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1. Introduction
The purpose of this paper is to try to answer the following

Szpiro’s Question. ([Sz|, [B1]) Let f : § — P¢ be a family of semistable
curves of genus g, which is not trivial. Then, what is the minimal number of the

singular fibers of f7
Beauville gives a lower bound for the number of singular fibers.

Beauville’s Theorem. {B1l} With the notations as above, if g > 1, then

1) f admaits at least 4 singular fibers.

2) If f admaits 4 singular fibers, then S is algebraically simply connected with
py(S) = 0, and the irreducible components of the 4 singular fibers are rational curves

(may be singular), which generate a hyperplane of the Q-vector space Pic(S) ® Q.

Furthermore, Beauville [B1] gives an example of semistable elliptic fibration over
P! with 4 singular fibers, and one example of genus 3 with 5 singular fibers, and
he gives also a series of such examples with 6 singular fibers for all ¢ > 1. In fact,
Beauville conjectured that for ¢ > 2, there is no such fibrations with 4 singular
fibers. In [B2], Beauville classified all semistable elliptic fibrations over P! with 4
singular fibers.

Szpiro [Sz] considered that problem over a field with characteristic p > 0, and he
proved that the minimal number of singular fibers is at least 3, and if the surface
is of general type, then the number is at least 4.

The main result of this paper is
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Foundation of the University Doctoral Program of CNEC.

Typeset by Aa48-TEX



2 S.-L. Tan

Theorem 1 (Beauville’s conjecture). If f: S — P{ is a non-trivial semi-

stable fibration of genus g > 2, then f admaits at least 5 singular fibers.

Theorem 1 is an immediate consequence of Beauville’s Theorem and the following

“strict canonical class inequality”.

Theorem 2. Let f : S — C be a semistable fibration of genus g > 2 with s

singular fibers. Then we have
1 9 (94(C) — 2
deg fiwgyc < (29(C) — 2 + 3).

The validity of these two theorems is heavily dependent on Miyaoka-Yau inequal-
ity. In Sect. 4, we shall give an example f : § — P! of genus 2 with 5 singular
fibers. Note that Beauville has also given such an example for ¢ = 3.

I would like to thank Prof. A. Beauville, Prof. F. Hirzebruch, and Prof. G. Xiao
for their helps and encouragements. Prof. Xiao kindly informed me that he had
independently obtained most of the steps in this paper except for the proof of the

main theorems.

2. Preliminaries

2.1. Double coverings and ADE curve singularities. Let X be a normal
surface, and Y a smooth surface, and let # : X — Y be a double covering,
branched along a curve B C Y. Then there exists a divisor § on Y such that
B = 25. Conversely, if B is an even divisor, i.e., B = 2§ for some &, then we can
construct a double covering # : X — Y such that = is branched along B. So
7 1s determined by the data (Y, B,§). The singularities of X come from those of
B. Horikowa [Ho] gives a canonical resolution of the singularities of X, it goes as
follows.

If p is a singular point of B, with multiplicity v,, then we blow up Y at p,
o : Y7 — Y. Denote by E the exceptional curve of o over p, then o*(B) = B+v,E.
Let X, be the normalization of X xy Y. Then it is a double covering of Y] with

branch locus By,

B = B+ (vp— 2 F)E

Unless B) is nonsingular, we repeat this construction, and so on. It is not difficult

to see that after a finite number of steps, the singularities of X can be resolved.
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ADE curve singularities are defined as follows
Ag: a2ty "t =0, n > 1,
Dy: y+y"" =0, n>4,
Es: 244" =0,
E::  z(z®* +¢%) =0,
Ey: 24y°=0.

Let f : ¥ — Y be a double covering determined by the data (Y, B, §). If B
has only ADFE curve singularities, then ¥ has ounly rational double points of the
same type. Furthermore, we note that in this case, the canonical resolution of ¥ is
minimal.

2.2. Hyperelliptic fibrations. Let f : § — C be a relatively minimal

fibration of genus g > 2, i.e., S contains no (—1)-curves in a fiber of f. Let

x5 =x(0s) — (¢ — D)(g(C) - 1),

K} =K% -8(g—1)(9(C) - 1),

e =Xton(S) — 4(g — 1)(9(C) — 1)
They are the basic invariants of f. If Kg/¢ is the relative canonical divisor of
f, then Kfﬁ = K.%‘/C and y; = deg fuws/c, where wg)c = O(Kg/c). If f is not
locally trivial, by the well-known Arakelov-Parshine Theorem ([Ar], [Pa]), we know
Xf > 0 and K} > 0. Then we can define the slope of f as A\j = K}-/xf, which is
an important invariant of f. In [X1], Xiao shows that if f is a locally non-trivial
fibration of genus ¢ > 2, then we have

4
Ap>4— 2, 1
rz4-2 (1)

Furthermore, Konno [Ko| has recently shown that if the slope of f is 4 —~4/g, then
f 1s hyperelliptic, i.e., the general fibers of f are hyperelliptic curves. Cornalba and

Harris [CH] have also obtained (1) and INonno’s result for semistable fibrations.

Lemma 2.2. If f is a (hyperelliptic) fibration with \y = 4—4/g, then there 1s a
geometrically ruled surface P over C and a double coveringm : & — P, such that ©
has only rational double points as its singularities, and S is the canonical resolution
of £. In fact, f 1s induced by the ruling of P over C. If B~ —(g+ l)I\ p/c +nky

18 the branch locus of @, then

- g
I\} =2¢-2n, xs= g
The proof of this Lemma can be found in [Pe] or [X2].

2.3. Miyaoka’s inequality and Vojta’s inequality. We refer to [Hi] for the
details of the following Miyaoka’s inequality.
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Lemma 2.3. [Mi] If S is a smooth surface of general type, and Ey, ---, E, are

disjoint ADE curves on S, then we have

n

> m(E;) < 3ea(8) — c}(S),

=1

where m(E) 13 defined as follows,

m(Ar) =300 +1) - =,

m(D,) = 3(r + 1) — 4(?‘3_ 5 Jorrz
1

n(Bg) = 21 -

m(E7) =24 — Tlé’

m(Eg) = 27 — %

Finally, we should mention Vojta’s interisting inequality for semistable fibrations

f with s singular fibers, i.e., the “canonical class inequality” [Vo|:

K% < (29 - 2)(29(C) ~ 2 +5). (2)

Our proof of Theorem 2 is based on these inequalities and Beauville’s Theorem.

3. The proof of Theorem 2

In this section, we always assume that f : § — C is a semistable fibration
of genus ¢ > 2 with s singular fibers Fy,--- ,F,. From (1) and (2), we have
Xs < 4(2b — 2 + s), where b is the genus of C. In order to prove Theorem 2, we

only need to derive a contradiction from the following assumption:
=99
Xp=5(2b=2+5). (3)

First we consider the base changes 7 : C — C of degree de, where d and e
are natural numbers and 7 is ramified uniformly over the s critic points of f with
ramification index e. By Kodaira-Parshin construction such a base change exists
for all e if b > 0. Let }r: S — C be the pullback fibration of f under =, then it
is easy to know that fhas ds singular fibers and the equality (3) also holds for f
Note that if 5 = 0, then s > 4. By considering a base change totally ramified over
the s critic points, we can assume that b > 0. Then by considering an étale base

change of degree 2, we can assume also that s is even.
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Combining (1) and (2) with (3), we have Ay =4 —4/g.

By Lemma 2.2 we know that f is a hyperelliptic fibration and S can be con-
structed as in Lemma 2.2, i.e., it is from a double covering over a ruled surface
P — C and branched along a curve B ~ —(g+ 1)Kp,c + nFp, where Fp is a fiber
of P — C. Since I{;‘; = 2n(g — 1) and x s = ng/2, so we have

n=2b—-2+s. (4)

Furthermore, Xiao {X2] has proved that s > 0 for locally non-trivial hyperelliptic
fibrations.

In what follows, we shall consider the singularities of B so that f is semistable.
First note that the fiber Fy of P can not be contained in B. Otherwise, by
Lemma 2.2, we know that the strict transform of Fp in § is a curve with mul-

tiplicity 2, but not a (—1)-curve, this is impossible.
Lemma 3.1. B has only double points as its singularities.

Proof. Since f is semistable, so the connected components of the set of (—2)-
curves in a fiber of f are of type A,. Thus B has only double points as its singu-
larities.

Q.E.D.

Lemma 3.2. For eny p € BN Ky, the intersection number

(B Fp), < 2.

Proof. Case 1. (B,p) is nonsingular. We assume, on the confrary, that n =
(B- Fo)p > 3. We shall claim that the fiber of f induced by Fj has a singularity of
type A,_1, which is not an ordinary double point, a contradiction.

Indeed, in this case, there exists a local coordinate (z,y) at p such that
(F(),p)= {,E=0}’ (B113)={$+yn :0}

But the surface S is defined locally by z% = z + y”, hence the fiber of f over Fj is
defined locally by

22 _yn :0’

which is a singular point of type A,—,. This proves the claim.

Case II. (B, p) is a singular point. In this case, we consider the canonical reso-
lution of the singularity. We denote by F the fiber of f corresponding to Fy. Let
o : P — P be the blowing-up of P at p, and let E be the exceptional curve of o,
we claim that p; = Fy N E is not on By = B. Hence (B - Fp), = 2.
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Indeed, we assume, on the contrary, that p; € B;. If (By,p,) is smooth, then
the fiber F has a singular point over p;, which is not a node, so F is not semistable,
a contradiction. If (By,p) is singular, then it is a double point. Then we consider
the next blowing-up o at py, it is easy to know that the strict inverse image of the
exceptional curve of oy is of multiplicity 2 in F', a contradiction. This proves the

claim. Q.E.D.

From this lemma, we can divide the intersection points p € Fy N B into the
following three types.

A: (Fo-B), =1,

B: (Fy - B), = 2,(B,p) is smooth,

C: (Fo- B)p =2,(B,p) is singular.

Now, we denote by Fpy; the image of F; in P. Let a; (resp. b;,¢;) be the number

of points of type A (resp. B, C) on Fp;. Then, we have
a; +2b; + 2¢; = 29 + 2, fori=1,---,4. (5)

Let A=3"7 ja;,, B=3%._,b;, C= ZL] ci. Then, by (5), we have

1
B+C+§A=sg+s. (6)

In what follows, we denote by u, the Milnor number of the singular point (B, p),

Le., if (B,p) is of type Ay, then pp =n. Let u(B) =3 #p-
Lemma 3.3.
p(B) = (4n — S)g +2n — s + 3 A (7)
Proof. From (4), we have 2b — 2 =n — s, hence p ~ Kp/c + (n — 3)Fp, and
~2x(Op) = B* + KpB = (g + 1)(6n — 2s) — 2n.
On the other hand,

Xt‘op(B) = Xtop (B_ZFOinB> +A+B+C

=1
1
= (24 2)(xtop(C) = ) + (g + D)5 + 3 4

=(g+1)(s—2n)+ =A.

Sl N

Then by ([Ta], Lemma 1.1), we have

#(B) = Xiop(B) — 2x(OB),

so we can obtain immediately the desired formula. Q.E.D.
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Lemma 3.4. 3 3
g<1+—B+ —.
4s ppzz;] 4s(pp + 1)

Proof. We shall prove this lemma by using Miyaoka’s inequality. We consider
anew curve D = B + Zf___] Fyi. By assumption s is even, so D is an even curve.
Hence, we can construct a new double covering over P branched along D, = :
Sy — P. If fact, we can see that D has only ADE singular points of the following

types on Fp;:

(I,‘A] + bng + Z D,up+3- (8)
pp21,pEFy;

From Lemma 2.2, we have

K% =(20-2)(n+s), X5 =o(n+s).

l\DI‘-..

By Beauville’s Theorem, if 6 = 0, then n 4+ s > 4, which implies Kgl > 0 and
X(Os,) > 2. Hence we know that S is of general type.
3ca(S)) — c3(S1) = 36xy, — 4K12f1 + 2(g — 1)(n — s). )
= (12n + 8s)g - 6n + 10s.
Note that

9 45 3
m(Al) = 5 m(Az) = 1 771(Dpp-§-3) = 3(1“}1 +4) — 4(#1) T 1)'

From (8), we have

o 45 5
Z m(E,) = §A + IB + Z (3(#;} +4) - 4(”1’—"'1))

p #p>1

9 45
= S A+ B+ 3u(B) +12C - “2;14(;@

9 45 1
= ;.A-I- ZB+3 ((411.~3)g+271—5+5A)

1 3
+ 12 +1s—B-—=-A4) - B —
<(g )¢ 2 ) ;;2;1 4(#? + 1)

by (6) and (7)

3
(1271 -+ Qs)g +6n 4 9s — —B Z m
Now by (9) and Miyaoka's inequality 3c2(S1) — c?(S;) > Zp m(E,), we can obtain
the inequality of the lemma. Q.E.D.
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Lemma 3.5. Under the assumptions above, we have g < 1.

Proof. Note first that the inequality of Lemma 3.4 holds for all fibrations satis-
fying (3). Now we consider the pullback fibration f of f under a base change of
degree de given at the begging of this section, where e > 1. In fact, f is determined
by the data (]3,1?), where P —5 C is the pullback ruled surface under the base
change, and B is the inverse image of B in P. If we denote by ~ the corresponding

obhjects of B , then we have

Q
Il

ds, .Z:d.A, g:O, 5=dB+C, py=eu, +e—1

Applying Lemma 3.4 to fwe obtain

3 3 1

<1+ B4+ -— .

921t 4 +4361X>:],up+1
tp2

Taking e large we have g < 1. Q.E.D.
This contradicts the assumption g > 2. Hence we have proved Theorem 2.

Remark 3.6. Using a similar method we can prove that the equality in Vojta’s

inequality (2) holds only if f is a smooth fibration.

4. An example of genus ¢ = 2 with s = 5

In this section, we shall construct a semistable fibration f: S — P! of genus 2
with § singular fibers.

Let ¢ and ¥ : P! — P! be two morphisms with deg ¢ -+ degy = 2¢ 4- 2. We
assume that there exists a subset R = {p;, -+ ,ps} C P! satisfying

1) the branched points of ¢ and % are contained in R, and the ramification points
of them are of index 2.

i1) ¢~'(pi) Ny~ (pi) consists of non-ramified points of ¢ and ¥, and if p € R,
then ¢~ (p) N ¥~ (p) is empty.

In P! x P!, we consider the divisors I'y and T'y, graphes of ¢ and 1 respectively.
Let B = T'y + T'y. Then B is an even divisor of type (2¢ 4+ 2,2) satisfying the
conditions of Lemma 3.2. Let 7 : & — P! x P! be a double cover branched along
B, and let S be the canonical resolution of the singularities of . Then the second

projection P! x P! — P! induces a semistable fibration of genus ¢ with 5 singular
fibers.
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Now we give an example of genus 2 with 5 singular fibers. Let ¢ and b be two

nonzero complex numbers such that the discriminant of the polynomial
p(z) = 2% + (2a — V*)a? + (a® + 2ab?)z — a?b?,

is zero. Hence p(z) has (at most) two zeros z; and z5. Let ¢ and ¢ : P! — P! be

two morphisms defined by

a? t2+b2
(1) = t* 7 () =25

Note that if ¢(t) = ¥(t), then p(t?) = 0. Take R = {o0,2a, —2a, 2, + a* /), 22 +
a’/zy}. It is easy to check that ¢ and 1 satisfy i) and ii). This completes the

construction.
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