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The cut locus on noncompact manifolds

Bruce L. Reinhart*

It has been known for some time that the study of the
cut locus of a compact Riemannian manifold leads to a map of
the disc of the same dimension into the manifold which is a
homeomorphism on the interior and takes the boundary to the
cut locus. This mapping is useful in studying the topology
of the manifold. In this paper it will be shown that such a
mapping can also be defiend for a complete manifold, provided
'tﬁat both the manifold and the cut locus are compactified by
the ehd compactification. This is of interest because of the
further result that a manifold admits a complete metric with
empty cut locus if and only if it is diffeomorphic to euclidean
space. This, even though the manifold is contractible, there
is a possibility that there will be interesting elements in
the higher homotopy groups of the pair consisting of the

compactified manifold and its compactified cut locus.

The precise statement regarding the existence and
homotopy invariance @f the mapping of the disc into the end

compactification will be given in § 2,after the necessary
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definitions have been made. A brief discussion of topological

consequences will be given in § 5. Throughout, we shall assume
as the basic reference on the cut locus the paper of Kobayashi
[2], and as the basic reference on ends of a ﬁanifold the

paper of Siebenmann ([3].

Throughout the paper M will denote a smooth, connected,
paracompact, Hausdorff manifold of dimension m . Such a
manifold admits a complete Riemannian metric and can be exhi-
bited in many ways as the countable union of compact sets,

each contained in the interior of the next.

1. The cut locus. Suppose M is given a complete Riemannian
metric. Then given any point P and unit vector ¢ at P ,
there is a semigeodesic  y(t),0st<e., with y(0)=P and y(0)=¢ .
(The parameter on a geodesjcwill always be taken to be the

arc length.) |

Definitionl.1. The cut point of P along Y is the point Y(r),
vwhere r 1is the least upper bound of numbers s such that

the segment g(t), 0st s s, is minimizing. If this set is
unbounded, then y is called a ray. The cut locus of P is
the set consisting of all cut points of P along all semi-

geodesics starting at P . The cut locus will be denoted by C

It is known that if s <r, then the segment from P to
v(s) is uniguely minimizing, and a ray is uniquely minimizding

for its entire length. Moreover, either y(r) is the



first conjugate point of P along Yy , or there exist at
least two minimizing geodesics from P to vy(r). In any
case, the cut point comes before or at the first conjugate

point.

Proposition 1.2. Given a manifild M and a point P of M,
there is a complete Riemannian metric on M such that P has

'empty cut locus if and only if M is diffeomorphic to r" .

Proof. If M is diffeomorphic to If', then the metric in-
duced from the Euclidean metric by a diffeomorphism onto r™
has the required properties. If M 1is not diffeomorphic to
R" . then for any complece Riemannian metric and any point P,
the exponential map at P is not a diffeomorphism. Hence,
either it is singular at some point, or it is not one-one.

In the first case, some geodesic has a conjugate point and
hence a cut point. In the second case, some point is reached

by at least two geodesics, each of which must contain a cut

point.

2. Rays and ends. First let us recall some facts about ends

which will be needed. Let {Kj};=1 be a collection of com-

pact subsets, each contained in the interior of the next,

whose union is M . Let vj be a connected component of

M-K c V.. Then

i+ b
{Vj} defines an end, and each Vj is a neighbourhood of

j ! and let .{Vj};81 be such that v

that end. The set E(M) of ends of M is topologized as
a totally disconnected compact Hausdorff space, and

ﬁ = MUE(M) is topologized as a Hausdorff compactification
of M.



Definition 2.1. A ray approaches an end if given any neigh-
bourhood of the end, all but a finite portion of the ray is
contained in the neighbourhood.

‘Propositiqn 2.2. Each ray approaches some end, and each.end

is approached by some ray.

Proof. Suppose a ray y starting at P is given, and consider

a sequence {Kj} of compact sets as above. Let

a(Kj) = sup { d(P,Q) | Q € xj } .
Then for t > a(Kj) » v(t) € Kj » and since the rest of the
ray beyond y(o(xj)) is connected, it is contained in a

single component Vj(y) of M—Kj . Since also Vj+1(v)c Vj(y),

the sequence {Vj(v)} ~definas an end which is approched by v .

The proof of the second statement is an adaptation of the
proof that any compléte, noncompact manifold admits airay
( Gromoll and Meyer [ 1 ]). Let {Vj} be a sequence defining

an end as above, let xjevj r let Yj be a minimal geodesic
segment from P to _xj » and let Ej be the initial vector

of vy . We may suppose {£.}approaches a limit £ , and

consider the semigeodesic 3 "from P with initial vector ¢.
This semigeodesic is a ray.isince the continuity of solutions
of the geodesic differential equation with respect to the
initial conditions implies that through any neighbourhood of
any point of y , there pass arbitrarily long minimal geodesic

segments.



Moreover, this ray approaches the given end, so the proof

is complete.

A

Let C = CUE(M) . Let D be the unit disc in the tangent
space at some point of M , let S be its boundary, and let
I-= [0,1] . The following theorem will be obtained as a

corollary of a more general result proved in § 4.

Theorem 2.3. Given a point Po cof M and a smooth complete
Riemannian métric go with cut locus Co with respect to Po ’

there 1is a continuous map

which is equal to the exponential map near the origin and
induces a homeomorphiém of D-S ‘onto M--Co . Given also
P1,q1,e(1, ) constructed as above, and a path y : I —> M

from Po to P, , let Pt=y(t) and

1
gt = (1-t)g°+ 1:g1 .

Then g, 1s a complete Riemannian metric with cut locus C,

and there is a continuous nap:

A A
¢ :Ix(D,S) ~—> (IxM,Vt({t} xCJ))

¢

which commutes with projection onto I , satisfies the above



conditions for each t , and such that ¢(0, ) and ¢(1,)

are the previously constructed maps.

Note that in the statement of the thereom, the product
Ix(D,S) is realized by using for t€I the unit disc in the

targent space at Pt with respect to the metric 9 -

§ 3. Change of metric. Given two complete Riemannian metrics
g, and gy on M, let 9y be as in the statement of

Theorem 2.3 :and let d(t,P,Q) be the distance from P to Q
with respect to Iy - The proof of the treorem requires some

properties of Iy ¢ which will now be obtained.

Lemma 3.1. 1 is a smocth complete Riemannian metric.

Proof. Everything except the completeness is well-known.
For any curve vy with parametrization y(S), the energy

with respect to 9, is defined by

E (y) = g (§,7)ds = (1-t) [g,(¥,7)as+t [g,(7,7)ds

so that .Et(y) = (1~t)Eo(y)+tE1(Y) . Let t be fixed

satisfying 0 <t < 1 . Then
a2(0,P,Q) = inf E (y) § —— inf E. (v)

24 Y°Y YtY

1=t

2 ‘ 1
a“(1,pr,Q) = inny1(Y) s £ innyt(Y) .

Hence, a sequence which is Cauchy for - is also Cauchy
for g, and g4 » and conveges to the same limit for all

three metrics. It follows that 9 is complete, as required.



Lemma 3.2. d is continuous on IxMxM .,

Proof. Suppose d is discontinuous at (t,P,Q), and let

vy be a minimal geodesic from P to Q with respect to g, -
Since the length of y varies continuously with t , we
know that for any given ¢ > 0 , and for (t1,P1,Q1) near
enough to (t,P,Q), d(t',p,0") < d(t,P,Q) + ¢ . Hence, there
is an € >0 and a seguencé {(ti,Pi,Qi)} converging to
(t,P,Q) so that {aisd(ti,Pi,Qi)} converges to some number

a <d(t,P,Q) - ¢ . If Yy is a minimal geodesic from P,

to Q1 for the metric gti , We may suppose that the initial
unit vectors 51 converge to a unit vector ¢, necessarily
based at P . Then the geodesic for Iy with initial vector ¢
and length a joins P to Q , a contradiction. Here and
later we need continiuty of solutions with respect to the

parameter t as well as the initial conditions.

§ 4. Modified exponential mappings. The idea in constructing
the maps required in Theorem 2.3 is tovreparametrize each
semigeodesic going out from a point so that either it reaches
its cut point at time 1, or if it is a ray, it approaches its
end as the time approaches 1. In order to do this in a conti-
nuous way, it is convenient to introduce a function

R(a,b,r) defined for

0<a<bse, ac % , 0srs1

with values in [0,=] and having the following properties;



i) R 'is continuous, and smooth on R™'([0,=)).

ii) R(a,b, ) is equal to the identity on [0,al, is .a
homeomorphism from [0,1] to [0,b], and is a diffeo-
morphism on {0,1] (respectively [0,1)) if b < =

(respectively b = =) |
Such functions clearly exist.

"Lemma 4.1. Given two functions R, and R with the above.

1

properties, then the function R_ defined by

t

Rt(a,b,r) = (1-t)R_(a,b,r) + tR1(a,b,r)

also has these properties.

Proof. This follows immediatly from the convexity of the

set of positive real numbers.

1f T(M) is the tangent bundle of M , then a map of
IxT(M) into IxM 1s obtained by using on each fiber of
{t}yT(M) the exponential map of the metric g, . If D(M)
and S(M) are the unit disc and sphere bundles respectively,
then IxD(M) and IxS(M) are constructed by using at (t,P)
the metric g, in the fiber over P. Let p : IxS(M)—> [0,]
be the function such that p(t,P,f) 1is the distance from P
to the cut point on the gt—semigeodesic with initial vector §.

If this semigeodesic is a ray, then p(t,P,f) = = .,

Lemma 4.2. p is continuous.
Proof. This is proved by Kobayashi for fixed t , and only
minor modifications are required. Let. mw:T(M) —» M and

suppose {(ti,Pi,Ei)} converges to (t,P,f) but



{p(ti.Pi,ﬁi) - ai} converges to some number a different from

p(tlplg)" If ‘a>D(tcPaE) . then

d(t,P,exp af) = lim d(t,,w(E,) exp (a;E,))

= lim a; = a
so that exp (tf) is minimizing out to a, a contradiction.
If a <p(t,P,E) , then ai and a are finite and strictly.

positive. Let F:IxT(M) —» IxMxM be defined by

F(t,X) = (t,n(X), exp(X))

Then. F is a diffeomorphism on some neighbourhood V of at.
We may assume that all ak Ek belong to V , so exp(akzk)
is not a conjugate point, and therefore there is a second
geodesic with explagn,) = exp(a, §,) and a ny

not in V . We may assume that Ny converges to some n ,

where an 4is not in V . However, exp(an) = exp(af) , so
we have 2 distinct geodesics to the same point which comes

before the cut point, a contradiction.

Let k(b) = min {7 2b}. Unless.r=1 and p(t,P,E)==
’

we define e(t,P,r§) to be the exponential at P with

respect to the metric 9 of the vector

‘Rt(k(p(taPIC))o p(t,P,E),xr) & .
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In the remaining case, ¢(t,P,£) is defined to be the end
approached by the ray with initial vector ¢ ..

Proposition 4.3. €:IxD(M) —e>IxQ is continuous, and for
each fixed (t,P) , it takes D onto {t}xﬁ, S onto

{t}xet + 18 equal to the exponential map on some neighbour-
hood of the origin, and induces a homeomorphism of D-S onto

{t}x (M-Ct) .

Proof.- The continuity follows from the lemmas, except in
the case that r=1 and »p(t,P,E)== . However, continuity of
solutions of the geodesic equation with respect.to initial
conditions and the parameter t implies that given any
neighbourhood of the end ¢(t,P,t) , any geodesic close
enough to the g,-ray with initial vector (P,g) is either
a ray or has its cut point in the given neighbourhood. Thus,

€ 1is continuous. The rest of the properties are clear.

Proof of theorem 2.3. Map I into IxM by taking

t to (t,y(t)). The pull-back of the bundle IxD(M) is a
trivial disc bundle over I , and the function ¢ discussed
in Proposition 4.3 gives rise to the mapping ¢ required

in Theorem 2.3.

A
§ 5. Topological consequences. It follows that C 1is
compact, arcwise connected, Hausdorff, and his a countable

basis for its topology. Since it is arcwise connected, its



fundamental group is defined, but it may not have a universal
cover because the neighbourhoods of an end can be very

A
complicated. Since C is compact, C is closed in M.

A A
Just as in the compact case, uk(H,C)-o ‘for Osksm-1 ,
A A A A
and nm(M.C) maps onto H (M,C) . In addition, the

homomorphisms.

A A

are defined for all k2m and are independent of the choice
of the metric, of the point with respect to which the cut
locus is taken, and of the function R of § 4. These can
also be viewed as homomorphisms

- A A
nk-1 (sm 1) — “k (MIC) .

In particular,one would like to study these maps in the

case of contractible open subsets of n3

and of smooth
manifolds homeomorphic to R‘ » since in these cases the
space itself has no homotopy - theoretic invariants.

Since a contractible space has one end, in these cases ﬁ

is just the one-point compactification.
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