ENERGY ESTIMATES AND LIOUVILLE THEOREMS

FOR HARMONIC MAPS

Kensho Takegoshi

Max-Planck-Institut

flir Mathematik
Gottfried-Claren-Str. 26
5300 Bonn 3

Federal Republic of Germany

by

MPI/88-9

Research Institute for
Mathematical Sciences
Kyoto University

Kyoto 606

Japan






ENERGY ESTIMATES AND LIOQUVILLE THEOREMS

FOR HARMONIC MAPS

Kensho Takegoshi

Introduction

This article consists of two parts. In the first section,
we shall establish a method to estimate the energy of harmonic
maps from a non-compact Kahler manifold into other Kahler
manifolds. In spite of the importance of establishing such a
method in function theory of several complex variables, up to
now not much 1is known about the generai method to estimate
the energy of harmonic maps or even holomorphic maps of Kahler

manifolds.

To estimate the energy of harmonic maps, our method re-
quires that a given non-compact Kahler manifold (M,ds;) pos-—.
sesses an exhaustion function ¢ 2 0 such that ¢ is uni-
formly Lipschitz continuous and 02 is ¢ strongly hyper
m=-1 convex (m = dimEM) on M relative to the K&hler me-
tric dsﬁ respectively (cf. the conditions (*) and (**) in
Theorem 1) and the complex dimension m of M 1is greater
than or equal to two. Fortunately there are several classes of

non-compact Kahler manifolds possessing such a special exhaus-

tion function.



From a given harmonic map £ : (M,dsﬁ) - (N,dsﬁ) from a
non-compact Kahler manifold (H,dsﬁ) possessing the exhaust-
ion function ¢ as above into a Kahler manifold (N,dsé), we
induce an integral inequality involving the energy E(f,r) of
f on a sublevel set M(r) = (¥ <r} of ¢ (cf. (1.13)), its
derivative 5% E(f,r) and the integral B(f,r) of the com-
ponent of normal direction of the differential df of f on
the boundary dM(r) = (¢ = r} (cf. (1.14)) and Lemma 1.18,
(1.19)). This inequality is induced from an integral formula“
for vector bundle-valued differential forms on bounded domains
with smooth boundary produced by Donnelly and Xavier (cf. (6]
and Proposition 1.10) if £ is a pluriharmonic map. If f is
a harmonic map, then this inequality is induced by coupling
the above integral formula with the semi-negativity of
Riemannian curvature of the target manifold (N,dsﬁ). In par-
ticular, we can obtain the inteéral inequality for harmonic
functions on (M,dsﬁ). This integral inequality plays the
crucial role in this article. In fact, from this inequality,
we can derive two energy estimates for the above f which im-

ply the monotone increasing property of EiELEL. Here p is

the positive constant determined by the ratio of the lower
bound of the strong hyper m - 1 convexity of ¢2 and the
uniform Lipschitz constant of ¢ relative to the Kdhler me-

2
tric dSM'

For instance, we can obtain the following result as a co-

rollary of our general result (cf. Theorem 1.27).



Theorem 1

Let A <— c" be an m 2> 2 dimensional connected closed

submanifold of c” and let [+ be the restriciton of the

function Izl = V/§?=1 12412, 2z = (21,...,2") e c™ onto A

(0 ¢ A).

Suppose for a given Kahler metric dsi on A the number

c, defined by

(*) c, := inf 2 e, (x)

is positive where €4 2 €, 2 ees 2 e, are the eigen-values of
the Levi form of 2 relative to dsi and the number c,
defined by
2
(**) c, = sup |8¢]% . (x)
X€EA dsA

is finite. (For instance, if ds? is the induced metric of

A
Euclidean metric dsz of Cn, then we can take c,=m-1

-1
and c, = 2).
Then the energy E(f,r) of any non-constant pluriharmon-
ic map (A,dsi) - (N,dsﬁ) into a Kahler manifold
(N, ds]) on A(r) = (& < 1) possesses the following

properties.



C

The function H(f,r) = Eif;EL (p = El) is an increasing
2

function of r and the following estimates hold

r
_ 2 B(f,t)
H(f,r,) H(f,r)) 2 frl o dt

and

. r
H(E,x,) 2 H(Ex)) exp(f EEEr v

for any r, > r. > inf & (x).
2 1
XEA

Moreover the energy E(f,r) of any non-constant harmonic map
£ 3 (A,dsi) —_ (N,dsﬁ) into a Kahler manifold (N,dsg) whose
Riemanniaﬁ curvature is semi-negative in the sense of Siu (cf.
[22]) possesses the abové properties.

In particular, the energy E(f,r) of any non-constant harmon-

ic function £ on (A,dsi) possesses the above properties.

Remark 1

In Theorem 1, if we replace the above (A,dsi) and ¢
by an m 2 2 dimensional complete Kahler manifold (M,dsﬁ)
with a pole 0 € M whose radial curvature is non-positive and
the distance function from 0 € M relative to ds> respec-

M
tively, then the same conclusion as Theorem 1 holds (cf. §1.

Example 4). When dimCA = 1 in Theorem 1, the condition (%)



is meaningless. But assuming the condition (**), we can obtain
the above estimates for p = 0 and any non-constant differen-
tiable map £ : (A,dsi) — (N,dsg) into any hermitian complex
manifold (N,dsﬁ) since 5% E(f,r) 2 B(f,r) for almost all

bo (cf. (1.14)). The former estimate in Theorem 1 1is called

the monotonicity formula in [17].

In the second section, as an application of the result obtain-
ed in the first section, we shall show Liouville theorems on
non-compact Kahler manifolds possessing the exhaustion func-
tion as above under‘some additional condition i.e. |

a) a non-existence theorem for non-constant bounded harmonic
functions

B) a Casorati-Weierstrass theorem for holomorphic maps

¥) a non-existence theorem for bounded strictly plurisub-

harmonic functions.

The study of these properties is deeply related to the
study of global solutions of elliptic differential equations
of second order on non~compact manifolds (cf. [5], (71, (8],
{91, [1i1], [12], ([16]), [31)] and so on). One of the typical
methods to study Liouville theorem is what we call Bochner
technique which shows the vanishing of certain geometric ob-
ject by coupling Weitzenbdck formula with either a curvature
condition or a maximum principle (cf. [29]). In particular,
this method plays an important role to %tudy Liouville theorem

on non-compact manifolds with non-negative curvature



(cf. [2], (4], [14], [30]}). But this method is useless to non-
compact manifolds with non-positive curvature. This is a moti-
vation which an integral formula for differential forms was
introduced in {6] to examine the dimension of L2  harmonic

forms on non~-compact complete Riemannian manifolds with nega-

tive curvature (cf. also [5]).

The following theorems show that our method based on en-
ergy estimates for harmonic maps can be used to study Liou-
ville theorem on non-compact Kahler manifolds with (asymptoti-

cally) non-positive curvature.

Theorem 2
Let (A,dsi) SLEN (Cn,dsg) be an m > 1 dimensional con-
nected closed submanifold of ¢" provided with the induced
2 2

] *
metric ds. = ¢ ds

A e and let ¢ Dbe the restriction of Izl

onto A.

Suppose the function n(A,r) = Vol(A(x)) satisfies

2m
r
® _at
é e = for some & > 0
Then a) (A,dsi) admits no non-constant bounded harmonic

functions.
B) Let f : A-— M be a holomorphic map into a projective

algebraic variety M with a very ample line bundle L. If the



set Ef(L) t= {0 € P(F(M,L)) : Imf N supp(o) = ¢} has posi-

tive measure, then- £ 1is a constant map.

¥) Let f : A— N be a holomorphic map into a complex mani-
fold N. If N admits a bounded strictly plurisubharmonic
continuous function (cf. [18]), then £f 1is a constant map. In
particular A admits no bounded strictly plurisubharmonic

continuous functions.

Theorem 3

Let (M,dsﬁ) be an m 2 1 dimensional complete Kéhlef
manifold with a pole 0 € M and let ¢ be the distance func-
tion from O € M relative to dsﬁ. Then the assertions a),
B) and ) of Theorem 2 hold for (M,ds’) if the radial

curvature of ds; satisfies one of the following conditions

€

(1) | radial curvature at x | ¢ >
(¢ (x)+n) "log (¢ (x)+m)

for a sufficiently small e, 0 < e = ¢ < 1,
n > e and any x € M.

(il) The radial curvature of ds> is non-positive on M and

M

E
¢ (x)2log @ (x)

0 ? radial curvature at x > -



for sufficiently small €, 0 <e=e < 1 and any
X € M\M(ro), r, >> 1.
Remark 2

In Theorem 2, it is known that n(A,r) is a non-~de-.
creasing function of r (cf. [20]). Moreover n(A,r) is
bounded if and only if A is affine algebraic. This result is
due to W. Stoll [25]}. In this case, the assertions a), B) and
¥) are more or less known. But in the transcendental case
i.e. n{(A,r) 1is unbounded, ué'to now there is only one result
obtained by Sibony and Wong [21] in this direction. It is easy
to construct examples of A satisfying ]; (tn(A,t))—ldt = ®

and being not affine algebraic (cf. [10] §1).

From Theorem 2, if A < ch admits a non-nonconstant
bounded holomorphic function, then ]; (tn(A,t))-ldt is fin-
ite. But we do not know whether for any given continuously in-
creasing function g : [0,] — (0,») with
3 (tg(t)) 'dt < 4+ there exists A <> C"  such that
n(A,r) = 0(g(r)) and A admits a non-constant bounded holo-
morphic function. On the other hand for any given continuously
increasing function h: [0,») — (0,®) we can construct
A <— ¢" such that n(A,r) = O(h(r)) and A adnits no non-
constant bounded holomorphic functions.

1

still if dimA =1 and J, (tn(a,t)) ~dt = @, then it

is known that A is strongly parabolic i.e. A admits no

0



non-constant, non-negative and bounded subharmonic functions
of class c?. This property was proved by Karp (cf. [12] and
also [3]). In account of the regularization of plurisubharmon-
ic functions on Stein manifolds, we do not. know whether A
admits no non-constant bounded plurisubharmonic functions

1

under the conditions dimgA 2 2 and [y (tn(A,t)) dt = o

(cf. [21]).

Remark 3

In Theorem 3, if dimCM =1, then it is known that
(M,dsﬁ) satisfying the condition (i) or (ii) is conformally
equivalent to the complex plane (C,dzdz) (cf.- [9] Proposi-
tion 7.6). But in the case dimcM 2 2, we do not know whether
(M,dsﬁ) satisfying the condition (i) or (ii) for the sectiof
nal curvature of dsﬁ is biholomorphic to the nmn Qimensional
complex Euclidean space (Cm,dsZ) (cf. [9]), [15]. [24]). In.
any case, by Hessian comparison theorem i.e. the estimate of
solutions of Jacobi equations, we may say that Theorem 3 con-

'y
tains the case treate&i?éeene and Wu in [9] i.e. Theorem C

(Quasi-isometry Theorem) (cf. [28] and Theorem 2.4).

Moreover it is not so difficult to see that M admits no
non-constant bounded plurisubharmonic functions in the case of
Theorem 3, (ii) (cf. Remark 2.38). Recently H. Kaneko verified
this property in the case of Theorem 3, (i). His method is

probability theoretic.
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1. Energy estimates for harmonic maps
Let (M,ds;) pe an m dimensional Kiahler manifold with

the metric tehsor

m
2 _ i.=3
dsM 2Re z gijdz dz .

i,j=1

Fron now on, we always assume that M 1is connected and

non-compact.

on the space Cp'q(M) of c” differential forms of

({p,q) type on M, the pointwise inner product is defined by

A B
<u,v> = 2p+q z Up 5 Vv P49 for u and v e cp'q(M)

A
pqu SR |

The star operator * : cP'9m) — ™4™ P(y)  relative to

dsﬁ is defined by

*y = C(m,p,q)A 2 sign[i’i"’m] sign[é'é"'m]

. B m- m-
q’'p q d & p

BPAq Am'q 5 m=p
x det(gig)u dz ~ dz

lm(m-1)+pm

for c(m,p,q) = (V=1)™(-1)2 2Pt ona w e Py,



.= 12 -

Using the star operator, the inner product on Cp'q(M) is de-

fined by
(u,v) = IM u~*v for u and v € cPr9my.
The following relation holds
ua~*y= <u,v>dvy.

Here de is the volume form of M relative to ds and is

=N

defined by

AW
M
dv, =
M 2™m!
m .
for the Kahler form w, = V-1 z g.—.dzi ~ dEj of ds2.
M 1] M
i,3=1 |

These formulae are used to determine the numerical coefficien-
ts of several integrals and operators which appear in this

article.

let ¢ be a continuous function on M. Throughout this

section, we assume the following conditions on ¢

(L.1) ¢ 2 0 and V¥ := o2 s of class C.

(1.2) ¢ is an exhaustion function of M i.e. each sublevel

set M(r) := (d<r} 1is relatively compact in M for r 2 0.
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(1.3) ¢ has only non-degenerate critical points outside a

compact subset K, of M.

Remark 1.4 The condition (1.3) is assumed to avoid complicat-

ed discussions and is sufficient for our purpose.

Under the condition (1.3), all critical points of ¢ on M\K,
are isolated. Moreover if r is a critical value of ¢,

r >r, :=sup ¢(x), then by (1.3), OdM(r) := (¢ =1r} 1is the
X€K
*

union of a 2m - 1 dimensional submanifold made up of all the
non-critical points in 89M(x) and a finite set of critical
points. Let x € dM(r) be a non-critical point of ¢. The vo-

lume element dSr of JM(r) near x 1is defined by

_ __d¢
(1.5) dVM = ']—aﬂ———z' ~ dSr .
' ds
M
We set
dSr
(1.6) wr = -I-d?'l_z .
dsM

For u € Cs't(M), we denote by e(u) : Cp'q(M) —_ Cp+s,q+t(M)
the left multiplication operator by u and denote by
e(u)” : cP IM) — P59t (4)  the adjoint operator of e(u)
relative to the inner product « , ) i.e.

e(u)* = (-1) (PO (S*E=1) .o Tyx on cPr9my.
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Since ¢ has only non-degenerate critical points on
M\K,, Stokes theorem holds on M[r] := (¢ { r} for any

r > r*.

For a C  differential 1 form ¢ on M, we have from

(1.5) and (1.6)

(1.7) J d*e = [ e(d$)’ve_ for any r > r, .
M(r) aM(r) R

Here if r 1is a critical value of ¢, then the integral on
the right hand-side is taken over the non-critical points of

dM(r).

For a given c” differential form

m
¢ = } «pidzi + 431' d_Z—l
i=1
on M, we consider the tangent vector 0 = {el,el} on M
m - mo_
defined by Oi = z giin and o' = 2 gljw. . We denote by
& 3 L J
J=1 j=1
Vi (resp. VI) the i-th component of the covariant differen-

tiation of type (1,0) (resp. (0,1)) relative to dsﬁ. Since

m
d*e = 2( 2 Viei + Vzﬂl)de, we have from (1.7)
i=1
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m

(1.8) 2 f ( vV,0
M(r) izl i

i, viet)avy) = J e(d¢)*¢wr

dM(r)

for any r > r,.

lLet £ : (M,dsﬁ) — (N,dsg) be a differentiable map into

an n dimensional Kdahler manifolds (N,dsﬁ) with the metric

n
tensor ds2 = 2Re 2 h —dw*dw’ .
N ap
a,B=1

et T™ and TN be the complex tangent bundles of M
and N respectively. Since the complexified differential df
of f 1is regarded as an f*TN—valued differential 1-form, we
obtain an £ TN!’®-valued differential (1,0) form 8f and

an £ TN'/%-valued differential (0,1) form 3f by composing

0 1,0 1,0 1,0
I

the mapping nt% o df : ™ — TN I TN — TN be-

ing the projection, with the inclusions TMl'O, into TM and

0,1

T™ into TM respectively (cf. [7]). Then the form af

(resp. 8f) is represented by (fi) (resp. (f%)) locally

a

Q

f
1

z

a
where fi = and so on.

Q@

The energy density e(f) of f is defined by

e(f) := e' (f) + e"(f)

e’ (£) := h () g]lfifg and e"(f) := haﬁ(f)gjif%f%.
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We denote by <£(¥) the Levi form of V¥ = ¢2. We define

an f*TNl'OFvalued differential (1,0) form £ (¥)(df) and an
£*onlrO-valued differential (0,1) form ¥ (¥)(8f) as fol-
lows:
m —
- jk , g i
¢(¥) (8F) = ( ) g% ¥ 3ehazh) ) o
i, j.k=1
(1.9)
m —
= - Kj _ e =i
¢W)(@E) = () . g Vi1 B2 ) e
i,3,k=1
2
Here V¥, = = —QIEZT
] aztaz)
We denote by Vl 0 (resp. Vo 1) the covariant differen-
r r

tiation of type (1,0) (resp. (0,1)) induced from the con-

*
nection on T*M ® £f TN relative to dsﬁ and f*dsi. The ex-

terior differentiation D, .: cP'9m, e Ny — P 9(m, £ 1N)

1,0°

(resp. D, ,: P9, ehmn) — P9 h(m,£'TN))  is definea by
r

V, o (resp. V We denote by D: .: cP'9(mM, £ N) — P19
’

0,1 1,0°

(M, £*TN)  (resp. D; Lt P, et - cPr9 1 v, £*1N))  the
’

formal adjoint operator of D (resp. D cf. [7]).

1,0 0,1 (

P.d * * [
Here C (M, f TN) denotes the space of f TN-valued C

differential forms of (p,q) type.
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Let f : (M,dsﬁ) — (N,dsg) be a differentiable map into
a Kahler manifold (N,dsﬁ). Then the following two formulae

hold (cf. [6], [26]).

Propos on 0

(1) For any non-critical value r of ¢

(1.11)
/ [2{Trace JL(W)e(f) - <2 (¥) (9f),88> -<¢(¥) (8F) ,8E> , )
M(r) dsy, . f TN f TN
+<e(d¥)*af,p: _ar> + <D: 3f,e(dV) Ft>
1,07 e*n 0,17 £ N

+<e(d¥) 8f£,D, .8f> ., + <D, 3f,e(8¥)df> jdv
0,17 ¢*py 1.0 ‘ g*rn. M

=2r¢ [ (lae|2e(f) - |e(as) ag|d*.. -|e(Fe) afl o, )
oM (x) M £* TN £¥TN

(ii)

(1.12) <df, (D. D

0,1%,1 ~ P1,0 1 o) (GE)>e*my

*
- *
+ <(D1 oP1,0 = Do,1Dp,1) (BE),FE>p*py

—- N ﬂ_ [3 Gifrj_ ij X,i—
= aﬁxﬁ(f)(f f f f', )(f £ £ £ )

where < , >e* 0N is the pointwise inner product on the space
* *
cPr9(M, £ TN) of £ TN-valued C  differential forms of

. 2 *_ 2 N .
(p,q) type relative to dsM and f dsN and Raﬁxg is the

Riemannian curvature tensor of dsg.
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(i) We consider the following differential 1 forms

. — ! =Y
9, = e (f)oy
1 * a D =i
e, 1= = h =(f) (e(d¥) 8f)*fdz
2 2 abp,i af i
P, = eV (f)oy
1 a oy e B ol
P, == h ~(£)f% (e(3¥) af)"dz’.
4 2 azﬁ,i af 1
' T
Using Pyr We define the tangent vecotors Bk = {ei,ei = 0}

as before. We choose holomorphic normal coordinate systems
(zl) around x € M and (wa) around y = f(x) € N i.e.

gig(x) =96 dgig(X) =0 and hag(y) = Gaﬁ, dhag(y) = 0.

2
M

dsﬁ vanish at x and y respectively. Using these coordin-

jl‘

respectively. Then all the Christofell symbols of ds and

ate systems, the integral of the left hand-side of (1.11) can

m

be obtained by calculating E V.(Bi - 08r + 6! - ot point-
1, i1 2 3 4)

wise (cf. [26] Proposition 1.14). Substituting

61 - 82 + 93 - 84 and 1 " P, + Py = P, into the left hand-

side and right hand-side of (1.8) respectively, we obtain the

formula (1.11).
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(ii) For any point x € M and vy = f(x) € N, we fix the
above holomorphic normal coordinate systems. Then all the
Christofell symbols of dsﬁ and dsg vanish at x and vy
: : N _ L :
respectively and it holds that Raﬁxg = araﬁhaﬂ at y. Using

these properties, the formula (1.12) follows from a routine

calculation.
g.e.d.
.We denocte M(rz,rl) = {rl < ® < r2} for
r, >r, >0, := inf ¢(x) and "M(r,0,) = M(r) for r > O,.
X€EM
For a differentiable map £ : (M,dsﬁ) — (N,dsﬁ) of

Kahler manifolds, the energy E(f,rz,rl) of £ on M(r,,r;)

is defined by

(1.13) E(f,r,,r)) = S e(£)dv,,.
M

We set E(f,r) = E(f,r,0,) for r > 0,. For some positi-

ve constant ¢, > 0, we set

0

(1.14) B(f,r) =c, [ (le(@e)ac|2+, . + |e(@®) Fe]2*, . o
: d 0 am(r) f TN f TN’ "r

for r > r,.

If r 1is a critical value of ¢, then the integral on

the right hand-side of (1.14) is taken over the non-critical
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points of JdM(r). It is easily verified that B(f,r) is fin-

ite and a continuous function of r > r, (cf. [8] p. 275).

Definition 1.15. A differentiable map f : (M,dsﬁ) ~ (N,dsﬁ)
of Kahler manifolds is called harmonic if f satisfies the

following equation

and f is called pluriharmonic if

Clearly, any pluriharmonic map of Kdhler manifolds is harmonic

and any holomorphic map of Kahler manifolds is pluriharmonic.

From now on, we assume that the complex dimension m of

M is greater than or equal to two and moreover assume the

following conditons on ¢.

(1.16) the constant ¢, := inf

XEM\K, | i

nw~145

e, (x) is
1 5 1

positive, where €4 2 €, 2 ... 2 € are the eigenvalues of

¢2 relative to d52 and K

the Levi form of ¥ M .

is a

compact subset of M.
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(1.17) the constant c, := sup |6¢|2 5 (%)
X € M\M[0,] dsjy,

is finite.

We show the following lemma which plays the very impor-

tant role in our article.

Lem 1.18
Let (M,dsﬁ) be an. m 2 2 dimensional connected
non-compact Kiahler manifold and let ¢ be a function

satisfying the conditions (1.1), (1.2), (1.3), (1.16) and

(1.17).

(1) For any non-constant pluriharmonic map

£ 2 (M,dsﬁ) — (N,dsﬁ) into an n dimensional Kahler manifold
(N,dsﬁ) and any non-critical value r of o,
r > max(ro,r*), the following integral inequality holds

d
(1.19) r 37 E(f,r,ro) - uE(f,r,rO) 2 YB(f,r)

in B(f,r) (cf. (1.14)), where

ry > r,, i= sup ¢(x) if K, # ¢ or ry, = 0, if K, = ¢.
XGK**

(ii) For any non-constant harmonic map

f: (M,dsﬁ) — (N,dsﬁ) into an n dimensional Kéhler mani-

fold (N,dsﬁ) whose Riemannian curvature REE;E is semi-ne-

gative in the sence of Siu [22], i.e.
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(1.20) Rgﬁxg(y)(haga - ¢*oP) (a%B¥ - c®p¥) 3 o

B

for any y € N and complex numbers Aa, B™, c? 6

and D, the

integral inequality (1.19) holds for any non-critical value r

of ¢, r>r, > max{(r,,xr,,) where ry = 0, if
K*=K**=¢.
Proof

In the case ro, > 0,, we consider that r, is a fixed

non-critical value of ¢. To show the inequality (1.19), we
should apply the integral formula (1.11) to the domain
M(r,ro) for any non-critical value r and the fixed non-cri-
tical value r, of ¢, r > ry, > 0,. Since M(r,ro) has two

boundaries dM(r) and d8M(r in this case two boundary in-

o)’
tegrals appear in (1.11). But the left hand-side of (1.11) is
dominated by the boundary integral on dM(r) " because the
boundary integral on BM(rO) is non-negative by Cauchy-

Schwarz inequality.
Let f : (M,dsﬁ) — (N,dsg) be a non-constant pluri-
harmonic map of Kahler manifolds. Then f satisfies the fol-

lowing equations:

(1.21) p. .8f = D, 3f =D, df =D, ,8f = 0.
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If the compact set K (cf. (1.16)) is empty, then we set

*k

r, = 0,. Otherwise we fix a non-critical value r of ¢,

0 0

r. >r

0 *k*

By (1.11), (1.21) and the above consideration, we have

for any non-critical value r > max(ro,r*)

(1.22) f (Trace ¥ (¥)e(f) = <€(¥)(3f),df> *

£f TN
M(r,ro) dsM

- <2 (¥) (3£) ,TE> VAV

<r f (lavlle(s) - |e(@s)ag|2x.. - |e(@®)*FE|%* . Jo_.
oM (x) M £¥ N e N9y

For any peoint x € M\K,, and y = f(x) € N, we choose
local coordinate systems (zi) around x and (wa) around y
so that gii(x) = 6ij’ .wii(x) = ei(x)ﬁij and -haE(Y) = ﬁaB

respectively. From (1.9) and (1.16), we have at x -

(1.23)Traced52$(W)e(f) - <€ (¥) (8£),0E> *p - <¢ (¥) (df) ,8£>

M

*
f TN

m m

() ec(x) - e, (x))(1£2(x) 12 + |£2x) %)
1 121 js1 ) * i .

H~13

a

2 cle(f)(x).
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Then the inequality (1.19) follows from (1.14) (cqg = 1/c2),

(1.17), (1.22) and (1.23).

Next let £ : (M,dsﬁ) — (N,dsﬁ) be the non-constant
harmonic map of Kaéhler manifolds given in (ii). Then f sa-

tisfies the following equations
(1.24) D, df =D, .6f = 0.

If the compact sets K, and K, are empty, then we set

ry = 0,

r0 > max(r,,r

Otherwise we fix a non-critical value r, of ¢,

ax) -

Since Do'laf = Dl'oaf (cf£. [26] (1.8)), by (1.12),

(1.24) and integration by parts, we have for any r 2 r,

F] *
(1.25) 2(Dy (3,03 FE) e* o M(x)

- N___ _ Cl:_b— _ E_ﬁ 6ri “'rj_ - & :] rfi_
= ﬁ(r)zRana(f)(fIfj £5eh) (£°0 e £203e% Y yav,

+ f [<e(8¢®)8f,D, .8f>_*_ + <D 05f,e(6¢)5f>f*
7

Jw_..
aM(r) 0,1 f TN 1 TN " x

on the other hand, by (1.3) and Fubini theorem, we have
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(1.26)

(e(B¥)3E,Dg ,198) *on, m(x,ry) * (P1,09L:800¥)00) e¥qy y(r,x )

— r a ] 3

= 2f"tdt | [<e(89)3E,D, 13£> %y + <D) (FF,e(30)TE>p*pJoy .
r, IM(t)

Combining (1.20) with (1.25) and (1.26), we can see that the
integral (1.26) is non-negative. Hence from'(l.ll), (1.24) and
the non-negativity of (1.26), we obtain (1.22) for the harmon-
ic map f. Therefore we can obtain the inequality (1.19) simi-
larly. |

g.e.d.

From Lemma 1.18, we obtain the following energy estimates

for harmonic maps.

Theorem 1.27

Let (M,dsﬁ) be an m 2> 2 dimensional connected non-
compact Kahler manifold possessing a function ¢ which sa-

tisfies the conditions (1.1), (1.2), (1.3), (l.16) and (1.17)

(i) For any non-constant pluriharmonic map f:

(M,dsﬁ) — (N,dss) into an n dimensional Kahler manifold

(N,dsﬁ) and any r > max(r,,r,). the function
E(f,r,ro) < . '
H(f,r,ro) t= ————— (¢ = —=) 1is an increasing function of
o €2

r and the following estimates hold



r
2 B(f,t
(1.28) H(f,r,,ry) - H(£,r,,r) 2 frl —éHL—l dt

Yy B(f,t

(1.29) H(f,r,,x,) 2 H(f,r ,r,) exp ( frl E(f ety 9

o)

for any r., > r. > max(ro,r*) where rya > r_ ., if Ke 7 ¢

1 0

if K,, = ¢

(ii) For any non-constant harmonic map from (M,ds;) into an
n dimensional Kihler manifold whose Riemannian curvature is
semi-negative in the sense of Siu, the same conclusion as (i)
holds for any r > r and r., > r, > r, > max(r,,r,.), where

0 2 0

r, =0, if K, = K,, = ¢.

0 *
In particular, the energy E(f,r,ro) of any non-constant
harmonic function £ on (M,dsﬁ) satisfies the above proper-

ties of (i).

Proof

We set ourselves in the situation of Lemma 1.18. In the
case (1), we have only to show the estimates (1.28) and

(1.29).

For any non-critical value r of ¢, r, ¢ rg r,, we

have from (1.19)

[E(f;fro)] N Bru(f X)

3
(1.30) 5%
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Since the set of critical values of ¢ 1is discrete, in-

tegrating (1.30), we obtain (1.28).

Since E(f,r,ro) >0 for any r > r, (cf. [19] Theorem

1), we have from (1.19).

13 B(f,r) 8
(1.31) - + E(E, T, T < iF logE(f,r,rO) e

Hence we obtain (1.29) by integrating (1.31). The case (ii) is
proved quite similarly.

g.e.d.

Remark 1.32

In Theorem 1.27, when we want to estimate the energy of a

given holomorphic map f : (Ml,dsﬁ ) — (Mz,dsﬁ ) of complex
1 .

2

manifolds, it is sufficient to assume that the metric d52

Mi_
is Kahler outside a compact subset of M; from the observa-
tion in the proof of Lemma 1.18. Moreover if pu > 1, then it
is eésily verified that E(f,r)/(r + 1)u (i.e. r, = 0,) |is

\ . * . .
an increasing function of r 2 r for some sufficiently large

*
number r .

We call the function ¢ in Theorem 1.27 a special exhaustion

function of M relative to ds;. Here we point out some exam-
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ples of Kahler manifold possessing such a special exhaustion

function.

Example 1. An m 2 2 dimensional complek Euclidean space c™

with Euclidean metric dsz has a special exhaustion function

¢ = lizll, Nzl = V’ET=1 12412, 2z = (2%, ...,2™ € c™. In this
case, by g = v=133¢2, c, =m-1 (e; = 1) and
2 _ 1 =1 = =
|a¢|dsz =5 on €N i.e. ¢, =3 and K, =K, =¢.
e

Hence u = 2m - 2. Moreover weé can obtain (1.28) and (1.29) by

equality.

Example 2. Let (A,dsi) LI (Cn,dsz) be an m 2 2 dimensio-

nal connected closed submanifold of ¢" provided with the
induced nmetric dsz = L*dsg. If necessary, translating
(zi) = (wi - al), a = (al,...,an) € Cn\A, we may assume that

the restriction ¢ of izl onto A has only non-degenerate
critical points. ¢ 1is a special exhaustion function relative
to dsi. In fact we have w, = V=1 8502, c; =m-1, ¢, =3
and K, = K,y = ¢. Hence p = 2m - 2.

*
Since every Stein manifold S <can be realized as a clo-
sed submanifold of some c” by a proper holomorphic map

s < ¢", (] has a special exhaustion function

&

©
Il

nh*(lzll) relative to the Kihler metric ds = h*(as?) ana

=
Il

2m - 2 if dimu:S 2 2.
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Example 3. Let M be an m 2 2 dimensional strongly pseudo-
convex manifold and let j : M — R be the Remmert reduction

of M. Since R 1is a normal Stein space with finitely many

isolated singularities, we can embed R into some ch by a
proper holomorphic map h : R <— c”. we set
¢ = (h o j)*(HzH). Since j is biholomorphic outside a com-

pact set of M, we can construct a hermitian metric dsﬁ on

M whose fundamental form Wy can be written oy = V—165¢2.

outside a compact subset K, (:= K,,) of M. Hence ¢ is a

special exhaustion function of M relative to dsﬁ and

p=2m - 2.

Example 4., Let (M,dsﬁ) be an m 2 2 dimensional complete
Kahler manifold with a pole 0 € M i.e. exp, ! TMO — M is
a diffeomorphism and let ¢ be the distance function from
0 €EM relative to dsﬁ. Then ¢ is an exhaustion function
and satisfies |6¢|2 5 E'% on M\(0) i.e. ‘¢, = % and
ds
M
K, = ¢. If the radial curvature of dsz is non-positive, then
v = ¢2 is a ¢ strictly plurisubharmonic function on M
i.e. K,, = ¢. Moreover c; =m-1 (cf. [9] Propositions

1.17 and 2.24) and s0o pu = 2m - 2. Hence ¢ is a special
exhaustion function of M relative to ds;. Moreover in this
case, it should be noted that ¢ is a special exhaustion
function of M relative to the Kihler metric induced from

8392 ana B o= 2m - 2.
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Though according to each example, we can restate Theorem
1.27, we omit the detail here. In the present stage, Theorem 1

stated in the introduction is clear.

Remark 1.33

Originally Donnelly and Xavier established some integral for-
mula for differential forms with compact supports. But we ap-
plied their formula to vector bundle-valued differential forms
on bounded domains with smooth boundary. By the same way, we
can establish energy estimafes for harmonic  functions on
Riemannian manifolds with certain exhaustion function. But to
establish such an energy estimate for a harmonic map.
£ : (M,dsﬁ) — (N,dsﬁ) of Riemannian manifclds, we should as-
sume not only the non-positivity of Riemannian curvature of

2 2

dsN but also the non-negativity of Ricci curvature of dsy.

Remark 1.34

From the method used to induce the integral inequality
(1.19), we can also induce the following equality and inequa-
lity which are used to show the analyticity of harmonic maps

respectively.

1) Let f : (M,dsﬁ) — (N,dsﬁ) be a harmonic map of compact
Kdhler manifolds. Then it holds that (cf. (1.12), (1.24) and

(1.25))
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(1.35) 2(D TN, M

1,09%/Dy,o%8) ¢*

- - N_ _ aB _ caBy 20,103 _ 6,3cv,1

é ERqua(f)(fifj e5eh) (£° £2:38% Y avy,
2) Let DCM be a bounded domain with smooth boundary 8D
defined by a c” strictly hyper m - 1 convex function ¢
on a neighborhood of 4D on an m 2 2 dimensional Kahler
manifold (M,dsﬁ). Then there exists positive constants C

and & such that

=2 = .2 _ds
(1.36) naqu(G) { cC éo[abf] TEETM

for any harmonic function f£ on D which is of ¢! class on
D, where D(5) = (-6 < & < 0} and

2 . ym.2 e ey A2 j o .ip2
£1% 1= |30|2en(£) - |e(F0) T1| 2 ) |ogf ozt |

i<j
(by Lagrange equality).

The formula (1.35) yields the alternative proof of the analy-
ticity of harmonic maps of compact Kahler manifolds and the
formula (1.36) implies that f is holomorphic on D if
Ebf =0 on 4D i.e. f satisfies the tangential Cauchy-Rie-
mann equation on 8D. On those topics, the reader should be

refered to [1], [22], [23].
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2. iouv e t mg fo ohic maps

In this section, first we shall show two Liouville theorems
for harmonic maps. Later using these theorems, we shall give

the proofs of Theorems 2 and 3 stated in the introduction.
We first state the following theorems.

Theorem 2.1
Let (M,dsﬁ) be an m > 1 dimensional connected non-
compact Kahler manifolds possessing a function ¢ which

satisfies the conditions (1.1), (1.2), (1.3), (1,16) (here we

set c, =0 if m=1) and (1.17) and let V(r) be the
volume of M(r) relative to dsﬁ. Suppose there exists a con-

tinuous non-decreasing function g : [0,®) — (0,w) such that

dt

[+
(2.2) IG ey = ° for some 6 > O
and
(2.3) lim sup n(M,r) < 4o

c
for n(M,r) := §é£% and pu = El'

2
Then a) (M,dsﬁ) admits no non-constant bounded harmonic

functions.



B) Let £ : M — N be a holomorphic map into a projective.
algebraic variety N with a very ample line bundle L. If the
set Ef(L) t= {g € P('(N,L)) : Imf N supp(c) = ¢} ((o) 1is the
divisor defined by o¢) has positive measure, then f is a

constant map.

¥) Let f : M — N be a holomorphic map into a complex mani-
fold N. If N admits a bounded strictly plurisubharmonic
continuous function in the sense of Richberg [18], then f is
a constant map. In particular, M admits no bounded strictly

plurisubharmonic continuous functions.

We introduce the following functions g9, (n20) defin-

n
ed by g, (r) := TT L; (x), Ly(r) =1, L,(r) =logr and
1=0

Li+l(r) = Li(log r) for i 2 1. We should note that
I At _ % for any n > 0 and some 1_ >> 0
1, tg,(v) n :

Theorem 2.4
Let (M,dsﬁ) be an m ? 1 dimensional complete Kahler mani-
fold with a pole 0 € M and let ¢ be the distance function

from 0 relative to dsﬁ. Suppose there exists a continuously

increasing function h : [r,,») — (1,*) such that

(2.5) max lei(x) - 1]

for any x € M\M(r,)
1{ism

1
$ R M)



where e; are the eigenvalues of the Levi form of V¥ = ¢2

raelative to dsﬁ and

exp((4m-2) [T ghegy)

2.6 lim su < 4o
( ) o p gn(r)

for some n 2 0.

Then the assertions a), ) and ) of Theorem 2.1 hold for

the above (M,ds;).

Remark 2,7. In Theorem 2.4 from the condition (2.6), h(r) is

o dt

unbounded. When Ir* Tht)

< +® i.e. n = 0, the assertion a)

has been verified in some cases (cf. [13], [28]).

Proof of Theorem 2.1
a) Let f : (M,dsﬁ) — (C,dzdz) be a non-constant bounded

harmonic function i.e. A,ES 0 and 0 ¢ |£] ¢ ¢ < 42 for

some C > 0.

We set ourselves in the situation of Lemma 1.18, (ii).

First we obtain the following inequality.
2.8 E(f 2 ¢ e 2 v(r) B(£
(2.8) ( trvro) C ar (r) (f,r)

for any non-critical value r of ¢, r > rs and c > 0.

By the harmonicity of £ and Stokes theorem, we have
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2E(£,x,55) § (AF,df)y ) = én(r)<f,e(d¢)*df>ur

by the boundedness of |f| $ c3A] le(as) *df|ow
aM(r) r

=

by Chauchy-Schwarz inequality < C, (5% V(r)B(f,r))z.

Hence we have (2.8}).

By (2.3), we have

*

(2.9) n(M,r) ¢ csg(r) for any r > r, > r,
E(flrlro)
We set H(r) := __;E-__-— for r > rye From (1.30) and (2.8),
we have
d d
77 V(r)zZH(r)
H(r)z < c ar dr .

Hence we have

r

(2.10) f Rl PO P . S —
‘ r §%V(t) 6 H(rl) H(rz)

for any r, >r, > r

2 1 o’

By Chauchy-Schwarz inequality, we have
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r. =2 v(t) r. .u
(2.11)  (z, - rl)2 < frz @-ﬁ—— dt fr?‘ —g‘————- dt
1t 1 52 V()
By (2.9), we have
3
r, ¢ V(t)

2 3t 2
(2.12) . o dt ¢ c7r2g(r2)

1

*
for any r, >r; >r,.

From (2.10), (2.11) and (2.12), we have

c r

8 1.2 1 1
(2.13) (1L - =) ¢ -
g(r,) r, H(r;) = H(x,)
* .
for any r, >r, >r,. We conslider a sequence (rn}n21 S0
* . ' _
that Toel = 2rn and r, = 2rl. Substituting r, =r, and
r, = T.i1 into (2.13), we have
C
9 1 1
(2.14) < -
g(r, ) - H(r)) = H(r )

for any n 2 1.

Hence we have from (2.14)
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© c
at 10
J

r, Tg(E) $ H(z,) < e

This contradicts to (2.2).

B) Let N be a projective algebraic variety with a very amp-
le line bundle L. We assume that N 1s reduced and irreduci-
ble. The space T'(N,L} of global sections of L 1is a finite
dimensional vector space. We set V := F(N,L)- and

dimCV =n+ 1.

et h : M — N be a holomorphic map into N so that
Eh(L) := {0 € Pn(V) : Im h N supp(o) = ¢} ((o) 1is the divisor
defined by the section o¢) has positive measure in Pn(V). We
shall induce a contradiction by assuming that h 1is non-cons-

tant.

Since L is very ample, we have an embedding
*
j ¢+ N&— mn(v ) into the n dimensional projective space

Pn(V*) (V* is the dual space of V). We consider the holo-

morphic map f := j o h : M — wn(v*). Since L = j*H (H 1is
the hyperplane bundle over Pn(v*)) and Pn(V) = wn(v*)*
(the dual projective space of wn(v*)), setting P = Pn(v*),
we may assume that f: M- Pn is non-constant and
E, = (f € P; : Imf N supp(f) = ¢ has positive measure in
P:. Under this assumption, we have only to show the estimate
(2.8) in account of the proof of a).
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Let o = (o, : al:...:on) € Pn (resp.

£ = (Eo:fl:...:fn) € P;) be the homogeneous coordinates of

Pn (resp. P;). We denote by w (resp. w*) the Kahler form

*
of the Fubini study metric of Pn (resp. Pn). We denote
n n

2
<o ,E> = o, £ and loll“ = lo.
! iZo i iZO 1

* . ‘ oy .
£ € Pn. We define a positive function A .on Pn x P; by

HollNEN N *
TEETg;T for- o € Pn and F € Pn.

It is easily verified that the function A satisfies the fol-

|2 for o € Pn and

A(o,£) :

lowing properties:

(B.1) For any o € Pn' the functions log A(u, ) and

*
A(oc, ) 2 1 are integrable on P~ and

A, =/ log A(g,E)o D
£

*
A, := [ A(g,E)u D
EEP*

Cas . *k L

are positive constants not depending on o € Pn (w = A w

and so on).

* . *1n .

(B.2) For any subset ECP_ with IE w = >0 if

f(OM(r)) N supp(f) = ¢ for any £ € E, then the functions
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log £*A and £*A are integrable on 8M(r) x E

is the hyperplane defined by <o,§>).

({Here (€)

(B.3) There exists a positive constant C, not depending on

(¢,f) € P_ x P" such that

|8, log A(c,E) |, < CuA(0,E)

for any § € P; and any o € Pn\supp(f).

Using these properties of A, we show the estimate (2.8)

for £ : M — P_.
n

*
We set 7 :=f w ., By assumption, we have

Eg

any § € P;, it holds that

(2.15) w = 2ddclog'A(o,§) on Pn\supp(f).

n > 0. For

Here dc = i(d - 8)/2. We set ourselves in the situation of

Lemma 1.18, (i). Since f is holomorphic, for

and any non-critical value r of ¢, r > Xoe

E(f,r,ry) = ¢ S/ £*0 - wg-l (c =
M(r,ro)

by (2.15) ¢ 2cf dd_log £*A (0 ,E) ~
M(r)

by Stokes theorem =2c ) d_log £A(0,E)

dM(r)

any E € E

£
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by Chauchy-Schwarz inequality

< c, S 18 log A(£(z),E)| le(a®) at] * o o
3 aM(r) o w il 'I‘IPn r

by (B.3) < ¢, ém(r)A(f(z),E)|e(6¢)*8f|f*Twﬁr

Hence by (f.2) and Fubini theorem we have

n E(f,r,r) S/ (  A(g(z),B)0 M le@s) or] ,  w_
dM(r) E€E. ° BT
by (8.1) < e f le(@0) 9| % w_.
5 aM(r) f TPn r

Therefore applying Chauchy-Schwarz inequality to the

right hand-side, we have (2.8).

¥) Let N be a complex manifold possessing a bounded strict-
ly plurisubharmonic continuous function ¢ in the sense of
Richberg {18]). By the approximation theorem [18], Satz 4.2, we
may assume that ¢ is of class ¢” and bounded on N. Then

2 whose Kahler form o can be

N admits a Kiahler metric dsN N

written as follows:
(¥.1) There exists a c” function X on N such that

(i) vy = v-1 88x
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(ii) 0 ¢ x € log 2 and |6>(|2 5 S 2.
ds. .
N
. oV
In fact, we may assume sup y(x) = 0. We set A =1 - -
XEN

Then % ¢ A €1 and -N 1is strictly plurisubharmonic on N.
Hence X = = log A is strictly plurisubharmonic and
d3x 2 dx ~ dx on N, Hence the assertion (¥.1l) has been veri-

fied.

Let £ : (M,dsﬁ) — (N,dsg) be a non-constant holomor-
phic map into (N,dsg). Then using (¥,1), we can obtain the.

estimate (2.8) for f similarly to the case ).
This completes the proof of Theorem 2.1.

oof of Theorem_ 2.4
To show this theorem in the case m 2 2, we need to
modify the way of energy estimates for harmonic maps in the

first section.

We take a value r, of ¢ with Ty > r,

h(ro) 2 2. First we show the following energy estimates for

so that

harmonic maps which are trivial in the one dimensional case

(cf. Remark 1 in the introduction).

For any non-constant pluriharmonic map
f : (M,dsﬁ) — (N,dsﬁ) into a Kahler manifold (N,dss) and

any r >r, >r it holds that

1 0’
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- t
(2.16) r?™ exp(x (r) - (2m - 2) J EB%ET ¢ CE(f,r,r,)
Ty
r
- __B(f,t) - 1 = =

for  x.(r) := S E(f,t 5y 9t (g =g if m=1 or c;=1

r, 0 2
if m ) 2)

Moreover the same estimate as (2.16) . holds for any

non-constant harmonic function, £ on (M,ds;).

We have only to show the case m 2 2. Let
f: (M,dsﬁ) — (N,dsﬁ) be the non-constant pluriharmonic map

as above. We set

1

E,(f,x,rj) = S (1 - HTgy)e(f)de for any r > r,.
M(r,ro)
Since |a¢|§ =2 on M\(0), by (1.22), (1.23) and (2.5), we

have for any r > r,

(2.17) (2m-2)E, (£,1r,1,) ¢ H%%{%% E%E*(f,r,ro) - 2rB(f,1).

Since h(ro) 2 2, we have from (2.17)

B(f,r)
E (f,r,r

(2.18) (2m - 2) (2 - EH%ET) + < 5% log E,(f,r,ry)

o)

for any r > Lo+
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Since E,(f,r,r { E(f,r,r from (2.18), we obtain (2.16)

0) 0),

1 > Xy. The proof of (2.16) for harmonic func-

tions is now clear in view of the proof of Lemma 1.18, (ii).

for any r > r

Next we need the following estimates.

3 - ¥
(2.19) FEV(r) € ¢, p2m-l exp(2m fr EH%%T)
1
d
(2.20) v(r) ¢ c4r ar v(r)

for any r > r. >r

By a standard calculation (cf. {8] p. 273-274), we have

d 2

(2.21) — [ lae|sw_ = [ - A Do
oF oM(r) - MY aMmr)y "%

for = - 4 z g 6 aj by the Kahlerity of dsﬁ. Since
i,/3=1

|d¢|M =1 on M\{(0), by the assumption (2.5) and (2.21), we

have for any r > r,

N
=]
Q

<
—_
2
N
(=
1

(2m - 1 + V(r)

y)

=
2

Hence we have (2.19).

Applying ¢ = d®% to (1.7), we have
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(2.22) f -And)zdvM = 2r | |d¢|;wr.
M(r) dM(r)
By the assumption (2.5), -AM¢2 is bounded from below
some positive constant. Since |d¢|M =1 on M\{0}, we have
(2.20).

At the present stage, we can begin the proofs of a), B)

and ¥).

a) Let f be a non-constant bounded harmonic function on

(M,dsﬁ). Then we can obtain the following two inequalities.

(2.23) E(f,r,r,)? < 52 V(r) B(£,r)
E(f,r,ro)
(2.24) ———2 ¢ c,n(m,2r)

r2mj2

for any r > 2r

(=]

Here n(M,r) := L), (2.23) is nothing but (2.8). Hence we

have only to show (2.24). Since ¢ is a uniformly Lipschitz
continuous exhaustion function on M, by Stampaccia's inequa-

lity (cf. [27] Theorem 1.2), we have

C
(2.25) (Q,df)y ) < = f( )Iflzde for any r > O.
r M(2r
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Since |f] 1is bounded, we have (2.24) from (2.25).

From (2.6), (2.16), (2.19) and (2.23), we have

X¢(x)
c_e
6 B(f,r)
rgn(r) £ E(f,r,ro) for any r 2 rl.
Hence we have
r e><f(t)
(2.26) Ce [r EG;TET_ dt < xe(r) for any r > r,.
1

From (2.26), we can obtain the following assertion inductive=-

ly.

There exists positive constants and a se-

Cxy?og<ken

quence of real numbers . (r(k))OSRSn R r(k) < r(k+1) and
r(o) =r, such that
r
dat
C S v § xe(r)
(K) 7Ty t9 (V) £

for any r > r(k) and 0 ¢ k £ n.
Finally we obtain
(2.27) C(n)log r ¢ xf(r) + 0(1) for any r > r(n).

On the other hand, from (2.6), (2.16), (2.19), (2.20) and

(2.24), we have
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(2.28) xf(r) < c7 log gn(r) + 0(1) for any r > rl.

From (2.27) and (2.28), we obtain a contradiction.

B) We set ourselves in the situation of the proof of Theorem
2.1, B). In account of the proofs of Theorem 2.1,B3) and Theo-
rem 2.4,a), we have only to show the estimate (2.24) for the

holomorphic map f : M — P in the proof of Theorem 2.1,B).

By h(ro) 2 2 and (2.5), ¢ 1is subharmonic on M\M(ro).

For any § € Ef and any r > LY

r
S E(f,t,ry)dt
r

1

r
cf at [ dd, 1ogf*A(a,§)Amg

0 r, M(t,ro)

m=-1
M

N\

c f A0~d_logf A(g,E)~w
C
M(r,xrg)

1

c f a logf*A(o,E)Adc¢aw$-
M(r,r)

* 2
< c, f logf A(o,E) |89 |Lw .
3 aM(x) Mr

The last step is done by Stokes theorem and the subharmonicity

of ¢ on M(r,r Using (B.1) and (B.2), we have

0)'
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r
(2.29) S E(f,t,ry)dt € c, / |6¢|fiw

r
r, dM(r)

for any r > rg:
since -A.#% is bounded from above by (2.5), from (2.22) and

M
(2.29), we can obtain (2.24) for f : M — Pn.

This completes the proof of B).

¥) We set ourselves in the situation of the proof of Theorem
2.1,¥). We have only to show tpe estimate (2.24) for the holo-
morphic map £ : (M,ds;) — (N,dsﬁ) in the proof of Theorem
2.1,¥). But this is done by the same procedure as the case )
in account of (r,1).

This completes the proof of Theorem 2.4.

Proof of Theorem_2
Since n(A,r) = V(A(r))/rzm (u = 2m - 2) is a continuously
non-decreasing function, Theorem 2 follows from Theorem 2.1

immediately.

g.e.d.

Proof o heorem 3

To prove this theorem, we should estimate the eigenvalues of’

the Levi form of ¥ = ¢2 relative to dsﬁ by using Hessian
comparison theorem.
(i) We put 10 = et and fix a positive number e with

*

1 =
0 < 8e, < (4m=2) (n+1) ° We set e = 8¢, for some constant e

1
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with 0 < €, { €,. We consider a Coo function

k1 : [0,») — (0,0} defined by

[=

8(r+n)210g(r+n)

ki(x) =

We assume

(2.30) |radial curvature at x € M, ¢(x) =r | ¢ k, ()
for any r 2 0.

Next we consider a C  function k2 : [0,%) — (0,») defined

by

¢ (1 - ———2——)
2(r+n)21log(r+n) log(r+n)

k,(r) =

We consider the solutions f and b of the following

Jacobi equations:

il
'_‘b

£9(r) = -k (r)£,(r), £,(0)

E3(r) = Kky(r)£,(r), £,(0)

0 and f£(0)

ll
a}

0 and fé(O)

Then the solutions f1 and f2 satisfy the following proper-

ty respectively

(2.31) fl(r) >0 and fi(r) >0 for r >0

(2.32) fz(r) >0 and fé(r) >0 for r >0
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(2.32) follows from [9], Proposition 4.2. We show (2.31). We
consider a C~ funciton f3 : [0,2) — [0,») defined by

& for r 2 0.

£,(r) = r(log(r+n))
Then it holds that fl(O) = f3(0) = 0, fé(O) < fi(o) and
fg(r)/fa(r) < f;(r)/fl(r) for r > 0. Hence we have

fl(r) > f3(r) >0 for r > 0 and moreover
(2.33) 0 < £4(r) < fi(é) for r > oO.

Hence we have (2.31).

Let (Mi,ds be a 2m dimensional model whose radial cur-

2

)
My
vature function is ki (cf. [9] Proposition 4.2) and let ry
be the distance function of My from some fixed point in M,

(i = 1.2). By (2.30) and —k2 { -k we obtain the following

l'
assertion from Hessian compariosn theorem concerning r, and

¥ (cf. [9) Theorem A, Lemma 1.13, Proposition 2.20 and [28]).

rf; (r) ¢ v - rf, (r)
(2.34) 517;7“ $ E£(¥)(v,v) £ f;T;T
1,0
for any v € TM '", ¢(x) =T >0 and IvlM = 1.

Using (2.34), we shall show the following assertion

- —t
log(r+n)

€

< (W) (v,Vv) - 1< Tog (xr+n)

(2.35)
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for any v € Tﬂi’o, d(x) = r >0 and |v|M = 1.

If (2.35) was proved, then setting h(r) = log(xr+n)/e,

the conditions (2.5) and (2.6) of Theorem 2.4 are verified.

Since fl(r) $ r, setting ¢1(r) = fl(r)/fi(r)l we have

from (2.33)
(2.36) ¢1(r) < 2 (log(r + n))er for r > 0.

- By (2.36) and ¢i(r)’= 1+ kl(r)¢1(r)2, we have

r £ ¢1(r) £ r + %Il(r) for r > 0.

r
Here I, (r) = / (log(t + m))%¢ lat. since I,(x) ¢ %r for
0
r 2 0, we have
(2.37) r ¢ ¢l(r) < C, Y for r > 0.
= 2 ' - 2
Here Cy, =1+ Je. Again by ¢1(r) =1 + kl(r)¢l(r) and

(2.37), we have

o2
¢1(r) £ r+ 5 Iz(r) for r ) O.

r
Here I,(r) = /  (log(t+n)) ldt. since I, (r) < 4r/3 log(r+m),
0

we have
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2
eEc,r

¢1(r) s+ 6log(r+n)

Hence we have

eY
r g ¢1(r) S r + m . for any r ? 0.‘
Finally we have
rfi(r) e

TE () < Tog(rFm)”

By (2.34), this means the left hand-side of (2.35).

Next we show the right hand-side of (2.35). Setting
' ] 2
¢2(r) = fz(r)/fz(r), we have ¢2(r) =1 - kz(r)¢2(r) . So we

have

er
r 2 ¢2(r) 2 r - 3 Tog (£+7) for r» 2 0.
Hence we have
£,(T) log(r+n) |

Therefore the proof of (2.35) completes.
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(ii) We fix a number r, > max (ro,ez). For some fixed posi-

. 1 R
tive constant e, 0 < e < IETEE:I)' we consider the following
c® function k, : [0,%) — [0,») defined by

2€ 1
k,(xr) = (1 - ) for r > r
2 rzlog r log r 1

and assume

-

0 2 radial curvature on dM(r) 2 —kz(r)

for any r 2 0.

We consider the solutions f and f of the following

Jacobl equations.,

I
=

£4(r) = 0, £,(0) = 0 and £!(0)

£5(r) = ky(£)£,(x),  £,(0)

]

|
o
I
[}

and f2(0)

0 Dbecause the radial curvature of

Here we consider kl(r)

2
M

fé(r) >0, r > 0. Since —kz(r) [4 —e/rzlog r for r >r

ds is non-positive on M. Clearly f.(r) = r, fz(r) > 0 and

10 Y

the same procedure as (i), we have only to estimate
]

rfz(r)

£,(x)
Setting ¢2(r) = f2(r)/fé(r), r 2> 0, we have

2er
r2¢2(r)2r~ﬁg—r-c**for r>rl.



Here c¢_,=r

o - $,(r;) 2 0. We take a number r, > r, so that

1 1

c 19%—5 < e < l%H_E for r > r_. Hence we have for r > r

*k *

rf! (r)
2 -1 < 6e
fz(r) log r

Hence setting h(r) = log r/6e, the conditions (2.5) and (2.6)
of Theorem 2.4 are verified.

g.e.d.

Rema 2.38

In the case of Theorem 3, (ii), M admits no non-constant
bounded plurisubharmonic functions. If M admits it, say v,
then we may assume that ¥ 1s a bounded Coo plurisubharmonic
function on M by the usual regularization method (since M

is realized as a closed submanifold of C2m+1

v = e¢, ¥ satisfies the same properties as Y. Since ¢2 is

) . Setting

strictly plurisubharmonic and 1log 0% is plurisubharmonic on
M, the function F(r) = J dd_y - (ddc¢2)m_1/r2m—2 is a non-
M(r)

decreasing funciton of r 1i.e. F(r) 2 cy >0 for any

r 2 1. By Stokes theorem, we have

(*h%) JTEE) a6 ¢ ¢, sup ¥(z) + nM,x)

4 ZE€EM

for n(M,r) := V(r)/r2m and r > 1. Since n(M,r) ~ (log r)5,'
0 <6 <1 (cf. {2.19), (2.20), h(r) = log r/6e and

0 < 6e < 1/4m-2), we have from (**%*)
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F(r) < cg(log r)° L.

This means that ¥ 1is constant.
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