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ABSTRACT. We give results on the following questions about a topologically tarne
hyperbolic 3-rnanifold Al :
1. Does M have nonzero square-integrable harmonie l-forrns?
2. Docs zero lie in the speetrurn of the Laplaeian öd iIlg on Al (M) / «er (d)?

1. INTRODUCTION

Let M be a complete oriented Riemannian manifold. A basic problem is to un­
derstand the spectrum of the Laplacian ß p acting on the square-integrable p-forms
AP(M). In this paper we are eoneerned with the bottonl of the speetrum. We address
the following questions :
1. Does NI have nonzero square-integrable harmonie p-fornls?
2. Does zero lie in the speetrum of 6. p?

If M is eotnpaet then Bodge theory teils us that questions 1 and 2 are equivalent
and that the answer is "yes" if and only if HP(A1; C) =f. O. In particular, the answer
only depends on the topology of M.

If M is noneompaet then things are different. First, questions 1 and 2 are no longer
equivalent - th~nk of M = IR. Seeond, the answers to these questions no longer only
depend on the topology of M. They depend on both the topology of M and its
asymptotie geometry in a subtle way which is not understood.

In this paper we look at the above questions for CL dass of Riemannian manifolds
with interesting asymptotie geometry, namely eonnected hyperbolic 3-manifolds M
whieh are topologically tarne, i.e. diffeolnorphic to thc interior of a compact 3-nlanifold
with boundary. We review the relevant geOInetry of such tnanifolds in Section 3. Their
ends can be eharaeterized as eusps, ftares and tubes. 1\1 is called geometrically finite
if its ends are a11 eusps 01' Bares anel geornetrically infinite othcrwise.

Using the Hodge dee0111position, thc square-intcgl'able differential forms on M can
bc split into Ker(~o), AO(M)/Ker(d), Kcr(6.d a.nd A1(M)/Ker(d). Hereafter we
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assume that M is noncompact. The only possiblc elements of Ker( ~o) are constant
functions and so if vol( M) < 00 then Ker( ~o) = C, whilc if vol( M) = 00 then
Ker(~o) = O. The next result of Canary tells what happens on AO(M)/Ker(d) [4].

Proposition 1. Zero lies in the speci1'Um 01 thc Laplacian acting on AO( M) /Ker(d)
if and only if M is gcolnetl'ically infinite.

Thus the spectrum of the Laplacian, acting on functions, is sensitive to whether
M has any tubular ends, but is not sensitive to the geOInetry of those ends. Ir
M is geometrically finite, Mazzeo anel Phillips computed dirn (Ker(.6t)) and the
essential spectrum of the Laplacian on AI (1'1) / Ker(d) [13]. In partieular, if M is
geometrically finite then zero always lies in the spectrum of the Laplacian acting on
A1(M)/Ker(d). One could ask whether there is a direct analogue of Canary's theorem
for A1(M)/Ker(d). However, the following exanlple shows that such cannot be the
case.

Let S be a closed oriented surface of genus 9 ~ 2 and let 4> E Diff(S) be an
orientation-preserving pseudo-Anosov diffeonlorphism of 8. Thurston showed that
the mapping torus A1T of 4> has a hyperbolic Inetric [17, 22]. The corresponding
cyclic cover M of MT is a. geometrically infinite hyperbolic 3-Inanifold. In Section 4
we prove

Proposition 2. Zero lies in the speetrum of the Laplacian aeting on AI (M) /Ker(d)

if and only if 4>* E Aut (BI (Si IR.)) has an eigenvalue 01 nOl1n one.

It is known that any elelnent of Sp(2g, JE) can oceur as 4>* for some pseudo-Anosov
diffeomorphism of S [18]. Thus the result of Proposition 2 is not vacuous. It shows
that the spectrum of thc Laplacian, acting on I-fo1'1ns, is sensitive to the geometry
of the tubular ends.

The manifolds considered in Proposition 2 are very special. The question arises
how to extend Proposi tion 2 to general hyperbolic 3-lnanifolds M' of finite topological
type. First, we dispose of the case when A1 has zero injectivity radius. In Section 5
we prove

Proposition 3. 11 infmEM inj(m) = 0 then the essential spectl'um 01 the Lapladan
acting on AI(M)/Ker(d) is [0,00).

We are left with the case of positive injectivity radius. There is an obvious probleIn
in studying the spectrum of the Laplacian on NI in that we do not have an explicit
description of the Rielnannian metric of !vI. For exan1ple, even in the above case of
a mapping torus, the hyperbolic metric on JVIT is constructecl by a limiting process.
Our way of getting around this problem is to translate questions about the bottom of
the spectrum into questiolls about the reduced anel unreduced L2-cohomology of M.
Tt is much easier to cOlnpute the L2-cohomologies of M than Lo compute the spectral
resolution of its Laplacian. Furthermore, thc L2-cohomologies of M only depend on
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the biLipschitz diffeomorphism dass of /vI. In our case we do know what M looks
like up to a biLipschitz diffeomorphism, thanks to the work of Minsky [15].

Let M be a topologically tarne hyperbolic 3-111anifold with positive injectivity ra­
dius. We make the technical assumption that the ends of J\1 are incompressible. For
brevity, we call such a hyperbolic 3-manifold niee. Minsky gave a length space which
models the large-scale geometry of M. By a slight variation of his work, we construct
a model manifold A-1 which is biLipschitz diffeOlnorphic to J'1. The geometry of a
tubular end [0,00) x S of M is given by a ray 1 in the Teichmiiller space Ts of the
surface S. The endpoint of I, a point in Thurston's cOInpactification of TB, is the
end invariant of the tubular end. It is known that J'1 is determined up to isometry
by its topology and its end invariants [15]. Hence thc question is how exactly these
determine the spectrum of the Laplacian.

Each point I(t) along tbe ray gives an inner product ("')t on HI(SjIR). Let
f(B I

) be the Hilbert space of measurable Inaps f : [0,(0) --+ HI (Si IR) such that
1000 (/(i) , /(t))t dt < 00. Put

f'(B I
) = {/ E r(H I

) : fis absolutely continuous allel Btf E f(H I
)}.

In Section 6 we prove

Proposition 4. Let M be a nice hyperbolic 3-nl,aniJold. Then zero is not in the
spectrum 0/ the Laplacian aeting on AI (M) JKer(d) iJ and only ij each end 0/ M is
tubu/ar and the corresponding operator 8t : f'(B I

) -t f(H I
) has closed image.

The next proposition gives a sufficient condition for 8t to be onto. In Section 7 we
prove

Proposition 5. Suppose that there is a decolnposiüoll BI (Bj IR) = E+ EB E_ and
constants a, C+, c_ > °such that JOT all v+ E E+, 'U_ E E_ and 8} 2:: S2 2:: 0,

Ilv+ 11"1 2:: c+ e
a

(S1-":l) 11 v+ 11 82

and

Then Bt is onto.

We also give a conjectural algorithm to determine directly from tbe end invariants
whether or not zero lies in the spectruIn of the Laplacian acting on A1(M)JKer(d),
at least for most end invariants.

Finally, we give reslllts on Ker(.6t}. In Section 6 we prove

Proposition 6. Ij M is a nice hype7'bolic 3-ntanijold then diIn (Ker(.6d) < 00.

Let K be a compact subInanifold of M such that Al retracts onto int(K). Pllt

LI = Im (H I ( K; IR.) -* H1
(a!( i IR) ) . It is a Lagrangian subspace of H1

(aK; IR). In
Section 8 we prove
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Proposition 7. Let NI be a nice hyperbolic 3-manifold. Suppose that zero is not in
the spectrum of the Laplacian acting on A1(M)/Ker(d). FOT each end of M) con-

sider the vector space I<er (ßt : r' (H1
) -+ r(H1)). Together) these give a Lagrangian

subspace L2 0 f H1
( ß](; IR). Th eie is a short exact. sequence

o---+ Im (H1
(](, ß[(; IR) -+ HI

(](; IR)) --+ ](er(6t} ---+ LI n L2 -+ O.

The organization of this paper is as folIows. In Section 2 we define the reduced
and unreduced L2-cohomology groups and give their basic properties, along with
their relation to the spectrum of the Laplacian. SOlTIe of these results are scattered
throughout the literature, but we have tried to give a coherent presentation. In
Section 3 we review the geometry of hyperbolic 3~n1a.nifolds and results of Minsky.
In Section 4 we compute the reduced and unreduced L2-cohoI11010gy groups of cyclic
covers of general mapping tori. In Section 5 we consider hyperbolic 3-manifolds
with vanishing injectivity radius. In Sectiol1 6 we describe the L2-coholTIology groups
of tubular ends in tenTIS of the operators ßt : r" (H I) -+ r(l~ 1). In Section 7 we
give sufficient conditions for the vanishing 01' nonvanishing of the unreduced L2

_

cohomology groups of tllbular ends. We also describc results of Zorich and their
relation to spectral questions. In Section 8 we consider reduced L2-cohomology groups
of hyperbolic 3-manifolds.

I thank Josef Dodziuk and Rafe Mazzeo for discussions. I thank Yair Minsky and
Anton Zorich for explanations of their work and for COITIITIents on parts of this paper.
1 especially thank Curt McMullen for many hclpful conversations. I thank the IHES,
the Max-Planck-Institut-Bonn and the Bonner Kaffeehaus for their hospitality.

2. L2_COHOMOLOGY

Let M be an oriented Riemannian manifold which is geodesically complete except
for a possible compact boundary. Consider the Hilbet't space

(2.1) AP(M) = {square-integrable measurable p - forms on M}

and the subspace

(2.2) np(M) = {w E AP(M) : dw is square-integrable on int(M)},

where dw is initially interpreted in a distributional sense. There is a cochain complex

(2.3) ... dp_~ flP(M) ~ flP+l(i1tJ) dp+~ ...

One can check that Ker(dp ) is a closed subspace of i\P(M).

Definition 1. The p-th L2 -cohomology group of 1\1 is H(2)(111) = Ker(dp)/Im(dp_d·

The p-th reduced L2 -cohomology group of A1 is IT(2)(M) = Ker(dp)/Im(dp_d, a
Hilbert space.
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We will sometimes call H(2)(M) the p-th unreduced L2-cohomology group. Let M'
be another manifold like M. Let n*(M') be its cochain complex, with differential d'.

Lemnla 1. Suppose thai there are linea1' n~aps

(2.4 )

such that

i : r2*(M) -+ r2*(M'),
j : r2*(M') -+ r2*(M),

!( : .0* (111) ---t .0*-1 (Al),
J{, : r2*(M') ---+ r2*-I(M')

(2.5)
iod = d' 0 i, jod' = d 0 j,

] - j 0 i = d]{ + !{d, ] - i 0 j = d'](' +]('d' .

Then j induces an iso'morphisln between H(2)(M') und H(2)(Jl1). Ij i and j are con­

tinuous then j also induces an isomorphis7rt betwcen H(2)(A1') and H(2)(M).

Proof. We leave the proof to the reader. 0

The natural geometrie invariance of L2-eohOlnology turns out to be Lipschitz homo­
topyequivalence. We will only consider Inaps f : /\4 --!' M' such that f(aM) C aM'.
Definition 2. 1. A 7nap f : M -+ M' is said to be Lipschitz ij f is al77~ost everywhere
differentiable and there is a constant C > 0 such that Jor (lImost aU m E M and alt

v E TmM, l(dJ)mvl ~ Clvl.
2. Two Lipschitz maps /0 : M --!' M' und /1 : JltJ --+ 1\1' al'e Lipschitz-homotopic ij
there is a Lipschitz map F : [0,1] x M -+ 111' which reslriets to Jo and /1 on the
boundary.
3. Two Lipschitz maps f : M --+ M' and 9 : Al' -+ Al dcfine a Lipschitz-homotopy
equivalence between A1 and A1' if fog and gof are Lipschitz-homotopic to the
identity.

A Lipschitz Inap J : Jll --+ M' induces lllaps f* : H(2)(i\tf') --+ H(2)(M) and f* :

H(2)(M') --+ H(2)(M).

Proposition 8. If J : M --+ M' and 9 : A1' --+ j\1 define a Lipschitz-homotopy
equivalence between A1 und M' then f* induces an isoln01'phism between H(2) (M')

and H(2) (M), and between H(2)( M') and H(2)( M).

Proof. The homotopy-equivalence gives continuous linear Inaps i = g*, j = f*, I{
and /(' satisfying thc hypotheses of Lemnla 1. 0

Let J denote thc formal L2-adjoint of d. Let * denote the Bodge duality op­
erator. Let b : aN! --+ M be the boundary inclusion. Let A~(A1) denote the
smooth compactly-supported [orms on /vI. Note if w E A~(A1") then b*(w) may be
nonzero. Define a sequence of inner products (', ')" on i\~(M) for sEN inductively
by ("')0 = (', .) L2 anel

(2.6) (Wt,W2),,+1 = (Wt,W2)s + (dwt,dw2)" + (JWI,JW2)".
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Define the Sobolev space H;(M) to be the c0l11pletion of A~(M) under (., .)".
The Laplace operator is 6 = od + do. It is a self-adjoint operator on A*(M) with

don1ain

(2.7) D0I11(~) = {w E H;(M) : b*(*w) = b*(*dw) = O}

and if dim( M) > 0 then it is unbounded. If p E LOO( [0,00)) then p(6) is a bounded
operator on A*(M). Let D.p be the restriction of D. to AP(NJ). We have

(2.8) H(2)(M) ~ Ker(dp) n (Im(dp_t))l.

= {w E np(M) : dw = OW = b*(*w) = O} = Ker(D.p).

Ey elliptic theory, Ker(6 p ) consists of smooth [orms anel so H(2)(M) can be computed
using only sInooth fonns. We now show that the salne is true for H(2)(M). Put

(2.9) np,OO(M) = {w E OP(i'1) : w is snl00th}.

There is a complex

(2.10) ... dp_~ OP,OO(M) ~ np+t,OO(i\1) dp+~ .•.

Proposition 9. The cohomology of the cOlnplex (2.10) is iso1norphic to H(2)(M).

Pr'oof. There is an obvious cochain map i : O*,OO(M) --+ n*(M). Let 1] E COO([O, 00))
be identically 1 on [0,1] anel identically 0 on [2,00). Then r7( 6.) is a smoothing
operator and gives a cochain map j : n*(i\1) -r n*,OO(NJ). Define p E COO([O, 00))
by p(x) = l-:(X) and define K : O*(M) -r n*-t(A1) by [( = op(6). Then I - ij =
dl( + [(d and similarly for I - ji. The proposition folIows. 0

We now show that the L2-cohomology grollps can bc computed by means of stan­
dard elliptic complexes for manifolds with bOllndary.

For s E Z, there is a Hilbert cochain complex Ds(kJ) given by

(2.11 )

o-+ H~+dim(M)(M) -+ H~+dim(M)-l(M) --+ ... -+ H~~~(M)-l(M) -+ H~im(M)(M) -+ 0,

where we ilnplicitly truncate the complex when the Sobolev index becomes negative.
For fixed p, consider the Hilbert cochain cornplex Dabtf (Al), concentrated in degrees

p - 1, p and p + 1, given by

(2.12) ~~I(M) = {w E H~-t(M) : b*(*(lw) = b*(*w) = O},
~btf(M) = {w E Hi(M) : b*(*w) = O},

~tt(M) = H~+l(M).

Proposition 10. If s ~ p + 1 - dim(M) thel1 the pa1't of D3 (M) f,om degrees p - 1
to P + 1 is homotopy equivalent to Dab~ (M).
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Proof. Let E> °be small enough that there is a cool'elinate runction t E [0,2EJ neal'
oM such that Ot is a unit length vector field whose flow generates unit speed geodesics
which are normal to oA1, and 8M col'responds to -t = 0. Using these coordinates,
a tubular neighbol'hood of 8M is diffeomorphic to [0,2E] x 8M. Let Y denote a
copy of M hut with the pl'oduct metric on [0,2E] x 8M. The identity map gives a
homotopy equivalence between Vs(M) and V.,(Y). Let DY denote the double of Y
and let v~en(DY) be the complex of fornls onD)/ which are invariant under the
Zz-involution on DY. There is an obvious inclusion f : v~ven(DY) --+ D.. (Y). We
now show that D.. (Y) anel ~en(DY) are hOlnotopy equivalent.

A differential form w on Y can be decomposed near the boundary as

(2.13)

(2.14)

where wdt) and W2(t) are forms on 8M. Let p : [0,2(J --+ IR. be a smooth bump
function which is identically one near t = °anel idcntically zero for t 2: L Let E
denote the Laplacian on 8A4. For u > 0, define thc operator

[ti:>'R(u) = [ - e- tl

by the spectral theorem. For w a form on Y, restrict w to [0,2E] x 8M and put

(2.15) (J(W)(t) = p(t) l' Il(u) wz(u)du.

Then one can check that [( acts as a degree -1 map on boLh Ds(Y) anel v=ven(DY).
If w is a form on Y then near GM,

(2.16)
w - (d[( + f(d)w = Wl (0) + (( [ - H(-t)) Wt Cl) + dt 1\ (( [ - R( t)) W2 (t)

+ l' R'(u) wj(u)du.

One cau check that w- (d[( +I(d)w extends by reflection to a.n element of ~ven(DY).
Thus we obtain a homotopy equivalence J : D=ven (DY) --+ V s (Y) anel 9 : 'V.,(Y) --+
D~ven(DY), where f is the inclusion map anel 9 = ! - (dI( + !(d).

Next, as s varies the cOlnplexes D~ven( DY) are all isolnorphic to each other by
powers of [ + 6DY, at least in their COlnnl0n ternlS of definition. Thus we may
consider the case s = p+ 1- dim(M). In this case, the part of D~ven(DY) from p-l
to p + 1 is the salne as 'Dab.,(Y).

Finally, we show that Dabs(M) is the sanlC as Dab.,(Y). Let us decompose a form
w on M as in (2.13). Then the boundary conelition for w to belong to 'D~bf(M) is
W2(0) = °and thc additional boundary condition ror w to belong to ~b" (1\1) is
8twt (0) = 0. These conditions determine the same spaces of forms whether one is on
Mol' Y. 0
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(2.17)

Proposition 11. The redueed and unreduecd p-th L2-eohomology gro7.1ps 0/ Mare
isomorphie to the 7'cdueed and un7'edueed p-l1t coh07nology g7'OUpS 0/ the c07nplex
Dab!J( !v!).

Proof. For the reduced L2-cohomology, the clainl follows fronl (2.8). As the operator
(! +6)-1/2 is an isomorphisIll from AP(M) to 'D~b,,(!I1), it follows from Definition 1
that

HP (M) ~ Ker(d) on ~bs(M) .
(2) Im(d) on {w E tii-1(1'1) : b*(*w) = 0, dw E D~b"(M)}

The Hodge decomposition on M is

(2.18)

A*(M) = Ker(~*) EB Im(d) on tir-1(M) EB hn(o) on {w E tir+1(1V!) : b*(*w) = O}.

Projecting w fronl (2.17) onto the last factor in (2.18), we Inay as weil assurne that
ow = 0, showing that w E 'D~b!Jl (Iv!). 0

Let ip be the obvious surjection from H(2)(M) to TI(2)(M). We have Ker(ip+d =

Im(dp)jlm(dp). Thus i p+1 is an isomorphisnl if and only if Im(dp) is closed.

For the 7'est of this seetion, we assume thaI. DM = 0.

Let K be a compact subnlanifold of Iv! with snl00th boundary 8!<. Put N
M-K.

Proposition 12. Hle haue thai
1. The reduced L2 -cohomology at p of Vabs(lvf) is finile-dinwnsional if and only if
th e reduced L2-coh07nology at po/ 'Dab" (N) is Jin ite-di'rnensio n al.
2. The redueed L2-cohomology at p 0/ Dab!J(iH) equals the unreduced L2-cohomology
if and only ij the redueed L2~eohomology at ]J 0/ Dabs(N) equals the unreduced L2_
cohomology.

Proof. Let Z be a sinall collaring of ß!( in lvI, diffeOITIOrphic to [-1,1] X 8!(. Put
K ' = Ku Z and N' = Nu Z. Then J(' is diffeomorphic to K and N' is diffeomorphic
to N, with I<'nN' = Z. Let i 1 : K' -+ M, i 2 : N' -+ Ivf, i 3 : Z -+ !(' and i 4 : Z -+ N'
be the obvious embeddings. There is a short exact sequence

(2.19)

(Warning: One Inay be tempted to use the cohonl01ogy sequence of (2.19) to compare
thc reduced L2-cohOInology groups of M anel N'. Howcver, this cohomology sequence
need not be weakly exact if one does not Inake Freelholmness assumptions. We do
not want to make such assumptions.)
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Let us take smooth compatible triangulations of 1(' and Z. Let C*(I(') and C*(Z)
denote the corresponding (finite-dimensional!) cOInplexes of simplicial cochains. For
s large enough, it is known that V s ( J(') is honlotopy cquivalent to C*( K') and V s (Z)
is homotopy equivalent to C*(Z) [6,23]. Explicitly, thc maps involved are integration
f : Vs(l(') -t C*(I(') and the Whitney Iilap Hf : C*(l(') -7 Vs([('), and similarly
for Z. We have comrnuting diagrams

V s ([(') EB V s(lV') ~ Vs(Z)
(2.20) J: 4- .J-

C*( [(') EB V., ( lV')
q'

C*(Z)----=-+

and

V., (J(') EB Ds( lV') ~ D.,(Z)
(2.21 ) W; t t

C*( [(') EB V s(lV')
q'

C*(Z),---=--7

where q = i; - i: anel q'(c, w) = i;c - f i:;w. Also, the relevant hOlnotopy operators
form commuting diagraIlls. Tt follows that the cOlllplex Ker(q) is homotopy equivalent
to Ker(q').

Froln (2.19), Ker(q) ~ Vs(M). Note that Ker(q') has thc Hilbert strueture arising
from its inclusion in C*( J(')EBV.,(N'). Let d denote the differential in C*(K')ffiVs(N')
and let 0 denote its adjoint. Put

(2.22) v = {w E C*([(I) EB V.,(N' ) ; dw = 0 and ow E (Ker(q')).l}.

Using "harmonie representatives", wc can identify the rcduced L2-cohomology of
Ker(q') wi th V n Ker(q') and that of C* ([(I) EB Ds (N') wi th V n Ker(0). As these are
both of finite codimension in V and H*(I\') is finite-dilnensional , it follows that thc
reduced L2-cohomology of Ker(q') is finite-dilnensiollal if ancl only if that of 'Ds ( N')
is finite-dimensional. As N' is diffeomorphic to lV by a diffeomorphism which is
an isometry outside of a compact region, the reclueecl L2-cohomology of Vs(N' ) is
isomorphie to that of V.,(N). Part 1 of the proposition now follows [rom Proposition
10.

Finally, let c denote the differential in Ker(q'). lt follows from [9, Lemma 13.6.2]
that c has closeel image if anel only if d has closed ilnage. Part 2 of the proposition
folIows. 0

Proposition 13.

o rt a (öd on AP( M) /Ker(d)) {:::::::} ip+I is an isolnorphism.

Proof. Suppose first that od has a bounded inverse on i\P(M)/Ker(d). Given p E
AP(M), let Ji denote its class in i\P(/Vl)/Ker(d). Define an operator S on snl00th
compactly-supported (p + l)-forms by S(w) ~ d(5d)-löW. Then Sextends to a
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bounded operator on AP+l(M). Let {1]n}nEN bc a sequence in flP(M) such that
limn -+oo d1]n = w for some w E AP+l(M). Then for each n E N, we have d1]n = S(d1]n)
and so w = S(w). Thus w E Im(d) and so hn(d) is closed.

Now suppose that öd does not have a bounded inverse on i\P(M)/Ker(d). Then
there is a sequence of positive numbers 7'1 > SI > 1'2 > S2 > ... tending towards
zero and an orthonorrnal sequence {1]n}nEN in i\P( lVI) / [(er(d) such that with respect
to the spectral projection P of öd, 1]n E hn(P([Tn, sn]))' Put An = lld1]nll. Then
limn-+oo An = O. Let {Cn}nEN be a sequence in IR+ such that L~=l c~ = 00 and
L~=l CnAn < 00. Put w = L:~=l end1]n. Then w E Iln(d). Suppose that w = dp, for
some f.l E flP(M). By the spectral theoreIl1, we Il1Ust have Ti = L~=l Cn1]n. However,
this is not square-integrable. Thus Im(d) is not closed. 0

We recall the notion of the essential spectrum of an operator. Let T be a densely­
defined self-adjoint operator on a Hilbert space II. Then ae~8(T) is a closed subset
of the spectrulll a(T) with the property that A E aeH(T) ~ 0 E aeH(T - AI).
Let P be the spectral projection of T. Then a~!J8(T) has thc following equivalent
characterizations [10].

Proposition 14. 0 E ae~8(T) if and only iJ any 0/ the Joltowing condilions hold:
1. dim(Ker(T)) = 00 01' Im(T) is nol closed.
2. There is a bounded sequence {Un}nEN in DOll1 (T) such that limn-+oo IITun 11 = 0,
but {Un}nEN does nol have a convergent subsequence.
3. There is an orthonormal sequence {Un}nEN in Dom(T) such i.hat limn-+oo IITun 11 =
o.
4. For alt t: > 0, dim(Im(P((-t:, t:]))) = 00.

5. dilu(Ker(T)) = 00 01' 0 is not isolated in u(T).

In particular, if Ker(T) = 0 then 0 E ae~ß(T) <=} 0 E a(T).

Corollary 1. Let M and M' be complele orient.cd Ric'tnannian maniJolds. Suppose
that there are compacl submaniJolds K C Ai and J(' C Al' such that M - !( 1.$

isomet1'ic to NI' - J('. Then
1. 0 E ae~~ (6p on Ker(6p (M))) ~ 0 E aes!J (6p on Ker(6p (M'))).
2. 0 E aeu (6p on i\P(Jl1)/Ker(d)) ~ 0 E aeH (6p on i\P(M')/Ker(d)).
3. 0 E aeH (6 p on AP(M)) ~ 0 E ae~~ (6 p on i\P(A1')).

Proof. 1. As 6 p acts on Ker(6p (M)) as the zero operator, Proposition 14.1 says that
olies in aeH (6 p on Ker(6 p (M))) if anel only if cliln(Ker(6p (l'1))) = 00. The clailn
follows from (2.8) and Proposition 12.l.
2. As 6 p acts on AP(M)/Ker(d) as öd, the claim follows from Propositions 12.2 and
13.
3. This is now a consequence of the Hodge decOJnposition. D
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Remark: Corollary 1.3 is well-known. It is a consequence of [8, Prop. 2.1], the proof
of which is for functions but extends to differential forms. We will need the more
refined statements of Corollary 1.1, 1.2, which take into account the Hodge decompo­
sition of forms on M and M'. The proof of [8, Prop. 2.1], which involves multiplica­
tion by a compactly supported funetion, does not extend to this case. Consequently,
we have given an independent proof. I thank Jozef Dodziuk for correspondence on
these questions.

3. HYPERBOLIC 3-MANIFOLDS

For background on hyperbolic 3-manifolds, we refer to [1,20, 21J. Let M = H 3 Ir
be a complete connected oriented hyperbolic 3-manifold with finitely generated fun­
damental group r. We assume that I' is nonabelian, as the abelian case can be easily
handled separately. The sphere at infinity of H3 breaks up as the union S2 = Au !1
of the limit set and the domain 0/ diseon/.inuity, on which I' acts freely. The eonvex
core of M is C(M) = hull(A)/r. The quotient !1/1' is a finite union of connected Rie­
mann surfaces, each of which is diffeomorphic to the complement of a finite number
of points in a closed connected Riemann surface. Put M = (H3 u !1)/r.

There is a constant f.l., the Margulis constant, such that if E < f.l. and

Mthin(E) = {m E M : inj(m) < E}

then each connected component of M'hin(E) is either
1. A rank-two cusp, diffeomorphic to (0,00) X T 2

,

2. A rank-one cusp, diffeomorphic to (0,00) x (-],1) X SI, 01'

3. A tubular neighborhood of a short geodesic loop in M, eliffeomorphic to SI x D2
.

Let MO(E) be M with the cusps in M'hin(E) removed. There is a notion of an end
E of MO(E) ancl of E being contained in an open set U C MO(E) [2J. An end E is said
to be geometrieally finite if it is contained in an open set U such timt U n C( M) = 0.
If E is geometrically finite then it is associated to a connected component of !1/r.
The complex structure on that component is called the end invariant of E. M is
said to be geometrieally finite if all of the ends of MO(E) are geometrically finite and
geometrieally infinite otherwise.

If M is geometrically finite then there is a pair (X, P), where X is a compact
3-manifolel and P is a compact submanifolel of [)X, with the property that M is
diffeomorphic to int(X) anel M is eliffeomorphic to X - P. The pambolie loeus P is
a elisjoint union Tu A of surfaees, where T is a disjoint union of 2-tori, one for each
rank-two cusp of M, ancl A is a elisjoint union of annuli, one for each rank-one cusp
of M.

The reduced L2-cohomology and essential spectrum of geometrically finite hyper­
bolic manifolds were studied in [13J. When speeialized to three dimensions, the results

are as folIows. If M has finite volume then ~2)(M) ~ C anel if M has infinite volume
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~

then H(2)( M) = 0. The first reduced L2-cohOlllology gl'oup of M is given by

(3.1) H~2)(M) ~ Im (H1 (X, ax - int(A)) -+ H1
()(, ax - (T U int(A))) .

The essential spectrllm of 6 is

(3.2) M compact

AI noncOInpact

A°/Ker(d) /\ 1/Ker(d)
o (/)

[1,00) [0,00)

We no longer assurne that M is geometrically finite. The fact that r is finitely­
generated implies that M is homotopy-equivalent to a compact 3-manifold [19]. It is
an open conjectllre, which has been proved in Inany cases, that M Inllst be topolog­
ically tarne, i.e. diffeOlnoI'phic to the interior of a C0I11pact 3-tnanifold. We assurne
hereafter that AtJ is topologically tarne. There is again a pair (X, P), where X is a
compact 3-manifold anel P is a compact subn1anifold ofaX , with the properties that
1. )\Jf is diffeomorphic to int(X).
2. P is a union of tori anel annuli, one for each cuspida.l C0I11pOnent of Mthin(C).
3. The ends of MO(E) are in one-to-one correspondence with the connected compo­
nents ofaX - P.

An end E of MO(f) is called simply degencl'ate if it is contained in an open set
U C MO(E) homeomorphic to (0,00) x S for sOIne COlnpact sllrface 5, and there is a
sequence of finite-area hyperbolic surfaces in U, each hamatopic ta {O} x int(S), such
that the sequence exits the end; see [5] for the precisc definition. It is known that
M is geo1netrically tarne, meaning thaL every end of A1°(E) is either geometrically
finite or simply degencrate [2, 5]. A sitnply degeneratc end E comes equipped with
a certain geodesic lalnination on the surface int(S), known as its end invariant. Let
[ denote the collection of all end invariants of NI. Thurston conjectured that !v! is
determined up to isometry by the topology of (X, P), along with [ [21]. We I'emark
that if the tripie (X, P, E) satisfies certain topological conditions then it does arise
from SOlne hyperbolic 3-manifold [16].

Canary showed that if M is geometrically infinite then C(NJ), an infinite volume
submanifold of M, can be exhausted by compact subnlanifolds whose boundary areas
are uniformly bounded above [5]. As he pointed out in [4], it then follows from Buser's
theorem that zero lies in the spectrum of the Laplacian acting on L2-functions on M.

Suppose that there is a constant c > 0 such that for alt n~ E AI, inj(m) > c. Then
p = (/) and any simply degenerate end of 1'1 is contained in an open set of the form
(0,00) x S for some closcd oriented surface 8. Supposc in addition that the ends of
Mare incompressible, 01' equivalently, that r does not decompose as a nontrivial free
product. In this case, Minsky showed that Thurston 's isometry conjecture is true
[15]. To do so, Minsky first constructed a model Rielnannian lnanifold M, based on
the topology of M and its end invariants, which approximatcs the geometry of M.
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More precisely, he showed that there is a 111ap f : )\11 --+ /11 which is homotopic to
a hOlneomorphisln, with the property that the lift J : M --+ H 3 is a coarse quasi­
isometry. The Riemannian metric on M is constl'ucted as follows. It is enough to
first specify the Riemannian metric on thc ends of )\11 and then extend it arbitrarily
to the rest of M. If U = (0,00) x S contains a geofnetrically finite end of M, let dp2

be the hyperbolic metric on the corresponcling connected cOinponent of D/f. Then
the model metric on the associated end of M is dt 2 + cosh2 (t)dp2.

To describe the model metric for a simply degenCl'ate end of !vI, we first need some
notation. For a dosed oriented surface S of genus 9 2: 2, let 1-ls denote the space of
hyperbolic metries on S, let Diffs denote the orientation-preserving diffeomorphisms
of Sand let Diffo,s denote those isotopic to the idcntity. The Teichmüller space Ts
can be identified with 1-lsIDiffo,s and the Inoduli space Mods can be identified with
1-lsIDiffs. Note that Mods is an orbifold. There is a quotient map 7r : Ts --+ Mod s.
The universal Teichnliiller curve fs is 'H.s XDiffo,s S. It is the total space of a fiber

bundle PT : Ts --+ Ts with fiber Sand inherits an obviollS fa.Illily of hyperbolic metrics
on its fibers. The universal curve ovel' the 1110duli space is M;ds = 1ls XDiffs S. It is
the total space of an orbifold fiber bundle PM : M;ds --+ Mod s with fiber Sand again
inherits a family of hyperbolic Inetrics on its fibers. Let us choose an arbitrary slnooth
horizontal distribution on the fiber bundle ~~ds, rneaning a collection of subspaces
THM;d s c TM;ds such that TM;ds = THT\fuds ffi Ker(dpA,t). (Everything here is
interpreted in an orbifold sense.) There is a lifted horizontal distribution THfs on

is.
Ir U = (0,00) x S contains a sin1ply degenerate end of /11, fix an initial hyperbolic

metric dp2(0) on {O} x Sand let So be the corresponding Riemann surface. Let
HO(So; /(2) denote the space of holomorphic quadratic differentials on So. It is a
complex vector space of dimension -~X(S). The ending lalllination L is equivalent
to the vertical foliation of some <I> E HO(S'o; I(2). Then <I> generates a Teichmüller
ray , : [0,00) --+ Ts starting frOln ,(0) = [80]. The endpoint of f corresponds to L,
viewed as a point in Thurston's compactification of Ts. As the injectivity radius of M
is bounded below by a positive number, [15, Theoren1 5.5] implies that the projected
ray 7r 0 I lies in a cOlllpact region of Mod s .

Using the hyperbolic metrics on the fibers of i$, the horizontal distribution THis
and the metric dt 2 on [0,00), there is an incluced R.ienlannian metric on PT} (,), In
terms of the trivialization PT 1

(,) ~ [0, (0) x S' COln ing fronl T H1$, we can write this
metric as dt 2 + dp2(t), where for each t E [0,00), dp2(t) E H.s projects to ,(t) E Ts.
This is the model metric on the associated end of )\11. Because of thc precompactness
of 7r 0" the biLipschitz dass of the model metric is independent of the choice of
THM;ds .

"\Te will need to know that M approxinlates /11 in a slightly bettel' way than that
given in [15]. Curt McMullen explained to Ine how the next statelnent follows from
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the results of [15].

JOHN LOTT

Proposition 15. There is a biLipschitz ho'rneo1Twrphis1Tt betwcen M and M.

Proof. It is enough to just construct biLipschitz homeOIllorphisIllS between open sets
containing the ends of M and M. For a geoIl1etrica1ly finite end, this follows from [15,
TheoreIll 5.2]. Let E be a simply degenerate end o[ !vI contained in a neighborhood
U. = (0,00) x 8. Let U = (0,00) x 8 contain the corresponding end in M. Let, be the
Teichmüller ray described above. Minsky constructed a sequence {gn : 8 --+ U}nEN
of pleated surfaces in U with the properties [15, Theoretll 5.5] that
1. for each n E N, gn(8) is homotopic in U ta {O} x 8
2. thc sequence {gn(S)}nEN exits the end
3. there is a constant T > 0 such that for cach 11 E N, the Teichmüller class of thc
induced hyperbolic lnetric pn E 'Hs lies wi thin a Teichn1iiller distance T fram 1(11).

After precomposing the gn 's with appropriate elements of Diffo,s, we may assume
that neighboring pn 's are uniformly elose in the sense that thcre is a K > 0 such
that for all 11. E N, the identity map Id : (8, Pn) --+ (8, Pn+d is a [(-biLipschitz
homeOlnorphism.

For each n E N, we can find an embedcled surface hn : S --+ U such that hn(S)
lies within some distance D from gn(S) and the induced hyperbolic metric P~ is K'­
biLipschitz to pn for some /(' > O. As the injectivity radius of M is bounded below
by a positive constant, we can use compactness in thc gCOInetric topology [1, Chapter
E], [14, Section 4] to argue that the surfaces can be chosen so that D and /(' are
uniform with rcspect to n. Next, we can find COllstants 0 < CL < A and a uniformly
spaced subsequence {nk}kEN of N so that thc consecutivc surfaces {hnk(S), hnk+1(5)}
are spaced at least distance a apart and no morc than distance A. Using property
2. above, we can assurne that the surfaccs {h nk (5')} are topologically consecutive
in the sense that hnk(S) separates hnk _1 (5') from hnk+1 (8). Let Uk be the part of U
enelosed by hnle (8) and hnk +t (5). Let Uk be the subnlanifold [nk, nk+d x 5' in U. For
each k E N, there is a diffeomorphism 1Jk : Uk --+ Uk which restriets to {hnk , hnk +t }

on aUk. Again using compactness in the geOIl1etric topology, we can choose the
diffeomorphisms {<Pk}kEN so that there is a constant J(" > 0 such that for all k E N,
<Pk is a [("-biLipschitz hOIneomorphislTI. The desired biLipschitz homeomorphis111
f :U --+ U is given by stacking tagether the ePk'S. 0

Remark: Minsky used singular Euelidean l11etrics on S' instead of hyperbolic lnetrics,
but the difference is minor. We use the horizontal distribution on rJ;ds to give a
lifting of / to 1ls such that the lifts of nearby points on / are uniformly elose in 'Hs.
This is similar to [15, p. 562-563).
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4. MAPPING TORI

Let F be a smooth closed oriented manifold. Let cP E Diff(F) be an orientation­
preserving diffeomorphism of F. The lnapping torus of cP is thc manifold

(4.1) MT = ([0, 1] X P) / '"

where the equivalence relation is (0, s) '" (1, 4J(s)).
Projection on the first factor gives a fibering Ir : A1T --+ SI. Let M be the

associated cyclic cover of MT. Let </>; E Aut(HP(F, IR)) be the map on coholnology
coming from </>. '

Proposition 16. 1. H(2)(M) = O.
2. 0 E a (8d on AP( M) /Ker(d)) {:::::::} </>; has an cigenvalue 0/ norm one.

Proof. Let, denote a generator of the group of covering transformations on Ai, the
Olle which maps to t --+ 'l + 1 on IR. For ,,\ E U(l), put

(4.2) A~(A1) = {measurablep - fonnsw on J\tf : ,*w = "\w}.

Let V>. be the Rat complex line bundle on S' with holonomy ,,\ and pat E>. = Ir*V>..
Then

(4.3)

the p-forms on A1T with value in the Bat vector bundle E>.. lt follows from Fourier
analysis that there is a direct integral decolnposition

(4.4)

Furthernlore, the decOInposition (4.4) comnHltes with the Laplacians. It follows from
Floquet theory that H(2)(M) f:. 0 if and only if HP(AlT; E>.) f:. 0 for all ,,\ E U(l) and
oE a(6 p(M)) if and only if HP(MT; E>.) f:. 0 for sonlC ,,\ E U(l); see [11] for details.

There is a Wang exact sequence

(4.5)

... --+ IIP-l(F) 1->'~4J;_t HP-I(F) --+ HP(l\1Tj E>.) --+ FfP(P) 1->'~~/4J; lIP(F) --+ ...

This gives the short exact sequence

(4.6) 0 ---+ Coker( I - ,,\-14>;_1) ---+ HP( 1I1T; E>.) ---+ Ker( I - ,,\ -1 </>;) ---+ O.

As there is only a finite number of ,,\ E U(l) such that Cokcr(I - ,,\-l</>;_d f:. 0 or

Ker( I - ,,\-I </>;) f:. 0, part 1 of the proposition folIows.
The Bodge decomposition of AP( M) now gives

(4.7) AP(J\1) = Im(d on AP-I(M)/Ker(d)) ffi AP(A1)/Ker(d).
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Correspondingly, we have

(4.8)

JOHN LOTT

(5.1 )

°E (j (D.p on Inl(don Ap-l (M) /Ker(d))) -{::=} Coker( J - .-\-1 1J;-d #- 0,

°E (j (6. p on AP(M)/Ker(d)) ~ I<cr(1 - .-\-11J;) =I- 0

for some .-\ E U(l). The proposition follows. D

Re'mark: A different proof of Proposition 16 follows from Appendix A of the preprint
version of [12]. This material was left out in the printed version.

Now let F be a closed oriented surface S of genus 9 ~ 2. Let 1J be an orientation­
preserving pseudo-Anosov diffeomorphism of S. Thurston showed that the nlapping
torus MT has a hyperbolie strueture [17, 22). Furthcrnl0re, the hyperbolie strueturc
on MT is unique up to isometry. The eydie cover 111 has the pullbaek hyperbolie
strueture.

Corollary 2. 0 E (j (<5d on Al (M) /Ker(d)) -{::=} 1Jr has an eigenvalue 01 norm one.

5. ZERO INJECTIVITY R,ADIUS

Proposition 17. Let M be a compleie hYPc'rbolic 3-'manifolrl with infmEM inj(m) = 0.
Then (je"" (<5d on Al (111) / Ker(d)) = [0,00).

Proof. If Mthin ( E) contains cusps then the proposition follows from the characteriza­
tion of the essential spectrum of cusps in [13}. üthcl'wise, fd1hin ( E) must contain a
sequence of tubtdar neighborhoods {Tn}nEN of short geodesie loops {,n}nEN whose
lengths {l(,n)}nEN tend towards zero. It is known that thc radius Rn of Tn goes

like Rn '"'-I ~ log C(~n)) [7}. As n inereases, thc geOlnetry of 7'n approaehes that of a
rank-two cusp and so the claim of the proposition is not surprising.

Fix n for amoment. Wc use Fermi coordinates (1', t, 0) for Tn as in [7], where°::; r ::; Rn is thc distance to In, t is the arc-Iength along In and 0 is the angular
coordinate in the normal disk bundle to In' Consider aI-form w on Tn given in
coordinates by w= g(r)dt, where 9 E cgo (0, Rn). Üne can check [7] that ow = 0,

{Rn
(W,W) = 2rrl(,n) Ja Ig(r)1 2 tanh(r)dr

and

(5.2)

Furthermore, w E Inl(<5) if

(5.3)

5ck = - ~() (tanh(,") g')' .
tan l'
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or equivalently, if (w, dt) = 0.
Let 4> E cgo((O, 1)) be a positive function satisfying fd 4>2(1')dr = 1. For k E IR,

define

(5.4)

and Wn,k = gn,k( r )dt, We now fix k =I O. Put

(5.5)
(Wn,kl dt) f~?n gn,k(1') tanh(r)d1'

Cn,k = (wn,o, dt) = foRn gn,O tanh(r)dr

foRn eikr c/J( r / Rn) tanh(1') d1'
=---"-----=----'------'---

foRn c/J(r / Rn) tanh (r )(h'

f~ eikRn~cf;(s) tanh(Rns)ds
=--,....-------

J~ 4>( s) tanh (Rns )ds

By the Riemann-Lebesgue theorem, limn--?oo Cn,k = 0. Put w~,k = Wn,k - Cn,kWn,O' By
construction, W~,k E Inl(0). We have

[Rn 2
(5.6) IIw~,kIl2 = 21r1(,n) Jo Ign,k(r) - Cn,kgn,0(1')1 tanh(1')d1'

1 [Rn I 'k [2= Rn Jo e"r - Cn,k cf;2(r/Rn) tanh(r)dr

= f leikRn' - c",kr <j}(s) tanh( R",s )ds

= f (1 + C~,k - 2c",k castkR"s)) <j>2( s) tanh( R"s )ds.

Thus limn-too Ilw~,k 11 = 1.

Similarly, olle cau check that lilnn-too 11 (od - k2 )wn,k 11 = O. It follows that

Since the W~,k 's are supported in the disjoint tubes {Tn}nEN, they are mutually or­
thogonal. It follows frorn Proposition 14.3 that k2 E a etls (5d on Ker(5) c A1(M)).
As a etl4 is a closed subset of IR, the proposition folIows. D

Remark: There are hyperbolic 3-manifolds diffeoI110rphic to IR. x 5, where 5 is a
closed oriented surface of genus 9 2::: 2, having zero injectivity radius [3].
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6. REDUCTION TO AN ODE

Let M be a topologically tarne cornplete connected oriented hyperbolic 3-rnanifold.
In this section, we are interested in whether zero lies in thc spectrum of öd acting
on Al (M) /Ker(d). If M has zero injectivity rad ilIS then by Section 5, the essential
spectrum of öd acting on A1(M)/Ker(d) is [0, (0). Therefol'c, we assume that M has
positive injectivity radius c.

We can take the constant E in Section 3 less tha.n c, so that M thin ( €) = 0 anel
MO(E) = M. By Section 2, it is enough to study the spectrum of the Laplacian
on the ends of M. If M has a geometrically finite end then it follows from [13] that
a e~~ (öd on Al (M) /Ker(d)) = [0, 00). Thercfol'c, wc assume t hat M does not have any
geometrically finite ends. By Section 3, all of thc enels of Mare simply degenerate.

In order to apply Minsky's results, we tnake the further assumption that thc ends
of M are incompressible. Recall from Section 3 that M is a ccrtain Riemannian
manifold which models Ai. By Propositions 8 anel 15, H(2)(J\1) ~ H(2)(J\t1). Consider
a single end of M which is contained in an open set U = (0,00) x S, where S is a
closed oriented surface. Dur strategy will be to COlDpute H(2)(U), At the same time,

we compute H(2)(U), H~2)(U) and H~2)(U), Recall that U has the metric dt2+ dp2(t),
where dp2(t) is a hyperbolic metric on S which projccts to ,(t) E Is.

For each t E [0, (0), ßt (dp2(t)) is a cova.riant 2-tensor on S. For k E N, let
IfDt (dp2(t))llk denote its Sobolev k-norm with respect to dp2(t).

Proposition 18. For each k E N, IIßt ( dp2( t)) Ilk i ... 'lltufonnly bounded in t.

Proof. As dp2 (t) is a hyperbolic Inetric for all t E [0,(0), i t follows that

(6.1 )

where lI(t) is a vector field on 5, L is thc Lie dcrivative and H(t) is a covariant
2-tensor on S satisfying

(6.2) L H~~(t) = 0, L \l~Jf/w(t) = 0.
/~ ~

Equivalently, H(t) = Re(Q(t)) where Q(t) E HO(S'; f(2), S' having the cOlnplex struc­
ture induced from dp2(t). Let z be a loca,} holomorphic coordinate on S, write dp2(t)
locally as gzz dzdz and write Q(t) locally as QzzdZ 2. The BeltraIl1i differential corre­
sponding to Q(t) is

(6.3) zZQ dz
fl = 9 zz dZ'
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Given cI> = cI>zzdz 2 E HO(S; /(2), put

(6.4) 11 <I> I! I = i r lcI>zzl dz A dz,
2 Js

11«I>lb = ~ r gzz«I>zz<I>zz dz 1\ dz.
2 Js

As I is a Teiehmüller ray, the infinitesilnal Teiehmüller nonn of ,'(t) is

(6.5) I = sup IRe (i r «I>zzJ-lzz dz 1\ dZ) I
{41:114111 1=1} 2 Js

sup I(<I>, Q)21.
{41:114111 1=1}

We now use that faet that 7T 0 f is precOIllpact in f\1od s . From the eonstruetion
of d p2(t) using the horizontal distribution TI1~s, it follows that 11L:v (t)dp2(t)1Ik is
uniformly bounded inl. Fr0l11 (6.5), it follows that for fixed t E [0,00), Q(t) lies in
a compact subset of HO(S; [(2) and hence one has abound on IIRe(Q(t))llk. Again
using the preeompactness of 7T 0 " it follows that IIRe( Q(t)) Ilk is uniformly bounded
in t. The proposition folIows. 0

For each t E [0, (0), the veetor spaee H 1(S; IR) inherits a inner product (', ')t which
ean be described in two equivalent ways :
1. Given h E H 1(S; IR), let w E A1(S) be its hannonic representative on (S, dp2(t)).
Then

(6.6) (h, h) t = (w, w) dp2 (t) = fs w 1\ *tW •

2. Using the eomplex structure on S cOlning from ,(t), we ean write H 1(S; IR) ® C =
H 1,O(S) EB :I(l,1 (S). Given h E BI (Sj IR), write h = ~(p +p) with p E H1,O(S). Then

(6.7) (h, h), = ~ fs P /\ p.

Let 11.1(t) be the veetor space of harmonie l-forIns on S, with respect to the
Inetric dp2(t). It inherits an L2-inner produet. Let rl(t) : AI(S; IR) --+ 11.1(t) be the
harmonie projeetion operator. Fix a set {Cd of c10sed L2 I-eurrents on S whose
homology representatives {[Ci]} form a basis of H1(8; IR). Let {Ti} be the dual basis
of H1 (S; IR). Define Je : n1(S) --+ H1(8j IR) by

(6.8) rW= L (C\,W) Ti.Je .
1

Then Je restriets to an isometrie isomorphislTI Je : 1{.1 (t) --+ H1(S; IR).
Let H 1 be thc veetor bundle on [0,00) whose fiber over t E [0,00) is isomorphie to

H1(S; IR), with the inner produet (·'·)t. Let 1{.1 be the veetor bundle on [0,00) whose
fiber over t E [0,00) is isomorphie to 1-{1(t).
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Definition 3. l,Ve define the /ollowing spaccs.
1. Let r(H 1

) be the vectol' space 0/ L2-sections 0/ HI
.

2. Let r(1i I
) be thc vect01' space 01 L2 -sections 01 H I

.

S. Put r'(H I
) = {h E r(H 1

) : his absolutely continuous and Oth E r(I-I I
)}.

4. Put r' (1i I
) = {h E f(H I

) : h is absolutely conti nuous and (II( t )Ot) h E r(1-l I )}.

There is an operator Ot acting on r'(H I
). Sinlilarly, thcrc is an operator II(t)8t

acting on f'(1i 1
).

Lemnla 2. Thel'e is a comlnutative diagram,

(6.9)
f(1-l 1

)

Je t
r(B I

).

Proof. Given h E f'(H 1
), ath is closed on 8. Then

(6.10) at fc h = Gt ~(Ci' h)r i = ~(Ci' Oth)T
i

t t

= L(Ci , ll(t)oth)ri = 1TI(t)8th.
i C

The lemma follows. D

Thus Ot, acting on f'(H 1), is essentially thc salne as rr(t)Ot, acting on f'(1-l I).
Given t E [0,00), let J(t) denote the adjoint to exterior differentiation don A*(S),

with respect to the metric dp2(t). Let 6.(t) bc the Laplacian on A*(S) and let G(t)
be its Green's operator. They satisfy

(6.11) D.(t)G(t) = G(t)6.(t) = J - IT(t), rI(t)G(t) = G(t)ll(t) = O.

For reference, we remark that differentiating (6.11) with respect to t gives

(6.12)

Furthermore, cl ifferentiati ng

(6.13)

with respect to t gives

IT(t)6. (t) = 6. (t )Tl (t) = 0

(6.14) Btn = -G(t)(8t6.)I1(t) -11(t)(8t6.)G(t).

Definition 4. Define jo : nO([O, 00)) --+ nO(U) by

(6.15) jo(c) = c(t).
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Define jl : 0 1([0, (0)) EB r'(1i1) --+ [21 (U) by

(6.16) ).(c(t)dt,h) =:= h(t) + dt /\ [c(t) + S(t)G(t)8th].

Define )2 : r(1i1) --+ Ker (d2 : [22(U) --+ 03(1))) by

(6.17) j2(h) = dt /\ h(t).

Proposition 19. The maps ja, )1 und)2 (l.'l'e well-dejined, in that their images are
square- integrable.

Pro0f. As the area of (8, dp2 ( t )) is constan t in t, it roIlows t hat ja is weIl-clefinecl.
Clearly j2 is an isometry. lt remains to show that )1 is well-defined. The only thing
to show is that o(t)G(t)&th is square-integrable on U.

For each t, o(t)G(t) is an L2-bounded operator. A8 7f 0'/ is precompact in Mods ,
there is abound on o(t)G(t) which is uniforIl1 in t.

We must now show that ath is square-integrable Oll U. Differentiating L::.(t)h(t) = 0
with respect to t gives

(6.18)

and hence

(6.19) (1 - II(t)) 8th = G(t)L::.(t)8th = -G(t)(8tD.)h(t).

As I1(t)8th is square-integrable by definition, it sufnces to show that G(t)(8t6.)h(t)
is square-integrable on U. Now

(6.20) G(t)(ot6.)h(t) = G(t) (d(8to) + ((]to)d) h(l) = G(l)d(&to)h(t).

Acting on A*(8),

(6.21 )

Thus

(6.22) G(t)(Ot6.)h(t) = G(t)d[o(t),*-I(Ot*)]h(t) = C/(t)do(t)· *-I(Ot*)h(t).

By definition, h is square-integrable. Fr0111 Proposition 18, the operator norm of
*-1 (Ot*) is uniformly bounded in t. This gives that CU )do(t) .*-1 (Ot* )h(t) is square­
integrable on U. Thus 8t h is square-integrable on u. D

Proposition 20. There is a commutative diag1'am.

(6.23)
nO([O, 00)) ~ n 1([O, 00)) EB r'(1i I)

jo -!- jl -!-
nO(U) ~ n 1(U)

r(1i 1
)

j2 -!-
Ker(d2 )
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Proof. The only nontrivial point to check is that cl! 0)1 = )2 0 II(t)8t on f'(tl 1
). Let

J denote exterior differentiation on U anel let d denote exterior differentiation on S.
Then

(6.24)

Given h E r'(tl 1
),

J= d + ell !\ 8t .

(6.25) d!()1(h)) = d[h(t) + dt!\ o(t)G(t)Dth] = cll!\ [8th - do(t)G(t)8th].

As dh(t) = 0,

(6.26) 8t h - do(t)G(t)8th = 8t h - do(t)G(l)Dth - o(t)dG(t)8th

= [1 - 6(l)G(t)]Dth = rr(l)8th.

On the other hand,

(6.27)

The proposition follows. 0

lt follows from Proposition 20 that)l and )2 ineluce Inaps

allel

(6.29)

Note that

(6.30)

Proposition 21. The lnapS)1 and)2 also induce 'lnaps

(6.31 )

and

(6.32) - 1 . -2-
J 2 : r('tl )jIm(l1(l)Dt ) -+ H(2)(U)'

Proof. This is automatie for J 1 and follows for J2 [rom the continuity of )2. 0

Proposition 22. J1 and]1 are isomorphisms.
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Proof. Let J denote exterior differentiation on U and let d denote exterior differenti­
ation on S. As in Proposition 9, we may aSSllme that all differential forms involved

are smooth. We first show that J1 is onto. Given 1] E Ker (<LI : ~V (U) -+ !12(U)) 1 we
want to show that we can write 1] as

(6.33) 7] = h(t) +dt A [c(t) +S(t)G(l)8th) + (7!

with dt A c(t) E fV ([0,00)), h E Ker (Il(t)Ot) and .r E rt,O(U).
Write 1] as

(6.34) . 7] = 7]1 (t) +dt 1\ 1]0( t),

where 1]o(t) E AO(S) and 1]I(t) E A1(S). The condition for 1] to be c10sed is

(6.35) dT/l(t) = 8t T/1 - dT/o(t) = O.

Let [1]I(t)] E H1(S; IR) be the de Rham COhOlllOlogy dass Of1]l(t). By equation (6.35),
it is independent of t. Put h(t) = I1(t)1]l(t). Thell by Lemnla 2, H(t)Oth = O. As in
the proof of Proposition 19, 8t h is square-integrable on U.

Put f(t) = ö(t)G(t)1]I(t). By the precolnpactness of?T 0" f is square-integrable
on U. By construction,

(6.36) df(t) = (1 - Il(t))7]1 Cl) = 7]1 (l) - h(t).

Lenlma 3. Ot! is square-integrable on U.

Proof. We abbreviate öCl)GI(t)1]I(t) by Je;7]1. Then

(6.37) Ot! = 8t(öG)7]1 +SCat1]! = Ot(OG)1]1 +OGd1]O'

Using equations (6.12) and (6.14), along with the precOIllpactncss of ?TO I , anel arguing
as in the proof of Proposition 19, the lemnla folIows. 0

Put

(6.38) c(t) = 7]o(t) - Otf - J(t)G'(l)Oth.

By Lemnla 3 and the precompactness of ?T °I, c is sqllare-illtegrable on U. We have

(6.39)
dc(t) = d1]o(t) - Otd.f - dJ("t)G'(t)Ot h = Dd1]! (1,) - d/Cl)] - dJ(t)G(t)Oth

= [I - do(t)G(t)] 8th = 11(t)8th = O.

Thus c E rt,O(U) is constant along copies or Sand so gives an element dt A c(t) E
rt, I ([0, 00)). We have shown that

(6.40) 7]1 (t) = h(t) +df(t),

1]o(t) = c(t) + J(t)G(t)Oth + otf·
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These are equivalent to (6.33), showing that .11 is onto.
It follows that the map

(6.41)

is also onto. Equation (6.30) implies that 11 is onto.
We now show that J 1 is injeetive. Given c(t)dt E fV([O,oo)), h E Ker(ll(t)ot)

and I E n1(U) such that )l(c(t)dt, h) = dl, we want to show that h = 0 and
c(t)dt E Im(ot}. We have

(6.42) h(t) = df(t),

c(t) +8(t)G(t)Oth = Otf.

As h(t) is hafI110nie on Sand exaet by (6.42), it follows tha.t it must vanish. Then
d/(t) = 0 and c(t) = Otl. Thus I is constant on eopies of S. As f is square-integrable
on U, it follows that c(t)cit E Im(od.

Finally, we show that J 1 is injeetive. Given h E Ker(TI(t)8t} such that )1 (0, h) E

Im(do), we want to show that h = o. Write ]1(0, h) = limi-too (I/i, with fi E nO(U).
Then

(6.43)

(6.44)

where the convergence is in L2 on U. By LeInma 2 and thc fact that I1(t)Oth = 0,
Je h( t) E H1(S; IR) is eonstant in t. Then for all t E [0, 00),

r h(t) = r1

ds f h(s) = ,Iim r1

cis f dli(s) = O.Je Jo Je t-+oo Jo Je
As h(t) is harmonie, it Inust vanish. 0

Remark: Lemll1a 2 anel Proposition 22 iInply that IT~2)(U) is also isomorphie to

Ker (at: r'(H1
) -+ r(H 1

). In partieular, it is isoillorphie to a. subspace of H1(SjIR).

Proposition 23. J2 and]2 are isom01'phisms.

Proof. Let ddenote exterior differentiation on U anel let d denote exterior differentia­
tion on S. Again, we can assume that all of thc differential forms involved are smooth.

We first show that J2 and 12 are onto. Given w E Ker (d2 : n2(U) -+ n3(U)) , write

(6.45)

where Wl(t) E A1(S) anel W2(t) E A2(S). Thc eondition for W to be c10sed is

(6.46)
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We must show that there exist h E r(?-ll) anel 1] E 0 I (U) such that

(6.47) w = dt 1\ h(t,) + ([17-

For any t E [0, (X)), let [W2(t)] E H2(S; IR) ~ IR dCllote the ele Rham cohomology
dass of W2(t). By (6.46), it is constant in t. By thc Hodge decolnposition, we have

(6.48) Ilw2(t)1122: [W2(t)]2Area(S,dp2(t)) = -21r[W2(l)]2X(S).

As W2 is square-integrable on U, we must have [wz(t)] = 0.
Put 7]1(t) = o(l)G(t)wz(t). We abbreviate this by 8Gw2- Using the precompactness

of 7f 0 f' it follows that 171 E Al (U). By construction,

(6.49)

(6.50)

Lemn1a 4. 8t171 is sq1.lal'e-integrable on U.

Proof. We have

8t1]1 = 8t (oG)wz + oG'OtWZ

= 8t (8G)wz + 8G'dw1'

As WI is square-integrable on U, it follows that oGdw l is square-integrable on U. It
remains to show that 8t (OG)W2 is square-integl'able on U. This follows from arguments
similal' to those previously used in this section. 0

From (6.46) and (6.49),

(6.51)

From Lelnma 4, WI - 8('11 is square-integrab1c on U. Put

(6.52)

anel

(6.53)

Then

h(t) = ll(t)(WI (t) - Dt1ll)

(6.54)

Put

(6.55) 1] = 1]1(t) + dl 1\ 1]0 (I) .

Then h E f(?-ll) anel 17 E OI(U). Equations (6.49) anel (6.54) ilnply that (6.47) is
satisfied. Thus J2 anel 12 are onto.

We now show that Jz is injective. Suppose that h E ['(?-lI) anel 1] E 0 1(U) satisfy

(6.56)
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We mnst show that hEIm (I1(t)8t ). Writing 77 as in (ß.34), we have

(6.57) h(t) = 8t7lt - d7Jo(t),

o= d77t (t).

Applying I1(t) gives

(6.58) h(t) = TI(t)8t17t
= fI(t)8t [11(t)1]l(t)] + TI(t)8t [(J - n(t))1]t(t)].

Now

(6.59) I1(t)8t [(1 - I1(t))7Jl(t)] = -l1(t)(Bt ll)1]dt).

Using (6.14),

(6.60)
Il(t)(8tIl)7J](t) = -1l(t)(8t .6)G(t)7Jl(t) = -nu) [d(8to) + (Dto)d] G(t)7Jl(t)

= -TI(t)(Dto)dG(t)1]t(t) = -TI(t)[o(t),*-t(8t*)]G(t)d1]t(t) = O.

Therefore,

(6.61) h(t) = Il(t)8t [I1(t)17t(t)] ,

showing that hEIm (TI(t)&d.
Finally, we show that ]'2 is injective. Suppose that h E r(1-l 1) and j'2(h) E Im(dd.

We must show that h E In1(I1(t)ßt}. Let us write j2(h) = 1in1i-+oo cL17i with 1]i E n1(U).
Decomposing 1]i as

(6.62)

we have

1]i = 1]~ (t) + dt 1\ 17h (t ),

(6.63) h(t) = ,lim [ßt1]~ - d77h(t)] ,
t-+oo

o= ,lim d1l~ (t),
t-4oo

where the convergence is in L'2 on U. Applying TI(t) gives

(6.64) h(t) = .lilTI I1(t)Bt17~'
t-+oo

Equations (6.58)-(6.60) give

(6.65) h(t) = i~~ {rr(t)8t [rr(t)1]f] + TI(t)[o(t),*-t(ßt*)]C,'(t)d1]~}.

As 7f 0'/ is precompact, the operator I1(t)[8(t), *-1 (8t*)]G(t) is uniformly bounded in
t. Thus

(6.66) h(t) = ,lim Il(t)Dt [n(t)17~]
t-+OO
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in f(1l I
). The proposition folIows. D

,...-2 -
Proposition 24. H(2) (U) = O.

Proof. From Lemma 2 and Proposition 23, H~2)(U) ~ Iln(8 t ).l C f(H I
). Using

the inner product on f(H I
), we can identify it with its dual space f(Hd. Given

k E lIn(8t ).l, let Ir, be the corresponding element of r(I-I d. Let h E r'(H I
) be smooth

with compact support in (0,00). As

(6.67) o= (k, ath) = 1'>0 (k(t), ath(t)) dt

holds for all such h, k(t) must be constant in t. Lctting h now have compact support
in [0,00), (6.67) gives that k= O. Hence k = O. 0

Corollary 3. Let IV be a conneeted oriented Rien-tannian 3-1nanifold with positive
injeetivity 1'adius. Suppose that there is a cornpact subntanifold [( of N such thai
each connected cO'mponent Ci 01 N - !( is iso17l-etric to a geo1netrically finite 01'

simply degenerate end Ei of a topologically ta·me hyperbalic 3-m,anifold A1i . Suppose
that each simply degenerate end Ei is incompressible in Mi. Tlten
1. dim(Ker(t~q(N))) < 00
2. 0 1. a (öd on AI (IV) /Ker(d)) if and anly ij each end oJ IV is geometrically infinite
and the corresponding operator Bt : f'(H 1

) --+ r(H 1
) has closed i'mage.

Praof. Equation (2.8) and Propositions 8, 12, 13 a,ncl 15 iInply that it is enough to
verify the claims for the corresponding encls of the Inodel 111anifolds Mi.
1. If an end is geoinetrically finite, the claim [ollows [rom (3.1). Ir an end is geomet­
rically infinite , the claim follows from Proposition 22 anel thc rel11ark following it.
2. If an end is geometrically finite, the claim follows froin (3.2). If an end is geomet­
rically infinite, the claim follows from Lemma 2 and Proposition 23. D

Remark: Corollary 3.1 is not an immediate consequence of the fact that N has finite
topological type. For example, the analogous staten1ent for hyperbolic surfaces would
be false.

7. UNREDUCED L2 -COHOMOLOGY

In Section 6 we reduced the problem of cOlnputing the L2-cohOlnologies of an end
of M to that of conlputing the kernel and the ilnage o[ the operator Bt on f'(H I

).

The inner product (', ')t defining f'(lIl) is determined by the Teichmüller geodesic ,.
The question now arises as to how (-, ')t depends on t.

Example 1 : Consider the mapping torus MT discussed at the end of Section
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4, whose fiber is a closeel oriented surface S' of genus 9 2: 2 allel whose monodromy is
an orientation-preserving pseudo-Anosov diffeonl0l'phism cf or S. Let {dp2(t) }tER be
a smooth curve in 1is such that for all i E IR, dp2(i) = <jJ*(dp2(l + 1)). Such a curve
cau be constructed by choosing an arbitrary dp2(0) E 1is , choosing an arbitrary path
{ dp2 (t) hE[a, 1] from dp2 (0) to (ep-l)* (dp2(0)) anel t hen pertu rbi ng the path near thc
ends if necessary so that it extends to give {dp2(l) }tER. The Inetric dt 2 + dp2 (t) on
IR x S descends to a metric on MT. Thus dl2+ dp2(t) serves as a model metric for
the hyperbolic metric on the cyclic cover 1'1.

As ep* acts symplectically on H1(Sj IR), there is a decomposition

(7.1 )

anel positive numbers

(7.2)

k

H1(S; IR) = Ea EB EB (Ei ffi E-d
i=1

such that ep* acts orthogonally on Ea anel if 1 ::; Ij I ::; k then
1. dim(E_ j ) = dim(Ej )

2. AjA_j = 1
3. <jJ* acts by multiplication by Aj on Ej

By construction, for all v E H1(Sj IR) anel all I E lR, (v, V)t+l = (ep*v, ep*v)t. Then
given Va E Ea and Vj E Ej , we have that for alll E [0,1] allel 11 E Z,

(7.3) (Va, va)t+n = (Va, va)t,

(vj, Vj)t+n = A]n(vi' Vi)t,

(7.4)

Thus there is a constant C > 0 such that for i 2: 0,

C-11lvalla ~ IIVallt ::; Cllvalla,
C-letlog().j)llvjlla::; IIVjll, ::; Cel1og().j)llvjllo.

From Corollary 2, 0 1:. a (od on Al (M) /Ker(d)) if anel only if Ba = O.
End of Exan1ple 1

Example 1 shows the nicest possible behavior rar 11 . IIt- We expect that in some
sense, a simply elegenerate end of a n1anifold N as in Corollary 3 will generally have
a similar Lyapunov-type decomposition for the coholnology group H1(S; IR). We
discuss the evidence for this at the end of the section. For now, we just give some
consequences of having such a decomposition.

First, we give a sufficient condition for zero to not be in a (od on A1(N)/Ker(d)).
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Lemma 5. Let V be a finite-dimensional real vecto'l' space wilh a smooth family
0/ inner producls {(',' )dtE[a,oo)' Let L2([0, co); V) be the space oJ measurable Inaps
f : [0,(0) --t V such thai,

(7.5) 11111 2= faOO (Jet), f(t))t dt < co.

Suppose that there are constants a, C > 0 such that, if SI 2: S2 2: 0 and v E V then

(7.6)

Let 0 be the operator

(7.7) (0J)(t) = [" f(s)ds.

Then 0 is a bounded operator on L2([0, co); \I).

Proof. If f E Cgo([O, (0); \I) then the L2-nornl of 0 f is given by

(7.8) 110fl1 2 = f"([" f(s,)ds 1 , [" f( 82)ds2)t dt

{OO {OO (min(ßl,ß2)
= Ja Ja Ja (f(sd,J(s2))t dtds 1ds 2

:s; f" f" !amin(., ,.,) Ilf(s,) 11 t . Ilf(S2) 11, dtds, ds 2.

Suppose that 51 2: S2 2: S3 2:: O. Then fronl (7.6),

(7.9)
Ilf(sdlls3 . 11/(52)lls3S; c- 1e-a(ßl-s3)llf(sdIIßl . c-le-a(82-ß3)111(52)IIß2

= c-2 e-a(ßl-ß2) e-2a
(ß2-

ßa) 11J(sdllßl ·llf(52)11ß2·

Thus if $1 2: 52 then

In any case,
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(7.12) 110/11 2~ foo foo 2
1 2e-al-'1-s2111/(sdlls\ ·111(s2)ll s2 dS 1dS7.'io io ac

For s ;::: 0, put g(s) = 11/(s)II.5' Extend g by zero to become an L2-function on IR.
Then

(7.13)

] 00 ]00 e-al.51 -.521 ]00-00 -00 2a g(st} g(S2) ds tds7. = (y,(-8; + a
2)-t g ) ~ a-2 _oog2(s)ds.

The proposition folIows. D

Lemma 6. Let V be a finite-dimensional real vector space wilh a s1nooth fa1nily
0/ inner produets {(" .)thE[O,oo)' Let L 2([O, 00); V) he the space of measurable maps
f : [0,00) --+ V such that

(7.14) IIfl1 2 = f" (J(t), f(t)), dt < 00.

Suppose that there are conslants a, C> 0 such thai, 1/ SI ~ S2 ~ 0 and v E V then

(7.15)

Let ()' be the operator

(7.16) (O'J)(t) = 1o'f(8)d5.

Then ()' is a hounded operator on L 2([0, (0); V).

Proof. The pfoof is siluilar to that of Lemnla 5. vVe oIuit the details. 0

Proposition 25. Lel U contain an end 0/ Jvt as in Section 6. Let,: [0,00) --+ Ts
be the corresponding Teichmüller ray. Let, (·,·)t be the inner product on H1(S; IR)
coming from ,(t). Suppose that there is a decomposilion 111 (8; IR) = E+ EB E_ and
constants a, c+, c_ > 0 such that for aU v+ E E+, v_ E E_ and SI ~ 82 ~ 0,

(7.17)

and

(7.18)

7. -
Then H(2)(U) = O.
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Proof. From Proposition 23, we 11lUSt sho"v thaL Gt : 1"(lI1
) --t r(H 1) is onto. Given

v E f(H I
), write v(t) = v+(t) +v_(t) with v+(t) E E+ and v_(t) E E_. Put

(7.19) w(t) = fa' v+(s)ds - [0 v_(s)ds.

Clearly OtW = v. By Lemmas 5 and 6, w E 1"(B I
). 0

Corollary 4. Let N be as in Corollary 3. Suppose t.hat each end 0/ N is geomet­
rica/ly infinite and there is a decomposition 0/ the corresponding HI'(S; IR) as in the
statement oJ Proposition 25. Then °t/:. er (0cl on AI (lV) / Ker(d)).

Proo/. This follows fronl Corollary 3.2 and Proposition 25. D

We now give a sufficient condition for zero Lo be in er (Jd on Al (N) /Ker(d)).

Lemma 7. Let h be a positive smooth Jundion on [0,00). S1tppose t.hal there is a
constant C > 0 such that for a/l t ~ o}

(7.20)
1

C(l + t) ::; h(t) :::; C(l + l).

Put l' = L2(h(t)dt) and

1" = {f Er: fis absolutely continuous and oll Er}.

Then Bt : 1" --t l' is not onto.

Proof. Put

(7.21 )

(7.23)

Then gEr. However,

(7.22) fa' g(8 )ds 2': C-~ fa' (1 + 8 t 1(log(l+ s)t~ds = 4C-~ (log(l + t))t.

For any T '2: 0,

J,
CO I 1 J,CO 1 dt

(log(l + t))~h(t)dt 2: C (log(l + '1))2"- = 00.
T T 1 +l

It follows that for all c E IR, c + fci g( s)ds does not lie in L2 (h( t )dt) and so 9 cannot
be in the image of Bt : 1" --t r. 0

Proposition 26. Let U contain an end 0/ l\;t as in Section 6. Let 1 : [0,00) -+ Ts
be the corresponding Teichmüller ray. Let (',')t bc [,he innc1' product on BI (S; IR)
co'ming from ,(t). Suppose that there is avE H1(S; IR) and a C > °such that Jor
all t '2: o}

(7.24)
1

Jf+1 < Ilvllt < cJl+t.C l+t- -
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2 -
Then H(2)(U) f. O.

Proof. By Proposition 23, we must show that Ot : r'(H 1
) --+ r(l-1 1

) is not onto.
Putting h(t) = Ilv(t)112, this follows from LClnma 7. 0

Corollary 5. Let N be as in Corollary 3. Suppose that SOlne end 0/ N is ge07netri­
cally finite 01' there is an element v 0/ the corresponding H1(S; IR) satisJying (7.24).
Then 0 E a(8donA 1(N)/Ker(d)).

Proof. This follows frOln Corollary 3.2 anel Proposition 26. 0

Re7nark: Using the results of ExaIuple 1, Corollary 2 is a special case of Corollaries
4 and 5. Other examples in which the hypotheses of Corollaries 4 and 5 are satisfied
are given by hyperbolic 3-Iuanifolds with gcometrically infinite ends having the same
ending laminations as periodic ends.

The question arises as to how often thc assumptions of Corollaries 4 and 5 hold.
The qualitative behavior of the norms 11 . Ilt, as a function of t, is determined by the
dynaInics of the projected TeichIuiiller geodesic 7r 0 , on Mods . Example 1 comes
from the case of a closed loop on Mods . Recall that as N! has positive injectivity
radius, 7r 0 , lies within a compact region of 110ds . It seen1S that the dynamics
of geodesics on Mods is similar to that of RieInannian geodcsics on finite volulne
hyperbolic manifolds with cusps, in that exceptional geodesics can be constructed
which have ahnost any desired behavior. However, one Iuay ask if most geüdesics
have same uniform behaviof.

The recent work of Anton Zürich is relevant here [24, 25]. Let S be a closed oriented
surface of genus 9 ~ 2. Instead of talking about Ineasured geodesie laminations on
S, we will use the equivalent language of singular foliations F of S with an invariant
transverse measure f-l. Zorich considers the subset CJ M F of orientable measured
foliations, 01' equivalently, the measured foliations arising frOln a closed I-form on S.
For generic F, the measure J-l will be a unique ergodie invariant transverse measure
on F up to scaling. Givcn generic (:Fdl) E'VMF, using Osc1cclec's theorem, Zorich
constructs a certain filtration

(7.25)

and positive numbers

(7.26)

with AjA_j = 1, having the following property : Pick a generic point pES. Let
1 be a half-Ieaf through p. Take a small transverse interval f at p. Let {ln}nEN be
the segments of 1 from p to I, in increasing order. That is, t he first return af L ta I
gives LI, the sccand gives L2 , etc. For each n E N, close the segn1ent Ln by a short arc
along I joining the endpoints of in. This gives a closed loop which represents some
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hn E H1(S; IR). Pick an arbitrary Euclidean Inetric 11 . I! on H1(S; IR). Then if i > 0
and li E Pi \Pi - I ,

(7.27)

Also, if 10 E Fo\F_ 1 then

(7.28)
. log Ifo( hn ) 1

hmsup I 11/ 11 = o.
n-+oo og l· n

Example 2 : Consider a pseudo-Anosov diffeOl110rphislTI as in Example 1. Let
(:F, I-l) be the corresponding stable measured foliation. Note that (:F, I-l) may not be
oriented 01' generic. Regardless, one can see that there is a filtration (7.25) satisfy­
ing (7.27) and (7.28). In fact, it is equivalent to the decoillposition (7.1), in that
Fi = Fi- I EB Ei.
End of Exanlple 2

Zorich's results are not directly applicable to our problein as we are interested in
the Teichmüller rays f such that 1r 0 , is preC0111pact, but these are not generic.
Nevertheless, one can speculate on an algorithm wbich in "nl0st" cases would input
the end invariants of N and output whether 01' not zero lies in the spectrum of
a(odon J\l(N)JKer(d)). Namely, let N be as in Corollary 3 and assume that a11 of
the ends of N are geometrica11y infinite. For each end, describe the end invariant as
a measured foliation (:F,ll). Apply the above proccdure of following a generic leaf of
:F to obtain an increasing sequence

(7.29) Fa C FI C ... C Fk = HI(S; IR)

and numbers 1 < )\1 < ... < Ak satisfying (7.27) and (7.28). Then zero should
not be in the spectrum of a (od on A l (fol) jKer(d)) if alld only if for each end of LV,
dim(Fo) = genus(S).

8. REDUCED L2 -coHOMOLOGY

Definition 5. Let M be as in the beginning 0/ Section 2. Define the relative 1'educed
L2-cohomology groups 0/ M by

(8.1 ) H(2)(A1,ßi\1) = {w E OP(A1): dw = bw = b*(w) = O}.

There is a nondegenerate pairing

(8.2) r Ti"P ( ß ) -;--;-dim(M)-p( )J
M

: H(2) M, M X H(2) 1\1 ---+ IR.
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Proposition 27. Let U = (0,00) x 8 contain a geornd'1'ically infinite end of the
1nodel manifold M. Suppose that the corresponding operator Ot : ['(Hl

) -t [,(H l
) has

closed image. Then H~2)(U) is iso1norphic to a Lagrangian subspace of H1(Sj IR).

Proof. From Proposition 22 and the remark following it, H~2) (U) is isomorphie to a

subspace of H1(Sj IR). It remains to show that this subspace is Lagrangian. The pair
(U, S) gives a cohoInology sequence

(8.3)
-1 - ()' 1, ß -2 -

... ---+ H(2)(U) ---+ H (S;IR) ---+ H(2)(U,S) ---+ ...

(8.6)

In general, this sequence will not be weakly exact without some Fredholmness as­
sumptions. In our case, from Proposition 23, the assumption that Ot has closed
image implies that d l : rv (U) -T f22(U) is Fredholm in thc sense of [12, Definition
2.1]. Then [12, Theorem 2.2] implies that (8.3) is weakly exact at H1(S; IR). As the
vector spaces involved are finite-dimensional, this is the saIne as cxactness.

Given x E H~2)(U) and y E Hl(S; IR), ODe can eheck that

(8.4) r yUo:(x) = ~ß(Y)Ux.Js J[I

It follows that thc intersection farIn on HI (S; IR) vanishcs when rcstricted to Im(a).
Furthermore, if y is perpendieular to Im(0') with respcct to thc interseetion form then
y E Ker(ß) = Im(O'). Thc proposition follows. 0

Proposition 28. Let N and !{ be as in Corolla1'Y 3. Assume that zero does not lie
in a (Jd on A1(N)/Ker(d)). Let LI C H1(DJ(; IR) be !he Lagrangian subspace

Im (Hl([(j IR) ---+ H1(ol(; IR)) .

Let L2 be the Lagrangian subspace 0 f H1
( aJ(; IR) CO'lnin9 fro'ln the ends 0f N, as zn

Proposition 27. Then there is a short exaet. sequence

(8.5) 0 ---+ Im (H l ([<, BI(; IR) --7 H1
([(; IR)) --t H~2)(N) --t LI n L2 -t O.

Proof. By Corollary 3.2, eaeh end of N is geolnetrieally infinite and the eorresponding
operator Bt : ['(H I

) -t [,(H l
) has closed inlage. Let \I bc the closure of a union of

open sets (0, (0) x Si containing theends of N. Take J( = N - V. There is a
Mayer-Vietoris sequenee

-I 1 r -I I r

... ---+H(2)(N) ---+ H (R j IR) EB H(2)(V) ---+ H (BA; IR) -+

H~2) (IV) ---+ H2([<; IR) EB Fr~2) ( V) -f H2(a[(; IR.) -+ ...

Again, this sequcnee will not be weakly cxact in full gcneraJity. However, in our
ease dl : 0 1(V) --7 02(V) is Fredholm. Along with the fact that the differentials
d : 0*(5) --7 0*+1 (8) are Fredholm, [12, Theorenl 2.2] ilnplies that (8.6) is weakly
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exact at the tern1s fraln HI(I(; IR) EB I-I~2)(V) to H2(/(; IR) EB H~2)(V). Again, as the
vector spaces are finite-dimensional, the sequence will actually be exact at these

terms. By Proposition 24, H~2)(V) = O. Dualizing (8.6) gives a sequence

(8.7)
° I?"-1... -tH (BK; IR) -t H (K, BA; IR) -t H(2)(N) -t

HI(BI(; IR) -+ J-I2(K, BI(; IR) EB H~2)(V, BI() -t H~2)(N) -t ...

which is exact at the terms [rom HI(I(, 81(; IR) to H2(I(, 8J(; IR) EB H~2)(\I, B[(). This
gives the short exact sequence

(8.8) 0 -tCoker (HO(ßI(j IR) -t HI(I(, BI(; IR)) -t H~2)(N) -t

Ker (I-II(BI(; IR) -t I-I 2(I(, f)[(; IR) ffi H~2)(V, BI{)) -t O.

From the exact COhOl1101ogy sequence af the pair ([(, BI(),

(8.9) Coker (HO(8I(; IR) -t H1(K,8I(; IR)) ~ Im (H 1(I(, 8[(; IR) --+ HI(I(; IR))

and

(8.10)

Kcr (H 1(8I(; IR) -t H2 (I(, aK; IR)) ~ ]m (H1(J(; IR) --t H1(BJ(; IR)) = LI'

Thus

(8.11) Ker (H'(BK;IR) ---+ H2(I(,8J(; IR) ffi H~2)(V,8I()) =

LI n Ker (H1(ßKj IR) ---+ H~2)(V, B!()) .

Identifying H~2)(V) with the subspace L2 of 1-[1(8/(; IR), thc pairing (8.2) gives

(8.12)

The map A : HI(BI{j IR) -t I-I~2)(V, BI() e:: Li is givcn explicitly by

(8.13) (A(h))(l) = fshUl

for all hE HI(ßI(;IR) and l E L2 . As L2 is Lagrangian,

(8.14)

The proposition now follows from equations (8.8), (8.9), (8.11) anel (8.14). 0
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Example 3 : Let M be as in Example 1, with Eo = O. vVith respect to the diffeomor­
phism M = IR x S, take I< = [-1, 1J x S. Then All certainly satisfies the hypotheses
of Proposition 28. We have BK = S II 5, with the Lagrangian subspace LI being

the diagonal in H1(I(j IR) = H1(S; IR) EB H1(S; IR). As L2 = (EfJ7=1 Ei) EB (EB7=1 E_i),

we have LI n L2 = O. Then Proposition 28 givcs H~2)(M) = O. Of course, this is
consistent with Proposition 16.1. '

Now let Z be the suhset [0,00) x S of Pd. Pcrturb the l11ctric on Z to make it a
product near {O} x S. Let N be the double of Z. Again, N is diffeomorphic to lR. x S.
Take ]( = [-1,1] x S. Then N also satisfies the hypotheses of Proposition 28. In

this case, L2 = (E97=1 E_ i ) E9 (E97=1 E_ i ). Thus LI n L2 = L2. Proposition 28 gives

dirn (Ht2)(N)) = 9, thc genus of 5. This shows that in the setting of Proposition 28,

Ht2)( N) depends on the end invariants of 1'/ and not just on the topologieal. type of
K.
End of Example 3
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