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By a polarized normal surface we mean a pair (Y,H) of a

normal projective surface Y over € and an ample Cartier

divisor H on it. Define a graded ring:

R

o u° (Y,0 (m(R,+H))) .
m20

et k= K(KY+H,Y) . which is by definition, tr.deg.mR - 1 or
-o in case R={@ . To state the structure theorem, we intro-

duce an example. Let TF_ =P (0 1&0 1 {-e)) and suppose
r P

Eé _ Ye be the contraction of the base

e

ez22 . Let 1
section b, a (~e)~curve , and let £ denote the image of a
fibre f on Eé . Then 1*f = £ + (1/e)b and

n*KY = Kp + (1-2/e)b . It turns out that H, = ef is an

e e

ample Cartier divisor on Ye and we have e(KY + He) = —2He .

e

THEOREM: Iet (Y,H) be a polarized normal surface. Then we

have the following classificatijon:

K Structure of (Y,H) Sing (Y}

{ IPZ,O(I)) o € P2,0(2) ) (Y, H)e 22 smooth or quotient

-0

P1~ bundle with Hf=1 for a fibre f smooth

0 KY + H~0 Gorenstein

1 Conic bundle with K =1 RDP of type A
R 1is finitely generated f-Gorenstein

2

R is not finitely generated not {~Gorenstein




This type of Theorems have been obtained by Sommese [7],
Lanteri-Palleschi [2] for the éase in which Y is smooth and
by Sommese [B] for the case in which Y is nqrmal Gorenstein,
I Qould like to thank A. Sommese for inspiring me by his

preprint [8].

§1 PRELIMINARIES

For the basic results on normal surfaces we refer to [5] and
[6]. A divisor will mean a Weil di&isor. A divisor is said to
be ample if its some positive multiple becomes a very ample
Cartier divisor. We use the intersection theory with
—coefficients introduced by Mumford. We denote by ~(resp.s=)
the linear (resp. numerical) equivalence of divisors. A divisor
D is nef if DC20 for all irreducible curves C and is

pseudoeffective if DP20 for all nef divisors P . We

associate to a normal surface Y a triple (X,w,A) where

m : X —> Y is the minimal resolution and the A is an
effective @-divisor supported on the exceptional set so that
ﬂ*KY = K, + A . By definition, Y is @-Gorenstein if some

X

multiple of KX is a Cartier divisor. A rational double

Y
point will be abbreviated by RDP .

We use the following facts:

LEMMA 1. Let C be an irreducible curve on Y and let C

denote its strict transform on X . Then




(i) EZ;SC2 . the equalitv holds if and only if C does not

meet Sing(yY) ,

(11) KXE:sxyc , the equality holds if and only if C meets
only RDP's in Sing(Y) ,

(iii) (K, + C)Cz~2 , the equality holds if and only if C= B

and C does not meet Sing(Y) .

PROOF: Let A = 7 '(Sing(Y)). (i) By definition (see [51),

7*C = C + 2 where the 2 is an effective @-divisor supported
on A . It follows that G2 = c® + z2gc? . The equality implies
that 2 = 0 so that C does not meet Sina(¥Y) . For otherwise,
€ must meet at least one irreducible component E in A ,

and Z would contain E , because (7*C)E = 0 .(ii) Clearly,
Kx'c‘ = K,C - AC £ K,C . The equality implies that AC = 0 , so

that C can meet only RDP's .(iii) follows from (i) and (ii).
Q.E.D.

LEMMA 2. Let (Y,H) be a polarized normal surface. If

HO(Y,O(KY + HY) = 0 , then Y has only rational singularties.

PROOF: This has been essentially given in [8, Theorem (3.1)].
We sketch a proof. Since H 1is a Cartier divisor, we can write
0 (n*H) oo[M = OKM where the [A] is the integral part of

A . There is an exact sequence:

0+ 0 (Ky#T*H) =+ 0 (R [A] + 7 *H) »upa =0



and so

SO (X, 0 (R +[AT+n*H)) » BO ([AT,0 ) ~H'(X,0 (X +1*H)) -
X [a] X

The hypothesis implies that n°(x,0(xx+{a}-+n*n)) =0
{(projection formula in [5]). On the other hand,
H1(X,0(Kx+ﬂ*H)) = § . Putting these together, we get

HO([A],w{A}) = 0 , and by duality H'([Al,0 =0 . It

(a1’
follows that Y has only national singularities (see {4,
p. 392]).

Q.E.D.

§2 Canonical model

et (Y,H) be a polarized normal surface. We say that (¥,H)
is adjointly minimal {(resp. adjointly canonical) if

(KY + H)C20 (resp. (Ki + H)C>0) for all irreducible curves
C with C2'<0 . For brevity we omit "adjointly". In the termi-

nology of [5] we deal with the pair (Y,K

¥ + H)} .

LEMMA 3. (Y,H) 1is minimal.

PROOF. Take an irreducible curve C with c2'<o . We have
HC21 . If KYCZO . of course (KY* H)C21 . If KYC<O '
then the strict transform € must be a (-1)-curve by Lemma 1.

It follows that KYC?.-1 and hence (KY + HIC20 .

Q.E.D.



An irreducible curve C with C2'<0 on Y is said to

be redundant on (Y,H) if (KY + H)C = 0 .

LEMMA 4. ILet C be a redundant curve on (¥,H) . Then

C meets at most one singularity vy such that

(i) y 1is an RDP of type An for some n ,

(ii) the strict transform C is a (-1)-curve meeting one

of the end components of the chain of (-2)-curves of

In particular, C c¢an be contracted to a smooth point.

PROOF. By the proof of Lemma 3, we have K,C = K.,C =-1, and
by Lemma 1, C meets only RDP's . Note that C is an
exceptional curve of the first kind on Y in the sense of
[6], that is KYC<:O, C2~<0 . Thus, the above description

follows from [6, Example 1.2, see also 8}.

*

Once we know that (Y,H) is minimal, we introduce the

notion of a canonical model as follows. A polarized normal

surface (YG,HO) is a canonical model of ({Y¥,H) if (i)

tYo,Ho) is canonical, {(ii)} there is a birational morphism

¢ ¢+ Y —> Y, such that K, + H = o*(K, +H,) . Then it is known
0 Y Y0 0

that R::RO where R0 is the graded ring defined for {YO,HO)

(cf. [6]). Clearly, (Y,H) 4is not canonical if and only if



(Y,H) has a redundant curve. ILet C be a redundant curve
on (Y,H) , and let ¢ : Y —> Y' be the contraction of C .
Since y' = @(C) is a smooth point, the divisor H' = ¢/ H
is‘again an ample Cartier divisor, and we have

K, + H = w*(KY,+EP) . We say that (Y',H') is obtained from

(Y,H) by contracting a redundant curve C . Continuing this

process, we arrive at a canonical model,

PROPOSITION 1. Let (Y,H) be a polarized normal surface. Then

there exists a canonical model (Y,,H;) of (¥,H) . Further-

more, Y, is @-Gorenstein if and only if so is ¥

.

PROOF. The latter part is clear from the construction.

A morphism of Y onto a smooth curve is called a ruled
fibration if the general fibre is isomorphic to ]E>1 (see [61).

We say that (Y,H) is a conic bundle if Y has a ruled

fibration such that Hf = 2 for a fibre £ .

PROPOSITION 2. et (Y,H) be a conic bundle. Then

(1 kK +mi=o0,

(ii) each singular fibre consists of two irreducible components

and obtained by contracting all (~2)-curves in the

following chain of JP1'_9_ 9_:_1; X :

(~2)=-curves



In particular, Y has only RDP of type A .

PROOF. Let p : Y —> B be the conic fibration of (Y,H) .
We examine the singular fibre. If f is an irreducible fibre
of p ,then f2 = 0 and KYf = -Hf = -2 , and so by Lemma 1,
we have f£= Eﬂ and f does not meet Sing(Y) . A reducible
fibre consists of two irreducible components, because Hf = 2
for a fibre £ . Take a reducible fibre £ = f' + £ . We
must have f'2'<0 and f'ﬁz<0 . Hence, by the minimality of

(Y ,H) , we get (KY + HYf' = (KY + H)Yf" = 0 . Thus, both £’

and f'" are redundant curves on (Y,H) .

We now contract one component of each reducible fibre.
Then we obtain a conic bundle (Y1,H1) with a commutative

diagram:

Y e

»-

g &'p,

Y

P 1

Since every fibre of 91 is irreducible, the above argument
shows that Y1 is smooth. Hence Y1 is a :D1-bundle over

B . To see (i), from K, + H = m*(KY +H,) , it suffices to

Y

1
check it for (Y1,H1) , which is immediate (cf. [2,p.20]).
We infer from the construction (Y,H) —> (Y1,H1) that each

reducible fibre has the form (ii).

QoE-D-



COROLLARY. For a conic bundle (Y,H)

, we have x = 1 except
in the following cases:

kK = ~o 1in case

i

(Y,,H,) (IP1x]P1,p*O (2Yep*0 , (1)) , x = 0 in case
17 1:P1 2.P1 Jondeldibeieabaint

1 1
(Y, ,H,) = either (P xP ,p: 01)1 (2) @ p3 0:92 (2)) ox
(]El»ll—K]E\.l) -

REMARK. (YT’H1) is a canonical model of (Y,H) unless

(Y1:H1) = (F1’-KF.‘) -

§3 PROOF OF THE THEOREM

Applying Theorem (7.4) in [5] to KY + H , we see that KY + H

is nef if and only if KY + H is pseudoeffective. There are

four distinguished numerical types (cf.[3]) : (a) Ky + H
2
(KY + H)Y" = 0 , KY + H¥ O

is not nef, (b) KY + Hm 0 , (c)

(@ (K, + BZ>0 .

[4

PROPOSITION 3., The invariant «

is determined by the

numerical type of Ky + B as:

Numerical Type | a | b | ¢ | & |

e feelolalz]




PROOF. Put P = n*(KY + H) . From Table II in [3], it is

sufficient to consider types (b) and (c). If P is nef and

2

P" = 0 , then PKX = ~P(W*H) £0 . But, in case P(w*H) =0 ,

we would have P=0 . Therefore, if KY + H is of type (c),

then we must have PKX<<0 . It follows from a result in {3]

that k = k{P,X) = 1 . It now remains to show that if

KY + H is of type (b), then « 0 . This is asserted by

the following:

PROPOSITION 4, KY + HEO@KY + H~0 .

PROOF. Suppose that K, + H=0 . It suffices to show that
HO(Y,O(KY+H)) # 0 . Assume HO(Y,O(KY+H)) = 0 . Viewing
—KY-!i, by the vanishing theorem on Y , we get

H1(Y,0Y) = H2(Y;0Y) = 0 (see [5]). As we have seen in Lemma 2,
Y has only rational singularities. Hence x(OX) = x(OY) and
s0 X(OX) = 1 . By the Riémann—Roch theorem and vanishing

results on X , we get

it

dim Hotx,otxx+n*ﬁ)) X (0 (Ky+7*H) )

3R+ H) (7¥H) +X (0y)

1

=‘jl

because K, +7*H = -A and hence (K +ﬂ*H)(ﬂ*H) = 0 . This

X X
contradicts the fact: dim HO(Y,O(KY+H)} 2 dinm HO(X,O(KX+W*H)} .

Q.E.D.
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PROOF OF THE THEOREM, continued.

Type (a): The argument in [2] combined with the Mori-
theory for normal surfaces ([5]) proves the existence of an
extremal rational curve £ such that {KY+H)£»<O . By the
minimality of (¥,H) , we get !;220 . As in [5] we have two

subcases:

L}

(i) p (Y)
(i1) p (Y)

1 and —{KY+H) is numerically ample,

2 and Y has a :m1~fibration, i.e., a ruled

It

fibration of which every fibre is irreducible, and 2

is a fibre.

First, we examine the case (i).Since Y has only rational
singularities (Lemma 2), ~(KY+H) is ample. From a result

of [4], we infer that X is rational. We show that X contains
no (-1)-curves. Indeed, if not, take a (~1)-curve C on X ,
and let C denote the image of C by w . Since p(Y) =1 ,

C can also be a generator of the divisor group of Y with

D—~coefficients. So {KY+H)C~<O . It follows that KYC-<—1

and hence Kiﬁ«:-? , & contradiction. Consequently, X is

isomorphic to one of PZ and Fe (e # -1} , and so Y is
among 2P2 and Y, . For ZPZ, H could be either 0 2(1)
r
or 0 5 (2) . For Y it is easy to verify that H = H_.We
P e e

now consider the case (ii). For any fibre f of the Eﬂ -fi-

bration, we have KYf~<~Hfs'~1 . Using Lemma 1, we conclude

that £ P

1

and f does not meet Sing(Y) . Thus, Y is

a IP ~bundle.
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Type (b): The assertion follows from Proposition 4.

Type (c): As in the proof of Proposition 3, the complete
linear system |mR| for a suitable positive integer m such
that mP is integral defines a ruled fibration ([3]). Take
a fibre £ . Then (KY+H)f =0 and so Hf = 2 . Thus, (Y,H)
is a conic bundle. The structure of 8Sing({Y¥) has been given
in Proposition 2.

Type (d): Let (YO,HO) be a canonical model of (Y,H) .
By definition, KYO+H0 is numerically ample. It is ample if
and only if YO is Q-Gorenstein. On the other hand, as is
remarked for a general setting in [5], we know that R is
finitely generated if and only if KY0+H0 is ample. Therefore,
by Proposition 1, we conclude that R 1is finitely generated

if and only if Y is {-Gorenstein.

Q.E.D.

CONCLUDING REMARK. Given a polarized normal surface (Y,H) ,

we define the genus: g(H} = %(KY+H)H +1 . It is easy to see

that g(H) = 0ex = - and X 1is rational, g(H) = 1e

either k =0 or Kk = -« and X is a IP’vbundle of genus 1.
Our theorem together with the classification of normal Gorenstein
surfaces with ample anticanonical divisors describes the cases
g(H) = 0 and 1 . These cases have been disgussed by

BYdescu [1].
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