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Introduction

This article consists of two parts. In the first section,

we shall establish a method to estimate the energy of harmonie

maps from a non-compact Kähler manifold into other Kähler

manifolds. In spi'te of the il!'portance of establishing such a

method in funetion theory of several cornplex variables, up to

now not much is known about the general method to estimate

the energy of harmonie maps or even holomorphic maps of Kähler

manifolds.

To estimate the energy of harmonie rnaps, our method re-

quires that a given non-cornpact Kähler rnanifold pos-.

such that cf>sesses an exhaustion funetion ~ ~ 0

formly Lipsehitz continuous and ~2 is
00

C

is uni-

strongly hyper

m - 1 convex (m = dim~M) on M relative to the Kähler rne­

tric dS~ respectively (cf. the eonditions (*) and (**) in

Theorem 1) and the eornplex dimension m of M is greater

than or equal to two. Fortunately there are several elasses cf

non-compaet Kähler manifolds possessing such a special exhaus-

tion function.
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From a given harmonie map f: (M,dS~) ~ (N,dS~) from a

non-compact Kähler manifold (M,dS~) possessing the exhaust­

ion function ~ as above into a Kähler manifold (N,dS~), we

induce an integral inequality involving the energy E(f,r) of

f on a sublevel set M(r) = {~ < r} cf ~ (cf. (1.13)), its

8derivative 8r E(f,r) and the integral B(f,r) of the com-

ponent of normal direction cf the differential df of f on

the boundary 8M(r) c {$ = r} (cf. (1. 14)) and Lemma 1. 18 ,

(1.19)). This inequality is induced from an integral formula"

for veetor bundle-valued differential forms on bounded domains

with smooth boundary produeed by Donnelly and Xavier (ef. [6]

and Proposition 1.10) if f is a pluriharrnonie rnap. If f is

a harmonie map, then this inequality is indueed by eoupling

the above integral formula with the semi-negativity cf

Riemannian eurvature of the target manifold (N,dS~). In par­

tieular, we can obtain the integral inequality for harmonie

functions on (M,dS~). This integral inequality plays the

erueial role in this artiele. In fact, from this inequality,

ply the monotone increasing property of

we ean derive two energy estimates for the above

E(f,r)

J?

f which irn-

Here J-! is

the positive eonstant deterrnined by the ratio of the lower

bound of the strong hyper m - 1 convexity of ~2 and the

uniform Lipsehitz constant of $ relative to the Kähler me­

2tric dsM.

For instance, we can obtain the following result as a co-

rollary of our general result (cf. Theorem 1.27).
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Theorem 1

Let A~ ~n be an m ~ 2 dimensional connected closed

submanifold of ~n and let be the restriciton of the

function

(0 (. A).

I n nz = ( z , .•• , z ) € ~ . onto A

Suppose for a given Kähler metric 2
A the numberdS

A
on

Cl defined by

In

(*) Cl .- inf l t:. i (x).-
xEA i=2

is positive where l:.1 ~ t:.
2 ~ ... ~ t:. are the eigen-values ofm

the Levi form of ~2 relative to 2 and the numberdS
A

c 2

defined by

(**)

is finite. (For instance,

Euclidean metric ds 2 ofe

if dsi is the induced metric of

~n, then we can take c = In - 1
1

and

ic

c =2

Then the energy E(f,r) of any non-constant pluriharrnon-

2 2map f: (A,dsA) ~ (N,dsN) into a Kähler manifold

on A(r) = {~ < r} possesses the following

properties.
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The function H(f,r) = E(~rl
Cl

(~ ~ --) is an increasingc 2

function of rand' the following estimates hold

and

H(f,r
2

) ~ H(f,r
1

) ~XP(fr2 B(f,t) dt)
r

1
E(f,t)

inf cl- (x) •
x€A

Moreover the energy E(f,r) of any non-constant harmonie map

• 2 2 . 2f . (A,dsA) ~ (N,dsN) into a Kähler man~fold (N,dsN) whose

Riemannian curvature is semi-negative in the sense of siu (cf.

[22]) possesses the above properties.

In partieular, the energy E(f,r) of any non-eonstant harmon­

ie funetion f on (A,dS~) possesses the above properties.

Rernark 1

In Theorem 1, if we replaee the above

by an m ~ 2 dimensional complete Kähler manifold

with a pole 0 € M whose radial e~rvature i5 non-positive and

2the distance funetion from 0 € M relative to dSM respee-

tively, then the same conclusion as Theorem 1 holds (cf. §1.

Example 4). When dim~A = 1 in Theorem 1, the eondition (*)
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is meaningless. But assuming the condition (**), we can obtain

the above estimates for ~ c 0 and any non-eonstant differen-

2(N,dsN) into any hermitian eomplex

a
ßr E(f,r) ~ B(f,r) for almost allsincemanifold

2tiable map f: (A,dsA)

2(N,dsN)

r (cf. (1.14». The former estimate in Theorem 1 is ealled

the monotonicity formula in [17].

In the second seetio~, as an applieation of the result obtain­

ed in the first section, we shall show Liouville theorems on

non-eompact Kähler manifolds possessing the exhaustion fune-

tion as above under some additional eondition i.e.

a) a non-existence theorem for non-eonstant bounded harmonie

funetions

ß) a Casorati-weierstrass theorem for holomorphie maps

t) a non-existence theorem for bounded strietly plurisub-

harmonie funetions.

The study of these properties 1s deeply related to the

study of global solutions of elliptie differential equations

of second order on non-eompaet manifolds (cf. [ 3], [7], [8],

[9], [11], [12], [16], [31] and so on). One of the typical

methode to study Liouville theorem is what we call Bochner

technique which shows the vanishing of eertain geometrie ob-

ject by eoupling weitzenböck formula with either" a eurvature

eondition or a maximum principle (c f . [29] ). In particular,

this method plays an important role to study Liouville theorem,

on non-compact manifolds with non-negative eurvature
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(ef. [2], [ 4 ], [ 14 ], [ 30] ). But this method is useless to non-

eompaet manifolds with non-positive eurvature. This is a moti-

vation whieh an integral formula for differential forms was

introdueed in [6] to examine the dimension of L2 harmonie

forms on non-compact complete Riemannian manifolds with nega-

tive eurvature (cf. also [5]).

The following theorems show that our method based on en-

ergy estimates for harmonie maps can be used to study Liou-

ville theorem on non-compact Kähler manifolds with (asyrnptoti-

cally) non-positive curvature.

Theorem 2

Let (A,dS~) ~ (tn,dS~) be an rn ~ 1 dimensional con­

nected closed submanifold of lt n provided with the induced

metric

onto A.

* 2t dse and let be the restriction of 11 zll

Suppose the function n (A, r) =Vol(A(r»
2m

r
satisfies

f
()

dt
tn(A,t) = 00 for same {) > 0

Then a) admits no non-constant bounded harmonie

functions.

ß) Let f : A ---+ M be a holomorphic map into a proj ective
\

algebraic variety M with a very ample line bundle L. If the
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Ef(L) :~ (u € lP(f(M,L» : Imf n supp(u) = t/>} has posi-

tive measure, then· f is a constant map.

r) Let f: A --+ N be a holomorphlc map into a complex mani-

fold N. If N admits a bounded strictly plurisubharrnonic

contlnuous function (cf. [18]), then f is a constan~ map. In

particular A admits no bounded strictly plurisubharrnonic

continuous functions.

Theorem 3

2Let (M,dsM) be an m ~ 1 dimensional complete Kähler

manifold with a pole 0 € M and let ~ be the distance func-

tion from 0 € M relative to 2 Then the assertions a) ,dsM •

ß) and T) of Theorem 2 hold for 2 if the radial(M,ds
M

)

curvature of 2 satisfies one of the following conditionsdSM

(i) Iradial curvature at x I ~
(!P (x) +'1) 210g (ep (x) +11)

for a sufficiently small

'1 > e and any x € M.

E:. , o < E:. = E:. < 1,
m,'1

( ii) The radial curvature cf

o ~ radial curvature at

18 non-positive on M and

x ~ - E:. _

cf> (x) 2 log 4> (x)
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e., o < e. = e.
In

< 1 and any

Remark 2

In Theorem 2, it is known that

creasing function of r (cf. [20] ) .

n (A, r)

Moreover

is a non-de-.

n(A,r) i8

bounded if and only if A is affine algebraic. This result i8

due to W. Stell [25]. In this case, the assertions a), ß) and

'1) are more or less known. But in the transcendental case

i.e. n(A,r) i8 unbounded, up to new there i5 only one result

obtained by sibony and Wong [21] in this direction. It is easy

to censtruct examples of A satisfying f~ (tn(A,t»-ldt = m

and being not affine algebraic (cf. [10] §1).

From Theorem 2, if admits a non-nonconstant

f m -1
bounded holomorphic function, then ö (tn(A,t» dt i5 fin-

ite. But we do not know whether for any given continuously in-

A admits a non-constant bounded holo-

creasing function

f~ (tg(t»)-1dt < +m

n(A,r) = O(g(r» and

9 : [0,00] --+ (0,00)

there exists A~ t n

with

such that

morphic function. On the other hand for any given continuously

increasing function h: [ 0 ,(0) --+ (0,00) we can construct

A~ ~n such that n(A,r) = O(h(r» and A adrnits no non-

constant bounded holomorphic functions.

foo -1
still if dimo;A = 1 and ö (tn (A, t) ) dt = m, then it

i5 known that A is strengly parabol io i. e. A actrnits no

"
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non-constant, non-negative and bounded subharmonie functions

of class c2 . This property was proved by Karp (cf. [12] and

also [3]). In acc9unt of the regularization of plurisubharmon-

ic functions on stein manifolds, we do not. know whether A

admits no non-constant bounded plurisubharmonic functions

under the conditions

(cf. [21]).

Remark 3

and J~ (tn(A,t»-ldt = 00

In Theorem 3 , i f dima::M = 1, then it is known that

satisfying the condition (i) or (ii) is conformally

equivalent to the complex plane (a::, dzdz) (cf.- [9] Proposi-

tion 7.6). But in the case dimCM ~ 2, we do not know whether

2(M,dsM) satisfying the condition (i) or (ii) for the sectio-

nal curvature of dS~ is biholomorphic to the m dimensional

complex Euclidean space (a::m,dS;) (cf. [9], [15]. [24]). In,

any case, by Hessian comparison theorem i.e. the estimate of

solutions of Jacobi equations, we may say that Theorem 3 con­

tains the case treate~eene and Wu in [9] Le. Theorem C

(Quasi-isometry Theorem) (cf. [28] and Theorem 2.4).

Moreover it is not so difficult to see that M admits no

non-constant bounded plurisubharmonic functions in the case of

Theorem 3, (ii) (cf. Remark 2.38). Recently H. Kaneko verified

this property in the case of Theorem 3, ( i). His method is

probability theoretic.
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1. Energy estimates for harmonie maps

Let be an m dimensional Kähler manifold with

the metric tensor

dS~ c:z 2Re

m

2 i -jg.odz dz
1.)

i, j=l

Fron now on, we always assurne that M is connected and

non-compact.

On the space of
(I)

c differential forms of

(p,q) type on M, the pointwise inner product i5 defined by

<u,v> =
A B

v P q for u and

The star operator

dS~ 1s defined by

* :. cp , q (M) --+ cm- q , m-p (M) . relative to

*u = c ( ) \" i [1, ···,m] · [1, ···,m]rn,p,q L 5 gn A A 81.g0 B B
Aq,Bp q rn-q p m-p

B A A B
x det(g .•)u p qdz m-q ~ dz rn-p

1.)
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using the star operator, the inner product on CP,q(M) i5 de-

fined by

(u,v) = IM U A * v for u and v € CP,q(M).

The follcwing relation holds

U A * V = <u,v>dvM•

Here dVM is the volume form of

defined by

M relative to and 1s

for the Kähler form

m

l
i, j=l

of

These forrnulae are used to determine the numerical coefficien-

ts cf several integrals and operators which appear in this

article.

Let ~ be a continuous function on M. Throughout this

section, we assurne the following conditions on ~

(1.1) is of class
00

C

(1.2) ~ is an exhaustion function of M i.e. each sublevel

set M(r) := {~<r} is relatively cornpact in M for r ~ o.
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t has only non-degenerate critical points outside a

compact subset K. of M.

Remark 1.4 The condition (1.3) i8 assumed to avoid cornplicat-

ed discussions and i8 sufficient for our purpose.

Under the condition (1.3), all critical points of ~ on M\K.

are isolated. Moreover if r i8 a critical value of ep,

r > r* := sup ~(x), then by (1.3), 8M(r):= {t = r} 1s the
x€K*

union of a 2m - 1 dimensional submanifold made up of all the

non-critical points in 8M(r) and a finite set of critical

points. Let x € 8M(r) be a non-critical point of ~. The vo-

lume element dS r of 8M(r) near x i8 defined by

(1.5)

We set

d!P
=~,.. dS r

. dSM

(1.6) Ca}

r

dS
._ r
.-~

dSM

For s tu € C ' (M), we denote by

the left multiplication operator by u and denote by

e(u)· : CP,q(M) ~ cp-s,q-t(M) the adjoint operator of e(u)

relative to the inner product ( , ) i.e.

e(u) * = (-1) (p+q) (s+t-l) *e(u) * on CP,q(M).
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has only non-degenerate eritical points on

M\K* ' stokes theorem holds on M[r] := {cf> ~ r} for any.

00

For a C differential 1 form ~ on M, we .have from

( 1 • 5 ) and ( 1 • 6 )

(1.7) f
M(r)

*d*~ = f e(d<P) ~w raM (r) .,
for any

Here if r is a critieal value of cf>, then the integral on

the right hand-side is taken over the non-critical points of

aM(r).

For a given
00

C differential form

cp =
m

l i
CPidz

i=l
d-zi+ cp.

1

on M, we consider the tangent vector on M

(resp. VI)

defined by

m m
1 \ J1 • \ T.o = L 9 'PT and 0

1 = L g 1J
'I>' • We denote by

j=l J j=l ]

the i-th component of the covariant differen-

tiation of type (1,0) (resp. (0,1» relative to 2dsM. Since

m
\ i id*cp = 2( L via + vIa )dvM, we have from (1.7)

i=1
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m

2 f (l vie i + VIeI)dVM) ~ J e(d~)*~w
M(r) i=1 ßM(r) r

Let f : be a differentiable map into

an n dimensional Kähler manifolds

n

tensor dS~ = 2Re l
a,ß=1

with the metric

Let TM and TN be the complex tangent bundles of M

and N respectively. Since the complexified differential df

i *. iof f s regarded as an f TN-valued d~fferent al 1-form, we

obtain an f*TN 1 '0-valued differential (1,0) form Bf and

an * 1 0 i ·f TN ' -valued d fferent~al (0,1) form Bf by composing

the mapping n1,O 0 df : TM ~ TN1 ,0, n1,o: TM ~ TN1,o be­

ing the projection, with the inclusions TM1,o, into TM and

TMO,1 into TM respectively (cf. [7]). Then the form ßf

(resp. af) is represented by (f~) (resp. (f~») tocally
~ 1

where
ara

f~ = and so on.
~ ßzi

The energy density e(f) cf f i5 defined by

e(f) := e' (f) + elt(f)

and elt(f)
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We denote by ~(~) the Levi form of

f*TN1,0~valued differential (1,0) form

2
~ = ~ • We define

~(~) (af) and an

(0,1)f*TN1 ,0-valued differential

lows:

m

~('1') (af) = ( l
i, j , k=l

(1.9)

m

~(\lI) (af) CI ( 1
i,j,k=l

as fol-

Here lJI ....
1)

(resp. VO,I) the covariant differen-We denote by V1 ,0

tiation of type (1,0) (resp. (0,1» induced from the con-

* * 2 * 2nection on T M 0 f TN relative to dS
M

and f ds
N

• The ex-

terior differentiation 0
1

,0: CP,q(M,f*TN) ~ c P+1 ,q(M,f*TN)

(resp. 0
0

1: CP,q(M,f*TN) ---+ cp ,Q+1(M,f*TN» is defined by,
V1 ,0 (resp. VO,l). We denote by D~,O: CP,q(M,f*TN) ---+ cp-1,q

(M,f*TN) (resp. D~ 1 : CP,q(M,f*TN) ~ cp,q-l(M,f*TN» the,
formal adjoint operator cf 0 1 ,0 (resp. 0 0 ,1) (cf. [7]).

* (0denotes the space of f TN-valued C

differential forms cf (p,q) type.
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2 2Let f: (M,dsM) ~ (N,dsN) be a differentiable map into

2
a Kähler manifold (N, ds

N
). Then the following two formulae

hold (cf. [ 6], [ 26] ) •

Proposition 1.10

(i) For any non-critical value r of ~

(1.11)

f [2{Trace 2!l(I/I)e(f) - <!l('1') (af) ,af> * -<!l (1/1) (af) ,af> * }
M(r) dSM f TN f TN

* * * - - *-+<e(Bw) af,Dl oBf> * + <00 laf,e(BW) af> *
, f TN' f TN

( ii)

(1.12)

is the pcintwise inner product on the spacewhere <, >f*TN

cP,q(M,f*TN) cf *f TN-valued
co

C differential forms cf

Riemannian curvature tensor of

(p, q) type relative to and N
R - ­aß '10

is the
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Praof

(i) We consider the following differential 1 forms

'P
1

:= e ' (f)allt

1.#'3 := elf (f)äw

Using 'I'k' we define the tangent vecotors

as before. We choose holomorphic normal coordinate system~

arcund x € M and around y = f (x) ,€ Ni. e.

x and y respectively. using these coordin-

g."'T" (x) = 6 .. ,
~J ~J

respectively.

2dS
N

vanish at

d9iJ(x) = 0 and haß(y) = ÖaßI

Then all the Christofell symbols of

dhaß"(Y) = O·
2dS
M

and

ate systems, the integral af the left hand-side cf (1.11) can

be cbtained by calculating

m

\ V~(Sli - si + si si
i'l ~ 2 3 - 4)

point-

wise (cf. [26] Proposition 1. 14) • SUbstituting

8 1 - 8 2 + 8 3 - 8 4 and ~1 - '1'2 + ~3 - ~4 into the left hand­

sid~ and right hand-side of (1.8) respectively, we obtain the

formula (1.11).
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(ii) For any point x € M and y = f (x) E N, we fix the

follows from a routine

vanish at

systems.

y. Using

y

the

and

all

x

at

Then

a 8-h ­
'1 0 aß

above holomorphic normal coordinate

Christofell symbols of dS~ and dS~
Nrespectively and it holds that Raß16 =

these properties, the formula (1.12)

calculation.

q.e.d.

We denote M(r2 ,r1 ) = {r1 < ~ < r 2 } for

0* : = in f ~ (x) and·' M ( r , o. ) = M ( r)
xEM

for

For a differentiable map

Kähler manifolds, the energy E(f,r2 ,r1 ) of

is defined by

f

2
(N, dSN) of

on M(r2' r 1)

(1.13)

We set E(f,r) = E(f,r,O.) for r > 0•. For same positi-

ve constant Co > 0, we set

for r > r •.

If r 1s a critical value of ~, then the integral on

the right hand-side of (1.14) is taken over the non-critical
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points cf 8M(r). It i8 easily verified that B(f,r) is fin-

ite and a continuous funetion of r > r* (cf. [8] p. 275).

of Kähler manifolds i8 called harmonie if

Definition 1.15. A differentiable map f :
2 2(M,dsM) ~ (N,dsN)

f satisfies the

following equation

and f is called pluriharmonic if

Clearly, any pluriharmonic map of Kähler rnanifolds is harmonie

and any holomorphic map of Kähler manifolds is pluriharmonic.

From now on, we assurne that the eomplex dimension m of

M i8 greater than or equal to two and rnoreover aS5urne the

following conditons on ~.

(1.16) the constant

m

c
1

:= inf \' c.(x)
x€M\K** i~2 1

i5

positive, where cl ~ 1:.
2 ~ . . . ~ c are the eigenvalues ofm

the Levi form of 'l1 4»2 relative to 2 and K** is= dSM a

compact subset of M.
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(1.17) the constant

is finite.

We show the following lemma which plays the very irnpor-

tant role in our article.

Lemma 1.18

Let be an m ~ 2 dimensional conneeted

non-compaet Kähler manifold and let be a function

satisfying the conditions (1.1), (1.2), (1.3), (1.16) and

(1.17) .

into an n dimensional Kähler manifold

pluriharmonic(i) For any

f :
2 2(M,ds
M

) --+ (N,dsN)

2 and(N,dsN) any

non-constant

non-critical value r of

map

4-,

r > max(rO,r*), the following integral inequality holds

(1.19) a
r ar E(f,r,ro) - ~E(f,r,ro) t rB(f,r)

for
cl

and 1 in B(f,r) (cf. (1.14», whereJ.L = Co :c::

c
2

c
2

r o > r**
.- sup 4J (x) if K•• '#- q, or r o = 0* if K** = q,..-

XEK.*

dimensional Kähler mani-

whose Riemannian curvature

For map

i5 serni-ne-

harmonie

NR-­aß'io

nan

non-constant

into

( ii)

f : (M,dS~) --+

2fold (N,dsN)

gative in the sence of siu [22], i.e.
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(1.20)

for any y € N and eomplex numbers Aa
, Bß , C~ and DÖ

, the

integral inequality (1.19) holds for any non-critieal value r

of <P, where if

Proof

In the case r o > 0*, we consider that r o is a fixed

non-critical value of <P. To show the inequality (1.19), we

should apply the integral formula (1.11) to the domain

M(r,ro) for any non-eritical value rand the fixed non-eri­

tieal value r O cf <P, r > r O > 0*. Sinee M(r,ro) has two

boundaries 8M(r) and 8M(ro)' in this ease two boundary in­

tegrals appear in (1.11). But the 1eft hand-side of (1.11) i5

dominated by the boundary integral on 8M (r) because the

boundary integral on

Schwarz inequality.

i5 non-negative by Cauchy-

2 2Let f: (M, dSM) --+ (N, dsN) be a non-constant pIuri- .

harmonie rnap of Kähler manifolds. Then f satisfies the fo1-

lowing equations:

(1.21)
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If the cornpact set K.. (cf. (1.16» i5 empty, then we set

r
O

~ 0 •• Otherwise we fix a non-critical value r O cf tP,

By (1.11), (1.21) and the above consideration, we have

for any non-critical value r > max(ro,r*)

(1.22)

For any point x € M\.K* * and y = f (x) € N, we choose

local ccordinate systems (Zi) arcund x and (wa
) around y

so that 9f]"(X) = ö ij ' .'l'ij(X) = ~i(X)Öij and. haß"(Y) = öaß

respectively. Frorn (1.9) and (1.16), we have at x

n In m

= 1: 1: ( 1: e. (x) - ~. (x) ) ( If~ (x) I2 + If~ ( x) I2 )
a=1 i=1 j=l J ~ 1
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Then the inequality (1.19) follows from (1.14)

( 1 • 17), ( 1 • 2 2 ) and (1 • 2 3) •

Next let be the non-eonstant

harmonie map of Kähler manifolds given in (ii). Then f sa-

tisfies the following equations

(1.24)

If the eompaet sets K* are empty, then we set

r o = 0 •. Otherwise we fix a non-critical value

r o > max(r*,r**).

of <P,

since Da Ißf = D1 aaf (cf. [26] (1.8», by (1.12),, ,
(1.24) and integration by parts, we have for any r ~ r o

(1.25)

On the other hand, by (1.3) and Fubini theorem, we have
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(1.26)

(e(aW)af,DO,laf)f·TN~M(r,rO)+ (D1 ,08f,e(8W)8f)f*TN,M(r,r
O

)

combining (1.20) with (1.25) and (1.26), we ean see that the

integral (1.26) is non-negative. Henee from (1.11), (1.24) and

the non-negativity of (1.26), we obtain (1.22) for the harmon-

ie map f. Therefore'we ean obtain the inequality (1.19) simi-

larly.

q.e.d.

From Lemma 1.18, we obtain the following energy estimates

for harmonie maps.

Theorem 1.27

2
Let (M, dSM) be an m ~ 2 dimensional connected non-

eompact Kähler manifold possessing a function 4> which sa-

tisfies the conditions (1.1), (1.2), (1.3), (1.16) and (1.17)

is an increasing function of

functionthe

Kähler manifold

f:

dimensional

r > max(ro,r.) ,

an ninto

and any

E(f,r,ro )
H(f,r,ro ) :=

(i) For any non-constant pluriharmonic map

2 2(M,ds
M

) ~ (N,ds
N

)

2(N,dsN)

rand the following estimates hold
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(1.28)

for any r 2 > r 1 > max(rO,r*)

or r O = 0* if K** = ~

where r 0 > r **

(ii) For any non-eonstant harmonie rnap frorn into an

n dimensional Kähler manifold whose Riemannian eurvature is

serni-negative in the sense of siu, the same conclusion as (i)

holds for any r > r o and r 2 > r 1 > r o > max(r*,r**), where

r o = 0* if K* = K•• = ~.

In particular, the energy E(f,r,ro) of any non-constant

harmonie function f on (M,dS~) satisfies the above proper­

ties cf (i).

Proof

We set ourselves in the situation of Lemma 1.18. In the

case (i), we have only to show the estimates (1.28) and

(1.29) .

For any ncn-critical value r cf ~,

have fram (1.19)

(1.30)
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Since the set af critical values of ~ is discrete, in-

~egrating (1.30), we abtain (1.28).

since E(f,r,ro) > 0 tor any r > r o (cf. [19] Theorem

1), we have from (1.19).

(1.31) ~ + B (f, r) s: ' a
r E(f,r,r

o
) 8r logE(f,r,ro) .•

Hence we obtain (1.29) by integrating (1.31). The case (ii) is

proved quite similarly.

q.e.d.

Remark 1.32

In Theorem 1.27, when we want to estimate the energy of a

cf cornplex

2
dSM.

1

i8 Kähler outside a compact subset of Mi from the observa-

2 2given holomorphic map f: (MI,dsM) ~ (M2 ,dsM )
1 2.

manifolds, it is sufficient to assurne that the rnetric

tion in the proof of Lemma 1.18. Moreover if ~ > 1, then it

i9 easily verified that E(f,r)j(r + 1)~ (i.e. r O = 0.> is

an increasing function cf

*number r.

•r ~ r tor same sufficiently large

We call the function ~ in Theorem 1.27 a special exhaustion

function of M relative to 2dsM• Here we point out same exam-
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pIes of Kähler manifold possessing such a special exhaustion

function.

Exarnple 1. An m ~ 2 dimensional complex Euclidean space ~m

with Euclidean metric 2dSe has a special exhaustion function

and

this

and

1 m Inz = (z , .•• , z ) € ~ •. In

Cl = In - 1

1
i.e. c 2 = '2on

11 zll = j l~=l I zi 1
2

,

(al ::::r v'=Iaaep2,
eby

IB4l1 2 2 _ 1
ds 2

e

Hence ~ = 2m - 2. Moreover we can obtain (1.28) and (1.29) by

ease,

cf> = IIzll,

equality.

Example 2. Let (A,dS~) ~ (~n,dS~) be an In ~ 2 dimensio-

nal connected closed submanifold of a:;n provided with the

indueed metric

i i i(z ) = (w - a ),

2 2dSA = t*dse • If necessary, translating

1 n ~n\A th ta = (a , ••• ,a ) € ~ , we may assurne a

the restrietion cf> of IIzl1 onte A has only non-degenerate

eritieal points. cf> is a special exhaustion function relative

te ds
A
2

• In fact we have (JA = ../-1 aaep2, c = m - 1 c = 11 ., 2 2

and K* = K** = ~. Hence ~ = 2m - 2.

Since every stein manifold S can be realized as a clo-

sed submanifold of some a;n by a proper holomorphic map

h . s e:.-... a;n S has a special exhaustion function. ,

* rnetric 2 * (ds 2 )~ = h (lIzll) relative to the Kähler ds = h and
S e

Jl = 2m - 2 if dirna;S ~ 2.
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Example 3. Let M be an m ~ 2 dimensional strongly pseudo-

convex manifold and let j : M~ R be the Remmert reduction

of M. Since R 18 a normal stein space with finitely many

isolated singularities, we can embed R into same ~n by a

proper holomorphic map h: R ~ Cn. We set

•4» = ( h 0 j) ( 11 z 11 ). S ince j is biholomorphic outsiqe a com-

2pact set of M, ~e can construct a hermitian metric dS M on

. ,-;;--2
M whose fundamental form w

M
can be written w

M
= v-laa4> .

outside a compact subset K. (:= K•• ) of M. Hence ~ is a

special exhaustion function of

J.L = 2m - 2.

M relative to and

Example 4. Let be an rn ~ 2 dimensional complete

K~hler man1fold with a pole 0 € M 1.e. exPO: TMO ~ M 15

be the distance function from

on

4J i5 an exhaustion function

a diffeomorphism and let tZ>

2o € M relative to ds
M

• Then

and satisfies 1atZ> 12 ;" .!2 . 2
dSM

M\{ O} i.e. 1. c =-
2 2

and

2K. = ~. If the radial curvature of dSM 15 non-positive, then

I/J = 4>2 i9 a C
OO

str1ctly plurisubharmonic function on M

1.e. K** = t/J. Moreover c = m - 1 (cf. [9] Propositions
1

1.17 and 2.24) and so Jl = 2m - 2. Hence ~ 1s a special

exhaustion function of M relative to 2 Moreover in thisdsM·

case, it should be noted that 4J is a special exhaustion

function of M relative to the Kähler metric induced from

aa4J 2 and Jl = 2m - 2.
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Though according to each example, we can restate Theorem

1.27, we omit the detail here. In the present stage, Theorem 1

stated in the introduction is clear.

Rernark 1.33

Originally Donnelly and Xavier established some integral for-

mula for differential forms with compact supports. But we ap-

plied their forrnula to vector bundle-valued differential forms

on bounded domains with smooth boundary. By the same way, we

can establish energy estimates for harmonic· functions on

Riemannian manifolds with certain exhaustion function. But to

establish such an energy estimate for a harmonie map

f : (M,dS~) ~ (N,dS~) of Riemannian manifolds, we should as­

sume not only the non-positivity of Riemannian curvature of

2 2dSN hut ~lso the non-negativity of Ricci curvature of dSM.

Remark 1.34

From the method used to induee the integral inequality

(1.19), we can also induee the following equality and inequa-

lity which are used to show the analyticity of harmonie maps

respectively.

1) Let f: (M,dS~) ~ (N,dS~) be a harmonie rnap of compact

Kähler manifolds. Then i t holds that (cf. (1. 12), (1.24) and

(1.25»
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(1.35)

:::::I -

2) Let DeM be a bounded domain with smooth boundary an

defined by a
(X)

c strictly hyper m - 1 convex function $

on a neighborhood of an on an m ~ 2 dimensional Kähler

manifold

and 6

2
(M,dSM)~

such that

Then there exists positive constants C

(1.36)
- '2

5: C f - 2 dSlIafll n (6) [abf] TCWiT
an M

for any harmonie function f on D which is of Cl elass on

n, where D(6) = { -6 < ~ < O} and

(by Lagrange equality).

The formula (1.35) yields the alternative proof of the analy-

ticity of harmonie maps of compact Kähler manifolds and the

formula (1.36) implies that f i5 holomorphic on D if

abf = 0 on an i.e. f satisfies the tangential Cauchy-Rie­

mann equation on aDe On those topies, the reader should be

refered to [1], [22], [23].
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2. Liouville theorems for harmonie maps

In this seetion, first we shall show two Liouville theorems

for harmonie maps. Later using these theorems, we shall give

the proofs of Theorems 2 and 3 stated in the introduction.

We first state the following theorems.

Theorem 2.1

Let be an m ~ 1 dimensional connected non-

cornpact Kähler manifolds possessing a function which

satisfies the conditions (1.1), (1.2), (1.3), (1.,16) (here we

volume of M (r)

set c = 01
if m = 1) and (1.17) and let Ver) be the

2relative to dS
M

• suppose there exists a con-

tinuous non-decreasing function g: [0,00) ~ (0,00) such that

(2.2)

and

fOOö dt ~ co
tg(t) for some ö > 0

(2.3) 11m sup n (M, r) < +co

r-+CJ) 9 (r)

for n(M,r) .- Y1!:l and
Cl

Jl =.-
~+2 c

2

Then a) admits no non-constant bounded harmonie

funetions.
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ß) Let f: M --+ N be a holomorphic map inta a proj ective

algebraic variety N with a very ample line bundle L. If the

set Ef(L) := {a € IP (f (N,L» : Imf n supp(a) =;} «a) is the

divisor defined by 0) has positive measure, then f is a

canstant map.

1) Let f: M --+ N be a holomorphic map inta a cornplex mani-

fald N. If N admits a bounded strictly plurisubharrnonic

continuous function in the sense of Richberg [18], then f is

a constant rnap. In particular, M adrnits no bounded strictly

plurisubharmonic continuous functions.

We introduce the following functions 9n (n ~ 0) defin-

n
ed by 9 n (r) := TI L. (r), Lo (r) - 1, LI (r) = log r and

i=o ~

Li +1 (r) = Li(log r) for i ~ 1. We should note that

00 dt
f 1n t9n (t)

= co for any n ~ 0 and same 1 » o.n

Theorem 2.4

Let be an m ~ 1 dimensional complete Kähler mani-

fold with a pole 0 € M and let ~ be the distance function

fram o relative to 2dsM. Suppose there exists a continuously

increasing function h: (r.,co) --+ (1,00) such that
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1.
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are the eigenvalues of the Levi form of

2
dSM and

(2.6) 1im sup
r-+OO

dt
th (t) )

for some n ~ o.

Then the assertions a), ß) and ~) of Theorem 2.1 hold for

the above

Remark '2.7. In Theorem 2.4 from the condition (2.6), h(r) i5

unbounded. When dt < +co
th(t)

i.e. n = 0, the assertion a)

has been verified in same cases (cf. [13], [28]).

be a non-constant bounded

Proof cf Theorem 2.1

a) Let f: (H, dS~) -0+" (a:;, dzdz)

harmonie function 1.e. AMf == 0

same C > o.

and o ~ I f I ~ c < +00 for

We set ourselves in the si~uation of Lemma 1.18, (ii).

First we obtain the following inequality.

(2.8)
2 a

E(f,r,rO) ~ C ar Ver) B(f,r)

for any non-critical value r of ~, r > r o and c > o.

By the harmonicity of fand Stokes theorem, we have
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*2E(f,r,rO) ~ (df,df)M( ) = f <f,e(d~) df>w
r 8M(r) r

by the boundedness of Ifl

by Chauchy-Schwarz inequality

Hence we have (2.8).

By (2.3), we have

l-
a 2

~ c 4 (ar V(r)B(f,r» ·

(2.9) *for any r > r 1 > r o

We set

we have

H(r) := for r > r o. From (1.30) and (2.8),

a a
H(r)2 ~ c ßr v(r)arH(r)

~

Hence we have

(2.10)

By Chauchy-Schwarz inequality, we have
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(2 .11)

By (2.9), we have

(2.12)

for any

From (2.10), (2.11) and (2.12), we have

(2.13) 1

*for any r 2 > r 1 > r 1 • We consider a sequence {rn> nll so

*that r n+
1

= 2r
n

and r
1

= 2r1 . SUbstituting r 1 = r n and

r 2 = r n+1 into (2.13), we have

(2.14)

for any n ~ 1.

1 .

Hence we have from (2.14)
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This contradicts to (2.2).

ß} Let N be a projective algebraic variety with a very amp-

le line bundle L. We assume that N is reduced and irreduci-

ble. The space f(N,L) of global sections of L is a finite

dimensional vector space. We set V:= f(N,L) and

dinta;V = n + 1.

Let h: M -J N be a holomorphic map into N so that

Eh(L) := {u € Wn(V) : Im h n supp(a) = 4>} «(0) 1s the divisor

defined by the section 0) has positive measure in W (V). Wen

shall induce a contradiction by assurning that h i5 non-cons-

tant.

since L 18 very ample, we have an ernbedding

* *= IP (V )
n

*IP n (V ),

IP (V)
n

and

dimensional projective spaceninto the*j : N c:.......... W (V )
n

* *Wn(V) (V i8 the dual space of

the hyperplane bundle over

V). We consider the holo-

*. .*morphic map f:= j 0 h : M -J Wn(V ). S1nce L = J H (H 1s

*(Pn(V))

*(the dual projective space of Wn(V )), setting Wn =

we may assurne that f M -J IP 1s non-constant and
n

Ef = {f € W* . Imf n supp(f) = 4>} has positive measure in
n .

* this assumption, show the estirnateIP n· Under we have only to

(2.8) in account of the proof of a).

"
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Let € IP
n (resp.

be the homogeneous

and

We denote

a E IP
n

coordinates of

*W ).
n

the Käh1er form

for

*w )

(resp.

(resp.

W
n

n

\ la .1 2

i'O J.

w

211011 =and

n

<a,f> = \ 0 fi
i~O i

, 0 1 n *f = (f : f : ... : f ) € IP )n
*IP n (resp. Wn ). We denote by

of the Fubini study metric of

* *f € W • We define a positive function A .on IP x IP byn ,n n

A(a,f) ._ lIallllfll
·- 1<a, f> r for"' a € W

n
and *f € IP •n

It i8 easily verified that the function A satisfies the f01-

lowing properties:

(ß .1) For any a € ~ , the functions
n

log A (a, ) and

A(a, ) ~ 1 are integrable on *~
n and

f *n:= log A(a,f)w
f€(P~

*nA(a,f)w

are positive constants not depending on a E lP
n

*k(w
k

= A *w

and so on) .

(ß • 2) For any subset *E C IP
n

with f *n
E w > 0 if

f(8M(r» n supp(f) = ~ for any f € E, then the functions
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log f*A and f*A are integrable on 8M(r) x E

1s the hyperplane defined by <o,f».

(Bere (f) .

(ß.3) There exists a positive constant c* not depending on

*(a,f) € W x W such thatn n

la log A (a , f) I ~ C*A (0 , f )a w

for any *f € [p
n

and any o € IP \.supp(f) ..
n

Using these properties of A, we show the estimate (2.8)

for f: M~ W .n

We set *n By assurnption, have > 0 .. For11 .- f w we 11.- .
Ef

* itany f € Wn' holds that

(2.15) on W \.supp (f) ..
n

Here d = i(8 - a)/2. We set ourselves in the situation ofc

Lemma 1.18, (i). Since f is holornorphic, for any f € Ef

and any non-critieal value r of ~, r > r o'

E(f,r,ro) (e = c m > 0)

by (2.15)

by Stokes theorem

f dd log * rn-I
~ 2c f A(o,f) A. W

M(r) c M

f d log * m-I
= 2c f A(a,f) A. W

aM(r) C M
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by Chauchy-Schwarz inequality

~ c 3 f Ia log A(f ( z) , f) I Ie (84) ) *8 f I f*TIP W
aM(r) a W n r

by (13.3)

w
r

Hence by (ß.2) and Fubini theorem we have

11 E(f,r,ro) ~ f (f A(f(z) ,f)w*n) le(84)) *8fl *
8M (r) fEEf"' f TIP n

by (/3 .1)

Therefore applying Chauchy-Schwarz inequality to the

right hand-side, we have (2.8).

~) Let N be a complex manifold possessing a bounded strict-

ly plurisubharmonic continuous function 'J1 in the sense of

Richberg [18]. By the approximation theorem [18], Satz 4.2, we

may assume that ~ 18 cf class
00

C and bounded on N. Then

N admits a Kähler metric whose Kähler form wN can be

wr1tten as follows:

There exists a
Q)

C function )( on N such that

(i)
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(ii)

In fact, we may assurne sup .." (x) = o. We set
x€N

Then ~ ~ A ~ 1 and -A is strietly plurisubharmonic on N.

Hence )( := - log A is strictly plurisubhar~onic and

aa~ ~ a~ A a~ on N. Hence the assertion (~.1) has been veri-

fied.

Let f 2 . 2
be non-constant holomor-. (M,dsM) --+ (N,dsN) a.

phie into 2 Then using (1,1), obtain the.map (N,dsN)· we can

estimate (2.8) for f sirnilarly to the case ß) •

This completes the proof of Theorem 2.1.

Proof of Theorem 2.4

To show this theorem in the case m l 2, we need to

modify the way of energy estimates for harmonie maps in the

first secticn.

We take a value cf with so that

h (r0) ~ 2. First we show the following energy estimates for

harmonie maps which are trivial in the one dimensional case

(cf. Remark 1 in the introduction).

f :

For any non-constant pluriharmonic map

2 2(M,dsM) --+ (N,dsN) into a Kähler manifold and

any r > r 1 > r o' it holds that
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2m-2 r dt
(2.16) r exp(~f(r) - (2m - 2) f th(t) ~ cE(f,r,ro)

r
1

for
r

:= f B(f,t) dt (co =
E(f,t,ro)r

1

if m = 1 er

if m ~ 2).

Moreover the same estimate as

nen-constant harmonie function., f on

(2.16) . holds

2
(M,dsM) •

for any

We have only to show the case m ~ 2. Let

f : be the non-constant pluriharmonic map

as above. We set .

:= f (1 - h~~»e(f)dVM
M(r,ro)

for any

5 ince Ia~ I~ == ~ on M\ {O}, by (1.22), (1.23) and (2.5), we

have for any r > r o

rh(r) a
( 2 • 1 7 ) ( 2 m- 2 ) E* (f , r , r 0 ) ~ h ( r) -1 ar E* (f , r , r 0) - 2 rB ( f , r) •

since h(ro) ~ 2, we have fram (2.17)

(2.18) (2m - 2) (! - 1 ) + B(f,r) ~ a log E*(f,r,ro)
r rh(r) E.(f,r,ro) ar

for any r > r o .
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sinee E*(f,r,ro) ~ E(f,r,ro)' from (2.18), we obtain (2.16)

for any r > r 1 > r O• The proof of (2.16) for harmonie func­

tions is now clear in view of the proof of Lemma 1.18, (ii). ,

Next we need the following estimates.

(2.19)

(2.20)

for any

a 2m-1 r dt
arV(r) ~ e 3 r exp(2m J th(t))

r
1

By a standard ealculation (cf. [8] p. 273-274), we have

(2.21) = f
aM (r)

- A 4>wM r

m

for A =-4.2. gJiai8.,.. by the Kählerity of
M l,J=l J

Id~IM = 1 on M\{O}, by the assumption (2.5) and

have for any r > r o

Hence we have (2.19).

Applying ~ = d~2 to (1.7), we have

2dsM. Since

(2.21), we
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(2.22)

By the assumption (2.5),

same positive constant. since

(2.20) •

-A
M

<P 2 is bounded from below

Id~IM =1 on M\{O}, we have

At the present stage, we ean begin the proofs of a), ß)

and J).

a) Let f be a non-constant bounded harmonie function on

2(M,dsM). Then we can obtain the following two inequalities.

(2.23)

.(2.24)

for any

2 B
E(f,r,ro) ~ C3 Br Ver) B(f,r)

Here n(M,r) .-~ (2.23) is nothing hut (2.8). Hence we.- r 2m •

have only to show (2.24). Since ~ is a uniforrnly Lipschitz

continuous exhaustion funetion on M, by starnpaecia's inequa-

lity (cf. [27] Theorem 1.2), we have

es 2
(2.2S) (df,df)M(r) ~ 2 f Ifl dVM for any r > O.

r M(2r)
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Sinee Ifl is bounded, we have (2.24) from (2.25).

From (2.6), (2.16), (2.19) and (2.23), we have

Henee we have

~ B(f,r)
E(f,r,ro) for any

(2.26)

From (2.26), we ean obtain the following assertion induetive-

ly.

There exists positive eonstants {C(k)}o~k~n and a

quenee of real numbers {r(k)}O~k~n' r(k) < r(k+1)

se-

and

such that

for any r > r(k) and 0 ~ k ~ n.

Finally we obtain

(2.27) C(n)log r ~ ~f(r) + 0(1) for any r > r(n).

On the other hand, fram (2.6), (2.16), (2.19), (2.20) and

(2.24), we have
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From (2.27) and (2.28), we obtain a contradiction.

ß) We set ourselves in the situation of the proof of Theorem

2.1, ß). In account of the proofs of Theorem 2.1,ß) and Theo-

rem 2.4,a), we have only to show the estimate (2.24) for the

holomorphic map f: M~ ~n in the proof of Theorem 2.1,ß).

By h(ro) ~ 2 and (2.5), ~ is subharmonie on M'M(ro ).

For any f € Ef and any r > r O'

r
f E(f,t,ro)dt =

r O

The last step is done by Stokes theorem and the sUbharmonicity

of ~ on M(r,ro ). Using (ß.l) and (ß.2), we have
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(2.29)

for any

Since -A <p
2

M
is bounded from above by (2.5), from (2.22) and

(2.29), we can obtain (2.24) for

This completes the proof of ß).

f: M--+IP.n

~) We set ourselves in the situation of the proof of Theorem

2.1,~). We have only to show t~e estimate (2.24) for the holo-

morphic map f --+ in the proof of Theorem

2.1,~). But this is done by the same procedure as the case ß)

in account of (~,1).

This completes the proof of Theorem 2.4.

Proof of Theorem 2

since n(A,r) = V(A(r»/r2m (~ = 2m - 2) is a continuously

non-decreasing function, Theorem 2 follows from Theorem 2.1

immediately.

q.e.d.

Proaf of Theorem 3

Ta prove this theorem, we should estirnate the eigenvalues cf'

the Levi form of ~ = ~2 relative to dS~ by using Hessian

comparison theorem.

4
(1) We put 11 = e and fix a positive nurnber fS* with

o < 8fS* < (4m-2~(11+1) • We set fS = 8fS 1 for some constant fS 1
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with 0 < ~I ~ ~*. We consider a

k l : [O,~) ~ (O,~) defined by

<0
C function

We assume

2
8 (r+TJ) log (r+TJ)

(2.30) Iradial curvature at x € M, ~(x) = r I ~ k1 (r)

for any r ~ o.

Next we consider a
0)

C function k 2 : [0,<0) ~ (0,00) defined

~ (1 _ 1 )
2(r+TJ)21og (r+TJ) log(r+TJ)

We consider the solutions

Jacobi equations:

and of the following

ftl(r) =
1

fll(r) I::

2

-kI (r)f1 (r),

k 2 (r)f2 (r),

fl(O) = 0

f
2

(O) = 0

and

and

fi(O) = 1

f 2(O) = 1.

Then the solutions f 1 and f 2 satisfy the following proper­

ty respectively

(2.31)

(2.32)

f I (r) > 0

f
2

(r) > 0

and

and

fi(r) > 0

f 2(r) > 0

for

for

r > 0

r > 0
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(2.32) follows from [9], proposition 4.2. We show (2.31). We

consider a
co

C funeiton defined by

-E.= r ( log ( r+TJ) ) for r ~ o.

Then it holds that and

f 3(r)/f3 (r) < fi(r)/f1(r)

f
1

(r) > f 3 (r) > 0 for r > 0

for r > o.

and moreover

Hence we have

(2.33) o < fj(r) < fi(r) for r > o.

Hence we have (2.31).

2Let (Mi,dsM ) be a 2m dimensional model whose radial cur-
i

vature function 18 k
i

(cf. [9] Proposition 4.2) and let r i

be the distance function of Mi from same fixed point in Mi

(i = 1.2). By (2.30) and -k2 ~ -k1 , we obtain the following

assertion from Hessian compariosn theorem concerning r. and
~

~ (cf. [9] Theorem A, Lemma 1.13, Proposition 2.20 and [28]).

(2.34)

for any V € TM l , 0
x '

<P(x) = r > 0 and

Using (2.34), we shall show the following assertion

(2.35)
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for any v € TM;'O, ~(x) ~ r > 0 and IvlM = 1.

If (2.35) was proved, then setting her) = log(r+~)/~,

the conditions (2.5) and (2.6) of Theorem 2.4 are verified.

since f 1 (r) ~ r, setting 4»1 (r) = f 1 (r)/fi (r),. we have

from (2.33)

(2.36) ~
~ 1 (r) < 2 ( log (r + ~» r for r > o.

. By ( 2 • 3 6 ) and

Here 2~-1( log (t + Tl» d t . since for

r ~ 0, we have

(2.37)

Here Again by and

(2.37), we have

'" 1 (r) ~ r + for r ~ o.

Here
r

= f
o

-1
(log(t+~» dt. Since

we have
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2
E.c*r"1 (r) ~ r + 610g (r+l1 ) •

Hence we have

for any r ~ o.'Sr
r ~ ~l(r) ~ r + 10g(r+n)

Finally we have

rfi (r)
1 - <f

1
(r) log(r+T})·

By (2.34), this means the left hand-side of (2.35).

Next we show the right hand-side of (2.35). setting

2
~2 (r) = f 2 (r) /fi ,(r), we have 4'2 (r) = 1 - k 2 (r) 4'2 (r) • So we

have

E.r
r ~ ~2(r) ~ r - 2 log(r+n) for r ~ o.

Hence we have

for r > o.

Therefore the proof of (2.35) completes.
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(ii) We fix a number r 1 > max (ro,e2 ). For some fixed posi­

tive constant E, 0 < e < 12(im-l)' we consider the following
0)

C function k 2 : [0,0) ~ [O,w) defined by

and assume

2E. 1
2 (1 - log r)

r log r
for

o ~ radial curvature on 8M(r) ~ -k2 (r)

for any r ~ o.

We consider the solutions

Jacobi equations.

fi(r) - 0,

flt(r) =
2

and

f 1 (0) = 0

f
2

(0) = 0

of the following

and fi(O) = 1

and f 2(0) = 1.

Here we consider k1 (r) - 0 because the radial curvature cf

2dSM i8 non-positive on M. Clearly f 1 (r) =r, f 2 (r) > 0 and

f 2(r) > 0, r > o. Since -k2 (r) ~ -e/r21og r for r > r 1 , by

the same procedure as (i), we have only to estimate

rf2(r)
- 1.f

2
(r)

2E.r
r ~ ~2(r) 2 r - log r - c

**
for
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Here c**= r 1 - ~2(rl) ~ o. We take a number r* > r 1 so that

c** 10~ r < e < l~g r for r > r*. Hence we have for r > r*

Hence setting her) clog r/6e, the conditions (2.5) and (2.6)

of Theorem 2.4 are verified.

q.e.d.

Rernark 2.38

In the case of Theorem 3, (ii), M admits no non-constant

bounded plurisubharmonic functions. If M admits it, say ~,

then we may assurne that ~ 1s a bounded
co

C plurisubharmonic

function on M by the u5ual regularization method (since M

i5 realized as a closed submanifold of C2rn+1 ) . Setting

~ = e~, ~ satisfies the same properties as ~. since ~2 is

strictly plurisubharmonic and log ~2 i5 plurisubharrnonic on

M, the function F(r) = I dd ~ A (dd ~2)m-l/r2m-2 i5 a non-
M(r) c C

decreasing funciton of r i. e. F (r) .l c 3 > 0 for any

r ~ 1. By Stokes theorem, we have

(***) I r F(t)
1 t dt ~ c 4 sup ~(z) • n(M,r)

zEM

for n(M,r) := v(r)/r2m and r > 1. Since
ö .

n (M, r) .... (log r) ,

o < ö < 1 (cf. (2.19) , (2.20) , her) = log r/6f:. and

o < 6e < 1/4m-2), we have from (***)
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6-1
F(r) ~ cS(log r) .

This means that w is constant.
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