
ISSN numbers are printed here 1

The Alexander polynomial of a deform-spun knot in S4 is
symmetric
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Abstract

This paper proves that if a co-dimension 2 knot in S4 is deform-spun from a co-dimension 2
knot in S3 , then its Alexander polynomial is symmetric. Since there exist knots in S 4 with
non-symmetric Alexander polynomials, this proves not all knots in S4 are deform-spun. The
proof of the main theorem uses nothing more than the definition of the Alexander polynomial,
Poincare duality and elementary linear algebra.
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1 Introduction

In co-dimension 2 knot theory, typically the term ‘n-knot’ denotes a manifold pair (Sn+2,K)
where K is the image of a smooth embedding f : Sn → Sn+2 . A ‘long’ n-knot is a pair (Dn+2, J)
where J is the image of a smooth embedding f : Dn → Dn+2 such that f−1(∂Dn+2) =
∂Dn and such that f , when restricted to ∂Dn = Sn−1 is the standard inclusion, where we
consider Dn ⊂ Dn+2 in the standard way. Every n-knot K is isotopic to a union (Sn+2,K) =
(Dn+2, J) ∪∂ (Dn+2, Dn) for some unique isotopy class of long knot J provided we consider K
to be oriented. Let Diff(Dn+2, J) denote the group of diffeomorphisms of Dn+2 which restrict
to the identity on J ∪ ∂Dn+2 . An (n + 1)-knot (Sn+3,K ′) is deform-spun from (Sn+2,K) if
there exists g ∈ Diff(Dn+2, J) such that the pair

(

(Dn+2, J) ×g S1
)

∪∂

(

(Sn+1, Sn−1) × D2
)

is
diffeomorphic to the pair (Sn+3,K ′).

To visualize the deform-spun knot, assume that the diffeomorphism g ∈ Diff(Dn+2, J) is isotopic
to the identity when considered as a diffeomorphism of Dn+2 (every deform-spun knot can be
obtained using such a diffeomorphism, so this is no loss of generality [1]). Let gt be the null-
isotopy of g , ie: g0 = g , g1 = IdDn+2 and gt is a diffeomorphism of Dn+2 which restricts to
the identity on ∂Dn+2 for all 0 ≤ t ≤ 1. Consider Sn+3 to be the union of a great (n + 1)-
sphere Sn+1 and a trivial vector bundle over S1 . Identify this trivial vector bundle over S1 with
S1×int(Dn+2), and identify S1 with R/Z. We assume that the inclusion S1×int(Dn+2) → Sn+3

extends to a map S1 × Dn+2 → Sn+3 such that the restriction S1 × Sn+1 → Sn+3 factors as
projection onto the great sphere Sn+1 followed by inclusion Sn+1 → Sn+3 . Then the set
{(t, x) ∈ S1 × int(Dn+2) : x = gt(p), p ∈ int(J)} is a subset of Sn+3 whose closure is an
(n + 1)-knot. This is the deform-spun knot.

S2

{t} × int(D3)

A connect sum of two trefoils, being deform-spun to produce a 2-knot in S4

The main result of this paper is to show that not every 2-knot is deform-spun from a 1-knot.
The obstruction is given by Theorem 2.4, which states that 2-knots with asymmetric Alexander
polynomials are not deform-spun. The set of polynomials realisable as Alexander polynomials
of 1-knots is known [5] to be

{p(t) ∈ Z[Z] : p(1) = ±1, p(t−1) = p(t)}.
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On the other hand, Kinoshita [7] has proved that the set of polynomials realisable as Alexander
polynomials of 2-knots is

{p(t) ∈ Z[Z] : p(1) = ±1}.

Theorem 2.4 has as a consequence that the set of polynomials realizable as Alexander polyno-
mials of deform-spun knots in S4 are precisely the Alexander polynomials of knots in S3 .

Litherland’s deform-spinning construction has its origin in a paper of Zeeman’s. Zeeman proved
that the complements of certain co-dimension two ‘twist-spun’ knots fiber over S 1 [10]. Lither-
land later went on to formulate a more general notion of spinning called ‘deform-spinning,’
further generalising Zeeman’s theorem on when such knot complements fiber over S 1 [8]. Specif-
ically, Litherland proved that if the diffeomorphism f preserves a Seifert surface for the knot,
then the deform-spun knot associated to the diffeomorphism Mf fibers over S 1 , provided
M : (Dn, J) → (Dn, J) is a non-zero multiple of the meridional Dehn twist about J .

This paper was largely motivated by a result in ‘high’ co-dimension knot theory. Let Kn,j denote
the space of smooth embeddings f : Dj → Dn such that f−1(∂Dn) = ∂Dj and the restriction
of f to ∂Dj is the standard inclusion. In a previous paper [1] the first author showed that
Litherland’s deform-spun knot construction generalises to ‘graphing’ map gr1 : LKn−1,j−1 →
Kn,j where LKn−1,j−1 denotes the free loop space on Kn−1,j−1 , this is the space of smooth maps
from S1 to Kn−1,j−1 . A proof was given that the map π0LKn−1,j−1 → π0Kn,j is onto provided
n − j > 2. Further consider Kn,j to be a based-space with basepoint the unknot, then the
graphing map gr1 restricts to a map gr1 : ΩKn−1,j−1 → Kn,j . In [1] it was further shows that
gr1∗ : π1Kn−1,j−1 → π0Kn,j is onto. By iterating the graphing construction, one gets a map
gri : ΩiKn−i,j−i → Kn,j . Goodwillie’s dissertation was applied to show that the induced map
gri∗ : πiKn−i,j−i → π0Kn,j is onto provided i ≤ 2n− 2j − 4. This result is frequently sharp: for
example, gr2 : π2K4,1 → π0K6,3 ' Z is an isomorphism. See [1] for a precise definition of gri

and the above results.

The paper [2] gives a ‘computation’ of the groups π0Diff(D3, J). These groups turn out to
be the fundamental groups of the components of K3,1 , and are described in terms of the JSJ-
decomposition of the knot complement [3]. The group structure of π0Diff(D3, J) is fairly in-
volved. For example, the classifying space B(π0Diff(D3, J)) has the homotopy-type of a compact
manifold, which is a K(π, 1). The dimension of this manifold is bounded below by the number
of tori in the JSJ-decomposition of the complement of J in D3 . It was the complexity of the
groups π0Diff(D3, J) that led the first author to think deform-spinning could be a way to pro-
duce many interesting higher-dimensional knots. The point of this paper is to say that, at least
in S4 , deform-spinning does not produce all knots.

2 Asymmetry obstruction

Given a co-dimension 2 knot K in Sn , the complement of the knot, CK is a homology S1 . Let
C̃K denote the universal abelian cover of CK , ie: the cover corresponding to the abelianization
map π1CK → Z, and consider H1(C̃K ; Q) to be a module over the group-ring of covering
transformations Q[Z]. It’s known that H1(C̃K ; Q) is a torsion Q[Z]-module [4], so H1(C̃K ; Q) '
⊕

i Q[Z]/pi for some collection of polynomials pi . The product
∏

i pi is called the Alexander
polynomial of K , or the order ideal of H1(C̃K ; Q) (since Q[Z] is a principal ideal domain, an
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ideal is the same thing as a polynomial up to a multiple of a unit). The Alexander polynomial can
be defined directly in terms of the Z[Z]-module structure of H1(C̃K ; Z), and so the Alexander
polynomial admits a canonical normalisation to an element of Z[Z]. This normalization is easy
to compute from the Q[Z] polynomial as the Z[Z] polynomial satisfies p(1) = ±1. Given a
finitely-generated torsion Q[Z]-module H , the order ideal will be denoted ∆H(t), similarly the
Alexander polynomial of K is denoted ∆K(t) = ∆H1(C̃K ;Q)(t).

Lemma 2.1 [6] (7.2.7) Given a short exact sequence of finitely generated torsion Q[Z]-modules

0 → H1 → H → H2 → 0

the order ideals satisfy ∆H1(t)∆H2(t) = ∆H(t).

Notice that the dimension of H as a Q-module is the degree of the polynomial ∆H(t), where
‘degree’ is interpreted as the difference between the exponent of the highest and lowest order
non-zero terms in the polynomial.

As context for the next lemma, let G be a finite abelian group. We briefly mention the con-
struction of the duality pairing G×ExtZ(G, Z) → Q/Z. The idea is to start with a presentation

Zn M // Zn
πG // G

and the induced presentation of Ext

Hom(Zn, Z)
M⊥

// Hom(Zn, Z)
πG

// ExtZ(G, Z)

The duality pairing sends a pair (πGg, πGf) to 〈g′,f〉
|g| = 〈g,f ′〉

|h| , where |g|g = M(g′) and |h|h =

M⊥(h′). This gives a natural identification ExtZ(G, Z) ' HomZ(G, Q/Z).

Lemma 2.2 Let H be a finitely-generated torsion Q[Z]-module. Denote by [Q[Z]] the field of
fractions of Q[Z]. Consider Q[Z] to be the submodule of [Q[Z]] with denominator 1.

There are canonical isomorphisms:

ExtQ[Z](H, Q[Z]) ' HomQ[Z](H, [Q[Z]]/Q[Z]) and HomQ[Z](H, [Q[Z]]/Q[Z]) ' HomQ(H, Q)

where the first isomorphism is an isomorphism of Q[Z]-modules, while the last is only an iso-
morphism of Q-vector spaces.

Proof The idea of the first part of the proof is to construct a duality pairing

H × ExtQ[Z](H, Q[Z]) → [Q[Z]]/Q[Z]

as before. Start with a presentation

Q[Z]n
M // Q[Z]n

πH // H

which gives a dual presentation

Q[Z]n
M⊥

// Q[Z]n
πH

// ExtQ[Z](H, Q[Z])
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So given (πHh, πHf) ∈ H × ExtQ[Z](H, Q[Z]), if |h|h = M(h′) and |f |f = M⊥(f ′) for some
|h|, |f | ∈ Q[Z] define

〈πHh, πHf〉 =
〈h′, f〉

|h|
=

〈h, f ′〉

|f |
∈ [Q[Z]]/Q[Z].

For the second claim, consider a rational polynomial p(t)
q(t) ∈ [Q[Z]]. By the division algorithm

p(t) = s(t)q(t)+ r(t) for unique Laurent polynomials s(t), r(t) ∈ Q[Z] such that r(t) ∈ Q[t] and

deg(r(t)) < deg(q(t)). Define a Q-linear map [Q[Z]]/Q[Z] → Q by sending p(t)
q(t) to the constant

coefficient of r(t). This gives a Q-linear map:

HomQ[Z](H, [Q[Z]]/Q[Z]) → HomQ(H, Q)

which respects connect-sum decompositions of the domain H . Thus to verify that it is an
isomorphism, we need to only check it on a torsion Q[Z]-module with one generator.

HomQ[Z](Q[Z]/p, [Q[Z]]/Q[Z]) → HomQ(Q[Z]/p, Q).

In this case the target space is free of rank deg(p); the free generators are the dual classes to the
polynomials ti for 0 ≤ i < deg(p). The domain is a free Q-module of rank deg(p) generated by
the homomorphisms that send 1 to ti/p where 0 ≤ i < deg(p). Hence the map is a bijection
between these basis vectors.

Remark. As [Q[Z]] is injective Q[Z]-module [9], the first part of the above proof can also be seen
by applying Hom(H, ?) to the short exact sequence 0 → Q[Z] → [Q[Z]] → [Q[Z]]/Q[Z] → 0.

Lemma 2.3 Let g : H → H be a Q[Z]-linear map, where H is a finitely-generated torsion
Q[Z]-module. Let g∗ : ExtQ[Z](H, Q[Z]) → ExtQ[Z](H, Q[Z]) the Ext-dual of g . Then ker(g)
and ker(g∗) have the same order ideals (Alexander polynomials).

Proof The order ideal of H admits a prime factorisation, so let P ⊂ Q[Z] be the set of primes
used in the prime factorisation. Given p(t) ∈ P let Hp(t) ⊂ H be the sub-module of elements
killed by a power of p(t). Then there is a canonical isomorphism

⊕

p(t)∈P Hp(t) ' H . This splits
g as a direct sum

g =
⊕

p(t)∈P

gp(t) : Hp(t) → Hp(t)

Thus,

∆ker(g)(t) =
∏

p(t)∈P

∆ker(gp(t))(t).

Let dp(t) ∈ Z be defined so that ∆ker(gp(t))(t) = p(t)dp(t) . By Lemma 2.2, g and g∗ can be thought

of as the HomQ(·, Q)-duals of each other, thus ker(g) and ker(g∗) have the same dimension as
Q-vector spaces. But by the comments following Lemma 2.1, dimQ(ker(gp(t))) = deg(p(t))dp(t) .
Thus, ∆ker(gp(t))(t) is determined by the rank of ker(gp(t)) as a Q-vector space. Hence ker(g)

and ker(g∗) have the same order ideals.

preprint



6 Ryan Budney, Alexandra Mozgova

Remark. Although they have the same order ideals, in general the two kernels are not isomorphic
as Q[Z]-modules. An example is given by g : Q[Z]/p(t) ⊕ Q[Z]/p(t)2 → Q[Z]/p(t) ⊕ Q[Z]/p(t)2

defined by g(a(t), b(t)) = (0, p(t)a(t)). In this case, ker(g) ' Q[Z]/p(t)2 , while ker(g∗) '
⊕

2 Q[Z]/p(t).

Theorem 2.4 Let K ′ be a 2-knot which is deform-spun, then ∆K′(t−1) = ∆K′(t).

Proof We use the notation in the introduction. Let CK′ be the complement of a tubular
neighbourhood of K ′ , and CK the complement of a tubular neighbourhood of K . Let g be
the diffeomorphism of CK obtained by restricting the diffeomorphism in the definition of CK′ .
There is a homeomorphism

CK′ ' (CK og S1) ∪νS1×S1 ((νS1) × D2)

where νS1 is a trivial I -bundle over S1 , considered to be a tubular neighbourhood of a meridian
in ∂CK . This gives a short exact sequence of Alexander modules

0 → img(g∗ − I) → H1(C̃K ; Q) → H1(C̃K′ ; Q) → 0.

where g∗ : H1(C̃K ; Q) → H1(C̃K ; Q) is the induced map of Alexander modules.

On the other hand, g∗ − I : H1(C̃K ; Q) → H1(C̃K ; Q) gives rise to a short exact sequence

0 → ker(g∗ − I) → H1(C̃K ; Q) → img(g∗ − I) → 0

Apply Lemma 2.1 to both short exact sequences, giving ∆K′(t) = ∆ker(g∗−I)(t). This reduces
the problem to showing that ∆ker(g∗−I)(t) is a symmetric polynomial.

We reconsider the proof that ∆K(t−1) = ∆K(t) [4, 6] paying special attention to naturality with
respect to diffeomorphisms g ∈ Diff(CK).

(1) H1(C̃K) ' H1(C̃K , ∂): this is a natural isomorphism coming from the long exact sequence
of a pair.

(2) H2(C̃K) denotes Q[Z]-module H2(C̃K) where the action of Z is replaced by the inverse

action. We have H1(C̃K , ∂) ' H2(C̃K): this is the isomorphism coming from Poincaré
duality; it is also natural although it reverses arrows.

(3) H2(C̃K) ' Ext(H1(C̃K), Q[Z]): this is a natural isomorphism coming from the universal
coefficient theorem, since Hom(H2(C̃K), Q[Z]) = 0.

(4) Ext(H1(C̃K), Q[Z]) ' H1(C̃K). This last result uses that both modules have a square
presentation matrix, with one being the transpose of the other. Since Q[Z] is a principal
ideal domain, the presentation matrices are equivalent to the same diagonal matrices. This
isomorphism is not natural.

Thus we have an isomorphism H1(C̃K) ' H1(C̃K) which gives the identity ∆K(t−1) = ∆K(t).
Using the previous Lemma we get a commutative diagram where all the maps are Q[Z]-linear.

H1(C̃K) //

g∗

��

H1(C̃K , ∂)
PD //

g∗

��

H2(C̃K) ExtQ[Z]

(

H1(C̃K), Q[Z]
)

UCToo

H1(C̃K) // H1(C̃K , ∂)
PD // H2(C̃K)

g∗

OO

ExtQ[Z]

(

H1(C̃K), Q[Z]
)

(g∗)∗

OO

UCToo

preprint



The Alexander polynomial of a deform-spun knot in S4 is symmetric 7

This gives us an isomorphism of Q[Z]-modules ker(I − g∗) ' ker(I − (g−1
∗ )∗), so

ker(I − g∗) ' ker(I − (g−1
∗ )∗) = ker(I − (g∗)

∗).

By Lemma 2.3, ker(I − (g∗)
∗) and ker(I − g∗) have the same Alexander polynomials. Thus,

∆K′(t−1) = ∆K′(t).

3 Comments and questions

Alexander polynomials p(t) of co-dimension 2 knots in Sn for n ≥ 4 are known to only satisfy
the restriction p(1) = ±1 [7], so there is no direct generalisation of Theorem 2.4 to higher
dimensions.

Question 3.1 (1) Is the asymmetry of the Alexander polynomial the only obstruction to a
2-knot being deform-spun?

(2) Are there any obstructions to an n-knot being deform-spun for n > 2?
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