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The Alexander polynomial of a deform-spun knot in S* is
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Abstract

This paper proves that if a co-dimension 2 knot in S* is deform-spun from a co-dimension 2
knot in S, then its Alexander polynomial is symmetric. Since there exist knots in S$* with
non-symmetric Alexander polynomials, this proves not all knots in S* are deform-spun. The
proof of the main theorem uses nothing more than the definition of the Alexander polynomial,
Poincare duality and elementary linear algebra.
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1 Introduction

where K is the image of a smooth embedding f : S™ — S"*2. A ‘long’ n-knot is a pair (D"*?
where J is the image of a smooth embedding f : D™ — D"2? such that f~1(0D""2)
OD"™ and such that f, when restricted to D™ = S™~! is the standard inclusion, where we
consider D™ C D™*2 in the standard way. Every n-knot K is isotopic to a union (S"*2 K) =
(D"+2,.J) Up (D™+2, D™) for some unique isotopy class of long knot .J provided we consider K
to be oriented. Let Diff(D"*2,.J) denote the group of diffeomorphisms of D"*2 which restrict
to the identity on J UdD"*2. An (n + 1)-knot (S"*3, K') is deform-spun from (S"*2, K) if
there exists g € Diff(D"2,J) such that the pair ((D"*2,J) x4 5') Uy ((S™,S"71) x D?) is
diffeomorphic to the pair (S™+3, K').

In co-dimension 2 knot theory, typically the term ‘n-knot’ denotes a manifold pair (S™+2, K)
J)
9

To visualize the deform-spun knot, assume that the diffeomorphism g € Diff(D"*2,.J) is isotopic
to the identity when considered as a diffeomorphism of D"*2 (every deform-spun knot can be
obtained using such a diffeomorphism, so this is no loss of generality [1]). Let g; be the null-
isotopy of g, ie: go = ¢, g1 = Idpn+> and g; is a diffeomorphism of D"*2 which restricts to
the identity on dD"*2 for all 0 < ¢ < 1. Consider S™*3 to be the union of a great (n + 1)-
sphere S™*! and a trivial vector bundle over S'. Identify this trivial vector bundle over S with
S1xint(D"*2), and identify S! with R/Z. We assume that the inclusion S* xint(D"*+2) — §n+3
extends to a map S' x D"t2 — §7*3 guch that the restriction S x S"+t! — §"+3 factors as
projection onto the great sphere S™*! followed by inclusion S"t! — "3, Then the set
{(t,x) € St x int(D"*?) : & = g(p),p € int(J)} is a subset of S""3 whose closure is an
(n + 1)-knot. This is the deform-spun knot.

{t} x int(D?3)

S2
A connect sum of two trefoils, being deform-spun to produce a 2-knot in S*

The main result of this paper is to show that not every 2-knot is deform-spun from a 1-knot.
The obstruction is given by Theorem 2.4, which states that 2-knots with asymmetric Alexander
polynomials are not deform-spun. The set of polynomials realisable as Alexander polynomials
of 1-knots is known [5] to be

{p(t) € Z[Z] : p(1) = £1,p(t™") = p(t)}.
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On the other hand, Kinoshita [7] has proved that the set of polynomials realisable as Alexander
polynomials of 2-knots is

{p(t) € Z[Z] : p(1) = £1}.

Theorem 2.4 has as a consequence that the set of polynomials realizable as Alexander polyno-
mials of deform-spun knots in S* are precisely the Alexander polynomials of knots in S3.

Litherland’s deform-spinning construction has its origin in a paper of Zeeman’s. Zeeman proved
that the complements of certain co-dimension two ‘twist-spun’ knots fiber over S! [10]. Lither-
land later went on to formulate a more general notion of spinning called ‘deform-spinning,’
further generalising Zeeman’s theorem on when such knot complements fiber over S [8]. Specif-
ically, Litherland proved that if the diffeomorphism f preserves a Seifert surface for the knot,
then the deform-spun knot associated to the diffeomorphism M f fibers over S!, provided
M : (D" J) — (D", J) is a non-zero multiple of the meridional Dehn twist about J.

This paper was largely motivated by a result in ‘high’ co-dimension knot theory. Let K, ; denote
the space of smooth embeddings f : D/ — D™ such that f~1(0D") = D’ and the restriction
of f to D7 is the standard inclusion. In a previous paper [1] the first author showed that
Litherland’s deform-spun knot construction generalises to ‘graphing’ map gry : LK,_1 ;-1 —
Kn,; where LKC,,_1 j—1 denotes the free loop space on K;,,_1 j_1, this is the space of smooth maps
from S! to Krn-1,j—1. A proof was given that the map moLK,_1 ;-1 — mK, ; is onto provided
n — j > 2. Further consider K, ; to be a based-space with basepoint the unknot, then the
graphing map gry restricts to a map gry : QK,—1 ;-1 — Ky ;. In [1] it was further shows that
gry, : mKp—1,j-1 — moKy,; is onto. By iterating the graphing construction, one gets a map
gr; : QilCn_m_i — K, ;. Goodwillie’s dissertation was applied to show that the induced map
gl : Milp—i j—i — ™ok ; is onto provided i < 2n — 25 — 4. This result is frequently sharp: for
example, gry : mky1 — moKs3 =~ Z is an isomorphism. See [1] for a precise definition of gr;
and the above results.

The paper [2] gives a ‘computation’ of the groups moDiff(D3,.J). These groups turn out to
be the fundamental groups of the components of K31, and are described in terms of the JSJ-
decomposition of the knot complement [3]. The group structure of mDiff(D3,J) is fairly in-
volved. For example, the classifying space B(mDiff(D?,.J)) has the homotopy-type of a compact
manifold, which is a K (m,1). The dimension of this manifold is bounded below by the number
of tori in the JSJ-decomposition of the complement of J in D?. It was the complexity of the
groups moDiff(D3, J) that led the first author to think deform-spinning could be a way to pro-
duce many interesting higher-dimensional knots. The point of this paper is to say that, at least
in S*, deform-spinning does not produce all knots.

2 Asymmetry obstruction

Given a co-dimension 2 knot K in S™, the complement of the knot, Cx is a homology S'. Let
Ck denote the universal abelian cover of Cx, ie: the cover corresponding to the abelianization
map mCxg — Z, and consider Hl(C’K;Q) to be a module over the group-ring of covering
transformations Q[Z]. It’s known that H;(Ck; Q) is a torsion Q[Z]-module [4], so H1(Ck;Q) ~
@, Q[Z]/p; for some collection of polynomials p;. The product [],p; is called the Alexander
polynomial of K, or the order ideal of H 1(C~’K; Q) (since Q[Z] is a principal ideal domain, an
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ideal is the same thing as a polynomial up to a multiple of a unit). The Alexander polynomial can
be defined directly in terms of the Z[Z]-module structure of H;(Cg;Z), and so the Alexander
polynomial admits a canonical normalisation to an element of Z[Z]. This normalization is easy
to compute from the Q[Z] polynomial as the Z[Z] polynomial satisfies p(1) = +1. Given a
finitely-generated torsion Q[Z]-module H, the order ideal will be denoted A (t), similarly the
Alexander polynomial of K is denoted Ak (t) = A (Gr0) (t).

Lemma 2.1 [6] (7.2.7) Given a short exact sequence of finitely generated torsion Q[Z]-modules
00— H, —H— Hy—0

the order ideals satisfy Ap, (1)Am,(t) = Ap(t).

Notice that the dimension of H as a Q-module is the degree of the polynomial A (t), where
‘degree’ is interpreted as the difference between the exponent of the highest and lowest order
non-zero terms in the polynomial.

As context for the next lemma, let G be a finite abelian group. We briefly mention the con-
struction of the duality pairing G x Exty(G,Z) — Q/Z. The idea is to start with a presentation

zn e zn T2

G
and the induced presentation of Ext
ML xG
Hom(Z",Z) —— Hom(Z",Z) — Extz(G,Z)

The duality pairing sends a pair (rgg, 7% f) to <g‘/g"f> = <g"{l>, where |glg = M(¢') and |h|h =

M™*(R'). This gives a natural identification Extz(G,Z) ~ Homz(G,Q/Z).

Lemma 2.2 Let H be a finitely-generated torsion Q[Z]-module. Denote by [Q[Z]] the field of
fractions of Q[Z]. Consider Q[Z] to be the submodule of [Q[Z]] with denominator 1.

There are canonical isomorphisms:
Extgz (H,Q[Z]) ~ Homgz (H, [Q[Z]]/Q[Z]) and Homgz(H,[Q[Z]]/Q[Z]) ~ Homg(H,Q)

where the first isomorphism is an isomorphism of Q|Z]-modules, while the last is only an iso-
morphism of Q-vector spaces.

Proof The idea of the first part of the proof is to construct a duality pairing
H x Extqz)(H,Q[Z]) — [Q[Z]]/Q[Z]

as before. Start with a presentation

Qzr M- qQzir > H

which gives a dual presentation

Q[z* M- Qz) > Extgy(H,Q|Z)
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So given (rgh, 7 f) € H x ExtQ[Z](H,Q[Z]), it |Blh = M(R') and |f|f = M(f") for some
|h],|f| € Q[Z] define

(', f) _ (hf")

(mph,w ) = = < [Q[z]])/Q[Z].
I /]
For the second claim, consider a rational polynomial % € [Q[Z]]. By the division algorithm

p(t) = s(t)q(t) +r(t) for unique Laurent polynomials s(t),r(t) € Q[Z] such that r(t) € Q[t] and
deg(r(t)) < deg(q(t)). Define a Q-linear map [Q[Z]]/Q[Z] — Q by sending % to the constant
coefficient of r(¢). This gives a Q-linear map:

Homgz(H, [Q[Z]]/Q[Z]) — Homg(H,Q)

which respects connect-sum decompositions of the domain H. Thus to verify that it is an
isomorphism, we need to only check it on a torsion Q[Z]-module with one generator.

Homg) (Q[Z]/p, [Q[Z]]/Q[Z]) — Homq(Q[Z]/p, Q).

In this case the target space is free of rank deg(p); the free generators are the dual classes to the
polynomials ¢ for 0 < i < deg(p). The domain is a free Q-module of rank deg(p) generated by
the homomorphisms that send 1 to t!/p where 0 < i < deg(p). Hence the map is a bijection
between these basis vectors. m|

Remark. As [QZ]] is injective Q[Z]-module [9], the first part of the above proof can also be seen
by applying Hom(H,«) to the short exact sequence 0 — Q[Z] — [Q[Z]] — [Q[Z]]/Q[Z] — 0.

Lemma 2.3 Let g : H — H be a Q[Z]-linear map, where H is a finitely-generated torsion
Q[Z]-module. Let g* : Extg(H,Q[Z]) — Extgy(H,Q[Z]) the Ext-dual of g. Then ker(g)
and ker(g*) have the same order ideals (Alexander polynomials).

Proof The order ideal of H admits a prime factorisation, so let P C Q[Z] be the set of primes
used in the prime factorisation. Given p(t) € P let Hp; C H be the sub-module of elements
killed by a power of p(t). Then there is a canonical isomorphism @p(t) ep Hpw =~ H. This splits
g as a direct sum

9= B %) : Hpy = Hppr)
p(t)eP

Thus,

Aker(g)(t): H Aker(gp(t))(t)'
p(t)eP

Let d,) € Z be defined so that Aker(gp(t))(t) = p(t)%® . By Lemma 2.2, g and g* can be thought
of as the Homg(-,Q)-duals of each other, thus ker(g) and ker(g*) have the same dimension as
Q-vector spaces. But by the comments following Lemma 2.1, dimq(ker(g,))) = deg(p(t))dp(y) -
Thus, AkeT(gp(t))(t) is determined by the rank of ker(gp)) as a Q-vector space. Hence ker(g)
and ker(g*) have the same order ideals. O
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Remark. Although they have the same order ideals, in general the two kernels are not isomorphic
as Q[Z]-modules. An example is given by g : Q[Z]/p(t) ® Q[Z]/p(t)?> — Q[Z]/p(t) ® Q[Z]/p(t)?
defined by g(a(t),b(t)) = (0,p(t)a(t)). In this case, ker(g) ~ Q[Z]/p(t)?, while ker(g*) =~

D. QIZ]/p(t).

Theorem 2.4 Let K’ be a 2-knot which is deform-spun, then Ag/(t™1) = Ag(t).

Proof We use the notation in the introduction. Let Cgs be the complement of a tubular
neighbourhood of K’, and Ck the complement of a tubular neighbourhood of K. Let g be
the diffeomorphism of C'x obtained by restricting the diffeomorphism in the definition of C'k-.
There is a homeomorphism
Crr =~ (Cr x4 S') Uygiygr (vS) x D?)

where vS! is a trivial 7-bundle over S', considered to be a tubular neighbourhood of a meridian
in OCg . This gives a short exact sequence of Alexander modules

0 — img(g: — 1) — Hi(Cx; Q) — Hi(Cxr; Q) — 0.
where g, : Hl(C’K; Q) — Hl(C'K; Q) is the induced map of Alexander modules.
On the other hand, g, — I : Hl(C'K; Q) — Hl(C'K; Q) gives rise to a short exact sequence

0 — ker(ge — I) — Hi(Cx; Q) — img(g. —I) — 0
Apply Lemma 2.1 to both short exact sequences, giving A (t) = Ajepig,—1)(t). This reduces

the problem to showing that Aje,.(4,—1)(t) is a symmetric polynomial.

We reconsider the proof that Ag (t71) = Ak (t) [4, 6] paying special attention to naturality with
respect to diffeomorphisms g € Diff (C).

(1) Hi(Cg) ~ Hy(Ck,d): this is a natural isomorphism coming from the long exact sequence
of a pair.

(2) H2(Ck) denotes Q[Z]-module H%(Cx) where the action of Z is replaced by the inverse
action. We have H;(Cg,d) ~ H2(Ck): this is the isomorphism coming from Poincaré
duality; it is also natural although it reverses arrows.

(3) H*(Ck)~ Ext(H,(Ck),Q[Z]): this is a natural isomorphism coming from the universal
coefficient theorem, since Hom(H?*(Ck),Q[Z]) = 0.

(4) Ext(H,(Ck),Q[Z)) ~ Hi(Ck). This last result uses that both modules have a square
presentation matrix, with one being the transpose of the other. Since Q[Z] is a principal
ideal domain, the presentation matrices are equivalent to the same diagonal matrices. This
isomorphism is not natural.

Thus we have an isomorphism H;(Cr) ~ H;(Ck) which gives the identity Ag(t™') = Ag(t).
Using the previous Lemma we get a commutative diagram where all the maps are Q[Z]-linear.

H(Crx) — Hi(Cxe,0) 2> H2(Ce) L4 Eatgyg (Hn(Cro). Q12

S

H,(Cx) — H(Ck,d) £P, H?(Ck) Jr Eztgz (Hl(éK)a @[Z])
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This gives us an isomorphism of Q[Z]-modules ker(I — g.) ~ ker(I — (g;1)*), so
ker(I — g.) =~ ker(I — (g,1)*) = ker(I — (g.)%).

By Lemma 2.3, ker(I — (g+)*) and ker(l — g«) have the same Alexander polynomials. Thus,
AK/(t_l) :AK/(t) O

3 Comments and questions

Alexander polynomials p(t) of co-dimension 2 knots in S™ for n > 4 are known to only satisfy
the restriction p(1) = +1 [7], so there is no direct generalisation of Theorem 2.4 to higher
dimensions.

Question 3.1 (1) Is the asymmetry of the Alexander polynomial the only obstruction to a
2-knot being deform-spun?

(2) Are there any obstructions to an n-knot being deform-spun for n > 27
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