hy)
= ab+ ax − c,
= h,

which yield (1). The identities (2) and (3) follow from (1).

We write the equation of zi as

(Ei) (zi)xy + ai(z
i)x + bi(z

i)y + ciz = 0.
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The coefficients ai, bi, and ci are determined recursively by the formula (4.3).
Namely, we see that

ai = ai−1 − (log hi−1)y,

bi = b,

ci = ci−1 − (ai−1)x + by − b(loghi−1)y,

in the case i > 0. A similar formula holds for the case i < 0.

4.4 Periodic Laplace sequences

We say that a Laplace sequence {zi} is periodic of period n if the surface zn

coincides with the starting surface z. In this case, we have hn = h and kn = k.
We first give two examples.

Example 4.11 Assume (E) = (E1), i.e., h1 = h and k1 = k. Then, we get
k = h and (log h)xy = 0. Hence h = X(x)Y (y). By a change of coordinates, we
can assume h = 1, as long as h 6= 0. This means that the equation is nothing
but

zxy = z.

Example 4.12 Assume (E) = (E2), i.e., the transformation is doubly periodic,
and hk 6= 0. We have h2 = h and k2 = k. From Proposition 4.10 (1) above,

2k − 2h =
∂2 logh

∂x∂y
, 2h− 2k =

∂2 log k

∂x∂y
.

This implies (loghk)xy = 0; hence, hk = X(x)Y (y) and we can find coordinates
such that hk = 1. In this case, by setting h = eθ, we have

∂2θ

∂x∂y
= 4 sinh θ.

Conversely, for any solution θ of this equation, let us define the equation (E),
where the coefficients a, b, and c are defined by solving the equations

ax = h = eθ, by = k = e−θ, c = ab;

then we get a surface and its Laplace sequence that is doubly periodic.

We next treat the general periodic case. By assumption,

zn = µz

for a nonvanishing function µ. Assume hi 6= 0 in the following. By Proposition
4.10 (3), it holds that

(loghh1 · · ·hn−1)xy = 0.

40



Hence, hh1 · · ·hn−1 = X(x)Y (y) for certain functionsX and Y . By a coordinate
change, we can assume

hh1 · · ·hn−1 = 1;

see Proposition 4.2. From (4.3),

bn = b,

an = an−1 − (loghn−1)xy = · · · = a− (loghh1 · · ·hn−1)xy = a.

From hn = h, we see that (an)x + anbn − cn = ax + ab− c; hence, we also get
cn = c. Therefore, zn and z satisfy the same equation and µ is constant. We
can see moreover that

zn+i = µzi for i > 0,

zn−i =
µ

hn−1hn−2 · · ·hn−i
z−i for 0 < i < n.

We restrict our further consideration to only the case h = k.

Proposition 4.13 Assume that the sequence is n-periodic and h = k. Choose
coordinates so that hh1 · · ·hn−1 = 1. Then

(1) h2p−i = hi−1 (i = 1, 2, . . . , p) when n = 2p,

(2) h2p+1−i = hi−1 (i = 1, 2, . . . , p) when n = 2p+ 1.

Proof. For the case where h = k, Proposition 4.10 (3) implies

hi = hi−1 − (loghh1 · · ·hi−1)xy.

When i = 2p− 1, we have

h2p−1 = h2p + (log hh1 · · ·h2p−1)xy = h2p = h.

Assume that (1) holds for i = 1, 2, . . . , j. Then

hj−1 = hj−2 − (loghh1 · · ·hj−2)xy = hj−2 − (log h2p−1h2p−2 · · ·h2p−j+1)xy.

Combining this with the identity above for i = 2p− j, we get the result for (1).
The case (2) can be similarly shown.

Example 4.14 Consider the case where p = 1 and n = 3. Since hh1h2 = 1
and h2 = h, we have h1 = 1/h2. Hence, h satisfies the equation

(logh)xy = h− 1/h2. (4.4)

The associated differential equation is

zxy = hz
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and the Laplace sequence satisfies

z3 = mz, z2 = (m/h)z−1, z1 = mhz−2.

On the other hand, by definition,

z1 = zy, z2 = zyy − (logh)yzy, z−1 = zx, z−2 = zxx − (log h)xzx.

Therefore, z satisfies a system of differential equations

zxx =
hx

h
zx +

1

mh
zy, zxy = hz, zyy =

m

h
zx +

hy

h
zy. (4.5)

Since the number of independent solutions of this system is three, the surface z
lies in a plane in the projective space.

Example 4.15 We next consider the case where p = 2 and n = 4. Here
hh1h2h3 = 1, h2 = h1, and h3 = h. We may assume h1 = 1/h. Then h must
satisfy

(logh)xy = h− 1

h
, (4.6)

and z is a solution of the system of differential equations

zxy = hz, z4 = mz, z3 =
m

h
z−1, z2 = mz−2, z1 = mhz−3.

It is straightforward to see that this system is the same as

zxy = hz, mzxx − zyy = m
hx

h
zx − hy

h
zy. (4.7)

Conversely, for any h satisfying (4.6), four independent solutions of (4.7) define
a surface with the required periodicity and with equal Laplace invariants.

The simplest example of h is h = 1. The system is zxy = z and zxx − zyy =
0; the associated mapping is projectively equivalent to [ex+y, e−x−y, cos(x −
y), sin(x− y)] in P3 with the homogeneous coordinates [X,Y, Z, U ]. The surface
is nothing but the quadric XY = Z2 + U2. Differentiating relative to y suc-
cessively, we get z1 = zy, z

2 = zyy, z
3 = zyyy, and z4 = z. z1 is the quadric

−XY = Z2 + U2.

Remark 4.16 A Laplace sequence {zi} is said to be self-projective if there
exists a projective transformation T and an integer such that Tzi = zm+i for
any i. This is a more general notion than periodicity.

4.5 Terminating Laplace sequences

Historically, a special interest was paid to Laplace sequences that terminate in
a finite number of steps, say, hi = 0 but hi−1 6= 0. We exhibit some of the
treatment of this case. As in Remark 4.4 (3), the equation (Ei) is written as

∂

∂x

(

∂zi

∂y
+ aiz

i

)

+ bi

(

∂zi

∂y
+ aiz

i

)

= 0.
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The general solution has the form

zi = e−
R

aidy

{

X(x) +

∫ y

Y (t)e
R

aidt−
R

bidxdt

}

,

where X and Y are arbitrary functions, so long as the integral is valid. Then
the solution of the original equation is given by tracing through the Laplace
transformations in reverse order.

We assume hi = 0, where i > 0, for simplicity. Then by (4.2) the equation
(Ei) is equivalent to

zxy + bzy = 0.

We define a function α by b = −(logα)x so that

(Ei) zxy − (logα)xzy = 0.

Then hi−1 = ki = −(logα)xy by Proposition 4.10 (1). Now

hi−2 = 2hi−1 −
∂2 loghi−1

∂x∂y
= − ∂2

∂x∂y
log (ααxy − αxαy) .

Following Darboux, we introduce the notation

Dx(α1, . . . , αm+1) = det







α1 ∂α1/∂x · · · ∂mα1/∂x
m

...
... · · ·

...
αm+1 ∂αm+1/∂x · · · ∂mαm+1/∂x

m






.

Analogously, we introduce Dy. Then we set

Hm = Dx

(

α,
∂α

∂y
, . . . ,

∂mα

∂ym

)

= Dy

(

α,
∂α

∂x
, . . . ,

∂mα

∂xm

)

.

Lemma 4.17 For m ≥ 0, we have

hi−m = −∂
2 logHm−1

∂x∂y
.

Proof. By a formula for the expansion of determinants, we have

Hm−1Hm+1 = Hm
∂2Hm

∂x∂y
− ∂Hm

∂x

∂Hm

∂y
.

The righthand side is equal to H2
m(logHm)xy. Hence, by derivation of both

sides, we have

(logHm−1)xy + (logHm+1)xy = 2(logHm)xy + (log(logHm)xy)xy .

This identity is the same as the recurrence formula satisfied by hi, up to a sign:

hm−1 + hm+1 = 2hm − (loghm)xy.
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Taking into account the expressions of hi−1 and hi−2 given above, we have the
conclusion.

This lemma shows that the invariants h and k of the equation (Ei−m) are
−(logHm−1)xy and −(logHm)xy, respectively. The associated equation is

zxy − (logHm−1)yzx − (logHm)xzy + (logHm−1)y(logHm)xz = 0.

Here we assume H−1 = 0. For any solution θ of (Ei), we define the function

θm = Dx

(

θ, α,
∂α

∂y
, . . . ,

∂m−1α

∂ym−1

)

, m ≥ 1.

Then we can assert:

Proposition 4.18 θm is a solution of (Ei−m).

We refer to [D, no 379; II, pp. 138-139] for the proof. If the Laplace sequence
terminates on both sides, then we must have (logHm−1)xy = 0 for certain m.
This implies Hm = Dx(α, ∂α/∂y, . . . , ∂mα/∂ym) = 0.

Hence the α must satisfy an ordinary differential equation of order m with
coefficients being functions of y alone. This property can be traced back to the
starting equation (Ei) and we can get a general description of solutions of (Ei)
in this case. We refer again to [D, no 382–386] for a detailed treatment.

4.6 The Euler-Poisson-Darboux equation

The Euler-Poisson-Darboux equation is by definition a differential equation of
the form

zxy − n

x− y
zx − m

y − x
zy − p

(x− y)2
z = 0,

where n, m, and p are constants. It is a special case of (E).
When we set z = (x − y)αw, w satisfies an equation of the same form with

constants replaced by

n→ n+ α, m→ m+ α, p→ p+ α2 + α(m+ n− 1).

Hence, for an appropriate α, we can reduce the equation to

(E(β, β′)) zxy − β′

x− y
zx − β

y − x
zy = 0.

First we note that by setting z = (x − y)1−β−β′

w the equation for w remains
the same, but with coefficients replaced by

β → 1 − β and β′ → 1 − β′.

This is an involutive transformation from E(β, β′) to E(1 − β′, 1 − β).
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We next remark that the equation has special solutions, by use of Gauss
hypergeometric functions. Let us set y/x = t and assume z has the form
z = xλϕ(t). Then ϕ satisfies the Gauss hypergeometric equation

t(1 − t)ϕ′′ + {(1 − β − λ) − (1 + β′ − λ)t}ϕ′ + λβ′ϕ = 0.

In particular, this implies that E(β, β′) has independent solutions

xλF (−λ, β′, 1 − β − λ; y/x) and x−βyβ+λF (β, β + β′ + λ, 1 + β + λ; y/x),

where λ is an arbitrary constant and F denotes the Gauss hypergeometric fun-
tion. Furthermore, when λ is a positive integer, the first solution is a homoge-
neous polynomial of degree λ.

The second remark we make is that the equation E(β, β ′) has special so-
lutions of the form z = X(x)Y (y). Relative to this z, the equation is written
as

(x− y)XxYy − β′XxY + βXYy = 0.

Hence x+ βX/Xx = y + β′Y/Yy must be a constant a; we get

X = (x− a)−β and Y = (y − a)−β′

up to multiplicative constants. Namely, (x − a)−β(y − a)−β′

is a solution for
any constant a. By the involution stated above,

(y − x)1−β−β′

(x − a)β′−1(y − a)β−1

is also a solution.

The third remark we make is on the symmetry of the equation. We easily
see that the Laplace invariants are

h =
β′(1 − β)

(x− y)2
and k =

β(1 − β′)

(x− y)2
.

Let (x, y) → (s, t) be a coordinate transformation of the form

x =
as+ b

cs+ d
and y =

at+ b

ct+ d
.

Since it holds that

x− y = − ad− bc

(cs+ d)(ct+ d)
(s− t), dx =

ad− bc

(cs+ d)2
ds, dy =

ad− bc

(ct+ d)2
dt,

and because hdxdy = h′dsdt and kdxdy = k′dsdt, where h′ and k′ are the
invariants for the new equation relative to (s, t), we see that

h′ =
β′(1 − β)

(s− t)2
and k′ =

β(1 − β′)

(s− t)2
.

This implies that, if we denote by S(β, β′) the space of solutions, then the space
S(β, β′) has an SL2-action. More precisely, we have

45



Proposition 4.19 (Appell) For any solution ϕ(x, y) of the equation E(β, β ′),
the function

(ax+ b)−β(ay + b)−β′

ϕ

(

cx+ d

ax+ b
,
cy + d

ay + b

)

is also a solution of E(β, β′), where

(

a b
c d

)

is any element of SL2. The

associated infinitesimal action is given by

X = ∂x + ∂y, Y = x∂x + y∂y +
1

2
(β + β′),

Z = x2∂x + y2∂y + βx+ β′y.

The correspondence with the matrix elements is given by X ↔
(

0 1
0 0

)

, Y ↔
(

1 0
0 −1

)

, and Z ↔
(

0 0
1 0

)

. They satisfy the expected relations: [X,Z] =

2Y , [Y,X ] = −X, and [Y, Z] = Z.

So far, we have two kinds of symmetries of the family {E(β, β ′)}. We next
give two other kinds of symmetries. The first one is given by the Laplace
transformation. Starting with the equation E(β, β′), let Ei be the ith Laplace
transform with invariants hi and ki. By use of Proposition 4.10, we easily see
that

hi =
(i+ β′)(i− β + 1)

(x− y)2
and ki =

(i+ β′ − 1)(i− β)

(x− y)2
;

this means that Ei = E(β − i, β′ + i).

The second symmetry is given by the operation that associates to each so-
lution z of E(β, β′) the derivative ∂z/∂x. Differentiating the equation E(β, β ′),
it is direct to see that ∂z/∂x belongs to S(β + 1, β′). Similarly, ∂z/∂y belongs
to S(β, β′ + 1).

Proposition 4.20 Assume β 6= 0. Then the operator ∂/∂x is surjective from
S(β, β′) to S(β + 1, β′).

Proof. Given z1 ∈ S(β + 1, β′), it is necessary to solve ∂z/∂x = z1. If z exists
in S(β, β′), then (x− y)∂z1/∂y − β′z1 + βzy = 0. Hence, we must have

dz = z1dx+

(

β′

β
z1 − x− y

β
z1

y

)

dy.

The integrability of this Pfaff equation is nothing but the condition z1 ∈ S(β+
1, β′), as can be seen by taking exterior differentiation.

Remark 4.21 The general solution of the exceptional equation E(0, β ′) is seen
to be of the form

∫ x
X(t)(y − t)−β′

dt + Y (y) in case β′ 6= 0, while E(0,0) is
the trivial equation zxy = 0. As for the equation E(1, β′), the first invariant
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vanishes. Considering the involution between E(1, β′) and E(1 − β′, 0), we get
a general solution of the form

(x− y)−β′

{

X(x) +

∫ y

Y (t)(x − t)β′−1dt

}

.

When both β and β′ are integers, the equation E(1, 1) is important. For any
solution z of this case, we set w = (x − y)z. Then it is straightforward to see
that wxy = 0. Hence, the general solution of E(1, 1) is of the form (X(x) −
Y (y))/(x − y).

Now we consider a more general case: the case where 0 < Reβ < 1 and
0 < Reβ′ < 1. The formula called Poisson-Appell treats this case and asserts
that the general solution has the form
∫ y

ϕ(u)(u−x)−β(y−u)−β′

ds+(x−y)1−β−β′

∫ y

x

ψ(u)(u−x)β′−1(y−u)β−1ds,

in the case β + β′ 6= 1 and
∫ 1

0

ϕ(x+(y−x)t)t−β(1−t)β−1dt+

∫ 1

0

ψ(x+(y−x)t)t−β(1−t)β−1 log(t(1−t)(y−x))dt,

in the case β + β′ = 1, where ϕ and ψ are arbitrary functions, as long as the
integral can be defined. The proof is given by using the connection formula
of the Gauss hypergeometric functions. We refer to [D, no 362] for an elegant
theory on the Euler-Poisson-Darboux equation.

Remark 4.22 We refer [D] for Sect. 4.1-4.6.

4.7 The Échell of hypergeometric functions

We now make a short digression and discuss Appell’s hypergeometric system,
which gives an example of the Euler-Poisson-Darboux equation.

Appell’s system denoted by (F1) is a system defined by

(F1)

{

θ(θ + θ′ + γ − 1)z − x(θ + θ′ + α)(θ + β)z = 0,
θ′(θ + θ′ + γ − 1)z − y(θ + θ′ + α)(θ + β′)z = 0,

where θ = x∂x and θ′ = y∂y and α, β, β′ and γ are complex parameters. Appell’s
hypergeometric function denoted by F1 is a solution that is holomorphic around
the origin:

F1(α, β, β
′, γ;x, y) =

∑

m,n≥0

(α,m+ n)(β,m)(β′, n)

(γ,m+ n)(1,m)(1, n)
xmyn;

we use here the notation (a,m) = a(a+ 1) · · · (a+m− 1). By a straightforward
computation, we see that any solution z of (F1) satisfies the Euler-Poisson-
Darboux equation E(β, β′). Hence, the first Laplace transform is

w = zy − β′

x− y
z,
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and w itself satisfies the system (F1) with different parameters. Relative to the
function F1, the transformation can be interpreted by the identity

[β′ − (x− y)∂y]F1(α, β, β
′, γ;x, y) = β′F1(α, β − 1, β′ + 1, γ;x, y), (4.8)

called the contiguity relation of Appell’s system. In particular, we can prove
that the solution space of (F1) is invariant under Laplace transformations.

Let us describe some details. For the pair A = (β, β′) we introduce the
notation A+1 = (β−1, β′+1), in view of the translation in (4.8) of parameters.
We define

D(A) = (x− y)∂x + β, U(A) = (x− y)∂y − β′,

L(A) = ∂x∂y − β′

x− y
∂x +

β

x− y
∂y;

Then we see that

D(A+ 1)U(A) = β′(1 − β) + (x− y)2L(A),

U(A− 1)D(A) = β(1 − β′) + (x− y)2L(A).

Hence, if we denote F1(α, β, β
′, γ;x, y) by F (A), then

D(A)F (A) = βF (A− 1), U(A)F (A) = −β′F (A+ 1).

These identities show that the system is invariant under Laplace transforma-
tions.

Using this invariance, K. Okamoto [O1988] gave a solution of the Toda equa-
tion as follows: To make the formula simpler, let us define

fn = 1/(n+ 1 − β), gn = 1/(n− 1 + β′),

X = ∂x, Y = ∂y,

Ln = XY − β′ + n

x− y
X +

β − n

x− y
Y,

and set

Bn = gn((x − y)X + β − n) = gnD(A+ n),

Hn = fn((x− y)Y − β′ − n) = fnU(A+ n).

Then, introducing the series of functions {φn} by

φ0 = F (A), φn = Hnφ0,

we see that
Hnφn = φn+1, Bnφn = φn−1.

In particular, defining

ψn = (x− y)(β−n)(β′+n)φn,

we finally have:
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Proposition 4.23

fngnXY logψn = −ψn+1ψn−1

ψ2
n

.

A similar formula of this kind also appears for the second Appell’s system
defined by

(F2) D1z = 0 and D2z = 0,

where

D1 = x(1 − x)∂xx − xy∂xy + {γ − (α+ β + 1)x}∂x − βy∂y − αβ,

D2 = y(1 − y)∂yy − xy∂xy + {γ′ − (α+ β′ + 1)y}∂y − β′x∂x − αβ′.

The following series is a solution that is holomorphic around the origin.

F2(α, β, β
′, γ, γ′;x, y) =

∑

m,n≥0

(α,m+ n)(β,m)(β′, n)

(γ,m)(γ′, n)(1,m)(1, n)
xmyn.

The system has four independent solutions and any set of independent solutions
defines a surface in P3. The surface is uniquely defined up to a projective trans-
formation and it has a unique conformal structure, a nondegenerate quadratic
form y/(1 − x)dx2 + 2dxdy + x/(1 − y)dy2. Relative to this form, one set of
conjugate directions is given by x∂x and (x − 1)∂x + y∂y; see Appendix A. In
view of this fact, we define two operators by

Hn = x∂x + (β + n),

Bn =
1

(β + n− 1)(β − γ + n)
(x((x − 1)∂x + y∂y) + αx + (β + n) − γ) .

Then

Bn+1Hn − 1 = anL(β + n), Hn+1Bn − 1 = bnL(β + n),

where

an =
αx+ β + n− γ

(β + n− 1)(β + n− γ)
, bn =

x

(β + n− 1)(β + n− γ)
.

The corresponding contiguity relation is

HnF2(α, β + n, β′, γ, γ′;x, y) = (β + n)F2(α, β + n+ 1, β′, γ, γ′;x, y).

If we set
χn = cn(x− 1)nΓ(β + n)F2(α, β + n, β′, γ, γ′;x, y),

where cn is a certain constant depending on n, then we have

∂x((x− 1)∂x + y∂y) logχn =
χn+1χn−1

χn
2

.
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4.8 Godeaux sequences

L. Godeaux gave a method for studying projective surfaces through their Plücker
images in P5. His method relies on the consideration of the Laplace sequence
assocated with the Plücker image, called the Godeaux sequence. In this section,
we show a charaterization of Demoulin surfaces by Godeaux sequence and a
characterization of the Plücker image of surfaces in view of distingushed choices
of frames of P5.

Given a surface by the system (2.12), we define two vectors in P5 by

U = z ∧ zx, V = z ∧ zy. (4.9)

It is easy to see that
Ux = bV, Vy = cU,

and that U and V satisfy the Laplace equations:

Uxy = (log b)yUx + bcU, Vxy = (log c)xVy + bcV.

By following the procedure given in Sect. 4.2, the first Laplace transform of U
relative to the coordinate y is given by

U1 = Uy − (log b)yU.

It satisfies

U1
x = h1U, U1

xy = h1U
1 + (log bh1)yU

1
x , h1 = 2κ1,

where κ1 = (bc − (log b)xy)/2 was defined in (2.17). Continuing this process
successively, we can define

Un+1 = Un
y − (log bh1 · · ·hn)yU

n,

where hn is defined by

hn = hn−1 − (log bh1 · · ·hn−1)xy

and Un satisfies
Un

xy = hnU
n + (log bh1 · · ·hn)yU

n
x .

Similarly for V , we have a recursive definition

V n+1 = V n
x − (log ck1 · · · kn)xV

n, k1 = 2κ2,

kn = kn−1 − (log ck1 · · · kn−1)xy,

V n
xy = knV

n + (log ck1 · · · kn)xV
n
y ,

where κ2 = (bc−(log c)xy)/2. The sequence {. . . , Un, . . . , U1, U, V, V 1, . . . , V n, . . .}
is called the Godeaux sequence. This sequence has a special property for a De-
moulin surface, which we now describe.
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By Lemma 2.12 for a Demoulin surface, we see that

h4 = k1, h3 = bc, h2 = h1; k2 = k1, k3 = bc, k4 = h1.

(Recall that we have set h1 = 2κ1 and k1 = 2κ2.) This tells us that some
periodicity occurs in the sequence.

In order to look into the details, we introduce four vectors

M1 = z ∧ zxy, M2 = zx ∧ zy, M3 = zx ∧ zxy, M4 = zy ∧ zxy,

following Godeaux [G1934]. Then, by defining a frame T = t(U, V,M1,M2,M3,M4)
in P6, we see that

Tx =















0 b 0 0 0 0
0 0 1 1 0 0
bc by + p 0 0 1 0
0 p 0 0 1 0

−bq − py 0 p by + p 0 b
0 −bq − py 0 −bc 0 0















T,

Ty =















0 0 1 −1 0 0
c 0 0 0 0 0

cx + q bc 0 0 0 1
−q 0 0 0 0 −1

−cp− qx 0 0 bc 0 0
0 −cp− qx q −cx − q c 0















T.

From these relations, we can express U 1, U2, V 1, and V 2 in terms of the six
vectors above.

U1 = −(log b)yU +M1 −M2,

U2 = λU + bcV − ((log b)y +K1y)(M1 −M2) + 2M4,

V 1 = −(log c)xV +M1 +M2,

V 2 = bcU + µV − ((log c)x +K2x)(M1 +M2) + 2M3,
where

λ = 2Q+
b2y
2b2

+ (log b)yK1y, µ = 2P +
c2x
2c2

+ (log c)xK2x,

and where P and Q are given in (2.18) and K1 and K2 are given in (2.31). Since
U , V , M1, M2, M3, and M4 are independent, as we assumed that the surface is
nondegenerate, there are no linear relations among U , V , U 1, U2, V 1, and V 2,
as can be seen from the above expressions. Now a slightly long computation
gives the formulas:

U3 = −((log bh2)y + 2K1y)U
2 + (4Q−K1yy − (log b)yK1y − (K1y)

2)U1

+(4(log b)yQ+ 2Qy)U − 4cPV + cK2xV
1 + cV 2,

V 3 = −((log ck2)x + 2K2x)V 2 + (4P −K2xx − (log c)xK2x − (K2x)2)V 1

+(4(log c)xP + 2Px)V − 4bQU + bK1yU
1 + bU2.
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Theorem 4.24 Assume that bc 6= 0 and κ1κ2 6= 0. Then the Godeaux sequence
is periodic with period six if and only if the surface is Demoulin.

Proof. If the surface is Demoulin, we saw that P = Q = 0. Lemma 2.12 says
that the expressions above reduce to U 3 = cV 2 and V 3 = bU2, which implies
the periodicity. The converse statement also follows from the expressions above.

In general, any consective sequence of six vectors forms a frame in P5 as we
have seen. We modify the frame T by introducing the vectors

N1 = z ∧ zxy − zx ∧ zy = M1 −M2 = Uy,

N2 = z ∧ zxy + zx ∧ zy = M1 +M2 = Vx,

N3 = 2zy ∧ zxy + bcz ∧ zy = 2M4 + bcV,

N4 = 2zx ∧ zxy + bcz ∧ zx = 2M3 + bcU.

(4.10)

The set of vectors {U, V,N1, . . . , N4} are chosen to be orthonormal in the fol-

lowing sense. Given two vectors u and v in
2
∧ R4, the product u ∧ v is a vector

lying in
4
∧ R4 which we identity with the scalar field R and we get a scalar

value (u, v) = u∧ v. We thus have an inner product on the space
2
∧ R4. By the

identification z ∧ zx ∧ zy ∧ zxy = −1/2, we can see that

(U,N3) = −1, (V,N4) = 1, (N1, N1) = 1, (N2, N2) = −1 (4.11)

and the remaining products vanish. In particular, they are linearly independent
and we thus get a new frame T = t(U, V,N1, N2, N3, N4) in the space P5. We
remark that the signature of the inner product is (3, 3).

The frame T satisfies a Pfaff system

dT = ωT ,

where

ω =

















0 bdx dy 0 0 0
cdy 0 0 dx 0 0

bcdx+ κdy bydx 0 0 dy 0
cxdy bcdy + δdx 0 0 0 dx

0 µdx + νdy bcdx+ κdy −cxdy 0 cdy
µdx+ νdy 0 −bydx bcdy + δdx bdx 0

















(4.12)
and

κ = 2q + cx, δ = 2p+ by, µ = byy − bκ, ν = cxx − cδ. (4.13)

The integrability condition dω = ω ∧ ω is

κx = (bc)y + cby, δy = (bc)x + bcx, νx − µy = δcx − κby, (4.14)
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which is the same as the integrability condition of (2.13).
Let us make a simple consideration on the frame T . By definition we have

Ux = bV and Vy = cU, N1 = Uy and N2 = Vx.

While the line UV is lying in the quadric Q4 = {u ∈ P5|(u, u) = 0}, the points
N1 and N2 are lying outside the quadric. We next have

dN1 ≡ dyN3, dN2 ≡ dxN4 (mod U, V ).

Hence, both (N1)x and (N2)y lie on the line UV and

(N1)y ≡ N3, (N2)x ≡ N4 (mod U, V ).

We further see that

(N3)x = µV + bcN1 ≡ bcN1, (N4)y = νU + bcN2 ≡ bcN2 (mod U, V ).

We conversely start with a projective frame t = t(t1, . . . , t6) of P5 depend-
ing on two parameters (x, y) such that it satisfies the orthonormality such as
(ti, tj) = hij , where h = (hij) is a nondegenerate constant matrix of signature
(3, 3). Let us denote by so(h) the Lie algebra of the orthogonal group relative
to h, which is isomorphic to so(3, 3;R). Then the equation of motion satisfied
by t is written as

dt = ωt, dti =
∑

j

ωj
i tj ,

where ω is a 1-form with values in so(h). For a given t to be a frame associated
to a projective surface, we impose the conditions that

dt1 ≡ 0 (mod t1, t2, t3), dt2 ≡ 0 (mod t1, t2, t4) (4.15)

and that

ω3
1 =: ω2 and ω4

2 =: ω1 are linearly independent. (4.16)

In order that the line t1t2 lies in the quadric Q4 and the frame satisfies the
property (4.11), we further impose the condition that

h =





−J
J

−J



 , J =

(

1 0
0 −1

)

.

With these conditions, the frame t can be normalized. We say a change of frame:
t→ gt is allowable if gh tg = h. Then we have the following theorem.

Theorem 4.25 There is an allowable change of frame so that the form ω has
the form given in (4.12).

Proof is given by a detailed examination of the integrability, which will be
given in Appendix C, where we also give a remark on the analogous presentation
relative to Lie sphere geometry of Euclidean surfaces.

Remark 4.26 For the present section, see [G1934] and [Fe2000a].
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5 Affine spheres and the Laplace transformation

In previous sections we defined several notions necessary in the following study
of surfaces. In this section, apart from the projective treatment of surfaces,
we examime the Laplace transformation of surfaces in the affine setting. To
do this, we first recall the historical notion of affine spheres, called S-surfaces
by Tzitzeica, and then explain a transformation of affine spheres called the
Tzitzeica transformation. We fix one affine chart of projective space P3, which
we denote by A3.

5.1 Affine surfaces

We consider an immersed surface given by a mapping (x, y) 7→ z(x, y) ∈ A3.
For a mapping to define a surface, the three vectors z, zx, and zy must be
independent, and then we have a system of the form

zxx = azx + bzy + cz,
zxy = a′zx + b′zy + c′z,
zyy = a′′zx + b′′zy + c′′z.

(5.1)

Each coordinate of z satisfies this system. Conversely, given a system as above,
any set of three independent solutions defines an immersion, thus defining a sur-
face. Two sets of independent solutions differ only by an affine transformation
leaving the origin fixed; hence the system defines a surface uniquely up to an
affine motion preserving the origin. The conformal structure of the surface is
well-defined and is given by

cdx2 + 2c′dxdy + c′′dy2. (5.2)

(See Sect. 5.4.) We assume that this symmetric 2-form is nondegenerate. When
the coefficient field is the real number field, we assume further that the form is
indefinite, because we need a separate treatment for the definite case. Then the
coordinates (x, y) are asymptotic relative to this form if c = c′′ = 0, which in
the following we fix once and for all.

Proposition 5.1 The equation zxy = a′zx +b′zy +c′z has equal Laplace invari-
ants.

Proof. We compute the integrability conditions of the system (5.1) by using the
identities:

(zxx)y = (zxy)x and (zxy)y = (zyy)x.

The former implies

ay + a′′b = a′x + a′b′ + c′,

by + ab′ + bb′′ = b′x + a′b+ b′2,

ac′ = c′x + b′c′,

(5.3)
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and the latter implies

b′′x + a′′b = b′y + a′b′ + c′,

a′y + a′2 + a′′b′ = a′′x + aa′′ + b′′a′,

b′′c′ = c′y + a′c′.

(5.4)

Hence, we get b′ = a − (log c′)x and a′ = b′′ − (log c′)y. In particular, we have
b′y = ay − (log c′)xy and a′x = b′′x − (log c′)xy. Hence a′x − b′y = b′′x − ay. On
the other hand, the first equations of each of the two sets of equations above
imply that a′x − b′y = ay − b′′x. Therefore a′x = b′y, which shows that the Laplace
invariants h and k are equal.

By this proposition, we can set

a′ = λy/λ and b′ = λx/λ (5.5)

for some function λ.

5.2 Affine spheres

We next fix a Euclidean structure on the affine space A3. Let Edx2 +2Fdxdy+
Gdy2 be the usual induced metric and set ∆ = (EG − F 2)1/2. The induced
second fundamental form is

1

∆
{|zxx zx zy| dx2 + 2 |zxy zx zy| dxdy + |zyy zx zy| dy2},

which is equal to (2c′/∆)|z zx zy|dxdy in the notation of the previous section.
Let d = d(x, y) be the distance from the origin to the tangent plane at z(x, y).
It is given by

d =
|z zx zy|

∆
.

Then, denoting the Gauss curvature by K, we get the formula

K

d4
= − c′2

|z zx zy|2
.

We define a scalar function µ by µ4 = |d4/K|. Then µ2c′ = ± |z zx zy|, whose
logarithmic derivative gives

2
µx

µ
+
c′x
c′

= a+ b′ and 2
µy

µ
+
c′y
c′

= b′′ + a′.

The identities a = b′ + (log c′)x and b′′ = a′ + (log c′)y, which follow from (5.3)
and (5.4), then imply

a′ = µy/µ and b′ = µx/µ,

which together with (5.5) imply that µ = mλ for some constant m. We have
seen that

K

d4
= − 1

m4λ4
.
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Corollary 5.2 The quantity K/d4 is uniquely determined from the system, up
to a constant factor.

Definition 5.3 The surface z is called an affine sphere if K/d4 is constant.

This notion coincides with the definition of an affine sphere in affine differential
geometry. We refer to [NS1994].

The discussion above shows that an affine sphere is defined by a system of
the form

zxx = azx + bzy, zxy = hz, zyy = a′′zx + b′′zy,

where h = c′ because µ is constant. We know h 6= 0 by nondegeneracy. The
integrability condition is the following:

hx = ah, ay + a′′b = h, by + bb′′ = 0,
hy = b′′h, a′′x + aa′′ = 0, b′′x + a′′b = h.

Suppose that b = 0. Then the surface is ruled with x as the line coordinate.
When a′′ = 0, y is the line coordinate. To exclude these cases, we assume
a′′b 6= 0. Then the integrability condition is written as

a =
hx

h
, b′′ =

hy

h
, a′′ =

Y (y)

h
, b =

X(x)

h

and

(logh)xy = h− X(x)Y (y)

h2
,

where X is a function of x and Y is a function of y. By suitably choosing
coordinates, we can further assume X and Y are constants so that XY = 1.
Namely, we have seen the following:

Proposition 5.4 Any affine sphere is given, up to an affine motion, by a sys-
tem of the form

zxx =
hx

h
zx +

m

h
zy, zxy = hz, zyy =

1

mh
zx +

hy

h
zy, (5.6)

where h is a solution of

(logh)xy = h− 1

h2
(5.7)

and m is a constant.

Remark 5.5 We have already met the system above in Example 4.13 (see (4.4)
and (4.5)).

Example 5.6 When h = 1, the system is zxx = zy, zxy = z, and zyy = zx. For

any cubic root ω, eωx+ω2y is a solution. The associated surface is XY Z = 1
in the complex affine space with coordinates (X,Y, Z). In the real case, we also
have a representation of the form X(Y 2 + Z2) = 1.
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5.3 Affine polar surfaces

Let A3 denote the dual space of A3 and 〈 , 〉 the dual pairing. Given a surface
z in A3, we define its polar surface ζ : (x, y) 7→ ζ(x, y) ∈ A3 by requiring

〈ζ, z〉 = 1, 〈ζ, zx〉 = 0, 〈ζ, zy〉 = 0.

Lemma 5.7 Assume the surface z is given by the system (5.1) with c = c′′ = 0.
Then the surface ζ is determined by the system

ζxx = (a− 2b′)ζx − bζy,

ζxy = −a′ζx − b′ζy + c′ζ,

ζyy = −a′′ζx + (b′′ − 2a′)ζy.

(5.8)

Proof. Set

ζxx = pζx + qζy + rζ, ζxy = p′ζx + q′ζy + r′ζ, ζyy = p′′ζx + q′′ζy + r′′ζ.

By differentiation of the parings above, we can get the following. From 〈ζ, z〉 =
1,

(1) 〈ζx, z〉 = 0, 〈ζy , z〉 = 0.

From 〈ζ, zx〉 = 0 and 〈ζ, zy〉 = 0,

(2) 〈ζx, zx〉 = 0, (3) 〈ζy, zx〉 = 〈ζx, zy〉 = −c′, (4) 〈ζy , zy〉 = 0.

Differentiating (1) again, we see that 〈ζxx, z〉 = 0, 〈ζxy, z〉 = c′, 〈ζyy, z〉 =
0; namely, r = 0, r′ = c′, and r′′ = 0. Differentiating (2), we get 〈ζxx, zx〉 +
〈ζx, zxx〉 = 0 and 〈ζxy , zx〉 + 〈ζz , zxy〉 = 0; both imply q = −b and q′ =
−b′. Similarly, from (4), we get p′ = −a′ and p′′ = −a′′. Differentiating (3),
we get 〈ζxx, zy〉 + 〈ζx, zxy〉 = c′x, which implies p = −b′ + (log c′)x. Since
(log c′)x = a− b′ by the integrability, we see that p = a−2b′. Similarly, we have
q′′ = b′′ − 2a′.

Corollary 5.8 The asymptotic coordinates for the surface z are also asymptotic
for the polar surface ζ. When z is an affine sphere, with parameter m, the polar
surface ζ is also an affine sphere, with parameter −m.

5.4 From an affine surface to a projective surface

Let z1, z2, and z3 be independent solutions of the system (5.1). The surface
z(x, y) = (z1(x, y), z2(x, y), x3(x, y)) defines a surface in projective space by the
mapping

(x, y) −→ w(x, y) = [λz1, λz2, λz3, λ] =: [w1, w2, w3, w4],
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for an arbitrary nonvanishing scalar function λ. The system that has solutions
wi is determined by the following
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= 0,

where w is an indeterminate. Since the projective class of the surface is inde-
pendent of the choice of λ, we here assume for simplicity that λ = 1. Then, the
system is written down as follows.

c′wxx = cwxy + (c′a− ca′)wx + (c′b− cb′)wy ,

c′wyy = c′′wxy + (c′b′′ − c′′b′)wy + (c′a′′ − c′′a′)wx.

Hence, the conformal structure of the surface is cdx2 + 2c′dxdy + c′′dy2, as we
have already claimed.

If c = c′′ = 0, then the system reduces to

wxx = awx + bwy, wyy = a′′wx + b′′wy.

In particular, for the system of affine spheres (5.6), the associated projective
system is

zxx =
hx

h
zx +

m

h
zy, zyy =

1

mh
zx +

hy

h
zy,

with the additional condition (5.7): (logh)xy = h− 1/h2.

5.5 Laplace transforms of affine spheres

Given an affine sphere z by the system (5.6), we define its first Laplace transform

w1 = λzy

in the affine space, where λ is a nonvanishing scalar function determined later.
Assume here m = 1 for simplicity. By computation,

w1
x = (logλ)xw

1 + λhz, w1
y = (log λh)yw

1 +
λ

h
z.

Hence, z and zx can be recovered by

z =
1

λh
(w1

x − (logλ)xw
1), zx =

h

λ
(w1

y − (log λh)yw
1).

By differentiation, we get

w1
xx = (log λ2h)xw

1
x + h2w1

y +
(

(logλ)xx − (logλh)x(logλ)x − h2(logλh)y

)

w1,

w1
xy = (log λ)xw

1
y + (logλh)yw

1
x + ((logλ)xy − (logλh)y(logλ)x + h)w1,

w1
yy =

1

h
w1

x + (logλ2)yw
1
y +

(

(logλh)yy − (log(λ/h))y(logλh)y − 1

h
(logλ)x

)

w1.
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From the second equation, the Laplace invariants of the surface w, which we
denote by h1 and k1, are

h1 = 1/h2, k1 = h.

By definition, the second Laplace transform w2 is given by

w2 = µ(w1
y − (logλh)yw

1)

for a certain scalar µ, and we see that this is equal to (λµ/h)zx. By computation,
we get

w2
x = (logλµ)xw

2 + (µ/h2)w1,

w2
y = ((log u)y + (log λ/h)y + h(logλ)x(log λµ)x)w2 + (µ/h)w1

x + (1/h)(logλ)xw
2
x.

Hence, we can write w1, w1
x, and w1

y in terms of w2 as

w1 =
h2

µ
(w2

x − (logλµ)xw
2),

w1
y =

h2

µ
(logλh)yw

2
x +

1

µ
(1 − h2(logλh)y(log λµ)x)w2,

w1
x =

h

µ

(

w2
y − 1

h
(log λ)xw

2
x − ((log λµ/h)y + h(logλ)x(logλµ)x)w2

)

.

From these relations we have

w2
xy = (log λµ/h)yw

2
x + (logλµ)xw

2
y

+
(

(logλµ)xy + 1/h2 − (logλµ)x(logλµ/h)y

)

w2.

This implies that the third Laplace transform is given by

w3 = ν(w2
y − (logλµ/h)yw

2)

for a certain scalar ν, and the Laplace invariants h2 and k2 are

h2 = h, k2 =
1

h2
.

Now it is easy to see that
w3 = λµνz.

Proposition 5.9 Assume λµν = 1. Then the affine sphere z is 3-periodic
relative to Laplace transformation.

59



5.6 Tzitzeica transforms of affine spheres

Tzitzeica found a transformation formula that sends a given affine sphere to a
new affine sphere. We reproduce the formula in our setting.

We start by recalling the Moutard transformation of the equation

zxy = hz, (5.9)

which is a part of the system (5.6). For notational simplicity, we introduce the
operator

M(z) =
zxy

z
.

Then, the equation (5.9) is simply written as M(z) = h. Let R be an arbitrary
scalar solution of (5.9) and define a 1-form ω associated to any solution z by

ω = (Rzx −Rxz)dx− (Rzy −Ryz)dy.

Then computation shows that ω is closed. This means that there is a function
u such that ω = du, namely,

ux = Rzx −Rxz, uy = −(Rzy −Ryz).

Furthermore, for w = u/R, we see that

wxy = M

(

1

R

)

w, (5.10)

and
(Rw)x = R2

( z

R

)

x
, (Rw)y = −R2

( z

R

)

y
.

Hence, w is defined by the integral

w =
1

R

∫

R2

{

( z

R

)

x
dx−

( z

R

)

y
dy

}

.

The transformation of any solution z of (5.9) to a solution w of (5.10) is called
a Moutard transformation.

Let now z be any solution of the system (5.6) with parameter m = a and
choose a solution R of the same system with parameter m = b. Assuming a 6= b,
we define a new function w by

w = z − 2a(logR)x

(a− b)h
zy +

2b(logR)y

(a− b)h
zx. (5.11)

Then computation shows that

(Rw)x =
a+ b

a− b
(Rzx −Rxz), (Rw)y = −a+ b

a− b
(Rzy −Ryz),

which implies that w is a Moutard transformation of z, up to a constant multiple.
Further, we can see that w satisfies the system (5.6) with the same constant m
and with h− 2(logR)xy as the new h. Therefore we have the following theorem
due to Tzitzeica.
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Theorem 5.10 Let z be an affine sphere and define a new surface w by (5.11).
Then, (1) The surface w is again an affine sphere and the associated system is
determined by the potential h− 2(logR)xy for h and the same parameter m = a
as for z. (2) The congruence made by lines joining z(x, y) and w(x, y) is a
W -congruence.

Part (2) follows from the fact that the conformal structure of both surfaces
is conformal to dxdy. We remark that the potential h = h− 2(logR)xy satisfies

the equation (logh)xy = h− 1/h
2
.

Remark 5.11 A reference for affine differential geometry is [NS1994]. Fun-
damental references for Tzitzeica’s work are [Tz1907, Tz1924]. We refer to
Section 13 for a generalization of Theorem 5.10, and to [RS2002] for the Tzitze-
ica transformation. We refer also to [BS1999]. [Dem1920] is a good reference
for the Moutard transformation.

6 Line congruences (2)

In Section 3 we defined the notion of line congruence and explained a geomet-
rical characterization of W-congruence. This section aims at continuing the
consideration in a slightly different manner, using the moving frame method
and discussing the relation with a differential system.

6.1 The Weingarten invariant W

Definition 6.1 A projective frame e = {e1, e2, e3, e4} in P3 defined along an
immersed surface M2 is said to belong to a line congruence if the connection
form ω, defined by dei =

∑

j ω
j
i ej , satisfies the condition

ω4
1 = ω3

2 = 0, ω3
1 and ω4

2 are linearly independent. (6.1)

We hereafter use the notation ω1 = ω3
1 and ω2 = ω4

2 .

A geometric interpretation is the following: The vector e1 is an immersion
of M and defines a surface S1, and e2 defines a second surface S2; the set of
lines joining two points e1 and e2 is a line congruence in the sense defined in
Section 3. The Fig. 1 shows a line congruence between two paraboloids. The
tangent lines to the parameter curves of one of two surfaces are tangent to the
other surface.

Since we can see e1 ∧ e2 ∧ de1 ∧ de2 = ω1 · ω2 e1 ∧ e2 ∧ e3 ∧ e4 by definition
(remark that the wedge product is made relative to vectors and the product of
differential forms is a symmetric product), the ruled surface given as the union
of lines through the integral curve of the equation ω1 = 0 is developable. The
same is true for ω2 = 0. Hence, the vectors e1 and e2 describe focal surfaces of
the congruence.
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Figure 1: Line congruence between two paraboloids

Two frames belonging to the same line congruence are related by a matrix
of the form

g =







λ β 0 0
γ µ 0 0
p q ρ 0
r s 0 σ






,

which acts on the frame from the left. Such matrices form a group, say G, and
the set of such frames define a bundle over M with G the fiber group.

Let us see what the first condition of (6.1) implies. From dω4
1 = 0, we have

ω2
1 ∧ ω4

2 + ω3
1 ∧ ω4

3 = 0. Hence, if we set

ω2
1 = h11ω

1 + h12ω
2, ω4

3 = h31ω
1 + h32ω

2,

then h11 + h32 = 0. From dω3
2 = 0, we have ω1

2 ∧ ω3
1 + ω4

2 ∧ ω3
4 = 0 and we can

set
ω1

2 = h21ω
1 + h22ω

2, ω3
4 = h41ω

1 + h42ω
2,

so that h22 + h41 = 0.

Lemma 6.2 There always exists a frame satisfying h11 = h32 = h22 = h41 = 0.
For such a frame, we have

ω2
1 = h12ω

2, ω4
3 = h31ω

1, ω1
2 = h21ω

1, ω3
4 = h42ω

2. (6.2)

Proof. We define a new frame e = {e1, e2, e3, e4} by

e1 = e1,

e2 = e2,

e3 = pe1 + qe2 + e3,

e4 = re1 + se2 + e4.
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Then it is not difficult to see that

de1 = (ω1
1 − pω3

1)e1 + (ω2
1 − qω3

1)e2 + ω3
1e3,

de2 = (ω1
2 − rω4

2)e1 + (ω2
2 − sω4

2)e2 + ω4
2e4,

de3 ≡ (ω4
3 + qω4

2)e4 (mod e1, e2, e3),

de4 ≡ (ω3
4 + rω3

1)e3 (mod e1, e2, e4).

This implies that the connection form ω corresponding to e has an expression
of the form

ω2
1 = ω2

1 − qω1 = (h11 − q)ω1 + h12ω
2,

ω1
2 = ω1

2 − rω2 = h21ω
1 + (h22 − r)ω2,

ω4
3 = ω4

3 + qω2 = h31ω
1 + (h32 + q)ω2,

ω3
4 = ω3

4 + rω1 = (h41 + r)ω1 + h42ω
2.

Hence the result follows, because h11 + h32 = 0 and h22 + h41 = 0.

We now assume that the frame satisfies (6.2). Along the surface S1, the
projective frame in the previous section is given by {e1, e2, e3, e4}; hence the
induced conformal structure, which we now denote by φ1, is given by

φ1 = ω2
1 · ω4

2 + ω3
1 · ω4

3 = h31ω
1ω1 + h12ω

2ω2.

Similarly, for the surface S2, we get the conformal structure

φ2 = h21ω
1ω1 + h42ω

2ω2.

Definition 6.3 We call W = h12h21 − h31h42 the Weingarten invariant of the
line congruence. This coincides with the definition of W given in (3.7); see Sect.
6.3.

6.2 Covariance of frames

We now consider how frames satisfying the condition (6.2) can vary. Let e and
ẽ be such frames and let g be the connecting matrix such that ẽ = ge:

g =

(

A 0
P Λ

)

; A =

(

λ β
γ µ

)

, Λ =

(

ρ 0
0 σ

)

, P =

(

p q
r s

)

.

Then the connection forms are ω above and ω̃ = dg · g−1 + gωg−1. We denote
components of ω by

ω =

(

ω1 ω2

ω3 ω4

)

,

where ω1, . . ., ω4 are 2 × 2-matrix-valued 1-forms. The ω̃ is also decomposed
similarly. Computation shows that

dg · g−1 =

(

dA ·A−1 0

dP · A−1 − dΛ · Λ−1PA−1 dΛ · Λ−1

)

,
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gωg−1 =





Aω1A
−1 −Aω2Λ

−1PA−1 Aω2Λ
−1

Pω1A
−1 + Λω3A

−1 − Pω2Λ
−1pA−1 Pω2Λ

−1

−Λω4Λ
−1PA−1 +Λω4Λ

−1



 .

Thus we see that

ω̃2 = Aω2Λ
−1 =

(

λ β
γ µ

)(

ρ−1ω3
1 0

0 σ−1ω4
2

)

.

In order that this has a form

(

ω̃3
1 0
0 ω̃4

2

)

, it is necessary that β = γ = 0. In

this case,
{

ẽ1 = λe1
ẽ2 = µe2

where A =

(

λ 0
0 µ

)

.

We then have
ω̃3

1 = λρ−1ω3
1 , ω̃4

2 = µσ−1ω4
2 .

For the component ω̃1, we get

ω̃1 = Aω1A
−1 −Aω2Λ

−1pA−1 + dA ·A−1

=

(

ω1
1 µ−1λω2

1

λ−1µω1
2 ω2

2

)

−
(

ω̃3
1 0
0 ω̃4

2

)(

λ−1p µ−1q
λ−1r µ−1s

)

+

(

d logλ 0
0 d logµ

)

.

Hence
ω̃2

1 = λµ−1(ω2
1 − ρ−1qω3

1), ω̃1
2 = λ−1µ(ω1

2 − σ−1rω3
1).

Similarly,

ω̃4 = Pω2Λ
−1 + Λω4Λ

−1 + dΛ · Λ−1

=

(

pω3
1 qω4

2

rω3
1 sω4

2

)(

ρ−1

σ−1

)

+

(

ρω3
3 ρω4

3

σω3
4 σω4

4

)(

ρ−1

σ−1

)

+

(

d log ρ 0
0 d logσ

)

.

Hence

ω̃3
3 = ρ−1(pω3

1 + ρω3
3) + d log ρ, ω̃4

3 = σ−1(qω4
2 + ρω4

3),

ω̃3
4 = ρ−1(rω3

1 + σω3
4), ω̃4

4 = σ−1(sω4
2 + σω4

4) + d logσ.

We define h̃ij and φ̃i for ω̃ similarly as was done for ω. Then the formulas above
show the following:

h̃11 = ρµ−1h11 − µ−1q, h̃21 = λ−2ρµh21,

h̃12 = σλµ−2h12, h̃22 = σλ−1h22 − λ−1r,

h̃31 = λ−1σ−1ρ2h31, h̃41 = λ−1σh41 + λ−1r,

h̃32 = µ−1ρh32 + µ−1q, h̃42 = ρ−1µ−1σ2h42,

and
φ̃1 = λσ−1φ1, φ̃2 = ρ−1µφ2.

Summarizing the above considerations, we have the following covariance relation
between normalized frames.
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Lemma 6.4 The change of frames keeping the condition h11 = h32 = h22 =
h41 = 0 has the form

g =







λ 0 0 0
0 µ 0 0
p 0 ρ 0
0 s 0 σ






.

The connection forms satisfy the following covariance relations:

ω̃1
1 = ω1

1 − ρ−1pω1 + d logλ, ω̃3
3 = ω3

3 + ρ−1pω1 + d log ρ,

ω̃2
1 = µ−1λω2

1 , ω̃4
3 = σ−1ρω4

3 ,

ω̃1
2 = λ−1µω1

2 , ω̃3
4 = ρ−1σω3

4 ,

ω̃2
2 = ω2

2 − σ−1sω2 + d logµ, ω̃4
4 = ω4

4 + σ−1sω2 + d logσ.

(6.3)

6.3 Systems of differential equations of a line congruence

We continue the considerations of Sect. 3.2. We have seen that the congruence
{z, w} with parameter (x, y) is written by the system of equations:

zy = mw, zxx = az + bw + czx + dwy,

wx = nz, wyy = a′z + b′w + c′zx + d′wy.
(6.4)

So we get
zxy = mnz +mxw, wxy = nyz +mnw,

zyy = myw +mwy, wxx = nxz + nzx.
(6.5)

If we define a projective frame as follows:

e1 = z, e2 = w, e3 = zx, e4 = wy ,

then the associated connection form is

ω =







0 mdy dx 0
ndx 0 0 dy

adx+mndy bdx+mxdy cdx ddx
a′dy + nydx b′dy +mndx c′dy d′dy






. (6.6)

In particular, we see that

ω1 = dx, ω2 = dy, (6.7)

h11 = 0, h12 = m, h31 = d, h32 = 0,

h21 = n, h22 = 0, h41 = 0, h42 = c′,
(6.8)

and
W = mn− c′d.

The last expression coincides with the definition of W given in Sect. 3.2. The
invariant quadratic forms are

φ1 = d(dx)2 +m(dy)2, φ2 = n(dx)2 + c′(dy)2.

65



Compare (3.4) and (3.5) with (6.7) and (6.8). In the following, we assume
mnc′d 6= 0 (refer to (3.6)) so that both focal surfaces are nondegenerate; we say
that such a line congruence is nondegenerate.

The integrability condition of the system is nothing but dω = ω ∧ ω. A
calculation shows that

ω ∧ ω =







0 mx 0 0
−ny 0 0 0

(mn)x − ay mxx − by −cy −dy

a′x − nyy b′x − (mn)y c′x d′x






dx ∧ dy.

Hence, the integrability condition of the system (6.4) consists of the next eight
equations.

(mn)x + nmx − ay − cmn− a′d = 0,

mxx − by − am− cmx − b′d = 0,

cy −mn+ c′d = 0,

dy + b+ dd′ = 0,

(mn)y +mny − b′x − bc′ −mnd′ = 0,

nyy − a′x − b′n− d′ny − ac′ = 0,

d′x −mn+ c′d = 0.

c′x + a′ + cc′ = 0,

(6.9)

From the third and the seventh equations, we get cy = d′x. This implies that
there is a nonvanishing function f so that

c = −fx/f, d′ = −fy/f. (6.10)

In particular,
W = mn− c′d = −(log f)xy. (6.11)

If we set
∆ = z ∧ w ∧ zx ∧ wy,

then a simple calculation shows

∆x = c∆, ∆y = d′∆.

Namely, we have ∆ = 1/f from (6.10), up to a constant multiple.

The system (6.4) is not uniquely determined by the given congruence. It has
some freedom of choice. One is a change of parameters

(1) (x, y) 7−→ (x = X(x), y = Y (y)),

and the other is a change of coordinates in P3

(2) (z, w) 7−→ (z = z/λ(x), w = w/µ(y)).
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We look for dependence of coefficients separately for the two cases. By the
change (1), the system is written as follows:

zy =
m

Yy
w, zxx =

1

X2
x

(az + bw + (cXx −Xxx)zx + dYywy),

wx =
n

Xx
z, wyy =

1

Y 2
y

(a′z + b′w + c′Xxzx + (d′Yy − Yyy)wy).

In particular, the Weingarten invariant W of the new system is

W =
1

XxYy
W.

Under the change (2), the new system relative to (z, w) is

zy =
µ

λ
mw, wx =

λ

µ
nz,

zxx =

(

a+
λx

λ
c− λxx

λ

)

z +
(µ

λ
b+

µy

λ
d
)

w +

(

c− 2λx

λ

)

zx +
µ

λ
dwy,

wyy =

(

λ

µ
a′ +

λx

µ
c′
)

z +

(

b′ +
µy

µ
d′ − µyy

µ

)

w +
λ

µ
c′zx +

(

d′ − 2µy

µ

)

wy.

It is easy to see that the Weingarten invariant is unchanged. Since cy = W and
d′x = −W , we can solve c− 2λx/λ = 0 and d′ − 2µy/µ = 0 in the case W = 0:

Corollary 6.5 If W = 0, then the system can be reduced to the case c = d′ = 0.

By composing the above two kinds of changes, we get

Lemma 6.6 By the change of variables

(x, y; z, w) 7−→ (x = X(x), y = Y (y); z = z/λ(x), w = w/µ(y)),

the coefficients m, n, c′ and d are changed as follows:

m 7−→ µ

λYy
m, n 7−→ λ

µXx
n, c′ 7−→ λXx

µY 2
y

c′, d 7−→ µYy

λX2
x

d.

6.4 The dual of a line congruence

Let {z, w} be a line congruence. We denote by Tz (resp. Tw) the tangent space
of the surface z (resp. w). Each line of the congruence is represented by the
intersection Tz ∩ Tw. The dual of the plane Tz, which we identify with the
vector z∧ zx ∧ zy, describes a surface in the dual projective space. Similarly, we
have the surface given by w ∧ wx ∧ wy. Thus we get a congruence consisting of
lines connecting two surfaces that are points in the dual projective space. We
call this congruence the dual of a given congruence, or more briefly the dual
congruence. We now give the system of the dual congruence.
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Since z ∧ zx ∧ zy = mz ∧ zx ∧ w and w ∧ wx ∧ wy = nw ∧ z ∧ wy , and since
we have assumed m 6= 0 and n 6= 0, the dual congruence is well-defined. Then
the dual image is described by two vectors

U =
1

n∆
w ∧ wx ∧ wy = − 1

∆
z ∧ w ∧ wy,

V =
1

m∆
z ∧ zx ∧ zy = − 1

∆
z ∧ w ∧ zx.

Proposition 6.7 The system of the dual line congruence {U, V } is the follow-
ing:

Uy = c′V, Uxx = (a− cx)U + (nd′ − ny)V − cUx + nVy,

Vx = dU, Vyy = (cm−mx)U + (b′ − d′y)V +mUx − d′Vy.

The Weingarten invariant W d of the dual congruence is

W d = c′d−mn = −W.

Corollary 6.8 If the dual congruence is projectively equivalent to the original
congruence, then the Weingarten invariant vanishes.

In this case, because of Corollary 6.5, the system can be reduced to

Uy = c′V, Uxx = aU − nyV + nVy,

Vx = dU, Vyy = −mxU + b′V +mUx.
(6.12)

7 Linear complexes

Each line of a line congruence can be regarded a point of P5 through the Plücker
embedding, and thus any line congruence can be regarded as a surface in P5

contained in the quadratic hypersurface determined by the Plücker relation.
In this section, we consider such a line congruence in the case that the image
surface is contained in a hyperplane.

7.1 Linear complexes

We say that a 3-dimensional family of lines is a linear complex when its Plücker
image into P5 lies in a hyperplane.

If y = [y1, y2, y3, y4] and z = [z1, z2, z3, z4] are two points on a line, the
Plücker image of the line is the vector y ∧ z. The homogeneous coordinates of
y ∧ z are [τ12, τ13, τ14, τ23, τ42, τ34], where τij = yizj − yjzi. When they satisfy
a linear relation

a34τ12 + a42τ13 + a23τ14 + a14τ23 + a13τ42 + a12τ34 = 0,
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we have an associated vector ξ = [ξ1, ξ2, ξ3, ξ4] given by

ξ =









0 −a34 −a42 −a23

a34 0 −a14 a13

a42 a14 0 −a12

a23 −a13 a12 0

















y1

y2

y3

y4









where ξ is also regarded as a column vector. Then, we see that the linear relation
is written as

∑

ξiz
i = 0. Hence, ξ can be regarded as the vector defining a

hyperplane, on which lies the point z. By definition, the point y itself lies on
the hyperplane. This means that, when given a linear complex, for any point
y, we can associate a hyperplane through y so that the lines on this hyperplane
through y altogether form the linear complex. The correspondence of y to ξ is
a linear transformation of the space P3 to its dual space. Conversely, such a
transformation of the above form defines a linear complex.

7.2 The Plücker image of a line congruence

The Plücker image of a line congruence {z, w} is identified with

ξ = z ∧ w.

The mapping (x, y) 7→ ξ(x, y) defines generally a surface in P5. Since we know
any surface in P5 can be described by a system of third-order differential equa-
tions, we compute the associated system for ξ here.

For simplicity, we set

η = z ∧ zx and ζ = w ∧ wy.

By using (6.4), we see that

ξx = zx ∧ w, ξy = z ∧ wy,

and, by (6.4) and (6.5),

ξxx = aξ + cξx − nη − dζ,

ξxy = mnξ + zx ∧ wy ,

ξyy = b′ξ + d′ξy + c′η +mζ.

(7.1)

Then differentiating once more, we get third-order relations:

ξxxx = cξxx + (a+ cx)ξx − 2dnξy + (ax − bn+ dny)ξ − (cn+ nx)η − dxζ,

ξxxy = cξxy + 2mnξx + aξy + ((mn)x − cmn)ξ − nyη + bζ,

ξxyy = d′ξxy + b′ξx + 2mnξy + ((mn)y −mnd′)ξ − a′η +mxζ,

ξyyy = d′ξyy − 2c′mξx + (b′ + d′y)ξy + (b′y − a′m+ c′mx)ξ + c′yη + (my +md′)ζ.
(7.2)
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From the first and third relations of (7.1), we have

Wη = −m(ξxx − cξx − aξ) − d(ξyy − d′ξy − b′ξ),

Wζ = c′(ξxx − cξx − aξ) + n(ξyy − d′ξy − b′ξ),

where W = mn− c′d. Hence, if the Weingarten invariant does not vanish, the
equations in (7.2) can be written in closed forms depending only on ξ and thus
the system associated with ξ is derived. For later use, we list the system up to
second-order terms.

ξxxx =

(

c+
cmn+mnx − c′dx

W

)

ξxx +
(cn+ nx)d− ndx

W
ξyy (mod ξx, ξy, ξ),

ξxxy =
mny + bc′

W
ξxx + cξxy +

dny + bn

W
ξyy (mod ξx, ξy, ξ),

ξxyy =
a′m+ c′mx

W
ξxx + d′ξxy +

a′d+mxn

W
ξyy (mod ξx, ξy, ξ),

ξyyy =
(my +md′)c′ − c′ym

W
ξxx +

(

d′ +
(my +md′)n− c′yd

W

)

ξyy (mod ξx, ξy, ξ).

If the Weingarten invariant vanishes, ξ must satisfy a second-order differential
equation

m(ξxx − cξx − aξ) + d(ξyy − d′ξy − b′ξ) = 0,

which shows Theorem 3.3 again.

Given a line congruence {z, w}, we next construct the following sets of lines:

A1(x, y) = the set of lines joining z(x, y)

and any point on the line w(x, y)wy(x, y),

L1 = ∪x,yA1(x, y),

A2(x, y) = the set of lines joining w(x, y)

and any point on the line z(x, y)zx(x, y),

L2 = ∪x,yA2(x, y).

For a line congruence {z, w}, the set of vectors {z, w, zx, wy} defines a projective
frame. We associate to it a moving frame in P5 by defining

ξ12 = z ∧ w,
ξ23 = w ∧ zx,

ξ13 = z ∧ zx,
ξ24 = w ∧ wy ,

ξ14 = z ∧ wy,
ξ34 = zx ∧ wy.

The Plücker coordinates pij of any point of p ∈ P5 relative to the frame {ξij}
are defined by setting

p = p12ξ12 + p13ξ13 + p14ξ14 + p23ξ23 + p24ξ24 + p34ξ34. (7.3)
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The Pluc̈ker image of a line in L1 is given by

η = z ∧ (w + twy),

where t is a parameter. We regard η as a point in P5 with three parameters x,
y, and t. By a computation we have

ηx = zx ∧ w + tz ∧ wy + tmnz ∧ w,
ηy = tmw ∧ wy + (1 + td′)z ∧ wy + tb′z ∧ w + tc′z ∧ zx,
ηt = z ∧ w.

Hence the coordinates of these vectors are written as follows:

p12 p13 p14 p23 p24 p34

η 1 0 t 0 0 0
ηx tmn 0 0 −1 0 t
ηy tb′ tc′ 1 + td′ 0 tm 0
ηt 0 0 1 0 0 0

From this table of coordinates, we can see that the hyperplane

mp13 − c′p24 = 0

is the unique hyperplane tangent to the set L1 and including lines in A1(x, y)
at each fixed value (x, y). Similarly, for the set L2, we get the hyperplane

dp13 − np24 = 0.

These two hyperplanes coincide if and only if W = 0.

7.3 Line congruences belonging to a linear complex

We next want to consider when the hyperplanes obtained in Sect. 7.2 do not
depend on (x, y); namely, when the line congruence belongs to a linear complex.

Let us set
ζ = mp13 − c′p24,

considered as a vector-valued function of (x, y). The condition we need is

ζx ≡ 0 and ζy ≡ 0 (mod ζ).

By differentiating (7.3), we see that
∑

i<j(dpijξij + pijdξij) = 0. If we write
d(ξij) = (Mdx+Ndy)(ξij), where M and N are 6 × 6-matrices, we have

pijx = −
∑

k`

pk`M
k`
ij and pijy = −

∑

k`

pk`N
k`
ij .
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Since

ξ12x = −ξ23, ξ13x = bξ12 + cξ13 + dξ14,

ξ14x = mnξ12, ξ23x = −aξ12 + nξ13 + cξ23 + dξ24,

ξ24x = −nyξ12 + nξ14,

ξ34x = −nyξ13 + aξ14 −mnξ23 + bξ24 + cξ34,

we have

M =















0 0 0 −1 0 0
b c d 0 0 0
mn 0 0 0 0 1
−a n 0 c d 0
−ny 0 n 0 0 0

0 −ny a −mn b c















.

Namely, we get

p13x = −cp13 − np23 + nyp34, p24x = −dp23 − bp34.

Therefore, we get

ζx = (mx − cm)p13 − (mn− c′d)p23 − c′xp24 + (mny + bc′)p34,

and the condition that ζx ≡ 0 (mod ζ) is equal to

W = mn− c′d = 0, mny + bc′ = 0,

∣

∣

∣

∣

mx − cm c′x
m c′

∣

∣

∣

∣

= 0. (7.4)

By a similar computation, we have the following:

ξ12y = ξ14, ξ13y = mxξ12 +mξ23,

ξ14y = b′ξ12 + c′ξ13 + d′ξ14 +mξ24, ξ23y = −mnξ12 − ξ34,

ξ24y = −a′ξ12 + c′ξ23 + d′ξ24,

ξ34y = −a′ξ13 +mnξ14 − b′ξ23 +mxξ24 + d′ξ34,

and

N =















0 0 1 0 0 0
mx 0 0 m 0 0
b′ c′ d′ 0 m 0

−mn 0 0 0 0 −1
−a′ 0 0 c′ d′ 0
0 −a′ mn −b′ mx d′















.

Hence
p13y = −c′p14 + a′p34, p24y = mp14 − d′p24 −mxp34.

Then we see

ζy = myp13 − (c′y − c′d′)p24 + (ma′ + c′mx)p34,
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and the condition that ζy ≡ 0 (mod ζ) is equivalent to

ma′ + c′mx = 0,

∣

∣

∣

∣

my c′y − c′d′

m c′

∣

∣

∣

∣

= 0. (7.5)

SinceW = 0 by (7.4), we need not examine the set L2. Namely, the condition
that a line congruence belongs to a linear complex is (7.4) and (7.5).

Theorem 7.1 A nondegenerate line congruence belongs to a linear complex if
and only if the condition

c = d′ = 0, c′ = m, d = n, b = −ny, a′ = −mx (7.6)

is satisfied. The system (6.4) then reduces to

zy = mw, zxx = az − nyw + nwy,

wx = nw, wyy = −mxz + b′w +mzx.

Proof. Since W = 0, we may assume that c = 0 and d′ = 0, by Corollary 6.5.
Then the two determinants in (7.4) and (7.5) are

∣

∣

∣

∣

mx c′x
m c′

∣

∣

∣

∣

=

∣

∣

∣

∣

my c′y
m c′

∣

∣

∣

∣

= 0,

from which c′/m is seen to be a constant. By a frame change in Lemma 6.6,
the quantity c′/m can be multiplied by λ2Xx/µ

2Yy. Hence we may assume

m = c′.

Note that by this change the condition c = d′ = 0, i.e., the condition ω3
3 = ω4

4 =
0 in view of (6.6), is preserved, by the formula (6.3) applied to the case where
p = s = 0. Thus we have completed the proof.

Remark 7.2 Under the condition (7.6), the dual congruence is

Uy = mV, Uxx = aU + bV + nVy,

Vx = nU, Vyy = a′U + b′V +mUx.

Hence it is autoreciprocal; we refer to (6.12).

Remark 7.3 The argument in this section relies on [W1911]. We refer to S.S.
Chern [Ch1936] for some higher order invariants by which the family of quadratic
complexes associated to a line congruence is described.

8 Laplace transforms of a line congruence

Let {z, w} be a line congruence normalized as in (6.4). The point w lies on
the tangent line of the surface z in the direction of the parameter y. This
means that the line congruence is one of the tangent congruences of z associated
with parameter curves. Hence, the other line congruence determined by the
parameter x should be canonically associated to the given one. This section
deals with this correspondence.

73



8.1 Laplace transforms of a line congruence

Suppose we are given a line congruence {z, w}, which we denote by Γ0. Let us
consider the tangent congruence {zx, z}, for which The surface z is by definition
one of the focal surfaces. We want to find the other focal surface, which should
have the form

z1 = zx + αz.

The α is determined by supposing

z1y ≡ 0 (mod z, z1).

Since z1y = (αy +mn)z+ (αm+mx)w by (6.4), we must have α = −mx/m. In
this case, we call the congruence Γ1 = {z1, z} the Laplace transform of Γ0.

We now compute the system associated with Γ1. Set w1 = z/m. Then

z1y = (mn− (logm)xy)mw1,

z1x = (a− (logmn)xx)z + bw + (c− mx

m
)zx + dwy,

w1x =
1

m
z1, w1y = −my

m2
z + w.

From these relations, we can compute the coefficients of the system describing
the congruence {z1, w1}. Denoting the coefficients by attaching the subscript 1,
we get the following:

m1 = m(mn− (logm)xy),
n1 = 1/m,

a1 = a− (log fm2)xx + (log d/m)x(log fm)x,

b1 = m(ax − adx/d+ bn+ dny − (logm)xxx)

+(logm)y(bx − bdx/d+mnd)

+mx(a− (log fm2)xx + (log fm)x(log d/m)x)

−m(logm)xx(log fm/d)x,

c1 = −(log fm/d)x,
d1 = bx − bdx/d+ dmn,
a′1 = (log fm)x/d,

b′1 = −(logm)yy

−{am−m(logm)xx + b(logm)y −mx(log fm)x} /d,
c′1 = 1/d,
d′1 = −b/d− (logm)y.

(8.1)

where f was defined in (6.10).

The transform in the inverse direction is Γ−1 = {z−1, w−1} given by

z−1 =
w

n
, w−1 = wy − ny

n
w.
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Theorem 8.1 ([Dem1911, W1915]) If the first transform of a W -congruence
is a W -congruence, then the same is true for all of its Laplace transforms.

Proof. Since W = −(log f)xy by (6.11) and W1 = m1n1 − c′1d1 equals to
−(logm)xy +(log d/f)xy by (8.1) and by the identity b = −dy − dd′ in (6.9), we
get

W1 −W = (log d)xy − (logm)xy.

Further, we get
m1

d1
=

m(mn− (logm)xy)

d(mn− (log d/f)xy)
.

Then, W1 = W = 0 implies that (log f)xy = 0 and (log d)xy = (logm)xy, which
imply the identity m1/d1 = m/d. This means that we can continue the process
while preserving the identity.

Remark 8.2 We can define the sequence of Laplace transforms successively.
B. Su [Su1935] and H. Hu [Hu1993] studied and showed interesting results for
the case where the sequence is four-times periodic.

8.2 Laplace transforms of a linear complex

The property of belonging to a linear complex reflects a kind of degeneration
of line congruences. Wilczynski considered the case where both Γ0 and Γ1

belong to linear complexes and derived the sinh-Gordon equation describing
such congruences. We will reproduce his computation in this section. The
number field in this section is the real field.

The condition that Γ0 belongs to a linear complex was given in (7.6):

c = d′ = 0, m = c′, n = d, b = −ny, a′ = −mx.

In this case, the invariants of Γ1 are

m1 = m(mn− (logm)xy), n1 = 1/m, c′1 = 1/n, d1 = n(mn− (log n)xy)

and the Weingarten invariant is W1 = (log(n/m))xy. Since W1 vanishes when
Γ1 belongs to a linear complex, we can write

m/n = α(x)β(y)

for certain nonvanishing functions α and β. (Recall that we are assuming m 6= 0
and n 6= 0.) On the other hand, a change of variables from (x, y; z, w) to
(x, y, z, w) that preserves the condition (7.6) is subject to the condition

λ2Xx = µ2Yy = const,

and m/n is multiplied by µ2Xx/λ
2Yy. Hence, we can assume

m = ±n.
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We have thus reduced the system to a simpler form with coefficients

c = d′ = 0, m = n = ϕ, c′ = d = εϕ, a′ = −ϕx, b = −ϕy,

with ε = ±1. Then the coefficients of Γ1 are computed as follows:

m1 = ϕ(εϕ2 − (logϕ)xy), n1 = 1/ϕ, a1 = a− 2(logϕ)xx,

b1 = ϕax − ϕ(logϕ)xxx − 2ϕx(logϕ)xx − εϕy(logϕ)xy + ϕ2ϕy,

c1 = 0, d1 = ϕ(ϕ2 − ε(logϕ)xy), a′1 = εϕx/ϕ
2,

b′1 = −ϕyy/ϕ+ 2ϕ2
y/ϕ

2 + εϕxx/ϕ− εa, c′1 = ε/ϕ, d′1 = 0.

The conditions given in (7.4) and (7.5) so that Γ1 is a linear complex are seen
to be

a = ϕxx/ϕ+ Y (y), m1/c
′
1 = εϕ2(εϕ2 − (logϕ)xy) =: k,

where Y is a function of y and k is a constant. Next we check the integrability
condition (8.1). It shows that

Y ′ = 0, ϕ(a+ εb′) = ϕxx + εϕyy, b′x = 4εϕϕy.

Hence Y = ` is a constant and we have

(logϕ)xy = ε(ϕ2 − kϕ−2).

The coefficients are

m = ϕ, n = εϕ,

a =
ϕxx

ϕ
+ `, b = −εϕy, c = 0, d = εϕ,

a′ = −ϕx, b′ =
ϕyy

ϕ
− ε`, c′ = ϕ, d′ = 0.

Now it is easy to see that a simple change of variables (x, y) shows that we can
assume k = ±1. The result is summarized in the following theorem.

Theorem 8.3 (E.J. Wilczynski [W1911]) The congruences Γ0 and Γ1 both be-
long to linear complexes if and only if there exists a nonvanishing function ϕ
satisfying the equation

∂2 logϕ

∂x∂y
= ε(ϕ2 − kϕ−2),

and the line congruence is given by the system

zy = ϕw, zxx = (ϕxx/ϕ+ `)z − εϕyw + εϕwy,

wx = εϕz, wyy = −ϕxz + (ϕyy/ϕ− ε`)w + ϕzx,

where ` is any constant, ε = ±1 and k = ±1.
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Figure 2: Line congruence between two hyperboloids 1

We call the function ϕ the potential for the pair {Γ0,Γ1}.

Corollary 8.4 Assume both Γ0 and Γ1 satisfy the condition in the theorem. Let
Γ2 be the (positive) Laplace transform of Γ1. Then Γ2 is projectively equivalent
to Γ0. In other words, Γ0 is doubly periodic.

Proof. By a direct calculation we can see that the potential of the pair {Γ1,Γ2}
is equal to 1/ϕ.

Corollary 8.5 The congruence Γ0 is projectively equivalent to Γ1 if and only
if ϕ = ±1.

Example 8.6 The focal surfaces when ϕ = ±1 are hyperboloids.

The lines in Fig. 2 are the tangent lines to x-curves of the right surface and
are tangent to the left surface along a curve parametrized by x; and the lines
in Fig. 3 are the tangent lines to y-curves of the left surface and are tangent
to the right surface along a curve parametrized by y. The figures above were
drawn by W. Rossman.

9 Invariants of focal surfaces

A line congruence gives a correspondence between two focal surfaces. In this
section, we compute such a line congruence when both of the focal surfaces are
quadrics. This was first done by Wilczynski and we will follow a part of his
description of such congruences. To do this, we need to compute invariants of
focal surfaces in terms of invariants of line congruences. We continue to work
on the real field.
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Figure 3: Line congruence between two hyperboloids 2

9.1 Invariants of focal surfaces

Let a projective frame {e1, e2, e3, e4} be a line congruence, as was explained
in Section 6. We regard the frame {e1, e2, e3, e4} as a frame associated with
the first focal surface e1. Then by the process introduced in Section 2, we can
compute the invariants. Let ω denote the associated coframe; see (6.6):

ω =







0 mdy dx 0
ndx 0 0 dy

adx+mndy bdx+mxdy cdx ddx
a′dy + nydx b′dy +mndx c′dy d′dy






.

Since it is necessary to normalize the coframe, as required in Proposition 2.1,
we consider a change of frame of the form







e1
e2
e3
e4






=







λ 0 0 0
gr g 0 0
hs 0 h 0
0 νp νq ν













e1
e2
e3
e4






,

for which we assume λghν > 0. The new coframe ω relative to this frame should
satisfy

ω1
1 = 0, ω2

2 + ω3
3 = 0, ω4

4 = 0.

Since we get

de1 = (d logλ− rmdy − sdx)e1 +
λm

g
dye2 +

λ

h
dxe3,

de2 = (d(gr) + gndx)e1 + +(d log g + (rm− p)dy)(e2 − gre1)

+
g

h
(rdx − qdy)(e3 − hse1) +

g

ν
dye4,
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de3 = {d(hs) + h(adx+mndy)}e1
+
h

g
{(b− dp)dx + (mx + sm)dy}(e2 − gre1)

+{d logh+ (c+ s− qd)dx}(e3 − hse1) +
hd

ν
dxe4,

de4 ≡ {(νqddx+ (νd′ + νp)dy + dν}e4 (mod e1, e2, e3),

the condition we need is the following:

d logλ− sdx− rmdy = 0,

d log ν + qddx+ (d′ + p)dy = 0,

d log(gh) + (c+ s− qd)dx + (rm− p)dy = 0.

(9.1)

By assuming
g = λm, h = λ,

we see that
ω1 := ω2

1 = dy, ω2 := ω3
1 = dx.

Then we have

ω4
2 =

λm

ν
dy, ω4

3 =
λd

ν
dx

and the fundamental tensor of the new frame is

h =
λ

ν

(

m 0
0 d

)

.

Hence the condition | deth| = 1 is satisfied when

λ2|md| = ν2.

In particular, the condition (9.1) gives the identity

d log(λ3νm) + cdx+ d′dy = 0.

On the other hand, we know that we can set

c = −fx/f, d′ = −fy/f, (9.2)

by (6.10). Then we may assume λ3mν = f > 0. In the following, we set
ε1 = 1 when h̄ is positive definite and ε1 = −1 when it is indefinite. To be more
precise, assume m > 0 and ε1 denotes the sign of d. And furthermore, let us
drop overlines from the notation. Then, from ε1λ

2md = ν2 and λ3mν = f , we
have

λ = f1/4(ε1m
3d)−1/8, g = λm, h = λ, ν = f1/4(ε1md

3)1/8,

ω4
2 = |m/d|1/2dy, ω4

3 = ε1|d/m|1/2dx.
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From (9.1.1), we have

r =
1

m
(log λ)y =

1

8m

(

2fy

f
− dy

d
− 3my

m

)

,

s = (logλ)x =
1

8

(

2fx

f
− dx

d
− 3mx

m

)

and, from (9.1.2),

p =
1

8

(

6fy

f
− 3dy

d
− my

m

)

, q = − 1

8d

(

2fx

f
+

3dx

d
+
mx

m

)

. (9.3)

Thus we have a normalized coframe as follows:

ω1
2 = m(dr − rd log λ+ ndx+ (pr + qs)dy),

ω1
3 = ds+ (a− rb+ rdp − cs− s2 + qds)dx+ (mn− rmx − rsm)dy,

ω2
2 = d logλm+ (rm − p)dy,

ω3
2 = m(rdx − qdy),

mω2
3 = (b− pd)dx+ (mx + sm)dy,

ω3
3 = d logλ+ (c+ s− qd)dx,

λmω2
4 = d(νp) + ν(mn+ bq)dx+ ν(b′ + qmx)dy,

λω3
4 = d(νq) + νcqdx+ νc′dy,

λω1
4 = −r{d(νp) + ν(bq +mn)dx+ ν(b′ + qmx)dy}

−s{d(νq) + cνqdx+ νc′dy}
+ν{(ny + aq + pn)dx+ (a′ + qmn)dy}.

By setting
µ = |m/d|1/2,

the fundamental tensor is

h11 = µ, h12 = h21 = 0, h22 = ε1/µ;

namely, the fundamental form ϕ2 of the surface e1 is given by

ϕ2 = µdy2 + ε1µ
−1dx2. (9.4)

We next compute the cubic tensor hijk , which is by definition

∑

k

hijkω
k = dhij −

∑

k

hikω
k+1
j+1 −

∑

k

hkjω
k+1
i+1 for 1 ≤ i, j, k ≤ 2.

(Note that the indexing of ω differs by 1 from that used in Section 2.) In fact,
we have

h111dy + h112dx = dh11 − 2h11ω
2
2
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= dµ− 2µ(d logλm+ (rm− p)dy)

and

h221dy + h222dx = dh22 − 2h22ω
3
3

= d(ε1/µ) − (2ε1/µ)(d log λ+ (c+ s− qd)dx).

Hence computation shows that

h111 = µβ, h112 = −µγ, h122 = −ε1µ−1β, h222 = ε1µ
−1γ,

where

β =
1

4

(

log
f2

d3m

)

y

, γ =
1

4

(

log f2dm3
)

x
. (9.5)

This means that the cubic form ϕ3 of the surface e1 is given by

ϕ3 = µβdy3 − µγdxdy2 − ε1µ
−1βdx2dy + ε1µ

−1γdx3. (9.6)

For the second focal surface e2, the fundamental form ψ2 and the cubic form
ψ3 of the surface e2 are given by

ψ2 = µ1dx
2 + ε2µ

−1
1 dy2, (9.7)

ψ3 = µ1β1dx
3 − µ1γ1dydx

2 − ε2µ
−1
1 β1dy

2dx+ ε2µ
−1
1 γ1dy

3, (9.8)

where
ε2 = sign(nc′), µ1 = |n/c′|1/2,

β1 =
1

4

(

log
f2

nc′3

)

x

, γ1 =
1

4

(

log f2n3c′
)

y
.

(9.9)

9.2 Line congruences both of whose focal surfaces are quadrics

We next describe line congruences whose focal surfaces are quadrics. Since the
signatures of ϕ2 and ψ2 are important in the following argument, we assume
m > 0 and n > 0, which is possible by Lemma 6.6, and set ε1 = sign(d),
ε2 = sign(c′), and ε = ε1ε2. If ε = 1, both of ϕ2 and ψ2 have the same
signature and, if ε = −1, the signature of ϕ2 is opposite to the signature of
ψ2. By Theorem 2.3, and by referring to (9.5) and (9.9), both focal surfaces are
quadrics if and only if

(

log
f2

d3m

)

y

= 0,
(

log f2dm3
)

x
= 0,

(

log
f2

nc′3

)

x

= 0,
(

log f2n3c′
)

y
= 0.

(9.10)

From these relations, we see that

(logmd)xy = (lognc′)xy = 0
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and
(logmn3c′d3)y = 0, (logm3nc′3d)x = 0.

Then, for some positive-valued scalar functions X1(x), X2(x), X3(x), Y1(y),
Y2(y), Y3(y), we may set

md = ε1X
2
1Y

2
1 , nc′ = ε2X

2
2Y

2
2 ,

and
mn3c′d3 = εX3(x), m3nc′

3
d = εY3(y).

Hence, we have

X3 = k2(X1X2)
8, Y3 =

1

k2
(Y1Y2)

8,

for some positive constant k. We next define ϕ by

m = Y 3
1 Y2ϕ.

Then we have

n = kX1X
3
2ϕ, d =

ε1X
2
1

Y1Y2ϕ
, c′ =

ε2Y
2
2

kX1X2ϕ
.

Now, in view of Lemma 6.6, by a change of variables from (x, y; z, w) to (x =
X(x), y = Y (y); z = z/λ(x), w = w/µ(y)), the ratios m/n and d/c′ become
µ2XxY

3
1 Y2/(kλ

2YyX1X
3
2 ) and εkµ2Y 3

y X
3
1X2/(λ

2X3
xY1Y

3
2 ) respectively. This

shows that we may assume m = n and c′ = εd by solving the equations
Xx/λ

2 = kX1X
3
2 , λ2X3

x = kX3
1X2, Yy/µ

2 = Y 3
1 Y2 and µ2Y 3

y = Y1Y
3
x . Then we

can suppose that X1, X2, Y1 and Y2 are constants. Namely, we have reduced
to the case m = n = ϕ and ε2c

′ = ε1d = k1/ϕ for some constant k1. Applying
Lemma 6.6 once more, we see that we may assume k1 = 1:

m = n = ϕ, d = ε1/ϕ, c′ = ε2/ϕ.

In this case, (9.10) shows that fϕ is constant, and from (9.2) we see that

c = ϕx/ϕ, d′ = ϕy/ϕ.

Then a check of the integrability (6.9) implies that

a′ = 0, b = 0, ay = 2ϕϕx, b′x = 2ϕϕy,

(logϕ)xx = a+
ε1b

′

ϕ2
, (logϕ)yy = b′ +

ε2a

ϕ2

and
(logϕ)xy = ϕ2 − ε

ϕ2
.

Then we have the following theorem due to Wilczynski.
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Theorem 9.1 Assume both focal surfaces are quadrics. Then there exists a
nonvanishing function ϕ such that

m = n = ϕ, d =
ε1
ϕ
, c′ =

ε2
ϕ
.

Unless ϕ2 = 1 and ε = 1, it must satisfy the following system of equations:

(logϕ)xy = ϕ2 − εϕ−2,
2ϕϕx = ((ϕ2(logϕ)xx − ε1(logϕ)yy)/(ϕ2 − εϕ−2))y ,
2ϕϕy = ((ϕ2(logϕ)yy − ε2(logϕ)xx)/(ϕ2 − εϕ−2))x.

The coefficients of the congruence are given by

a = (ϕ2(logϕ)xx − ε1(logϕ)yy)/(ϕ2 − εϕ−2),

b′ = (ϕ2(logϕ)yy − ε2(logϕ)xx)/(ϕ2 − εϕ−2),

b = 0, c = ϕx/ϕ, a′ = 0, d′ = ϕy/ϕ.

Remark 9.2 For the line congruence above to be a W -congruence, the condi-
tion that ε = 1 and ϕ2 = 1 is necessary. When ϕ = 1 and ε = 1, a and b′ are
seen to be constants and must satisfy a+ b′ = 0. The system is then written as

zy = w, wx = z, zxx = az + wy , wyy = −aw + zx,

where a is a constant and this case is thus included in Theorem 8.3. We refer
to Sect. 10.2. Getting solutions of the above system in Theorem 9.1 is an open
problem.

10 Construction of W -congruences

G. Fubini and E. Čech [FC1] gave a method for constructing W -congruences
with a given surface as one of the focal surfaces. Since this method is funda-
mental for discussing W -congruences, we give a summary of the related compu-
tations. One application is the construction of all W -congruences whose focal
surfaces are quadrics. Sect. 10.3 treats the composition formula of two W -
congruences, starting from a given surface.

10.1 A description of W -congruences

Let the surface z be given by the system

zxx = θxzx + bzy + pz, zyy = czx + θyzy + qz.

We consider a family of curves on the surface infinitesimally written as Ady −
Bdx = 0, where A and B are nonvanishing functions on the surface. Let

w = µz + 2(Azx +Bzy) (10.1)
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be any point on the tangent line of curves of the given family, where µ is a scalar
parameter on the line. We are going to determine µ so that the point w is the
focal point. We first check the condition that the point z lies on the tangent
plane at w of the second surface, i.e., the condition z ∧ w ∧ wx ∧ wy = 0. Since

wx = (µ+ 2Ax + 2Aθx)zx + 2(Bx + bA)zy + 2Bzxy + (µx + 2pA)z,
wy = 2(Ay + cB)zx + (µ+ 2By + 2Bθy)zy + 2Azxy + (µy + 2qB)z,

the condition is seen to be the identity

µ = −Ax −By −Aθx −Bθy +
B(Ay + cB)

A
+
A(Bx + bA)

B
. (10.2)

Furthermore, a computation shows that

wx =
1

B
(Bx + bA)w +Ez − λzx + 2Bzxy,

wy =
1

A
(Ax + cB)w + Fz + λzy + 2Azxy,

where

λ = −Ax +By − θxA+ θyB +
A

B
(Bx + bA) − B

A
(Ay + cB),

E = µx + 2pA− µ
Bx + bA

B
,

F = µy + 2qB − µ
Ay + cB

A
.

In particular,

Awx −Bwy = (Aµx −Bµy + 2A2p− 2B2q)z

+(Aµ+ 2AAx − 2BAy − 2cB2 + 2A2θx)zx

−(Bµ+ 2BBy − 2ABx − 2bA2 + 2B2θy)zy.

Hence, the identity (10.2) implies that the vector Awx −Bwy is pointing in the
direction of the lines of the congruence. In fact, if we set

N = λµ+ 2AE − 2BF, (10.3)

then we get a relation which is the reverse of (10.1):

Nz = −νw + 2(Awx −Bwy),

where

ν = −By − θyB +Ax + θxA+
A

B
(Bx + bA) − B

A
(Ay + cB).

We assume N 6= 0 in the following so that w is nondegenerate.
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Proposition 10.1 The line congruence joining z and w is a W -congruence if
and only if

(

Ay + cB

A

)

x

=

(

Bx + bA

B

)

y

. (10.4)

Proof. If the congruence is a W -congruence, then the x-curves are asymptotic
curves of the surface w, namely it holds that w ∧ wx ∧ wy ∧ wxx = 0. By a
computation, this is seen to be equivalent to (10.4). The symmetry of (10.4)
implies that the y-curves are also asymptotic.

We remark that the conformal structure of w is given by the 2-form

N(4α(Bdx +Ady)2 − 2Ndxdy),

where

α =

(

Ay + cB

A

)

x

−
(

Bx + bA

B

)

y

.

We next compute the system defining the surface w, assuming that the
congruence is a W -congruence. The condition (10.4) shows the existence of a
function ϕ such that

Ay + cB

A
=
ϕy

ϕ
,

Bx + bA

B
=
ϕx

ϕ
.

Replacing A/ϕ and B/ϕ with A and B, the condition (10.4) can be reduced to

Ay + cB = 0, Bx + bA = 0. (10.5)

In this case
µ = −Ax −By − θxA− θyB,

λ = −Ax + By − θxA+ θyB,

and
Nz = λw + 2Awx − 2Bwy. (10.6)

From the identities

wx = (µx + 2Ap)z − λzx + 2Bzxy,

wy = (µy + 2Bq)z + λzy + 2Azxy

(10.7)

we know that the system of differential equations for the surface w is

wxx = θxwx + bwy + pw,

wyy = cwx + θywy + qw,
(10.8)

where
θx = θx + (logN)x, θy = θy + (logN)y,

b = −b− B

A
(logN)x, c = −c− A

B
(logN)y,

p = p+ by + bθy +
λ

2A
(logN)x,

q = q + cx + cθx − λ

2B
(logN)y.

(10.9)
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Remark 10.2 By using Lemma 10.4 proven later, we have a remarkable iden-
tity:

bc = bc− (logN)xy. (10.10)

For later use, we set

L = AAxx − 1

2
A2

x +A2L, M = BByy − 1

2
B2

y +B2M, (10.11)

then
N = 2(M−L). (10.12)

Let us make a remark on the case when N is a constant. In this case, the
system satisfied by w is nothing but the dual of the system satisfied by z. Hence,
by recalling the reasoning in Sect. 7.1, we see that the line congruence {z, w}
belongs to a linear complex.

10.2 W -congruences whose focal surfaces are quadrics

Let us consider the special case where the surface z is a quadric and the congru-
ence is a W -congruence. Since b = c = 0 (and hence we may assume p = q = 0
and θ is constant), the condition (10.4) implies that A = X is a function of x
and B = Y is a function of y. Then we have

µ = −X ′ − Y ′, λ = −X ′ + Y ′,

N = X ′2 − Y ′2 − 2XX ′′ + 2Y Y ′′,

b = 2Y X ′′′/N, c = 2XY ′′′/N.

Here {′} means derivation relative to the respective variable. For b = c = 0,
it is necessary and sufficient that X ′′′(x) = Y ′′′(y) = 0 because A and B are
assumed to be not zero.

Theorem 10.3 When X and Y are polynomials of degree at most two, the
surface w is also a quadric.

Assume that X and Y are polynomials of degree at most two; in particular,
N is constant. Then the system for w is

wxx = θxwx + pw, wyy = θywy + qw,

which means that the surface w satisfies the same system as for z; geometrically,
w is a projective transformation of z. An explicit correspondence is given below:

Assume, for simplicity, that p = q = 0 and θ is constant; the surface z is
parametrized as z = [1, x, y, xy] in homogeneous coordinates. Set

X = p1x
2 + 2p2x+ p3 and Y = q1y

2 + 2q2y + q3.
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Then the surface w is given by

w = [−p2 − q2 − p1x− q1y, p3 + (p2 − q2)x− q1xy,

q3 + (q2 − p2)y − p1xy, q3x+ p3y + (p2 + q2)xy].

Namely,

w = gz; g =







−p2 − q2 −p1 −q1 0
p3 p2 − q2 0 −q1
q3 0 q2 − p2 −p1

0 q3 p3 p2 + q2






,

where det g = p2
2 − q22 − p1p3 + q1q3. To simplify the representation of the

congruence, we introduce a new parametrization of the surface by defining new
coordinates (ξ, η) by

∂ξ = X∂x + Y ∂y, ∂η = (X∂x − Y ∂y)/ det(g).

We set
z = ρz, w = ρw, where ρ = (XY )−1/2.

Then it is easy to see that the congruence is written as

w = ∂ξz, z = ∂ηw.

Thus the parametrization by (ξ, η) defines a net on the surface associated to
the congruence. In this way, we get all W -congruences whose focal surfaces are
quadrics.

We add a few remarks. When one and only one of X and Y is a polynomial
of degree at most two, then the surface w is ruled. Thus, we get W -congruences
joining a quadratic surface and a ruled surface.

The second remark is on the case where w is not ruled: bc 6= 0. Then

(log b)xy = −(logN)xy = NxNy/N = bc.

Similarly, (log c)xy = bc. Hence, by Proposition 2.12, both parameter curves
on w belong to respective linear complexes. Conversely, given a surface both of
whose parameter curves belong to linear complexes, namely when the condition
(2.32) is holding, we can construct a W -congruence joining the surface and a
quadratic surface. We refer to [FC2, §47] for details.

10.3 Composition of W -congruences

Given two W -congruences w1 and w2, each given by

wi = µiz + 2(Aizx +Bizy), i = 1, 2,
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Fubini constructed a third surface z that is joined with w1 and w2 by respective
W -congruences. Here, we cite his construction.

Let λi, µi and Ni be the corresponding quantities and define

A = c1A1 + c2A2, B = c1B1 + c2B2,
λ = c1λ1 + c2λ2, µ = c1µ1 + c2µ2,

where c1 and c2 are constants, and define N by the formula (10.3). Since N is
quadratic in A and B, it is possible to set

N = (c1)2N1 + 2c1c2N12 + (c2)2N2,

by appropriately defining N12. In fact, we have

N12 =
1

2
(λ1µ2 +λ2µ1)+4(A1A2p−B1B2q)+(A1µ2x +A2µ1x−B1µ2y−B2µ1y).

Further, a computation shows that

Nx

A
= µxx − θxµx + bµy − µ(by + bθy) + 4Bbq + 4Axp+ 2Apx + 2Bpy,

−Ny

A
= µyy − θvµv + cµx − µ(cx + cθx) + 4Acp+ 4Byq + 2Bqy + 2Aqx,

and note that the right-hand sides are linear in A, B and µ. Hence, we have

Nx

2A
= c1

N1x

2A1
+ c2

N2x

2A2
.

From this follows

(N12)x =
A2

2A1
N1x +

A1

2A2
N2x.

Similarly,

(N12)y =
B2

2B1
N1y +

B1

2B2
N2y.

Lemma 10.4 N satisfies the equation

Nxy +
cB

A
Nx +

bA

B
Ny = 0. (10.13)

The proof will be given in Sect. 13.1 (see Lemma 13.1). We now look for a
scalar function f and g so that

fx =
A2

A1
N1x, fy =

B2

B1
N1y; gx =

A1

A2
N2x, gy =

B1

B2
N2y.

From (10.5) and (10.13),

(fx)y =
A2y

A1
N1x − A2A1y

A2
1

N1x +
A2

A1
N1xy

= −cB2

A1
N1x − bA2

B1
N1y,
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and the same holds for (fy)x. Hence, it is possible to find f by integration.
Similarly, we can find g. By definition, f + g − N12 is constant, and we may
assume it is equal to 0. Now we define two new surfaces

Z12 = fz − λ2w1 + 2(−A2w1x +B2w1y),

Z21 = gz − λ1w2 + 2(−A1w2x +B1w2y).

Inserting the derivations of w1 and w2 given in (10.7), we get

Z12 = (f − λ2µ1 − 2A2µ1x − 4A1A2p+ 2B2µ1y + 4B1B2q)z
+2(λ1A2 − λ2A1)zx + 2(λ1B2 − λ2B1)zy + 4(B2A1 −A2B1)zxy,

Z21 = (g − λ1µ2 − 2A1µ2x − 4A1A2p+ 2B1µ2y + 4B1B2q)z
+2(λ2A1 − λ1A2)zx + 2(λ2B1 − λ1B2)zy + 4(B1A2 −A1B2)zxy.

Therefore,
Z12 + Z21 = (f + g − 2N12)z = 0.

Now we write Z for Z12 and we show that Z is one of the required surfaces. In
fact, by setting

µ = −λ2 +
λ1a

N1
, A = −A2 +

A1a

N1
, B = B2 −

B1a

N1
,

where a is a constant of integration relative to f , we have

Z = µw1 + 2(Aw1x +Bw1y); (10.14)

see (10.6). If we denote by θ, b1 and c1 the invariants θ, b and c for w1, then we
see by a simple calculation that

Ay = −c1B, Bx = −b1A
and

Ax + θxA+By + θyB = λ2 − λ1a/N1.

Hence, we have proved the following theorem.

Theorem 10.5 Let {w1, z} and {w2, z} be two W -congruences. Define a third
surface Z by (10.14). Then, both {Z,w1} and {Z,w2} are W -congruences. The
constants c1 and c2 are arbitrary and the choice of f and g includes a constant
of integration.

11 Lie quadrics and Demoulin transforms

In Sect. 2.4 we have defined the Demoulin frame associated with a surface and
the Demoulin transform of the surface. In this section we revisit these notions,
following the development by S. Finikow and O. Mayer. We first recall how to
attach a quadric called the Lie quadric to each point of the surface, and then
prove that the envelope of Lie quadrics generally consists of four surfaces, each
being a Demoulin transform. We next define Demoulin congruences joining De-
moulin transforms and prove that the Demoulin congruence is a W -congruence
if and only if the original surface is projectively minimal. In the last section, we
compute explicitly the invariants of the Demoulin transform.
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11.1 Osculating quadrics

Let z = z1(x) + yz2(x) be a ruled surface given by the normalized system (1.6).
We now define an osculating quadric to this ruled surface.

Given a set of skew three lines on the ruled surface, we generally have a
quadric including these lines. If these lines tend to one limit line, then the
quadric tends to a limit position, again a quadric. This is called an osculating
quadric, which might be degenerate. Assume that the limit quadric Q is defined
by the equation tzAz = 0. We denote tzAz = 〈z, z〉 for simplicity. The limit
line is in Q if and only if

〈z1, z1〉 = 〈z1, z2〉 = 〈z2, z2〉 = 0.

The limit process implies that the first derivatives of the limiting lines are also
in Q:

〈z1, z′1〉 = 〈z1, z′2〉 + 〈z′1, z2〉 = 〈z2, z′2〉 = 0.

Differentiating a second time implies

〈z′1, z′1〉 = 〈z′1, z′2〉 = 〈z′2, z′2〉 = 0,

in view of (1.6). If we write a general point z in P3 as w = p0z1 + p1z2 + p2z′1 +
p3z′2, then

〈w,w〉 = 2(p0p3 − p1p2)〈z1, z′2〉.
Hence the osculating quadric is defined by the equation p0p3−p1p2 = 0. A part
of the condition 〈z1, z1〉 = 〈z1, z′1〉 = 〈z′1, z′1〉 = 0 implies that the asymptotic
tangent belongs to the osculating quadric. Since this property does not depend
on y, all asymptotic lines through the limit ruling line give a ruling of the
osculating quadric.

11.2 Lie quadrics

Let z(x, y) be a nondegenerate surface:

zxx = θxzx + bzy + pz,
zyy = czx + θyzy + qz.

(11.1)

We consider one of the associated ruled surfaces

w(x, s) = zy(x, y0) + sz(x, y0),

which consists of tangent lines to y-curves parametrized by x. The osculating
quadric to this ruled surface is determined by the asymptotic directions, as was
remarked in the previous section.

Let s = s(x) be such an asymptotic curve. Since

wx = zxy + s′z + szx,

wxx = zxxy + s′′z + 2s′zx + szxx,

zxxy = θxzxy + (bc+ θxx)zx + (bθy + by + p)zy + (bq + py)z,
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and then
wxx ≡ (bc+ 2s′ + θxy)zx (mod z, zy, wx)

in order that wxx ≡ 0 (mod ()z, zy, wx), it is necessary that

bc+ 2s′ + θxy = 0.

Hence we have
wx = zxy + szx − (1/2)(bc+ θxy)z.

The asymptotic direction is written as

wx + tw = zxy + szx + tzy + (st− (1/2)(bc+ θxy))z,

where t is a line parameter. If we write any point in P3 as p0z + p1zx + p2zy +
p3zxy, then the quadric consisting of the asymptotic directions above is

p0p3 − p1p2 = −(1/2)(bc+ θxy)(p3)2. (11.2)

(If the original surface is ruled, then this coincides with the osculating quadric.
In fact, bc = 0 for a ruled surface, and θ is constant for a ruled surface written
in the form (1.6).) This quadric is called a Lie quadric, which is the same as
the Lie quadratic hypersurface given in Sect. 2.2 in view of the frame (2.14).

11.3 Demoulin Transforms

To each point of the surface is associated a Lie quadric. The envelope of Lie
quadrics generally consists of four surfaces. We shall see that these four surfaces
are nothing but the Demoulin transforms of the original surface, defined in Sect.
2.4.

We assume that bc 6= 0 so that the surface is not ruled. Any Lie quadric is
of the form

w = zxy + szx + tzy + (st− α)z, α =
1

2
(bc+ θxy).

In order that w belongs to the envelope surface, its tangent vector, say wx,
belongs to the tangent plane of the Lie quadric. By a direct computation, we
have

wx = (t+ θx)w + (α+ sx)(zx + tz)
+(bθy + by + p+ tx + bs− t2 − tθx)(zy + sz) +Bz,

where
B = (bq + py − αx + αθx) − (by + bθy)s− bs2.

Since the tangent plane of the Lie quadric is spanned by the vectors w, ws =
zx + tz, and wt = zy + sz, the required condition for the vector wx is B = 0;
namely,

bs2 + (by + bθy)s− (bq + py − αx + αθx) = 0. (11.3)
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Similarly, for wy we have

wy = (s+ θy)w + (α + ty)(zy + sz)
+(cx + cθx + q + sy + ct− s2 − sθy)(zx + tz) + Cz,

where
C = (cp+ qx − αy + αθy) − (cx + cθx)t− ct2.

The required condition for the vector wy is C = 0; namely,

ct2 + (cx + cθx)t− (cp+ qx − αy + αθy) = 0. (11.4)

Hence the envelope surfaces are given by solving two equations (11.3) and
(11.4); generally, we have four solutions.

We denote the discriminants of both equations (11.3) and (11.4) by ∆1 and
∆2, respectively. They are given as follows, in view of integrability:

∆1 = b2y − 2bbyy − 2b2M, ∆2 = c2x − 2ccxx − 2c2L. (11.5)

Referring to (2.10), we can see that these discriminants are the same as those
defined by (2.19). Since we have not assumed that θ is constant, we need to
replace p and q in (2.10) by p−θxx/2+θ2x/4+bθx/2 and q−θyy/2+θ2y/4+cθy/2.

Note that

∆1y = −2b(byyy + 2Mby + bMy), ∆2x = −2c(cxxx + 2Lcx + cLx), (11.6)

hence the third integrability condition of (2.9) implies

c∆1y = b∆2x,

and conversely, this identity is equivalent to the third integrability condition,
provided bc 6= 0.

To keep the notations P and Q defined in (2.18), in accordance with the
case where θ is not necessarily constant, we need to change the formulas to

P = p+
by
2

− cxx

2c
+

c2x
4c2

− θxx

2
+

1

4
θ2x +

bθy

2

and

Q = q +
cx
2

− byy

2b
+

b2y
4b2

− θyy

2
+

1

4
θ2y +

cθx

2
. (11.7)

We refer to (2.11). For the benefit of later use, we introduce the notations σ
and τ by

σ2 =
∆1

4b2
= Q, τ2 =

∆2

4c2
= P ; (11.8)
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we refer to (2.24). Then

s = − by
2b

− 1

2
θy ± σ, t = −cx

2c
− 1

2
θx ± τ (11.9)

and the Demoulin transform w is written as

w = zxy + szx + tzy + (st− 1

2
bc)z

= zxy −
(

by
2b

+
1

2
θy

)

zx −
(

cx
2c

+
1

2
θy

)

zy

+

(

(
by
2b

+
1

2
θy)(

cx
2c

+
1

2
θx) − 1

2
(bc+ θxy)

)

z

+σ

(

zx − (
cx
2c

+
1

2
θx)z

)

+ τ

(

zy − (
by
2b

+
1

2
θx)z

)

+ στz.

We remark that this reduces to (2.25) when θ is constant. In terms of σ and τ ,
the formula in Lemma 2.12 can be written as follows:

b(σ2)x = (bκ1)y, c(τ2)y = (cκ2)x, (11.10)

where κ1 and κ2 are defined in (2.17).

11.4 Demoulin Lines

Here we look at the Demoulin transforms from a different point of view, by
repeating the computation given in Sect. 2.1 in part. For simplicity, we assume
that θ is constant in this section.

We recall that the dual coordinate system (p0, p1, p2, p3) was defined by

P = p0z + p1zx + p2zy + p3zxy.

Relative to this coordinate system, the Lie quadric is defined by the equation
E = 0, where

E := p0p3 − p1p2 + α(p3)2, α =
1

2
bc.

We look for the characteristic points of the family of quadrics parametrized by
x. They are defined by the equations E = 0 and Ex = 0. To compute Ex, we
need variation formulas of the homogeneous coordinates pi when the point P
remains fixed.

Since we have

Px = (p0
x + p1p+ p3(py + bq))z + (p0 + p1

x + p3bc)zx

+(bp1 + p2
x + p3(by + p))zy + (p2 + p3

x)zxy,

Py = (p0
y + p2q + p3(qx + cp))z + (cp2 + p1

y + p3(cx + q))zx

+(p0 + p2
y + p3bc)zx + (p1 + p3

y)zxy,
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if we assume the point P remains fixed, then the coordinates pi vary by the
following rules:

dp0 = −(p1p+ p3(py + bq))dx− (p2q + p3(qx + cp))dy,

dp1 = −(p0 + p3bc)dx− (cp2 + p3(cx + q))dy,

dp2 = −(bp1 + p3(by + p))dx − (p0 + p3bc)dy,

dp3 = −p2dx− p1dy.

Now it is easy to see that

Ex = b(p1)2 + byp
1p3 − (by + bq − αx)(p3)2,

and that the equation Ex = 0 is nothing but the homogeneous form of the
equation (11.3). Any point satisfying the equation lies on the lines defined by
the equations

f := p1 − sp3 = 0, g := p0 − sp2 + αp3,

where s is one of the solutions of (11.3). Similarly, for the family parametrized
by y, we get the lines

p2 − tp3 = 0, p0 − tp1 + αp3 = 0,

where t is one of the solutions of (11.4). Thus we get four distinguished lines
on the Lie quadric, which were called the Demoulin lines.

Let us consider the line congruence consisting of Demoulin lines for each
fixed choice of s or t, which we call the Demoulin congruence.

We want to find the focal points of the Demoulin congruence. At such a
point, we have a direction along which df = 0 and dg = 0 hold. By computation,
we see that

df = −(sx + α)p3dx− (cp2 + (cx + q + sy − s2)p3)dy

and
dg = −(sx + α)p2dx+ ((s2 − q − sy)p2 + (αy − qx − cp)p3)dy.

Hence the direction is determined so that both df and dg are proportional, i.e.,
when the following identity holds:

(sx + α){c(p2)2 + cxp
2p3 + (αy − qx − cp)(p3)2} = 0.

Since the focal surface is not determined if sx+α = 0, we assume in the following
that sx +α 6= 0. Then the condition above is the same as the condition Ey = 0.
Thus, we have seen that the Demoulin congruence is stationary at the points
where the line in one family meets the line in the other family.
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11.5 Demoulin congruences

We compute the asymptotic directions of the Demoulin transforms. The induced
conformal form ω on the surface is determined by the identity

w ∧ wx ∧ wy ∧ (wxxdx
2 + 2wxydxdy + wyydy

2) = ωz ∧ zx ∧ zy ∧ zxy.

If we write ω = Adx2 + 2Bdxdy+Cdy2, then a computation using the integra-
bility conditions (2.9) gives the formula

A = ρ(sx + α)

(

2
(ct)x

c
+
cxx

c

)

, C = ρ(ty + α)

(

2
(bs)y

b
+
byy

b

)

,

B = ρ(sx + α)(ty + α) − ρ(bs+
1

2
by)(ct+

1

2
cx)

+ρ

(

sy +
by
b
s+

byy

2b

)

(

tx +
cx
c
t+

cxx

2c

)

,

where

ρ = (by + bs+ tx + p− t2)(cx + sy + cqt− s2) − (sx + α)(ty + α).

If ρ = 0, then the Demoulin transform does not make a surface. Hence we
assume ρ 6= 0 in the following. By definitions (11.8) and (11.9), we have

sx + α = κ1 + σx, ty + α = κ2 + τy,

bs+
1

2
by = bσ, ct+

1

2
cx = cτ.

Hence, we can conclude that the conformal structure of the Demoulin transform
is defined by the form

ω =

(

(κ1 + σx)dx+
(bσ)y

b
dy

)(

(cτ)x

c
dx + (κ2 + τy)dy

)

− bcστdxdy.

We now define the nondegeneracy for a Demoulin transform by

ρστ(κ1 + σx)(κ2 + τy) 6= 0.

Since
(σ2)x = (log b)yκ1 + (κ1)y , (τ2)y = (log c)xκ2 + (κ2)x

by (11.10), we must have κ1κ2 6= 0 under the assumption of nondegeneracy.

Now we can state the following theorem:

Theorem 11.1 (S. Finikov [Fi1930]) Assume that the Demoulin transform is
nondegenerate. Then the Demoulin congruence is a W-congruence if and only
if the original surface is projectively minimal.

95



Proof. For a fixed s, consider a Demoulin congruence joining two Demoulin
transforms corresponding to two values of t. In terms of σ, one corresponds to
the value σ and the other corresponds to −σ. Since the asymptotic directions for
each transform are defined by the equation ω = 0, in order that the congruence
be a W -congruence, it is necessary and sufficient that the equation ω = 0 for
σ and the equation ω = 0 for −σ define the same direction. Then, taking into
account the nondegeneracy defined above, we can see that

(bσ)y = 0 and (cτ)x = 0.

To complete the proof, it is enough to see that this condition is equivalent to
(2.40) for projective minimality.

11.6 An explicit form of Demoulin frames

This section aims at getting a detailed form of a Demoulin transform.
We recall the notation of a nondegenerate surface z(x, y):

zxx = θxzx + bzy + pz, zyy = czx + θyzy + qz.

Differentiating these equations once, we get

zxxy = θxzxy + (bc+ θxy)zx + (bθy + by + p)zy + (bq + py)z,
zxyy = θyzxy + (cx + cθx + q)zx + (bc+ θxy)zy + (cp+ qx)z.

We introduce the notations

λ = bσ +
(cτ)x

c
, λ′ = cτ +

(bσ)y

b
, µ = α+ sx, µ′ = α+ ty, (11.11)

and we remark that the following identities hold:

σ(bσ)y = τ(cτ)x, bσλ′ = cτλ. (11.12)

We define vectors Y , Z, and X by

Y = tz + zx, Z = sz + zy, X = zxy + szx + tzy + (st− α)z.

Then, from what we have shown, we get the following Pfaff equation:

d









z
Y
Z
X









= ω









z
Y
Z
X









,

where

ω =













−(tdx+ sdy) dx dy 0

(λ− 2bσ)dx+ µ′dy (θx + t)dx − sdy bdx dy

µdx+ (λ′ − 2cτ)dy cdy −tdx+ (θy + s)dy dx

0 µdx+ λ′dy λdx + µ′dy (θx + t)dx
+(θy + s)dy
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The integrability condition dω = ω ∧ ω can be checked by using the identities
given above and the additional identities

µ′
x − λy = µ′(2t+ θx) − bλ′, µy − λ′x = µ(2s+ θy) − cλ.

Provided that R := λλ′ − µµ′ 6= 0, the vector X defines a surface. Considering
the Pfaff equation above, it is easy to see that the conformal structure on X is
given by the 2-form

bµ(cτ)xdx
2 + bc(λλ′ + µµ′ − bσλ′ − cτλ)dxdy + c(bσ)ydy

2.

The above coframe ω satisfies the required condition for the frame {z, Y, Z,X}
to be a Demoulin frame defined in Sect. 2.4, up to scalar multiplication. The
invariants are seen to be as follows:

ω1 = dx, ω2 = dy, h111 = −2b, h112 = h122 = 0, h222 = −2c,

(pij) =

(

λ− 2bσ µ′

µ λ′ − 2cτ

)

, (qij) =

(

λ µ′

µ λ′

)

,

(Lij) =

(

2bσ 0
0 2cτ

)

.

(11.13)

Now we assume that the surface z is projectively minimal, i.e., (bσ)y = 0
and (cτ)x = 0. In this case, we simply get

λ = bσ, λ′ = cτ,

and, provided that R 6= 0, the induced conformal structure on the surface X is
the same as that on z. The system of equations defining X is given as follows:

Xxx = θxXx + bXy + pX, Xyy = cXx + θyXy + qX.

To simplify notations, we set

ν = θx + t, ν′ = θy + s.

Then, we can see that

θx = θx +
Rx

R
, θy = θy +

Ry

R
,

b =
µ

µ′
b+

Rλx −Rxλ

Rµ′
, c =

µ′

µ
c+

Rλ′y −Ryλ
′

Rµ
,

p = νx + ν2 + λ− νθx − ν′b,

q = ν′y + ν′2 + λ′ − ν′θy − νc.

(11.14)

We also have expressions

b =
1

R
(λµ(ν + t) + λµx − λxµ− bµ2),

c =
1

R
(λ′µ′(ν′ + s) + λ′µ′

y − λ′yµ
′ − cµ′2).
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Let us normalize the frame t(X,Y, Z, z). We know

d









X
Y
Z
z









=









ρ µdx+ λ′dy λdx + µ′dy 0
dy νdx− sdy bdx −λdx+ µ′dy
dx cdy −tdx+ ν′dy µdx− λ′dy
0 dx dy −tdx− sdy

















X
Y
Z
z









,

where ρ = (θx + t)dx+ (θy + s)dy. We define new vectors

z = −Rz, Y = µY + λZ, Z = λ′Y + µ′Z.

Relative to the frame f = t(X,Y , Z, z), we get df = Ωf , where

Ω =













ρ dx dy 0

λdx + µdy δdx+ ν′dy bdx dy

µ′dx+ λ′dy cdy νdx+ δ′dy dx

0 µ′dx − λ′dy −λdx+ µdy (Rx/R− t)dx
+(Ry/R− s)dy













,

and where

δ = (−µ′µx + λ′λx − µµ′ν − λλ′t+ µλ′b)/R,
δ′ = (−µµ′

y + λλ′y − µµ′ν − λλ′s+ µ′λc)/R,

b = (λµx − µλx + λµν − µ2b+ λµt)/R,

c = (λ′µ′
y − µ′λ′y + λ′µ′ν′ − µ′2c+ λ′µ′s)/R.

The frame f is the Demoulin frame of the Demoulin transform with Ω as its
coframe when the original surface is projectively minimal.

Remark 11.2 The contents in this section were originally given by [Fi1930]
and [May1932]. [L] is also helpful.

12 An intrinsic description of Demoulin trans-

forms of projectively minimal surfaces

In the previous section we have seen that projectively minimal surfaces enjoy
a special feature relative to Demoulin transforms. Referring to the intrinsic
formulation of projectively minimal surface in Sect. 2.7, we compute normalized
frames of Demoulin transforms and then get the formula of the second Demoulin
transforms. Relying on explicit forms of the second Demoulin transforms, we
reprove the result by O. Mayer and B. Su that a projectively minimal surface
generally yields nine second Demoulin transforms. As an example, we explicitly
give the second Demoulin transforms among the coincidence surfaces.
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12.1 The normalized frame of a Demoulin transform

Let us recall the notation defined in Sect. 2.4: e denotes a Demoulin frame and
ω its coframe. Let p and q denote the matrices given in (2.20) and set P = det p.

We assume now that the surface is projectively minimal and that P 6= 0 so
that every Demoulin transform defines a surface. Then by Proposition 2.22 we
have the following expressions:

(pij) =

(

p11 p12

p21 p22

)

, (qij) =

(

−p11 p12

p21 −p22

)

,

(`ij) =

(

−2p11 0
0 −2p22

)

.

(12.1)

The frame ẽ = (e3, e1, e2, e0) is associated with the Demoulin transform e3, and
the coframe defined by dẽ = ω̃ẽ has the form

ω̃ =







ω3
3 p21ω

1 − p22ω
2 −p11ω

1 + p12ω
2 0

ω2 ω1
1 bω1 p11ω

1 + p12ω
2

ω1 cω2 ω2
2 p21ω

1 + p22ω
2

0 ω1 ω2 ω0
0






.

This is not normalized, and in order to get a normalized frame, we need a slight
change of the frame as follows:

e0 = δe3, e1 = δ(p21e1 − p11e2),

e2 = δ(p12e2 − p22e1), e3 = −δPe0,
(12.2)

where δ = 1/
√
P . Then, the normalized coframe defined by de = ωe has the

form

ω =









d log δ + ω3
3 ω1 ω2 0

p21ω
2 − p11ω

1 ω1
1 ω2

1 ω2

p12ω
1 − p22ω

2 ω2
1 ω2

2 ω1

0 p12ω
1 + p22ω

2 p11ω
1 + p21ω

2 ω0
0 − d log δ









,

(12.3)
where

Pω1
1 = −dP/2− p12dp21 + p22dp11 − p12p21ω

1
1

+p11p12ω
1
2 − p22p21ω

2
1 + p11p22ω

2
2 ,

Pω2
1 = −p11dp21 + p21dp11 − p11p21ω

1
1

+(p11)
2ω1

2 − (p21)
2ω2

1 + p11p21ω
2
2 ,

Pω1
2 = p12dp22 − p22dp12 + p12p22ω

1
1

−(p12)
2ω1

2 + (p22)
2ω2

1 − p12p22ω
2
2 ,

Pω2
2 = −dP/2 + p11dp22 − p21dp12 + p11p22ω

1
1

−p11p12ω
1
2 + p21p22ω

2
1 − p12p21ω

2
2 .

(12.4)
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We note that the conditions ω0
0 + ω3

3 = 0, ω1
1 + ω2

2 = 0, and ω0
3 = 0 are satisfied

as required for normalization. The associated invariants h, p, q, and ` are

h =

(

0 1
1 0

)

, p =

(

−p11 p21

p12 −p22

)

,

q =

(

p11 p21

p12 p22

)

, ` =

(

2p11 0
0 2p22

)

.

These formulas say that, for the Demoulin transform e3, p11 and p22 are changed
into their negatives and p12 and p21 are interchanged. In particular for Godeaux-
Rozet surfaces, we have the following corollary in view of Remark 2.9.

Corollary 12.1 Any Demoulin transform of a Godeaux-Rozet surface is also a
Godeaux-Rozet surface.

The cubic invariants b and c are defined by the formulas h111 = −2b and
h222 = −2c, and we see that

ω2
1 = bω1, ω1

2 = cω2.

We now calculate the cubic invariants explicitly.
We define covariant derivatives of pij by

dpij −
∑

k

pikω
k
j −

∑

k

pkjω
k
i + 2pijω

0
0 =

∑

k

pij,kω
k. (12.5)

Lemma 12.2 p11,2 = p12,1 = 0 and p21,2 = p22,1 = 0.

Proof. The differentiation of ω0
i = pijω

j implies dω0
i − dpij ∧ ωj − pijdω

j = 0,
and the left-hand side is equal to ωj ∧ (dpij − pikω

k
j − pkjω

k
i + 2pijω

0
0). Hence,

we have pij,k = pik,j .
Next we differentiate ω0

1 =
∑

p1jω
j and get

dp11 ∧ ω1 + dp12 ∧ ω2 = 2p11(ω
1
1 − ω0

0) ∧ ω1 − 2p12ω
0
0 ∧ ω2 + bp22ω

1 ∧ ω2.

The differentiation of ω2
3 =

∑

q1jω
j gives

dq11 ∧ ω1 + dq12 ∧ ω2 = 2q11(ω
1
1 − ω0

0) ∧ ω1 − 2q12ω
0
0 ∧ ω2 − bq22ω

1 ∧ ω2.

Since q11 = −p11, q12 = p12, and q22 = −p22, the latter identity means

−dp11 ∧ ω1 + dp12 ∧ ω2 = −2p11(ω
1
1 − ω0

0) ∧ ω1 − 2p12ω
0
0 ∧ ω2 + bp22ω

1 ∧ ω2.

Hence, we have

dp11 ∧ ω1 = 2p11(ω
1
1 − ω0

0) ∧ ω1,

dp12 ∧ ω2 = bp22ω
1 ∧ ω2 − 2p12ω

0
0 ∧ ω2.

(12.6)
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By a similar computation for the identities ω0
2 = p2jω

j and ω1
3 = q2jω

j , we also
have

dp22 ∧ ω2 = −2p22(ω
1
1 + ω0

0) ∧ ω2,

dp21 ∧ ω1 = −cp11ω
1 ∧ ω2 − 2p21ω

0
0 ∧ ω1.

(12.7)

We now insert dp11 = p11,1ω
1 +p11,2ω

2 +2p11ω
1
1 +(p12 +p21)ω

2
1 −2p11ω

0
0 , which

is one of the formulas in (12.5), into the first equation of (12.6) to get p11,2 = 0
by using the property that ω2

1 = bω2 contains no term with ω1. The other
claimed identities are similarly shown.

Now it is easy to compute Pω2
1 defined in (12.4) by use of the dp21 and dp11

given in (12.5), and we get

Pω2
1 = (p21p11,1 − p11p21,1)ω

1 − Pω2
1 .

Hence, we have

Lemma 12.3 Let P = det(p) and let b and c denote the cubic invariants of the
Demoulin transfrom. Then

Pb = −Pb+ p21p11,1 − p11p21,1,

P c = −Pc+ p12p22,2 − p22p12,2.

We assume in the following that L11L22 6= 0 so that we have four distinct
Demoulin transforms. Let us recall the treatment in Sect. 2.4 again. Once
we get a Demoulin frame e, the other Demoulin frames are represented by ge,
where g is the transformation of the form

g =









1 0 0 0
ρ2 1 0 0
ρ1 0 1 0
ρ1ρ2 ρ1 ρ2 1









;

the values ρ1 and ρ2 are determined by the conditions

b(ρ1)2 + `11ρ
1 = 0 and c(ρ2)2 + `22ρ

2 = 0.

We set
t1 = −`11/b, t2 = −`22/c.

Then, ρ1 takes the value 0 or t1 and ρ2 takes the value 0 or t2.
We denote one of the new frames by ẽ = {ẽ0, ẽ1, ẽ2, ẽ3}, where

ẽ0 = e0, ẽ1 = ρ2e0 + e1, ẽ2 = ρ1e0 + e2, ẽ3 = ρ1ρ2e0 + ρ1e1 + ρ2e2 + e3,

and then the new ˜̀
ij ’s are given by

˜̀
11 = `11 + 2bρ1, ˜̀

22 = `22 + 2cρ2.

The coframe ω̃, dẽ = ω̃ẽ, is
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ω̃ =











ω0
0 − ρ2ω1 − ρ1ω2 ω1 ω2 0

ω̃0
1 ω1

1 + ρ2ω1 − ρ1ω2 ω2
1 ω2

ω̃0
2 ω1

2 ω2
2 + ρ1ω2 − ρ2ω1 ω1

0 ω̃1
3 ω̃2

3 ω3
3 + ρ2ω1 + ρ1ω2











,

where

ω̃0
1 = ω0

1 − ρ1ω2
1 + dρ2 − (ρ2)2ω1

1 − ρ1ω2
1 + ρ2ω0

0 ,

ω̃0
2 = ω0

2 − ρ2ω1
2 + dρ1 − (ρ1)2ω2 − ρ1ω2

2 + ρ1ω0
0 ,

ω̃1
3 = ω1

3 + ρ2ω1
2 + dρ1 − (ρ1)2ω2 + ρ1ω1

1 − ρ1ω3
3 ,

ω̃2
3 = ω2

3 + ρ1ω2
1 + dρ2 − (ρ2)2ω1 + ρ2ω2

2 − ρ2ω3
3 .

We remark that, for any choice of frame, the cubic invariants b and c remain
the same.

We now assume that the surface is projectively minimal.

Lemma 12.4 The derivations of t1 = −`11/b and t2 = −`22/c have the follow-
ing expressions:

dt1 + t1(ω0
0 + ω1

1) − (t1)2ω2 = t1,1ω
1,

dt2 + t2(ω0
0 + ω2

2) − (t2)2ω1 = t2,2ω
2,

where t1,1 and t2,2 are thus defined.

Proof. The exterior derivative of ω2
3 − ω0

1 = `11ω
1 yields

(d`11 + 2`11(ω
0
0 − ω1

1)) ∧ ω1 = 0,

and the exterior derivative of ω2
1 = bω1 yields

db ∧ ω1 = −b(ω0
0 − 3ω1

1) ∧ ω1 − `11ω
1 ∧ ω2.

Hence, we have

(bd`11 − `11db+ b`11(ω
0
0 + ω1

1) + (`11)
2ω2) ∧ ω1 = 0,

from which, by dividing both sides by b2, we get the first assertion. The second
assertion is similarly proved.

By this lemma, the new coframe simplifies to

ω̃0
1 = ω0

1 − ρ1ω2
1 + t2,2ω

2, ω̃0
2 = ω0

2 − ρ2ω1
2 + t1,1ω

1,

ω̃1
3 = ω1

3 + ρ2ω1
2 + t1,1ω

1, ω̃2
3 = ω2

3 + ρ1ω2
1 + t2,2ω

2.
(12.8)

Here we understand that t1,1 = 0 when ρ1 = 0 and t2,2 = 0 when ρ2 = 0.
Summing up the discussion above, we get the following lemma.
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Proposition 12.5 Assume that the original surface is a non-ruled indefinite
projectively minimal surface and that `11`22 6= 0. Let e = {e0, e1, e2, e3} be one
of the Demoulin frames. Then the four Demoulin frames are given as follows.

type ρ1 ρ2 frame invariant p

1 0 0 e0, e1, e2, e3

(

p11 p12

p21 p22

)

2 t1 0 e0, e1, e2 + t1e0, e3 + t1e1

(

−p11 p12

p′21 p22

)

3 0 t2 e0, e1 + t2e0, e2, e3 + t2e2

(

p11 p′12
p21 −p22

)

4 t1 t2 e0, e1 + t2e0, e2 + t1e0, e3 + t1e1 + t2e2 + t1t2e0

(

−p11 p′12
p′21 −p22

)

,

where
p′21 = p21 + t1,1, p′12 = p12 + t2,2.

The following table gives the normalized frames and invariants for each of
these Demoulin transforms; let T i (1 ≤ i ≤ 4) denote the transform of type i
given in Lemma 12.5. Let ei = {ei

0, e
i
1, e

i
2, e

i
3} denote the normalized frame for

the transform T i. The matrix in the last column of the table below represents
the invariants of the transformed surface, whose determinant is denoted by P i.

T1

e10 = e3
e11 = p21e1 − p11e2
e12 = −p22e1 + p12e2
e13 = −P 1e0

(

−p11 p21

p12 −p22

)

T2

e20 = e3 + t1e1
e21 = p′21e1 + p11(e2 + t1e0)
e22 = p12(e2 + t1e0) − p22e1
e23 = −P 2e0

(

p11 p′21
p12 −p22

)

T3

e30 = e3 + t2e1
e31 = p21(e1 + t2e0) − p11e2
e32 = p′12e2 + p22(e1 + t2e0)
e33 = −P 3e0

(

−p11 p21

p′12 p22

)

T4

e40 = e3 + t1e1 + t2e2 + t1t2e0
e41 = p′21(e1 + t2e0) + p11(e2 + t1e0)
e42 = p′12(e2 + t1e0) + p22(e1 + t2e0)
e43 = −P 4e0

(

p11 p′21
p′12 p22

)

The above computation is valid even when `11`22 = 0 provided bc 6= 0. When
both of `11 and `22 vanish, namely, when the surface is a Demoulin surface, we
get only one surface. When `11 = 0 and `22 6= 0, namely, when the surface is
a Godeaux-Rozet surface, we need to set t1 = 0 in the above computation and
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we get t1,1 = 0. Then, we see that p′21 = p21. Since p11 = 0 in this case, we get
T1 = T3 and T2 = T4. Similarly when `11 6= 0 and `22 = 0, we get T1 = T3
and T2 = T4.

12.2 Second Demoulin transforms

The repeated use of the above procedure gives the second transforms, which
are listed below. Let us denote by bi and ci the respective cubic invariants for
T i. and we use the label T ij for denoting the second transforms of T i, where
the number j is given by following the same rule as used for labelling T i. We
remark that for these transforms to really define surfaces, we need to assume
P i 6= 0, bi 6= 0, and ci 6= 0.

T11 −P 1e0
T12 −b1P 1e0 − 2p11(p21e1 − p11e2)
T13 −c1P 1e0 − 2p22(−p22e1 + p12e2)
T14 −b1c1P 1e0 − 2c1p11(p21e1 − p11e2) − 2b1p22(p12e2 − p22e1)

+4p11p22e3

T21 −P 2e0
T22 −b2P 2e0 + 2p11(p

′
21e1 + p11(e2 + t1e0))

T23 −c2P 2e0 − 2p22(−p22e1 + p12(e2 + t1e0))
T24 −b2c2P 2e0 + 2c2p11(p

′
21e1 + p11(e2 + t1e0))

−2b2p22(p12(e2 + t1e0) − p22e1) − 4p11p22(e3 + t1e1)

T31 −P 3e0
T32 −b3P 3e0 − 2p11(p21(e1 + t2e0) − p11e2)
T33 −c3P 3e0 + 2p22(p

′
12e2 + p22(e1 + t2e0))

T34 −b3c3P 3e0 − 2c3p11(p21(e1 + t2e0) − p11e2)
+2b3p22(p

′
12e2 + p22(e1 + t2e0)) − 4p11p22(e3 + t2e2)

T41 −P 4e0
T42 −b4P 4e0 + 2p11(p

′
21(e1 + t2e0) + p11(e2 + t1e0))

T43 −c4P 4e0 + 2p22(p
′
12(e2 + t1e0) + p22(e1 + t2e0))

T44 −b4c4P 4e0 − 2c4p11(p
′
21(e1 + t2e0) − p11(e2 + t1e0))

+2b4p22(p
′
12(e2 + t1e0) + p22(e1 + t2e0))

−4p11p22(e3 + t1e1 + t2e2 + t1t2e0)

As is seen above, each T i1 (1 ≤ i ≤ 4) coincides with the original surface.
Further,

Proposition 12.6 The following coincidences of surfaces hold: T13 = T23,
T12 = T32, T22 = T42, and T33 = T43.

Proof. We prove the coincidence T13 = T23. By definition,

T13 = −c1P 1e0 − 2p22(−p22e1 + p12e2),

104



T23 = −c2P 2e0 − 2p22(−p22e1 + p12(e2 + t1e0))
= −(c2P 2 + 2p22p12t

1)e0 − 2p22(−p22e1 + p12e2),

Thus, it is enough to see that

P 1c1 = P 2c2 + 2p22p12t
1 = P 2c2 + 4p11p22p12/b, (12.9)

where P 2 = −p11p22−p12p
′
21 is the determinant of the invariant matrix for T23:

(

p̃11 p̃12

p̃21 p̃22

)

=

(

p11 p′21
p12 −p22

)

.

By Lemma 12.3,
P 1c1 = −P 1c+ p12p22,2 − p22p12,2

for the transform T13 and

P 2c2 = −P 2c+ p̃12p̃22,2 − p̃22p̃12,2

for the transform T23. The coframe for T23 is, by (12.10),

ω̃ =









ω0
0 − t1ω2 ω1 ω2 0
ω̃0

1 ω1
1 − t1ω2 ω2

1 ω2

ω̃0
2 ω1

2 ω2
2 + t1ω2 ω1

0 ω̃1
3 ω̃2

3 ω3
3 + t1ω2









.

By using this form,

∑

p̃22,kω
k = dp̃22 −

∑

(p̃2k + p̃k2)ω̃
k
2 + 2p̃22ω̃

0
0

= dp22 − (p21 + p12 + t1,1)ω
1
2 − 2p22(ω

2
2 + c1ω2) + 2p22(ω

0
0 − c1ω2)

=
∑

p22,kω
k − (ct1,1 + 4t1p22)ω

2

and
∑

p̃12,kω
k = dp̃12 − p̃11ω̃

1
2 − p̃12(ω̃

2
2 + ω̃1

1) − p̃22ω̃
2
1 + 2p̃12ω̃

0
0

= dp12 + p11ω
1
2 − p12(ω

2
2 + ω1

1) − p22ω
2
1 + 2p12(ω

0
0 − c1ω2)

=
∑

p12,kω
k + (2p11c− 2p12t

1)ω2.

Here, we used ω2
1 = bω2, ω1

2 = cω1, and ω1
1 + ω2

2 = 0. Hence,

p̃12p̃22,2 − p̃22p̃12,2 = p12p22,2 − p22p12,2 − ct1,1p12 − 2cp11p22 − 2t1p12p22.

Now it is easy to show (12.9) by using t1 = 2p11/b.
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The arrangement of transforms can be illustrated as in the following diagram.

T32 = T12
T34 • ◦ • T14

T3 ∗ ∗ T1

T33 = T43 ◦ � ◦ T13 = T23

T4 ∗ ∗ T2

T44 • ◦ • T24
T42 = T22

where � is the original surface, ∗ denotes the first Demoulin transforms, and ◦
and • denote the second Demoulin transforms.

We next consider the line congruence joining the original projectively mini-
mal surface and four of the second transforms. We will show:

Proposition 12.7 The line congruence joining the original projectively min-
imal surface and each one of the surfaces T13, T12, T33, and T22 is a W -
congruence, and these four surfaces are focal surfaces of each congruence.

Proof. We give a proof for T13. Let us recall that the transform T1 has a
normalized frame

e10 = e3, e11 = p21e1 − p11e2, e12 = −p22e1 + p12e2, e13 = −P 1e0 (12.10)

up to a scalar factor. The invariant matrix, which we denote by p, is

p =

(

p11 p12

p21 p22

)

=

(

−p11 p21

p12 −p22

)

.

Let t
2

= −2p22/c
1 be the value of t2 for the transform T1. Then, the normalized

Demoulin frame for T1 that is needed define T13 is given by

ẽ0 = e10, ẽ1 = e11 + t
2
e10, ẽ2 = e12, ẽ3 = e13 + t

2
e12. (12.11)

The corresponding invariant matrix is

p̃ =

(

p̃11 p̃12

p̃21 p̃22

)

=

(

p11 p′12
p21 −p22

)

,

where p′12 = p12 + t
2
,2 and t

2
,2 is defined by

dt
2
+ t

2
(ω0

0 − ω1
1) − (t

2
)2ω1 = t

2
,2ω

2

relative to the connection form ω in (12.3). Now we see that the normalized
Demoulin frame of T13 is given by

f0 = ẽ3, f1 = p̃21ẽ1 − p̃11ẽ2, f2 = −p̃22ẽ1 + p̃12ẽ2, f3 = −P̃ ẽ0,
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up to a multiplicative factor, where P̃ denotes the determinant of the matrix p̃.
Then, we see that

f1 = p12(p21e1 − p11e2 + t
2
e3) − (−p11)(p12e2 − p22e1),

f2 = (p21 + t
2
,2)(p12e2 − p22e1) − p22(p21e1 − p11e2 + t

2
e3).

Thus, we get

p22f1 + p12f2 = (p11p22 + p12p21 + p12t
2
,2)(−p22e1 + p12e2).

This means that the line joining the original surface and T13 is tangent to each
surface. The congruence obtained is a W -congruence because each Demoulin
transform preserves the conformal structure. Thus we have Proposition 12.7.

Now let us set aside the long procedure above for a moment and give a
summary. Given a (indefinite) projectively minimal non-ruled surface z with
a Demoulin frame e and coframe ω, we defined the Demoulin transform. We
denoted by

p =

(

p11 p12

p21 p22

)

the invariant of the surface and assumed det(p) 6= 0 so that the transform
really defines a surface, and we assumed p11p22 6= 0 so that we get four distinct
transforms. Then, each transform is projectively minimal. We now define a new
surface w by

w =
1

2
κz + p21e1 − p11e2 or w =

1

2
κ′z − p22e1 + p12e2, (12.12)

where κ and κ′ are certain scalar functions determined by composing (12.10)
and (12.11). Then the transform

z 7−→ w

defines a W-congruence whose focal surfaces are both projectively minimal. By
using the notation in Sect. 11.6, the new surface is

w =
1

2
κz + µzx + λzy or w =

1

2
κ′z + λ′zx + µ′zy,

respectively.

In Sect. 11.4 we defined a Demoulin congruence, and in Sect. 11.5 we
proved that the Demoulin congruence is a W -congruence when the surface is
projectively minimal. In the formulation of this section, this corresponds to
the following fact: Let us consider the line congruence joining two surfaces
T1 = e3 and T2 = e3 + t1e1. The tangent plane of T1 is spanned by the vectors
e11 = p21e1 − p11e2 and e12 = −p22e1 + p12e2, and the tangent plane of T2 is
spanned by e21 = p′21e1 + p11(e2 + t1e0) and e22 = p12(e2 + t1e0)− p22e1. Hence,
−P 1e1 is included in the tangent plane of T1 and −P 2e1 is included in the
tangent plane of T3. Since the line joining T1 and T2 is in the direction of the
vector e1, both surfaces T1 and T2 are focal surfaces of the congruence.
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12.3 Coincidence surfaces

The surface defined by the system

zxx = zy + (kx+ k1)z, zyy = zx + (ky + k2)z

where k, k1, and k2 are constants, is called a coincidence surface. We refer to
Example 2.19. It is easy to check that this surface z is projectively minimal
when k = 0, and it is a Demoulin surface only when k = k1 = k2 = 0. We
assume k = 0. Then the function exp(µx + νy) is a solution if µ2 = ν + k1

and ν2 = µ + k2. According to the multiplicity of solutions (µ, ν), the surface
has different expressions: Z = X`Y m when all solutions are distinct, Z =
n logX − 1/n logY when two solutions coincide, and Z = exp(Y − X2) when
three solutions coincide. Here (X,Y, Z) denote the affine coordinates and `, m,
and n are constants.

In the case k = 0, the system can be written as

zxx = zy + t2z, zyy = zx + s2z.

The invariants are L = −2t2, M = −2s2, σ2 = s2, τ2 = t2, λ = σ, λ′ = τ ,
and µ = µ′ = 1/2 in the notations in Sect. 11.6. In the following σ = ±s and
τ = ±t. The Demoulin transform is

w = zxy + σzx + τzy + (στ − 1/2)z),

and the normalized frame is

e = t(e0, e1, e2, e3) = t(z, zx + τz, zy + σz, w).

Then e satisfies the Pfaff equation:

de =







−τdx− σdy dx dy 0
−σdx+ 1

2dy τdx − σdy dx dy
1
2dx− τdy dy −τdx+ σdy dx

0 1
2dx+ τdy σdx + 1

2dy τdx+ σdy






e.

With the notation above, it is easy to compute the system satisfied by w, which
turns out to be the same system satisfied by z; namely, Demoulin transforms
do not yield any new surfaces, and, rather, the transforms give line congruences
among the coincidence surfaces. The second Demoulin transform u is given by

u = wxy + σ′wx + τ ′wy + (σ′τ ′ − 1/2)w,

where σ′ = ±s and τ ′ = ±t. A computation shows that

u = (σ + σ′)(τ + τ ′)zxy

+{σ(σ + σ′)(τ + τ ′) + τ(τ + τ ′) + (σ + σ′)/2}zx

+{τ(σ + σ′)(τ + τ ′) + σ(σ + σ′) + (τ + τ ′)/2}zy

+{στ(σ + σ′)(τ + τ ′) + σ2(σ + σ′) + τ2(τ + τ ′) − (στ + σ′τ ′)/2 + 1/4}z,

108



and we get the following list:

T1 zxy + szx + tzy + (st− 1/2)z] T2 zxy − szx + tzy + (−st− 1/2)z

T3 zxy + szx − tzy + (−st− 1/2)z T4 zxy − szx − tzy + (st− 1/2)z

T12 2t2zx + tzy + (2t3 + 1/4)z T13 szx + 2s2zy + (2s3 + 1/4)z

T24 −szx + 2s2zy + (−2s3 + 1/4)z T34 2t2zx − tzy + (−2t3 + 1/4)z

T14 S(σ = t, τ = s) T24 S(σ = t, τ = −s)
T34 S(σ = −t, τ = s) T44 S(σ = −t, τ = −s),

where S(σ, τ) denotes the surface given by the vector

4στzxy + (4σ2τ + 2τ2 + σ)zx + (4στ2 + 2σ2 + τ)zy

+(4σ2τ2 + 2σ3 + 2τ3 − στ + 1/4)z.

Remark 12.8 The contents for Sects. 12.1 and 12.2 are based on [May1932]
and [Su1936, Su1957] with modification relying only on the moving frame. We
refer to [Mar1979] for Sect. 12.3.

13 Transformations of projectively minimal sur-
faces

In Sect. 5.6, we showed the formula for Tzitzeica transformation of affine
spheres. This section gives its generalization, a formula that transforms a given
projectively minimal surface to a new projectively minimal surface. The formula
is originally due to R. Marcus [Mar1980].

13.1 W-congruences of projectively minimal surfaces

In Section 10, we exhibited how to construct W -congruences, where one of the
focal surfaces is given by the system

zxx = θxzx + bzy + pz, zyy = czx + θyzy + qz,

and the other focal surface is defined by

w = µz + 2(Azx +Bzy).

In this section, we restrict our attention to projectively minimal surfaces.
We recall that we have assumed (10.5):

Ay + cB = 0, Bx + bA = 0 (13.1)

so that the congruence is a W -congruence, and we defined µ by

µ = −Ax −Aθx −By −Bθy.
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We have also defined L and M in (10.11):

L = AAxx − 1

2
A2

x +A2L, M = BByy − 1

2
B2

y +B2M,

and saw that
N = 2(M−L).

We assume here that N 6= 0.

Lemma 13.1 Assume the surface is projectively miminal. Then, L, M, and
N satisfy the same equation

Xxy +
cB

A
Xx +

bA

B
Xy = 0.

Proof. Making use of the identity (13.1) and one of the integrability conditions
Ly = −2bcx − cbx, we see that

Lxy +
cB

A
Lx +

bA

B
Ly = −AB(cxxx + cLx + 2cxL).

The condition of projective minimality implies that the right-hand side vanishes,
and we get the result for L. The case for M is similarly done.

The invariants for the surface w were given in (10.9). By the expressions of
these invariants, we can compute L and M for w, which we denote by L and
M :

L = L+
Nxx

N
− 3

2

(

Nx

N

)2

+
Ax

A

Nx

N
,

M = M +
Nyy

N
− 3

2

(

Ny

N

)2

+
By

B

Ny

N
.

We also recall ∆1 and ∆2 given in (11.5):

∆1 = b2y − 2bby − 2b2M, ∆2 = c2x − 2ccx − 2c2L.

Then we have the following lemma on such invariants for w by direct computa-
tion:

Lemma 13.2 Assume the surface z is projectively miminal. Then

∆1 = ∆1 +
4Nx

A2N2
(MLx −LMx), ∆2 = ∆2 +

4Ny

B2N2
(MLy −LMy).

Provided that bc 6= 0, the conditions ∆1y = 0 and ∆2x = 0 are equivalent,
and both imply the surface is projectively minimal; see (11.6). Hence we have
the following proposition.

Proposition 13.3 Assume that the surface z is projectively minimal and that

M = kL (13.2)

for a constant k 6= 1. Then the surface w is also projectively minimal.
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Proof. From M = kL, we see that ∆1 = ∆1. Hence ∆1 is independent of y,
which implies the result. k 6= 1 is necessary for N 6= 0.

Moreover, since ∆1 = ∆2 = 0 means that the surface z is a Demoulin
surface, and since either one of the conditions ∆1 = 0 and ∆2 = 0 implies that
the surface is a Godeaux-Rozet surface, we have the following proposition.

Proposition 13.4 Assume that the surface z is projectively minimal and that

M = kL

for some constant k 6= 1. If z is a Godeaux-Rozet surface, then so is w. If z is
a Demoulin surface, then so is w.

13.2 Transformations of projectively minimal surfaces

We now apply the propositions above by finding A and B satisfying (13.1) and
(13.2). Let us consider the surface given by

zxx = bzy + (π − 1

2
by)z, zyy = czx + (ρ− 1

2
cx)z (13.3)

so that L = −2π and M = −2ρ take simple forms. We assume z is projectively
minimal:

bMy + 2Mby + byyy = 0, cLx + 2Lcx + cxxx = 0.

For a parameter α(6= 1), we define a new system

zxx = αbzy + (π − α

2
by)z, zyy =

1

α
czx + (ρ− 1

2α
cx)z. (13.4)

Since L = −2π and M = −2ρ also for this system, L and M are unchanged and
the product bc is also unchanged. Hence, the system for z is integrable.

We now let ϕ and ψ be two independent solutions of (13.4) and define

A = −α(ψϕy − ϕψy), B = ψϕx − ϕψx. (13.5)

It is easy to see that the condition (13.2) is satisfied; in fact

Ay = −α(ψϕyy − ϕψyy)

= −α
(

ψ(
1

α
cϕx + (ρ− 1

2
cx)ϕ) − ϕ(

1

α
cψx + (ρ− 1

2
cx)ψ)

)

= −cB.

Furthermore, by computation, we see that

2

α2
L = 2bc(ψϕy − ϕψy)(ψϕx − ϕψx) − (ϕxψy − ψxϕy)2 − (ϕψxy − ψϕxy)2

+(−4ψϕxϕy + 2ϕ(ϕxψy + ψxϕy))ψxy

+(−4ϕψxψy + 2ψ(ϕxψy + ψxϕy))ϕxy.
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The computation of 2M yields the same right-hand side. Namely, we have
L = α2M.

Theorem 13.5 Assume the surface (13.3) is projectively minimal. For any
constant α(6= ±1) and independent solutions ϕ and ψ of the system (13.4),
define A and B by (13.5), and define µ by

µ = (α + 1)(ψxϕy − ϕxψy) + (α− 1)(ψϕxy − ϕψxy).

Then the surface
w = µz + 2(Azx +Bzy)

defines a projectively minimal surface. If z is a Demoulin (resp. Godeaux-Rozet)
surface, then so is w.

Let ϕ1, . . . , ϕ4 be independent solutions of the system (13.4). Then ϕ and ψ
are linear combinations of these solutions, say, ϕ =

∑

i k
iϕi and ψ =

∑

im
iϕi.

For i < j, we define the coefficients

Aij = −α(ϕjϕiy − ϕiϕjy), Bij = ϕjϕix − ϕiϕjx,

µij = (α+ 1)(ϕjxϕiy − ϕixϕjy) + (α− 1)(ϕjϕixy − ϕiϕjxy),

and the surface
wij = µijz + 2(Aijzx +Bijzy).

Then, the surface w associated with the pair ϕ and ψ is a combination of wij :

w =
∑

i<j

cijwij ,

where cij = kimj − kjmi. The coefficients cij can be regarded as the wedge
product of the vectors (ki) and (mj) and they satisfy the Plücker relation
c12c34 − c13c24 + c14c23 = 0. We remark that the system satisfied by the surface
w can be computed by using the formulas (10.8) and (10.9).

We next modify the transformation formula in Theorem 13.5 to show that
the Tzitzeica transformation is derived from the above transformation. We start
with the projectively minimal surface z given by the system of a general form

zxx = θxzx + bzy + pz, zyy = czx + θyzy + qz

and then we introduce another system by

zxx = θxzx + αbzy + pz, zyy =
c

α
zx + θyzy + qz,

so that L = L and M = M . Since both systems can be normalized to the forms
in (13.3) and (13.4) by multiplying z and z by some factors, existence of such a
system is trivial; however, finding explicit representations of θ, p, and q is not
simple. Not withstanding this ambiguity, we define A and B by

A = −α exp(−θ)(ψϕy − ϕψy), B = exp(−θ)(ψϕx − ϕψx).
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Furthermore, we can modifiy the systems above so that p = 0 and q = 0:

zxx = θxzx + bzy, zyy = czx + θyzy,

and
zxx = θxzx + αbzy, zyy =

c

α
zx + θyzy,

so that ψ = 1 is a trivial solution. Then, we get

A = −α exp(−θ)ϕy , B = exp(−θ)ϕx.

We assume further that θ = θ. Then, bθy +by = 0 and cθx+cx = 0 are necessary
to conclude that L = L and M = M . Since (log(b/c))xy = 0 in this case, we can
assume that c = b. Now the situation is reduced to the case where the original
system has the form

zxx = −bx
b
zx + bzy, zyy = bzx − by

b
zy.

The integrability condition is

(log b)xy = b2 +
k

b
,

where k is any constant. If we set b = 1/h, then these equations are written as

zxx =
hx

h
zx +

1

h
zy, zyy =

1

h
zx +

hy

h
zy.

The integrability condition is

(logh)xy = −kh− 1

h2
.

This is the case we have considered in Sect. 5.6 for Tzitzeica transformation of
affine spheres. In fact, setting k = −1, we assume that z satisfies also

zxy = hz,

so that z defines an affine sphere. Let ϕ be a nontrivial solution of

zxx =
hx

h
zx +

α

h
zy, zyy =

1

αh
zx +

hy

h
zy,

and assume it satisfies also
ϕxy = hϕ.

Then we get the transformed surface

w =
1

2
(α− 1)ϕz − αϕy

h
zx +

ϕx

h
zy,

which is a new affine sphere. This gives nothing but the Tzitzeica transformation
stated in Theorem 5.10.

Remark 13.6 In [Fe1999], E. V. Ferapontov and W. K. Schief gave the trans-
formation formula of 5.10 relative to Demoulin surfaces by appealing to the
system of nonlinear equations (2.27) and using the Moutard transformation.
Their formulation was generalized in [RS2002] to projectively minimal surfaces
by C. Rogers and W. K. Schief, resulting the same formula.
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A Line congruences derived from Appell’s sys-
tem (F2)

Appell’s system is defined in Sect. 4.7:

D1z = 0 and D2z = 0,

where

D1 = x(1 − x)∂xx − xy∂xy + {γ − (α+ β + 1)x}∂x − βy∂y − αβ,

D2 = y(1 − y)∂yy − xy∂xy + {γ′ − (α+ β′ + 1)y}∂y − β′x∂x − αβ′.

Appell’s fucntion F2 = F2(α, β, β
′, γ, γ′;x, y) is given also in Sect. 4.7. When

certain number of parameters are increased or decreased by 1, the set of param-
eters is said to be contiguous to the original set of parameters and any func-
tion F2 with (a set of) contiguous parameters, say, F2(α ± 1, β, β′, γ.γ′;x, y),
F2(α ± 1, β ± 1, . . . ;x, y), · · ·, is called a contiguous function of F2. Since the
dimension of the solution space of the system is four, contiguous functions are
written by using F2, (F2)x, (F2)y, and (F2)xy and formulas representing such
relations are called contiguity relations. However, some contiguous functions
are written by using only the first three not including second order derivative.
For example, the operator H0 increases β by +1 and the operator B0 decreases
β by −1 and both give contiguous functions; Hn and Bn are defined in Sect.
4.7. Geometrically speaking, in such a case, any point of the surface defined
by the system of contiguous parameters (to be called a contiguous surface) is
lying on the tangent plane at the point of the same coordinates of the original
surface. We refer to [Sa1991] for the list of the basic contiguous relations of
Appell’s system corresponding to Appell’s function usually denoted by F3; note
that the system is equivalent to (F2). From the list, we can read that the pair of
H0 and B0 is essentially unique in the sense that the contiguous surface is lying
on the tangent space of the original surface as well as the original surface is
lying on the tangent space of the contiguous surface. This means that these two
surfaces are focal surfaces of the line congruence joining them. In the following,
we describe explicitly this congruence in terms of Laplace transformation.

Since the invariant quadratic form is conformal to (y/(1−x))dx2 + 2dxdy+
(x/(1 − y))dy2, one choice of conjugate directional fields is given by (x − 1)∂x

and (x− 1)∂x + y∂y. We adopt here the notation

X = (x− 1)∂x, Y = (x− 1)∂x + y∂y. (A.1)

They are commutative: [X,Y ] = 0.
In terms of X and Y , the operators D1 and D2 are written as follows:

D1 = − 1

x− 1
(xXY + ((β − γ) + αx)X + β(x − 1)Y + αβ(x− 1)),

D2 = −y − 1

y
Y Y +

(

x

x− 1
− y − 1

y

)

XX +AY +BX + C,
(A.2)
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where

A = −2β
(x− 1)(y − 1)

xy
+ β − β′ − α+

γ′ − 1

y
,

B =
2(β − γ)(1 − y)

xy
+

2α+ 1 − γ′

y
+
α+ β − β′ − γ

x− 1
,

C = −2αβ(x− 1)(y − 1)

xy
+ α(β − β′).

The first equation is

XY z +

(

β − γ

x
+ α

)

Xz + β
x− 1

x
Y z + αβ

x− 1

x
z = 0. (A.3)

Hence the Laplace transforms are

z1 = Y z +

(

β − γ

x
+ α

)

z, z−1 = Xz + β
x− 1

x
z, (A.4)

by definition. Note that z1 is equal to H0z and z−1 to B0z up to scalar multiple.
The Laplace invariants are

h = (β − 1)(β − γ)
x− 1

x2
, k = β(β − γ + 1)

x− 1

x2
− αβ

x− 1

x
.

The Laplace equation for z1 is, by computation,

XY z1+

(

α+ 1 +
β − γ − 2

x

)

Xz1+β
x− 1

x
Y z1+

(

β(α+ 1)
x− 1

x
− γ

x− 1

x2

)

z1 = 0.

We next define a projective frame to show how to compute the invariants of
the line congruence {z, z−1} by

e1 = xβz,
e2 = xγ−β−1(x − 1)α+β−γ(xXz + β(x − 1)z),

e3 = xβ

(

Y z +
β(x − 1)

x
z

)

,

e4 = Xe2,

and introduce coordinates (u, v) by requiring X = ∂u and Y = ∂v. Then for
any function f we have df = (Xf)du+(Y f)dv. By using the expressions (A.2),
we can prove the following:

ω1 = ω3
1 = dv, ω2 = ω4

2 = du,

ω2
1 = x2β−γ(x − 1)γ−αβdu,

ω1
2 = β(β − γ + 1)xγ−2β−2(x− 1)α+β−γ+1dv,

ω4
3 =

x+ y − 1

y − 1
x2β−γ(x− 1)γ−α−β−1dv,

ω3
4 = β(β − γ + 2)

y − 1

x+ y − 1
xγ−2β−2(x− 1)α+β−γ+2du.
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Therefore, by the definition of the invariant W in Sect. 4, we see that

W = h12h21 − h31h42 = −β x− 1

x2
,

which means the line congruence {z, z−1} is a W -congruence only when β = 0.

B Line congruences in E3

Let us give a brief summary of the theory of line congruences in the 3-dimensional
Euclidean space E3, first formulated by Kummer [Ku1860], and then explain
how the notion of W -congruence was introduced.

1. Each line in the congruence parametrized by (x, y) is described by the pair
consisting of a base point z(x, y) on the line and the directional unit vector
φ(x, y). The line is expressed as z(x, y) + tφ(x, y) with the line parameter
t. On the other hand, we can regard z(x, y) as a surface and φ(x, y) as a
spherical surface. The surface z is called a reference surface. If we choose
another reference surface z′(x, y), we have a relation such as z′(x, y) = z(x, y)+
`φ(x, y). The fundamental invariants related to this pair are the metric form of
the spherical surface

I = 〈dφ, dφ〉 = Edx2 + 2Fdx dy +Gdy2, (B.1)

and the 2-form

II = −〈dz, de〉 = pdx2 + (q + q′)dx dy + rdy2, (B.2)

where
E = 〈φx, φx〉, F = 〈φx, φy〉, G = 〈φy , φy〉,

p = 〈φx, zx〉, q = 〈φx, zy〉, q′ = 〈φy , zx〉, r = 〈φy, zy〉.
The form II for the reference surface z′, denoted by II′, is

II′ = II + `I.

If we write I as
∑

gijdx
idxj , where x1 = x and x2 = y, then the Gauss

equation for the map φ is

φij =
∑

k

Γk
ijφk − gijz, (B.3)

where Γk
ij ’s are the Christoffel symbols relative to {gij}.

2. The line congruence is called a normal congruence if there exists a surface z ′

such that φ coincides with the unit normal of the surface z′. The condition is
〈dz′, φ〉 = 0, which implies 〈dz, φ〉 + dt = 0. Then, by exterior differentiation,
we must have 〈zx, φy〉 = 〈zy, φx〉, namely, q = q′. Conversely, if q = q′, we can
find such a z′.
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3. The focal points on each line are Z(x, y) = z(x, y) + tφ(x, y) for which dZ
is parallel to φ. This implies that II + tI = 0. In particular, the value t is
determined by the quadratic equation

∣

∣

∣

∣

p+ tE q + tF
q′ + tF r + tG

∣

∣

∣

∣

= 0.

For each t, the direction dx : dy determines the degenerate ruled surface, in
which lies a focal point.

4. The fundamental equations of the congruence {z, φ} are the Gauss equation
(B.3) and the system

zx = aφx + bφy +mφ,
zy = cφx + dφy + nφ.

(B.4)

The coefficients are determined by the formula
(

a b
c d

)

=

(

p q′

q r

)(

E F
F G

)

, m = 〈φ, zx〉, n = 〈φ, zy〉.

The integrability condition of the last system is computed by developing the
equation (zx)y = (zy)x into a linear combination of φ, φx, and φy , by using
(B.3). The resulting equations are

ay + aΓ1
12 + bΓ1

22 − cx − cΓ1
11 − dΓ1

12 − n = 0,

by + aΓ2
12 + bΓ2

22 − dx − cΓ2
11 − dΓ2

12 +m = 0,

my − nx − aF − bG+ cE + dF = 0.

By making use of the formula expressing the Christoffel symbol Γk
ij in terms of

E, F and G, we can see that the system above is equivalent to the system










py − qx − Γ1
12p+ Γ1

11q − Γ2
12q

′ + Γ2
11r + Fm−En = 0,

q′y − rx − Γ1
22p+ Γ1

12q − Γ2
22q

′ + Γ2
12r +Gm− Fn = 0,

my − nx + q − q′ = 0.

(B.5)

We summarize the above argument as follows:

Theorem B.1 The line congruence {φ, z} described above is determined by the
systems (B.3) and (B.4) satisfying the integrability condition (B.5). Conversely,
given a spherical surface φ and the coefficients p, q, q′, r, m, and n satisfy-
ing (B.5), any solution of (B.4) gives a reference surface z, and thus the line
congruence.

Example B.2 Let us consider the normal congruence for a surface in the Eu-
clidean space. The surface is z and φ is its Gauss mapping. The shape operator
A is given by ∇Xφ = −AX. The directional field dx : dy for determining the
focal points is given by −AX ≡ 0 (mod X). The integral curves are nothing but
the curvature lines.
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5. A surface in E3 is called a Weingarten surface if there exists a functional
relation between the two principal curvatures. We here recall how normal con-
gruence is related to the W -congruence.

Assume (x, y) are the curvature coordinates so that the first fundamental
form of the surface is edx2 +gdy2 (to avoid confusion with the first fundamental
form I for the surface φ, we do not use the usual notation E and G) and the
second fundamental form is nothing but II above with the condition q = q′ = 0.

The principal curvatures k1 and k2 are given by k1 = p/e, k2 = r/g.
The Codazzi identity is written as

(k2)x +
1

2
(k2 − k1)

∂ log g

∂x
= 0, (k1)y +

1

2
(k1 − k2)

∂ log e

∂y
= 0.

We assume k1k2 6= 0 and set Ri = 1/ki, which are the principal radii. Then the
coordinates have the property that

zx +R1φx = 0, zy +R2φy = 0.

For the surface z, we define two mappings by

wi = z +Riφ i = 1, 2. (B.6)

They define in general two surfaces called the central surfaces. (We do not treat
the case where these mappings are degenerate.)

Let w = w1 for the moment. The relation above shows

wx = R1xφ, wy = (1 −R1/R2)zy +R1yφ,

which imply that the unit normal to w is φ1 = zx/
√
e up to sign. Then it is

easily seen, by using the Coddazi identity, that the coefficients of the second
fundamental form of w, denoted by p1, q1, and r1, are given by

p1 = −
√
e(logR1)x, q1 = 0, r1 = − gR1√

eR2
(logR2)y.

Thus, the second fundamental form of the first surface is conformal to

eR2
2R1xdx

2 − gR2
1R2xdy

2.

Similarly, for the second surface we have

eR2
2R1ydx

2 − gR2
1R2ydy

2.

These computations show the following theorem.

Theorem B.3 Assume the central surfaces are nondegenerate. Then the nor-
mal congruence between them is a W -congruence if and only if the principal
radii satisfy the relation

∣

∣

∣

∣

R1x R2x

R1y R2y

∣

∣

∣

∣

= 0. (B.7)

The original surface satisfying this relation is classically called a Weingarten
surface, and this is the origin of the naming of W -congruence.

For a general theory of normal congruence, we refer to e.g. [D, no 447–455]
and [E1909, Chap. XII].
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C Plücker image of projective surfaces into P5

We here give a proof of Theorem 4.25.
From the asummption (t, t) = h, the connection form ω satisfies ωh+h tω =

0. Together with the condition ω4
1 = ω5

1 = ω6
1 = 0 and ω3

2 = ω5
2 = ω6

2 = 0 from
(4.14), the form ω can be written as

ω =

















ω1
1 ω2

1 ω2 0 0 0
ω1

2 ω2
2 0 ω1 0 0

ω1
3 ω2

3 0 σ ω2 0
ω1

4 ω2
4 σ 0 0 ω1

0 τ ω1
3 −ω1

4 −ω1
1 ω1

2

τ 0 −ω2
3 ω2

4 ω2
1 −ω2

2

















,

where we set σ = ω4
3 and τ = ω2

5 . It satisfies the following integrability condi-
tions.

dω1
1 = ω2

1 ∧ ω1
2 + ω2 ∧ ω1

3 ,
dω2

1 = ω1
1 ∧ ω2

1 + ω2
1 ∧ ω2

2 + ω2 ∧ ω2
3 ,

dω1
2 = ω1

2 ∧ ω1
1 + ω2

2 ∧ ω1
2 + ω1 ∧ ω1

4 ,
dω2

2 = ω1
2 ∧ ω2

1 + ω1 ∧ ω2
4 ,

dω1 = ω2
2 ∧ ω1,

dω2 = ω1
1 ∧ ω2,

dω1
3 = ω1

3 ∧ ω1
1 + ω2

3 ∧ ω1
2 + σ ∧ ω1

4 ,
dω2

3 = ω1
3 ∧ ω2

1 + ω2
3 ∧ ω2

2 + σ ∧ ω2
4 + ω2 ∧ τ,

dω1
4 = ω1

4 ∧ ω1
1 + ω2

4 ∧ ω1
2 + σ ∧ ω1

3 + ω1 ∧ τ,
dω2

4 = ω1
4 ∧ ω2

1 + ω2
4 ∧ ω2

2 + σ ∧ ω2
3 ,

dσ = ω2
3 ∧ ω1 − ω2 ∧ ω1

4 ,
dτ = τ ∧ ω1

1 + τ ∧ ω2
2 − ω1

4 ∧ ω2
4 + ω1

3 ∧ ω2
3 ,

0 = ω2
1 ∧ ω1 − σ ∧ ω2,

0 = ω1
2 ∧ ω2 − σ ∧ ω1.

(C.1)

To check the action of the transformation g, we devide ω and g into 2×2-matrix
components:

ω =





Ω1
1 Ω2

1 0
Ω1

2 Ω2
2 Ω3

2

Ω1
3 Ω2

3 Ω4
3



 , g =





G11 0 0
G21 G22 0
G31 G32 G33



 .

Since g h tg = h, we have

G33 = J(tG11)
−1J, G22J

tG22 = J, G22J
tG32 = G21J

tG33,
G32J

tG32 = G33J
tG31 +G31J

tG33,
(C.2)

By a transformation g, ω changes to ω̃ = dg · g−1 + gωg−1 that is written as

ω̃ = (ω̃j
i ) =





Ω̃1
1 Ω̃2

1 0

Ω̃1
2 Ω̃2

2 Ω̃3
2

Ω̃1
3 Ω̃2

3 Ω̃4
3



 ,
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where

Ω̃1
1 = dG11G

−1
11 +G11(Ω

1
1 − Ω2

1G
−1
22 G21)G

−1
11 ,

Ω̃2
1 = G11Ω

2
1G

−1
22 ,

Ω̃2
2 = dG22G

−1
22 +G22(G

−1
22 G21Ω

2
1 + Ω2

2 − Ω3
2G

−1
33 G32)G

−1
22 ,

Ω̃3
2 = G22Ω

3
2G

−1
33 ,

Ω̃1
2 = dG21 − (dG22 +G21Ω

2
1 +G22Ω

2
2)G

−1
22 G21G

−1
11

+(G21Ω
1
1 +G22Ω

1
2)G

−1
11 +G22Ω23G

−1
33 (−G31 +G32G

−1
22 G21)G

−1
11 ,

Ω̃1
3 = dG31G

−1
11 − dG32G

−1
22 G21G

−1
11

+(dG33 +G32Ω
3
2 +G33Ω33)G

−1
33 (−G31 +G32G

−1
22 G21)G

−1
11

+(G31Ω
1
1 +G32Ω

1
2 +G33Ω

1
3)G

−1
11

−(G31Ω
2
1 +G32Ω22 +G33Ω

2
3)G

−1
22 G21G

−1
11 .

(C.3)
Now let us take

g =





I 0 0
G21 I 0
• G32 I





and set G21 =

(

p q
r s

)

. Then G32 = J tG21J =

(

p −r
−q s

)

and

Ω̃2
2 =

(

0 σ
σ 0

)

+

(

0 qω1 + rω2

qω1 + rω2 0

)

.

Hence, we can assume Ω̃2
2 = 0. In order to keep the form Ω2

1 =

(

ω2 0
0 ω1

)

,

i.e., in order to have ω̃4
1 = ω̃3

2 = 0, it is necessary to assume either (1): both G11

and G22 are diagonal or (2): both G11 and G22 are anti-diagonal. However, by
the second condition of (C.2), the case (2) does not occur. Hence we can see

that G11 is diagonal: G11 =

(

a 0
0 d

)

, G22 = I2, and G33 = G−1
11 ; followingly,

Ω̃2
1 =

(

aω2 0
0 dω1

)

= Ω̃3
2. Now insert Ω2

2 = Ω̃2
2 = 0 in the second identity

of (C.3) and then we can see that G21 must have the form

(

p 0
0 s

)

and

G32 =

(

p/a 0
0 s/d

)

. By settingG31 =

(

e f
g h

)

, we check the 4-th condition

of (C.2). Then we see that e = p2/(2d), h = s2/(2d), g/a = f/d =: λ. Now we
have seen that Ω̃1

1 can take the form:

Ω̃1
1 =

(

ω1
1 + d log a− pω2 a

dω
2
1

d
aω

1
2 ω2

2 + d log d− sω1

)

.

By the 5th formula of (C.3), we can see

Ω̃1
2 =

(

p
aω

1
1 + 1

a (dp+ ω1
3) − eω2 p

dω
2
1 + 1

dω
2
3 − aλω2

s
aω

1
2 + 1

aω
1
4 − dλω1 s

dω
2
2 + 1

d (ds+ ω1
4) − hω1

)

.
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It remains to see what is Ω̃1
3. A computation shows:

Ω̃1
3 =

(

0 τ̃
τ̃ 0

)

,
τ̃ = 1

adτ + dλ+ λ(d(log d) + ω1
1 + ω2

2 − sω1 − pω2)

+ p2

2adω
2
1 + s2

2adω
1
2 + p

adω
2
3 + s

adω
1
4 .

Thus we have reduced the form of ω. Next, we examin the integrability. By
dω1 = ω2

2 ∧ ω1 and dω2 = ω1
1 ∧ ω2, we can find coordinates (x, y) such that

ω1 = dx and ω2 = dy. Then G11 must be a constant matrix and we may
assume G11 = I2. In this case, we must have ω2

2 ∧ ω1 = 0 and ω1
1 ∧ ω2 = 0 and,

by the formulas ω̃1
1 = ω1

1 −pω2 and ω̃2
2 = ω2

2 −sω1, we can assume ω1
1 = ω2

2 = 0.
Then G21 = 0. Since we saw σ = 0, it holds ω2

1 ∧ω1 = ω1
2 ∧ω2 = 0. This means

that we can set ω2
1 = bω1 and ω1

2 = cω2. The first identity of (C.1) becomes
dω1

1 = bcω1 ∧ ω2 + ω2 ∧ ω1
3 while dω1

1 = 0. This implies that there exists a
scalar κ so that ω1

3 = bcω1 + κω2. Similarly, from the fourth identity of (C.1),
ω2

4 = bcω2 + δω1 for another scalar δ. From the second and the third identities,
we may set ω2

3 = byω
1 + βω2 and ω1

4 = cxω
2 + γω1. Further, σ = 0 implies

ω2
3 ∧ ω1 = ω2 ∧ ω1

4 . Hence, β = γ. Here we look at the formula of Ω̃1
2, which

says that we can make β = γ = 0 by choosing λ appropriately. Now we have a
final form of ω that is given in (4.12) by setting τ = µω1 + νω2. The conditions
relative to dω2

3 and dω1
4 show that µ = byy−κb and ν = cxx−δc. The conditions

relative to dω1
3 , dω

2
4 , and dτ give the three integrability conditions in (4.14). We

thus complete the proof.

Remark C.1 The consideration above works also for the case when the signa-
ture is (4, 2), which occurs in the Lie sphere geometry of surfaces in Euclidean
space. Let t = t(t1, · · · , t6) be a frame of P5 endowed with the inner product
defined by

(u, v) = −u0v0 + u1v1 + u2v2 + u3v3 + u4v4 − u5v5

for two vectors u = [u0, · · · , u5] and v = [v0, · · · , v5]. We assume t satisfies the
orthonormality (t, t) = hL, where

hL =





0 0 −I2
0 I2 0

−I2 0 0



 .

Let QL = {u ∈ P5; (u, u) = 0} be a quadratic hypersurface called the Lie
hyperquadric of signature (4, 2). We assume that the line t1t2 lies in QL and
the conditions (4.15) and (4.16). Then, similarly as in the case of signature
(3, 3), we can find a transformation g with ghL

tg = hL such that the connection
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form relative to the frame gt reduces to

ω =

















0 bdx dy 0 0 0
cdy 0 0 dx 0 0

bcdx+ κdy bydx 0 0 dy 0
cxdy bcdy + δdx 0 0 0 dx

0 µdx+ νdy bcdx+ κdy cxdy 0 −cdy
−µdx− νdy 0 bydx bcdy + δdx −bdx 0

















(C.4)
and, in this case, we have identities

µ = byy − bκ, ν = −cxx + cδ (C.5)

and the integrability condition is

κx = (bc)y + cby, δy = (bc)x + bcx, νx − µy = −δcx − κby. (C.6)

The formulas (C.4)-(C.6) are different from the formulas (4.12)-(4.14) in Sect.
4.8 only in ±-signs of certain variables. It is in [Fe2000b] and [Fe2002] that
the dual correspondence is shown to be possible. To the case where the system
(4.12) describes the image of a projectively minimal surface corresponds the
case where the system (C.4) desribes a Lie minimal surface. A unified approach
to both minimal surfaces was given in [BHJ2002].
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