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DYNAMIC ASYMPTOTIC DIMENSION

FOR ACTIONS OF VIRTUALLY CYCLIC GROUPS

MASSOUD AMINI, DAMIAN SAWICKI, AND ALI SHAKIBAZADEH

Abstract. We show that the dynamic asymptotic dimension of a minimal
free action of an infinite virtually cyclic group on a compact Hausdorff space

is always one. This extends a well-known result of Guentner, Willett, and Yu

for minimal free actions of infinite cyclic groups.

1. Introduction

Dynamic asymptotic dimension was introduced by Erik Guentner, Rufus Willett,
and Guoliang Yu in [11]. This is a notion of dimension for actions of discrete groups
on locally compact spaces, and it was also defined in the (more general) setting of
locally compact étale groupoids. It is related to transfer reducibility of Bartels,
Lück, and Reich [3] and asymptotic dimension of Gromov [9], and it can be used
to bound the corresponding nuclear dimension [4] of Winter and Zacharias [17] or
to prove instances of the Baum–Connes conjecture [10].

The main non-trivial example of [11] shows that for minimal Z-actions on infinite
compact spaces the dynamic asymptotic dimension of the action is always one [11,
Theorem 3.1]. The proof follows closely the ideas of Ian Putnam in building AF -
algebras associated to minimal Z-actions on the Cantor set [14]. Note that minimal
Z-actions on infinite spaces are automatically free.

The main purpose of this article is to prove the same rigidity result for minimal
free actions of infinite virtually cyclic groups on compact spaces. In particular, we
show that the dynamic asymptotic dimension of minimal free actions of the infinite
dihedral group on compact spaces is always one.

The class of virtually cyclic groups plays a central role in geometric group theory.
It appears in two important conjectures: The Juan-Pineda–Leary conjecture states
that a discrete group Γ admitting a Γ-finite CW-model for its classifying space for
virtually cyclic subgroups must itself be virtually cyclic [13]. The Farrell–Jones
conjecture predicts that the map from the above classifying space of Γ to a point
induces an isomorphism in equivariant K-theory and L-theory [8]. If the conjecture
holds, one could restrict computations of algebraic K-theory and L-theory of group
rings of Γ — which could happen to be very complicated for arbitrary finitely
generated groups — to virtually cyclic subgroups of Γ. Moreover, if proved for
both K- and L-theory, the Farrell–Jones conjecture can be used to deduce the Borel
conjecture on topological rigidity of aspherical manifolds [2]. Currently, virtually
cyclic groups have attracted additional attention due to recent developments on
their classifying spaces [5, 6].

The Juan-Pineda–Leary conjecture has been confirmed for (acylindrically) hy-
perbolic groups, elementary amenable groups, 3-manifold groups, one-relator groups,
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CAT(0) cube groups, Artin groups, and linear groups. The Farrell–Jones conjec-
ture is known for (relatively) hyperbolic groups, CAT(0) groups, 3-manifold groups,
lattices in virtually connected Lie groups, mapping class groups, and free-by-cyclic
groups. The latter results involve establishing the finiteness of certain relative ver-
sions of equivariant asymptotic dimension (also known as the finite F-amenability),
a notion closely related to the dynamic asymptotic dimension.

Calculating the value of dynamic asymptotic dimension has so far proved to
be rather difficult (cf. a question of Willett in [15, Question 8.9]). A significant
progress was made in [16], where an exponential upper bound was obtained for free
actions of nilpotent groups (on compact metric spaces of finite covering dimension),
which was later improved to a linear estimate in [15]. These bounds depend on the
dimension of the space acted upon. Already in the context of establishing the
finiteness of dynamic asymptotic dimension rather than calculating its exact value,
the relation between an action and its restriction to a finite index subgroup is not
clear, and a different argument was used in order to extend the finiteness result of
[16] to the class of virtually nilpotent groups [1]. For actions on zero-dimensional
spaces, the dynamic asymptotic dimension is known to be equal to certain other
notions of dimension [12], including the amenability dimension.

The finiteness of dynamic asymptotic dimension conjecturally implies finite dy-
namical complexity [10], but at present this is only known if the dynamic asymptotic
dimension equals zero or one. Therefore, it follows from our main result that free
minimal actions of infinite virtually cyclic groups have finite dynamical complexity.

2. Definitions and Results

In the sequel, Γ will denote a discrete group acting on a compact Hausdorff space
X by homeomorphisms. We shortly denote such an action by Γ y X. For a finite
subset E of Γ we use the notation E b Γ, and we denote the identity element of Γ
by e.

Guentner, Willett, and Yu define Γ y X to have dynamic asymptotic dimension
at most d if for any E b Γ the space can be divided into d + 1 pieces in such a
way that on each piece the “action” has “finite complexity” with respect to E [11].
More precisely, we have the following definition.

Definition 2.1. For E ⊆ Γ and an open subset U ⊆ X, the equivalence relation
∼U,E on U generated by E is defined as follows: for x, y ∈ U , x ∼U,E y if there
is n ∈ N and a finite sequence x = x0, x1, . . . , xn = y in U such that for each
1 ≤ j ≤ n, there exists g ∈ E ∪ E−1 such that gxj−1 = xj .

The dynamic asymptotic dimension of a free action Γ y X (denoted dad(Γ y
X)) is the smallest integer d ∈ N with the following property: for each finite subset
E b Γ, there is an open cover {U0, . . . , Ud} of X such that for each 0 ≤ i ≤ d the
equivalence relation ∼Ui,E on Ui has uniformly finite equivalence classes. If no such
d exists, we say that the dimension is infinite.

When U is the whole of X, the relation ∼U,E is the equivalence relation of
being in the same 〈E〉-orbit, where 〈E〉 denotes the subgroup generated by E.
If dad(Γ y X) = 0, then there is no choice but to take U0 = X, and hence
dad(Γ y X) = 0 implies that 〈E〉-orbits are finite for every E b Γ, i.e. Γ is locally
finite. However, if Ui is a proper subset of X, then equivalence classes of ∼Ui,E may
be smaller than the intersection of Ui with 〈E〉-orbits, and Definition 2.1 requires
a uniform bound on their cardinality (depending only on E).

Recall that an action Γ y X is free if only the identity element e fixes some
point in X. When this is not the case, in the above definition the uniform finiteness
of equivalence classes has to be replaced by the finiteness of the set of all g ∈ Γ for
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which there exist 0 ≤ i ≤ d, x ∈ Ui, and a finite sequence g1, . . . , gn ∈ E such that
g = gn · · · g2g1, and (gj · · · g1)x ∈ Ui for all 1 ≤ j ≤ n (in this formulation, it is
perhaps most natural to consider symmetric E b Γ).

An action Γ y X is minimal if X has no proper closed (equivalently, open)
Γ-invariant subsets. Minimality is the same as requiring that all Γ-orbits are dense
in X. By the Kuratowski–Zorn lemma, every compact Γ-space contains a closed
Γ-invariant subset on which Γ acts minimally.

A discrete group Γ is called virtually cyclic (or cyclic by finite) if it has a cyclic
subgroup of finite index. When Γ is infinite, this means that there is a finite index
copy of Z inside Γ. It follows that infinite virtually cyclic groups are residually
finite and finitely presented.

An infinite virtually cyclic group Γ is known to have a finite normal subgroup
N such that Γ/N is either infinite cyclic or infinite dihedral (see e.g. Theorem 6.12
in Chapter IV of [7]); depending on this one sometimes classifies Γ into type I or
type II, which is reflected in the proof of our main result. Moreover, in an infinite
virtually cyclic group Γ, every infinite cyclic subgroup of Γ has finite index. Indeed,
if H,K are two infinite cyclic subgroups of Γ and H is of finite index, then H ∩K
must be an infinite subgroup of H, so [H : H ∩K] <∞. Since H is of finite index,
we get [Γ : H ∩K] <∞, and hence [Γ : K] <∞.

The main result of this paper extends Theorem 3.1 of [11] from the case of infinite
cyclic to that of infinite virtually cyclic groups.

Theorem 2.2. Let Γ y X be a minimal and free action of an infinite virtually
cyclic group on a compact Hausdorff space. Then, dad(Γ y X) = 1.

This type of rigidity result has not been known for any concrete example of
virtually cyclic groups except for the group of integers. In particular, Theorem 2.2
applies to free minimal actions of the infinite dihedral group.

3. Proofs

The following lemma ensures the existence of open subsets that have disjoint
translates by a given finite subset E b Γ.

Lemma 3.1. Let Γ y X be a free action by homeomorphisms of a group Γ on a
non-empty Hausdorff space X. Then, for every E b Γ\{e} there exists a non-empty
open subset U ⊆ X such that gU ∩ U = ∅ for all g ∈ E.

Proof. Let x ∈ X. By freeness, we have x 6= gx for every g ∈ E. By Hausdoffness,
for every g ∈ E there exist disjoint open neighbourhoods Vg,Wg of the points x, gx.
We define U =

⋂
g∈E Vg ∩

⋂
g∈E g

−1Wg. Each set g−1Wg is open because Γ acts
by homeomorphisms, so U is open as a finite intersection of open sets, and it is also
non-empty since it contains x. Now, for any h ∈ E we have:

U ∩ hU =
(⋂
g∈E

Vg ∩
⋂
g∈E

g−1Wg

)
∩ h
(⋂
g∈E

Vg ∩
⋂
g∈E

g−1Wg

)
=
(⋂
g∈E

Vg ∩
⋂
g∈E

g−1Wg

)
∩
(⋂
g∈E

hVg ∩
⋂
g∈E

hg−1Wg

)
⊆ Vh ∩ hh−1Wh = ∅.

because Vh,Wh were chosen to be disjoint. �

Proof of Theorem 2.2. The dynamic asymptotic dimension equals 0 only for actions
of locally finite groups, and Γ contains an infinite-order element, so dad(Γ y X) ≥
1. Hence, it suffices to prove the opposite inequality.
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It is well known that an infinite virtually cyclic group Γ has a maximal finite
normal subgroup H C Γ, and the quotient Γ/H is either Z or D∞ = 〈s, t : s2 =
t2 = e〉. We will treat both cases simultaneously. Let p denote the quotient map
Γ→ Γ/H.

Our proof of the upper bound follows the strategy from [11]. Let a finite E b Γ
be given. By enlarging it if necessary, one can assume that E = p−1(BN ) for some
N ∈ N>0, where BN denotes the ball of radius N around the identity element in
the group Γ/H with respect to the standard metric on Z or the word metric on
D∞ associated with the generating set {s, t}.

By Lemma 3.1, there exists a non-empty open subset U ⊆ X such that U∩gU = ∅
for g ∈ p−1(B5N ) \ {e}. By the regularity of compact Hausdorff spaces, there is a
smaller non-empty open set V such that V ⊆ U . Define

U0 =
⋃

g∈p−1(BN )

gU and U1 = X \
⋃

g∈p−1(BN )

gV .

Clearly, {U0, U1} forms an open cover of X.
It now suffices to prove that for i ∈ {0, 1} the following set is finite

Fi =

{
g ∈ Γ

∣∣∣∣ there exist g1, . . . , gn ∈ E and x ∈ Ui such that

g = gn · · · g2g1 and gj · · · g1x ∈ Ui for all j ∈ {1, . . . , n}

}
,

or equivalently that the images of Fi inside Γ/H are finite.
We begin with i = 0, claiming that p(F0) ⊆ B3N . Suppose for contradiction

that there exist g1, . . . , gn ∈ E and x ∈ U0 such that p(gn · · · g1) /∈ B3N , and
xj ..= gj · · · g1x ∈ U0 for all j ∈ {0, . . . , n} (for j = 0 one just gets x0 ..= x). There
exists k ∈ {3, . . . , n} such that p(gk · · · g1) ∈ B3N \ B2N . By the definition of U0,
the point x can be expressed as gxU for some g ∈ p−1(BN ) and xU ∈ U . Similarly,
xk = g′x′U for some g′ ∈ p−1(BN ) and x′U ∈ U . But then

x′U = (g′)−1xk = (g′)−1gk · · · g1x = (g′)−1gk · · · g1gxU ,
which is a contradiction because h ..= (g′)−1gk · · · g1g belongs to p−1(B5N \ B0) ⊆
p−1(B5N ) \ {e}, and we assumed that U ∩ hU = ∅ for such h.

We are done with F0, so let us now consider F1.

Definition of Case I. If Γ/H ' Z, we will denote Z ..= Γ, and divide it into the
positive and negative “halves”:

(1) Z+ ..= p−1(Z≥0) and Z− ..= p−1(Z<0).

Definition of Case II. If Γ/H ' D∞, then there is still the cyclic subgroup 〈st〉 <
D∞ of index 2, and we can define Z ..= p−1(〈st〉) as the corresponding index 2
subgroup of Γ and Z± by the same formula (1) (in this case, fixing an explicit
isomorphism Z ' 〈st〉 will be needed, and we pick the one sending 1 to st). Let
“Case IIa” denote the situation when the Z-action on X is minimal, and “Case
IIb” the remaining case.

Cases I and IIa. Note that not only in Case IIa but also in Case I the Z-action
on X is minimal. We will now show that it follows that the set of limit points of
Z+x (and alike for Z−x) is the whole of X for every x ∈ X. Note that for every
g ∈ Z, the symmetric difference gZ+ 4 Z+ is finite (by the fact that the same
clearly holds for n+Z≥0 4 Z≥0 with any n ∈ Z), and hence the set of limit points
of Z+x and gZ+x is the same. Thus, the set of limit points of Z+x is a non-empty
(by compactness) closed Z-invariant subset, so it must equal X.

By its density, the “half-orbit” Z+x of every x must intersect V . In other words,
the “inverse half-orbit” (Z+)−1V of V covers X. By compactness, there exists
M ∈ N such that already (p−1(BM ) ∩ Z+)−1V covers X. That is, for every x ∈ X



DAD FOR ACTIONS OF VIRTUALLY CYCLIC GROUPS 5

one can pick g+x ∈ p−1(BM ) ∩ Z+ such that g+x x ∈ V . After increasing M if
necessary, we have analogous elements g−x ∈ p−1(BM ) ∩ Z−.

We claim that p(F1) ⊆ BM+N . Indeed, suppose for contradiction that there exist
g1, . . . , gn ∈ E and x ∈ U1 such that gn · · · g1 /∈ p−1(BM+N ), and xj ..= gj · · · g1x ∈
U1 for all j ∈ {0, . . . , n}.

In Case I, if p(gn · · · g1) > 0, we put gx ..= g+x , and we put gx ..= g−x if
p(gn · · · g1) < 0. This way, one has respectively either

p(g−1x ) ≤ 0 and p(gn · · · g1g−1x ) > N

or

p(g−1x ) > 0 and p(gn · · · g1g−1x ) < −N.

In both situations, there exists k ∈ {0, . . . , n− 1} such that p(gk · · · g1g−1x ) ∈ BN .
However, this yields a contradiction: on the one hand, we assumed that xk ∈ U1,
and on the other hand xk = (gk · · · g1g−1x )(gxx) ∈ p−1(BN )V ⊆ X \ U1.

In Case IIa, if the minimal word representing p(gn · · · g1) ends with t, then we
put gx ..= g+x , and we put gx ..= g−x if it ends with s. (Recall that p(g+x ) ∈ Z≥0, so
p(g+x ) = (st)l for some l ≥ 0, and p(g−x ) ∈ Z<0, so p(g−x ) = (st)−l = (ts)l for some
l > 0.) The respective consequences are as follows:

• the minimal word representing p(gn · · · g1g−1x ) ends with t1, and its length
is more than N2, and the minimal word representing p(g−1x ) ends with s
(or it is trivial); or

• the minimal word representing p(gn · · · g1g−1x ) ends with s, and its length
is more than N , and the minimal word representing p(g−1x ) ends with t.

In either case, there exists k ∈ {0, . . . , n− 1} such that p(gk · · · g1g−1x ) ∈ BN . This
again leads to a contradiction.

Case IIb. Let us now treat the case when the action Z y X is not minimal, i.e.
there exists x ∈ X such that A ..= Zx ( X. By minimality, for any g ∈ Γ \ Z one
has

X = Γx = (Z t gZ)x = Zx ∪ gZx,
and in fact the last union is also disjoint: the intersection Zx∩gZx must be empty
because it is a proper Γ-invariant closed subset of X. That is, X splits as a disjoint
union of Z-invariant clopen subsets A,X \A, and elements of Γ \Z switch the two
subsets.

We claim that the Z-action on A is minimal. Indeed, if there were y ∈ A such
that Zy ( A, then Γy would be a non-empty closed Γ-invariant proper subset of
X:

X = A t gA ) Zy t gZy = Γy

(here, again g is any element of Γ \ Z). Hence, the Z-action on A is minimal, and
we conclude the same for its complement gA because the minimality of Z y A is
equivalent to the minimality of gZg−1 y gA and gZg−1 = Z. That is, the roles of
A and gA are symmetric, and the choice of the point x ∈ X did not matter for the
obtained decomposition.

By switching the roles of A and its complement, one can assume that the inter-
section V ∩ A is non-empty, bringing us back to a situation very similar to that
previously considered in Cases I and IIa: the action Z y A is minimal, and V ∩A

1Because the minimal word representing p(gn · · · g1) has the form tstst · · · stst = t(st)m or

stst · · · stst = (st)m, and the minimal word representing p(gx) has the form stst · · · stst = (st)l

for some 0 ≤ l < m, we conclude that p(gn · · · g1g−1
x ) = p(gn · · · g1)(p(gx))−1 has the form

t(st)m−l or (st)m−l.
2Because the length of p(gn · · · g1) is more than M +N , and the length of p(g−1

x ) is at most M .
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is a non-empty open subset of A. Hence, there exists M ∈ N such that for ev-
ery x ∈ A one can pick g+x ∈ p−1(BM ) ∩ Z+ and g−x ∈ p−1(BM ) ∩ Z− such that
g+x x, g

−
x x ∈ V ∩A.

Again, we claim that p(F1) ⊆ BM+N . Suppose for contradiction that there exist
g1, . . . , gn ∈ E and x ∈ U1 such that gn · · · g1 /∈ p−1(BM+N ), and xj ..= gj · · · g1x ∈
U1 for all j ∈ {0, . . . , n}.
Subcase IIb.1. If x /∈ A, we pick σ ∈ p−1({s, t}) and define y ..= σ−1x, h1 ..= g1σ,
and hj ..= gj for j ∈ {2, . . . , n}: this guarantees that hj · · ·h1y = xj ∈ U1 for
j > 0, but it may happen that y /∈ U1. By choosing σ such that p(σ) equals
either s or t, one can ensure that p(h1) = p(g1σ) is shorter than p(g1) (unless of
course p(g1) = e), and in particular we have p(hj) ∈ BN for j ∈ {1, . . . , n}. It may
however happen that the length of p(hn · · ·h1) is shorter than that of p(gn · · · g1),
but we know that p(hn · · ·h1) /∈ BM+N−1.

Subcase IIb.2. If x ∈ A, then we just put y ..= x and hj ..= gj for j ∈ {1, . . . , n}, in
which case one has hj · · ·h1y = xj ∈ U1 for all j ≥ 0.

Having defined y and (hj) in both subcases of Case IIb, we finish as in Case IIa.
If the minimal word representing p(hn · · ·h1) ends with t, then we put gy ..= g+y ,

and otherwise we put gy ..= g−y . Then, respectively either

• the minimal word representing p(hn · · ·h1g−1y ) ends with t, and its length

is more than N − 1, and the minimal word representing p(g−1y ) ends with s
(or it is trivial); or
• the minimal word representing p(hn · · ·h1g−1y ) ends with s, and its length

is more than N −1, and the minimal word representing p(g−1y ) ends with t.

In both cases, there exists k ∈ {1, . . . , n} such that p(hk · · ·h1g−1y ) ∈ BN (it is
important that we can find such k 6= 0 because one knows that hk · · ·h1y ∈ U1 only
for k 6= 0). This yields a contradiction as before: we have both hk · · ·h1y ∈ U1 and
hk · · ·h1y = (hk · · ·h1g−1y )(gyy) ∈ p−1(BN )(V ∩ A), while U1 and p−1(BN )V are
disjoint. �
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