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INTRODUCTION

A real Enriques surface is a complex Eunriques surface equipped with an
auti-holomorphic involution {called complex conjugation). With the only pos-
sible exception when the fixed point set of this involution, the real part of
the surface, is empty, the involution can be lifted to the covering K 3-surface.
Thus the study of real Enriques surfaces with non-empty real part is equiva-
lent to the study of real A'3-surfaces equipped with a holomorphic fixed point
free involution which commutes with the real structure.

A systematic study of the topological properties of real Enriques surfaces
was started by V. Nikulin. It is his preprint [N2] that stimulated our investi-
gation. In our preceding paper [KhD] we have completed the classification of
real Enriques surfaces by the topological types of their real part.

This classification has a natural refinement. (also first studied by V. Niku-
lin): the real part £g of a real Enriques surface admits a natural decomposi-
tion in two halves Eg = E&” U E'E"), each halfl being a union of components
of Eg. This splitting is due to the fact that the real structure lifts to the
covering K3 surface in two different ways: each half is covered by the fixed
point set. of one of the two liftings (see 1.3}. This gives rise to the following
problem: to classify the triads (Eg; E§", E§) up to homeomorphism.

For a large number of topological types an arbitrary splitting is realizable.
For some other types the splittings are determined by the only restriction:
the orientation double covering of a half must either cousist of two topological
tori or have at most one nonspherical component. The surfaces constructed
in [KhD] show the existence of such splittings in many cases. On the oth-
er hand, as it was discovered by Nikulin, there are topological types whose
distributions mnst. satisfy to certain restrictions.

It is the distribntion of the components hetween the two halves that is the
principal subject of the present paper. Our results and the methods which we
use are differeut from those by V. Nikulin: using a more topological approach
we obtain some prohibitions which apply as well to other classes of surfaces
with non simply counected complexification. More precisely, in this paper we
treat what we call generalized Enriques surfaces: quotients of a nounsingular
compact complex surface .\ with M {X;Z/2) = 0 and wy(.X')=0 by a fixed
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point free holomorphic involution (see 1.2 and Appendix D). The prohibitions
obtained (see 2.1, 2.2, and Appendix D) are a combination of the inequality-
type and congruence-type prohibitions. To an extent they may be regarded as
some kind of refinement of the Smith-Thom inequality and extension of the
Arnold-Rokhlin congruences. (It is worth mentioning that the prohibitions
obtained for the generalized Enriques surfaces are an example, probably the
first one, which shows that the topology of surfaces with non simply connected
complexification contains some elements which have no precise analogues in
the simply connected case.)

We apply these results to the classical Euriques surfaces and complete the
classification of the distributions of their components (see 2.3.2).

Another by-product is some prohibitions on the topology of a generalized
Enriques surface, see 2.1, which contain some results on the classical case
(see [KhD, 3.7-3.10]) as a direct. consequence, and provide them with a new
proof.

Note that there are ‘quite classical’ examples of generalized Enriques sur-
faces: in Horikawa’s construction (see Section 8.1) bi-degree (4,4) can be re-
placed with {4k, 4k), k € Z4. Thus, our results also provide some prohibitions
on the topology of symnetric real curves on quadrics.

The key role in our present. study is played by so called Kalinin’s spectral
sequence and Viro homomorphisms, used in combination with more tradi-
tional tools of topology of real algebraic varieties. The spectral sequence in
question is derived from the Borel-Serre spectral sequence: it is some sort
of its stabilization with only one grading. It converges to the homology of
the fixed point set, and the corresponding filtfation and identification with
the limit term are given by the Viro homomorphisms, which have an explicit
geometrical definition (see Section 5 for the details).

The paper consists of eight sections and four appendices. [n Section | we
introduce the main objects, such as a generalized N 3-surface (which, from
our point of view, is just a Spin-surface X with H{{(.\';Z/2) = 0) and a gener-
alized Enriques surface, give some definitions and fix the principal notation.
In Section 2 we formulate the tnain results and apply them to the classical
Enriques surfaces. In Section 3 we expose some auxiliary results on the arith-
metic of involutions. Section 4 is devoted to the study of the basic topological
properties of generalized Euriques surfaces. In Section 5 we introduce Kalin-
in’s spectral sequences and Viro homomorphisms and examine their general
properties which we need in subsequent. proofs; these results are then apphed
to generalized Enriques surfaces in Section 6. Finally, in Section 7 we prove
the main results annonuced in Section 2, and in Section 8 we construct some
surfaces to extend the list of distributions found in [KhD] and thus complete
the classification for the case of classical Enriques surfaces.

In Appendices A-C we discuss some properties of Kalinin’s spectral se-

quence, which complete and develop the content, of Section h. Certainly, these
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properties must be well known to the specialists on transformation groups,
but we could not find them in the literature,

Appendix A is inteuded for those who prefer the Simith exact sequence:
we show how Kalinin’s spectral sequence and Viro homomorphisims can be
extracted from the Smith sequence. In Appendix B we study the multiplica-
tive structure of Kalinin’s spectral sequence and, in the case of an involution
on a closed manifold, give a formula relating the intersection pairings on the
manifold and on the fixed point set. In Appendix C we study the relation
between the Steenrod squares acting in Kalinin’s spectral sequeice and those
acting in the cohomology of the fixed point set.

In Appendix D we introduce Spiu generalized Enriques surfaces and extend
to them the main results of Section 2.

Acknowledgements. We would like to thank the Maz-Planck-Institul fir
Mathematik and Universitd dr Trento, where the final parts of the paper were
completed. Our special gratitude is to internet: without this great innova-
tion the paper would probably never appear.

1. PRELIMINARY DEFINITIONS AND NOTATION

1.1. Notation. We agree that, unless specified explicitly, the coeflicients of
all the homology and coliomology groups are Z/2. When this does not lead
to a confusion, both the cohomology characteristic classes of a closed stnooth
manifold and their dual homology classes are denoted by w;. Throughout, the
paper we use the following notation:

o b, and f, stand for the Betti nminbers with the integral and Z/2-co-
efficients respectively: b.(-) =tk H.(-;Z) and A.(- ) =dim A, (- };

B. is the total Betti number: fJ.(-) =37 5, 8-(+ )i

y(X') is the Euler characteristic of a topological space .\;

a(M) is the signature of an orientable manifoll! Af;

Tors» (G is the 2-primary comnponent of au abelian group G.

o 0 0 ©

1.2. Generalized Enriques surfaces. A nonsingular compact complex
surface X will be called a gemeralized KNd-surfoce if H{(X;Z/2) = 0 and
wy{X) = 0. A generalized Enriques surfuce is a complex surface £ which
(1) has w+(E) # 0, and (2) can be obtained as the orbit space X/7 of a gen-
eralized K 3-surface by a fixed point free holomorphic involution 7: X — X;
the latter is called the Ewriques involution.

As it follows, for example, from the Ghysin exact sequence, H(E,Z/2) =
Z/2 (cf. 4.2.1). Thus, X is the only double covering space of E, and 7 is its
deck translation. lence, they can both be uniquely recovered from £.

Remark. Orbit spaces of generalized K 3-surfaces with w(E) = 0 are consid-
ered in Appendix D.
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1.3. Decomposition of the real part. As usually, by a reel structure on a
nonsingular complex surface we mean an anti-holomorphic involution. When
not empty, the fixed point set. of such an involution is a real 2-manifold.

Let E be a generalized Euriques surface, and let conj: E — E be the real
structure on E. Denote by Eg the real part, Fg = Fixcon).

1.3.1. Lemma. IfEx # @, then there are two and only two liftings t™) 1(2);
X — X ofconj to X'. Both the liftings are involutions. They are anti-holomor-
phic, commute with each aother, and their composition is r. '

Both the real parts X]g") = Fixt(i), i = 1,2, and their images E&‘), E&‘)
in E are disjoint, and E&” U Eg") = Eg.

The proofis obvious as soon as the points of .\ are represented by homotopy
classes of paths in £ starting at a point of Eg: two such classes define the
same point in X if and ouly if they differ by a loop homologous to zero in
H(E;2/2). O

Due to the above lemmma, Eg canouteally splits into two disjoint parts,
which we will refer to as the haelves of EFg. Note that both E&” and E&E)
consist of whole components of Eg, and that X§ and X§* are unramified
double coverings of E{l” and E§?) respectively. In most cases tliese coverings
are determined by Eg intrinsically:

1.3.2. Lemana. Xy is orientable. The restriction of the projection X — E
to the real parts Xg = ,\'él) U XL — Er is the orientation double covering
unless o{X') = 0 (mod 32), one of the halves is empty, and the nonempty half
is orientable. -

Proof. The orientability of Xg is well known (see [E], [S], or [K]). For the
rest, one can repeat, almost literally, the proof of Theorem A.2 from [KhD].
The assumption a(X) = 16 (mod 32) in [KLD] is used to prove the following
two assertions: [ is not a Spin-manifold, and if one of the halves (say, er))
is empty, then the quotient .X/1(*) is not a Spiu-manifold either. The first
assertion is a part of our definition of generalized Enriques surfaces now. As
to the second one, we have to replace it by the following: if E§*) = @, then
T either preserves or reverses tlie canonical orientation of all the components
of X simultaneously. For proof just note that the Spin-structure on X defines
a canonical pair of opposite orientations on X'g, aud it is this structure that
is preserved by Spin-diffeomorphisms of X', O

Since £ is a compact surface, each component C of £g is a closed manifold.
By the first part of 1.3.2, C' may be of one of the following three types:

Sy = a trivially covered orientable surface of genus y 2 0;

Vy = a nonorientable surface of genux ¢ > 0, V, = #,Bp?, covered by an
orientable component Sa,_s C Ng;

T, - a nontrivially covered orientable surface of genus ¢ > 0.
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When denoting the topological types we use any of S = 5y = V; for the 2-
sphere S2. To describe the decomnposition of Eg into the two halves, we write

Eg = {half E{V} U {half Eg}.

Remark. The empty set has nothing to be distributed, and in what follows
we never consider the case Fy = @.

Remark. According to Lemma 1.3.2, the type T, is a very special one: Eg
may have a component of type T, only if (X'} = 0 (inod 32) (or, equivalently,
a(E) =0 (mod 16)}, and in this case one of the halves of Eg must be empty
and the other one must be orientable. In particular, this type never occurs in
the case of the classical Enriques surfaces.

Remark. Lemma 1.3.2 gives rise to the following problem: Let X be a closed
complex surface with H(.\') = 0 and w2(.Y) = 0, and let 7 and con) be
two commuting fixed point free involutions on X, holomorphic and anti-
holomorphic respectively. If X/7 is not Spin, can .Y/ conj be Spin?

1.4. Types of the real part. Let Y be a nonsingular compact complex
surface with a real structure. Then, since Yz is a closed (real 2-dimensional)
manifold, it has a well defined Z/2-liomology Mundamental class [Yr]. We say
that Y is of type Lpa if Yr is homologous to zero in Hy(Y') and of type I
if Yg is homologons to wa(Y). The surface is said to be of type I if it is of
type Iaps or leor; otherwise it is said to be of type II.

In the case of a generalized Enriques surface £ and its double covering X
the notion of type obviously extends to the halves E§) and X§). For the
covering and its hialves the types Io. aud I, coincide.

1.5, (M — d)-swrfaces. According to the Smith-Thom inequality, for any
complex surface Y with a real structure one has 4, (¥z) € A.(Y), and the
difference A.(Y) — Au(Yr) is aven. By definition, Y is called an (M — d)-
surface if the above diflerence is 2d.

2. MAIN RESULTS

From now ou we fix a generalized teal Euriques surface £ with Eg # @
and follow the notation intraduced in Section 1: conj: E — E is the real
structiire on £, X is the double covering of £ with the Enriques involution
i X — X, and 9, ¢(2) are the two real structures on X determined by conj
(see Lemma 1.3.1).

2.1. Prolibitions on the topological type.

2.1.1. Theorem. Suppose that N§ is of type | and hoth the halves are
nonempty. Tlen

(1) Ew has no nonorientable components of odd genus (ie., Vagi1);
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(2) at most one of the two halves E§), E{®) may have a nonorientable
component.

2.1.2. Theorem. Suppose that Eg is orientable. Then E is an (M - d)-
surface with d 2 2, and

(1) ifd =2, then x(Eg) = o(EF) (mod 16) and En is of type I;

(2) ifd =3, then y(Eg) = o(E) £ 2 (mod 16);

(3) ifd =4 and x(Er) = o(E) + 8 (mod 16), then Eg is of type .
If, in addition, all the components of Eg are spheres, then d 2 3.

Remark. The last assertion of Theorem 2.1.2 follows, in fact, from Comessat.ti-
Severi inequality: x(Eg) < hVY(E) (see [Co]). If E is a generalized Enriques
surface and Ex = &S, this inequality transforms into d > 34+h>%(£). Thus, an
(M = d)-surface with only spherical components and o < 2 cannot exist, and
an {M — 3)-surface with only spherical components may exist only if Hy(E; Z)
is a hyperbolic lattice. Note that this is the case for classical Enriques surfaces.

2.2. Prolitbitions on the distribution of components.

2.2.1. Theorem. Suppose that Eg consists of a single half and does not have
nonorientable components of add genus (ie., Vagy,). Then E is an (M — d)-
surface with d 2 2, ad

(1) ifd =2, then y(Eg) = o(£) (mod 16) and Eg is of type I;

(2) ifd =3, then x(Er) = o(F) £ 2 (mod 16);

(3) ifd =4 and y(ER) = o(E) + 8 (mod 16), then Eg is of type I.

2.2.2. Theovem. Let E he an (M — 3)-surface with Eq = kS. Then Eg =
{4pSt U {(44 + 1)S}, both the halves being nonempty unless k =1 (mod 8).

2.2.3. Theorem. Let Eg = Vo, ULS, y > 0. Suppose that E is an (M — d)-
surface and y(Eg) = a(£) + 26 (inad 16). Then for all the values of (d, §)
listed in Table | one has Eg = {Va, U k1S} U {28}, where #(3) (inod 4)
may take only the values given in the table and &'*} # O with the possible
exception of the case d = 2, 8 = (), Eg ts of tvpe 1. Besides, there are the
following additional prolihitions:

(1) ifd =0, then EL" is of type Ly and EE? is of tyvpe Io.;

(2) ifd =0, then V) # 0 unless k = 0 (inod 8);

(3) ifd =1 and k'™ = 0, then either k = & (mod 8), or & = 0 (mod 4)

and EL2) is of type I

Remark. Note that in the case d = 3 the last theorem ouly states that, if

Y(ER) = a(E£)£6 (mod 16), then both the lialves are not empty. This follows
also from Theorem 2.2.1.

2.3. Classical Enriques surfaces. The topological types realizable by the
real part of a classical Enriques surface were emunerated in {KhD]. In that
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TABLE 1

d 6 12 (mod 4)

0 0 0
1 1 0,1
-1 0,3

{ U 2 (if Eg ia of type I}
0, 1,3 (if Eg is of type 1I)
2 0, l,

0,2,:

= L2,
4 0,~
3] 430,123

paper we treated separately three types, 65, S U055, and 3V,, and oune series,
Sy U Vp U..., which were not prohibited by the standard inequalities and
congruences known in topology of real algebraic varieties. The prohibition
of these types is now an inmediate consequence of the general results of the
previous section: the first two are prohibited by Theorem 2.1.2, the others—
by Theorem 2.1.1. To apply Theorem 2.1.1 one should note that, if the real
part of a real A 3-surface contains two components Sy, then this real part is
of type I and it cannot have any other component, see [IKh].

Consider now the decomposition Ex = E§Y U E§Y. The following obvious
observation can be found, e.g., in [KLD]:

2.3.1. Each half of a classical real Euriques surface may only be of one of the
following three types:

(1) aVgUaVyubsS, y> 1,020,020, a=01;
(2) 2Va;
(3) 5,.

In [KhD] and in Section 8§ we construct. a unmber of different realizations of
Enriques surfaces which is sufficient to show that, with a few exceplions, any
distribution satisfying 2.3.1 1s realizable. The exceptional topological types
are listed in Figure 1: the distributions marked by the black nodes are realized,
e.g., in [KhD]J; the white node represents the distributions {25} U {25} and
{Vy L1 25} U {28} constructed in {(N2]. Theorems 2.2.2 and 2.2.3 imply that.
this list is complete:

2.3.2. Theorem. With the exception of the types &5 and Vo, U LS any
distribution of the components of a real Enriques surface satisfying 2.3.1 is
realizable. The exceptional topological tvpes adinit only the distributions
listed in Figure 1.
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b b i
*
15
[t i i bm o
(aS}uibsy, {VilaS |U{bS8)} {VeuaS}u{bs]  {VeUaS)ulbS}),

{VauaSiu{bss} {ViyUasS}u{bs}

Ficure 1. Exceptional topological types

Remark. There are four distributions, {25} U {25}, {Va U 2S5} u {25}, {Va U
28U {Vu U 25}, and {Va U4S} U {V.}, which are not constructed in [KhD]
or Section 8. Existence of these distributions is announced in [N2]. The first
two distributions cannot be obtained by our constrnction, i.e., the covering
K 3-surface is not a double of a symmetric quadric. (Proof will be published
elsewhere.)

3. INVOLUTIONS ON MODULES

In this section we expose some elementary facts on the Galois colicinology of
modules with involution and on the discriminant forms of integral lattices with
involution. Most of the results of this section appear, explicitly or iinplicitly,
in [N1]. We give the proofs when it is easier than to find a precise reference
or when the direct proof is simpler.

3.1. Galois cohomology of Z/2-vector spaces with involution. The
zero-dimensional cohomology gronp of a Z/2-vector space V with an involu-
tion ¢ is H?(V) = Ker(1+¢). All the other cohomology groups are isomorphic
to Ker{l+c¢)/ Im(l +¢); to be short and in accordance with the notation com-
monly used in the literature we denote thens by H%(V).

3.1.1. Lenuna. Let V and V' be finite dimensional vector spaces over Z /2
with involution. If they are connected Ly one of the tollowing two short exact
seqitences of spaces with involution

0—Z/R—V =V —0 or 00—V —V—~Z/2—0,

then dim H“(V) —dim H" (V") = £1. In the former case the difference is —1
if and only if the generator of the subgroup Z/2 vanishes in H*(V). In the
latter case 1t 15 =1 if and only if the generator of the quotient group Z /2 does
not ift to HY(V), i.e., does not helong to the image of Ker(l +¢) C V.

Proof. Denote by ¢, ¢/, and ¢y the involutions on V, V', and Z/2 respectively.
Then Ker(l 4 ¢} = Coker(l + ¢y) = Z/2, and the result, follows immediately
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from the additivity of dimension and the Ker-Coker exact sequences (see,
e.g., [CE], Lemma V.10.1)
0 — Ker(l + ¢y} — Ker(l +¢) — Ker(1 +¢') —
— Cloker(l + ¢y) — Coker(l +¢) and

Ker(l + ¢) — Ker{l + ¢y) —
— Coker(l + ¢') — Coker(l 4 ¢) — Coker(1 +¢y) — 0. O
Suppose now that V is equipped with a c-equivariant. symmetric bilinear

formo: V®V — Z/2. Then o induces, in a natural way, a symmetric bilinear
form on H(V).

3.1.2. Lemma. [fo: V®V — Z/2 s nondegenerate, then so is the induced
formoe: HY(V)® H(V) — Z/2.
Proof. Since H'(V) = Ker(l + ¢}/ Im(1 + ¢), the result follows from the ad-
ditivity of dimension and the existence of the induced form. 0O
3.2. Free abelian groups with involution. Let L be a finitely generated
free abelian group with involution c. Consider its eigensubgroups
Lt = {.’CEL|C;’7=HZ’}, L':{mGLIcm:—m}
and the cohomology group of the associated Z /2-vector space L/2L = LQZ/2:
H(L) = H"(L/2L).

Obviously, both L* are primitiveiu L (i.e., the quotients L/L* are torsion
free), and LY N L™ = 0.
3.2.1. Lemuma. QOne has

Ker[(! +¢)}: L/2L — L/2L) = (LY /2L) + (L™ /2L),
hof(1 4 ¢): L/2L — L/2L} = (LY J2L)n (L™ /2L),
dim H(L) = dim L — 2dim[(L¥/2L) n (L™ /2L)).

Proof. In L ® Q each element & is represented as = = x+t 4+ £~ where ¥ =
e+ cx) and 27 = $(x — ex). The first statement follows from the fact
that, given an = € L, the elenents %(.r + cx) and %(.r — cx) belong to L f
and only if & = ¢x (mod 2L). To prove tlie second statement just notice that
(14 ¢)y = (1 = ¢)y (mod 2L) for any y € L, and that whenever z+ € Lt
and £~ € L™ are such that =% = &= (mod 2L), one has &+ = y + cy, where
y= %(u:*‘ +x7)e L.
The last statenient is an inmediate consequence of the first, two, O
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3.3. Integral lattices. Suppose now that L is a unimodular integral even
lattice, i.e., L is supplied with a symmetric bilinear pairing o: L L — Z
so that (1) the correlation ¢: L — L* = Hom(L,Z), = (y) = zoy, is an
isomorphism (L is unimodular), and (2) zox € 2Z for any z € L (L is even).
Assume also that L is supplied with an involution ¢: L — L which is a lattice
morphism, i.e., crocy=xoy forany =,y € L.

Under these assumptions each of the sublattices L% is the orthogonal com-
plement of the other one, and they are both uondegenerated, i.e., their corre-
lations are injective. Thus, one can define two finite Z /4-quadratic spaces D,
which are called the discriminant spaces of LE, in the following way:

The nnderlying finite groups, called the discriminant groups, are D*¥ =
(L*)*/L*; here each (L*)" is considered, via the correlation, as an extensions
of the corresponding lattice L% in L* @ Q. The discriminant quadratic func-
tions ¢: D¥ — Q/27Z are induced from the bilinear form extended from L*

to L£@Q: given r € (LE) C LE* @ Q, define ¢() = x 0w (mod 2).

3.3.1. Lennna (see [N1]). The quadratic spaces (D%, ) are anti-isometric,
i.e., there exists a group isomaorphism o DY — D™ such that 4(ar) = —q(z)
for any ¢ € DY,

At the group level this statement has the following consequence:
(=]

3.3.2. Lemma. Oune has 2(LE)" C L, and the quotient
ot DE = (LE) /LY — L)2L

of the multiplication by 2 establishes an isomerphism between D% and the
intersection (Lt /2L)y N (L~ /2L) C L/2L. In particular, D% are 2-periodic
groups and dim H(L) =rk L = 2dimD*.

Proof. Letx € (L), 1.e., let x € LT @Q be an clement such that zo LY € Z.
Then for any y € L one has 2zoy = 2zo0(yt +y~) = 2eoyt = xo(y+cy) € Z.
Hence, 2x € L* = L and 2(L¥)" C L. Siuce 2LT C 2L, the muitiplication
by 2 has a well delined guotient ot D+ = (L) /Lt — L/2L.

Let x € Keraot, te, 20 € 2L. Thenw € LN(LY Q)= Lt 1e,x =0
in DY, Thus, Ker ot =0 and D7 is a 2-periodic group.

Given 2r = (1 + ¢}y € (LY/2L)YN (L™ /2L) (see Lemma 3.2.1), for any
s € Lt oue has zo:z = .lj(y oz+ceyoez) € Z, e, x € (L*). This proves
that Imat D (LY/2L)N (L~ /2L).

Since DY is a 2-periodic group, 2¢ € L for any « € (L), Hence Imat C
LY /2L. Siuce LT is primitive in the umimodutar lattice L, the map L = L° —
(L*)" induced by the inclusion LY C L is onto, and, given x € (L*)", there
is some y € L sothat (x—g)o LY =0, Then : = 2x -2y € L~ = (L*)}* and
20 = 2 (mod 2L). Hence lmat C L™ /2L. This completes the proof for o¥;
the other isomorphisin is constructed sinilarly. O



COMPONENTS OF A REAL ENRIQUES SURFACE 1n

3.3.3. Corollary. An x € L¥ vanishes in H(L) if and only if z o LY € 2Z.

Proof. According to Lemmas 3.2.1 and 3.3.2, 2 vanishes in H(L) if and only
if z mod 2L € Inat, ie., %.r e(LY). O

Remuark. The result follows as well from Lemmas 3.2.1 and 3.1.2, which gives
a more direct. proof.

3.3.4. To formulate the next statement, remind that, given a (not necessary
unimodular) nondegenerate lattice A and a nondegenerate primitive sublat-
tice A/’ C M, one can define subgroups [ C discr M’ and I C diser M'* and
an anti-isometry «: ' — I' so that M is the pull back of the graph T of «
under the projection (M')* & (M'*)* — diser M & discr M'* and diser M =
['+/T. (Details can be found in Nikulin {N1].)

3.3.5. Lenmuna. Suppose that M’ is a primitive nondegenerate sublattice
of LY and M is the primitive hull of M' @ L~ in L. Let « € M’ C LY be an
element with x o M’ € 27Z, so that %J‘ defines an element in discr M'. If this

element helongs to the subgroup T defined ahove, then © vanishes in FI(L)

Proof. According to Nikulin’s construction, if the element defined by 1x in
discr M’ belongs to IV, there are some y € L™ and z € M such that z =
%-r -+ i—,y. Then @ = 22—y and wo LY € 2Z (since yo LT = 0). The statement.
follows now from Corollary 3.3.3. O

4. Basic TOPOLOGICAL PROPERTIES
OF GENERALIZED ENRIQUES SURFACES

4.1. General facts. First, let us consider an acbitrary algebraic surface Y
equipped with a real structure conj: ¥ — ¥. Denote L = H.(Y;Z)/ Tors
and D = discr LE, where L* are the subgroups of conj_-invariant and conj,-
skew-iuvariant elements of L.

4.1.1. Lemma. The fundamental class [Yg] € Ho(Y) and the Stiefel-Whit-
ney class wa(Y) are integral, fe. they helong to the image of Hy (Y, Z)
in Hy(Y).

Proof. As it is known (see [HH]), w(Y) is integral for any closed orientable
4-cimensional manifold.!

According to [Ar], Lennna 3%, [Yg] is the characteristic class of the fmisted
intersection form (2, y) — wovconj, y . In particular, it is orthogonal to the
image of Tors Hu (Y Z) in H.(Y), which, by Poincaré duality, is the orthogonal
compleinent of the image of (V" Z). O

I Far conplex manifohls this assertion is completely obvions as un(Y) = ¢ (¥} mod 2.
2Arnol’d formulates and proves this assertion unly for orientable ¥g; the proof in the
general case is literally the same.
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Thus, the projections of [Yg] and w. (Y} to L/2L are well defined, and since
both these classes are conj,-invariant, they further descend to H(L).

4.1.2. Lemmma. The projections of [Ya] and wy(Y') in H(L) coincide.

Proof. Since /‘-[(L) consists of only conj, -invariant classes, the twisted inter-
section form on it coincides with the standard intersection form. It remains
to note that w.(Y) is the characteristic class of the standard intersection
form, [Yg] is the characteristic class of the twisted intersection form {Arnold’s
Lemma, loc. cit.), and the chiaracteristic class is unique (Lemma 3.1.2). O

4.1.3. Lenuna. If Y is an (M — d)-surface, then

() y(Yg) = oY)+ 2Br D™ (mnod 16);
(2) dim D™ =d (mod 2);

Proof. Hirzebruch's signature theoremn gives v(Yg) = a(L*)—a(L™). The left
hand side here is the normal Euler nnmber of Yg in ¥ and is equal to —x(¥a);
the right hand side is —a(Y) + 20(L*) = ~o(Y) — 2BrDP~ (mod 16). This
proves (1).

Since ¥ is an algebraic surface, a{¥Y) = bo(Y) + 2 = A.(Y) (mod 4). By
definition, 4. (¥") = /. (Ya)+24. Substituting this into (1) and replacing v(Ys)
with A, (Ya) = y(¥Yz) (mod 4} and BrD~ with dimD~ = BrD~ (mod 2)
gives (2). O

4.1.4. Lemma. The quadratic space D™ s even (Le., q(#) € Z/2Z for any
# € D7) if and ouly if [Yz] — wa(Y) belongs to the image of Tors H4(Y;Z)
in Hy(Y).

Proof. [Yg] and wa(Y') are the characteristic classes of the (respectively, twist-
ed aund standard) intersection forms. In particular, they are both orthogonal
to the image of Tors H4(Y;Z) in Ho(Y). In addition, they are both integral
(see Lemmad.1.1). Thus, the condition that [Yg] = w2{Y) belongs to the inage
of Tors H,(Y; Z) m Hy(Y') is equivalent to the condition that this difference
aunihilates all the integral classes, which is equivalent. to the congruence »° =
xroconj, x (mnod 2} for any « € L.

Let x* = %(:n:l:(‘.on_i_ #) € LY. Then @ = xt 42~ and z* —roconj, ¢ =
2(x7)? (mod 2Z). Since £~ 0 L™ = ro L™ takes integral values, #~ belongs
to (L7)" and, hence, represents an element in D=, Moreover, each element,
in D~ admits such a representative. Thus, (#7)¥ € Z for any = € L if and
only if D™ is even. O

4.1.5. Corvollavy. Suppose that the 2-primary component Torsy Ha (Y Z) Is
generated by wa(Y). (This is the case for generalized Enriques surfaces; see
Lemmad.2.3 helow.) Then Yz is of type 1 i and only iIF D™ is even.
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All the preceding statemnents, except Lemma 4.1.3%, extend, word by word,
to any (not necessary anti-holomorplic) orientation preserving involution conj
on any (not uecessary complex) oriented 4-maunifold Y. In this extended
version Lemma 4.1.4 has the following corollary:

4.1.6. Corvollary. Let con) he a fixed point free orientation preserving invo-
lution on an oriented 4-manifold Y. Then the quadratic spaces DE are even
if and only if so is H.(Y; Z)/ Tors.

4.2. Homology of a generalized Enriques surface. \We now consider a

generalized Enriques surface E covered by a generalized K 3-surface X with

Enriques involution 7. We denote by pr: ' — £ the projection and by

tr: H.(E; R) — H.(X; R) the transfer (with the coefficients in a group R).
Note that #,{X) = 0 implies Torsy H.(X;Z) = 0.

4.2.1. Lemma. There are isomorphisms Torss H1(E,Z) = H\(E) = Z/2

and an exact sequence

0 — Torsy Hy( E;Z) — Ho(E) = H4(X),

where Torsy Ho(E; Z) = Z/2 1s generated by wa(E).
Proof. From the Smith-Glysin exact sequence

pr, =1

H(X) T2 Hy(E) —— Ho(E) —— Ho(X) —_— Ho(E)

I

0
it follows that H,(E) = Ho(E) = Z/2 and, hence, Torsy H,(E;Z) is a cyclic
group. It cannaot be larger than Z/2since otherwise X" wonld have a nontrivial
double coverimg. From Poincaré duality and wmiversal coefficient formula it
now follows that Hy(E,Z) =0, Hy(E) =Z/2, and Torss Hu(E,Z) = Z/2,

and another portion of the Smith-Gliysin exact sequence,

H;!(E) ”'.‘(E) — ”'—'(‘\-)r
I
YAy

shows that Ker[trs: Ho(E) — Hu(X)] is at most Z/2. On the other hand,
since H4(\X; Z) does not have 2-torsion, Torsy (£, Z) ts contained in Ker try.
Thus, Kertry is Z/2 and, since wy(£) £ 0 and trwa{E£) = wy(X) = 0, its
only nontrivial element iz 1w, (E). O

3Lemmia 4.1.3 extends to any anti-holomorploe involution on any quasi-complex variety,

of. [Wil.
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4.2.2. Lemuna. Forany p=1, 2, 3 there Is a short exact sequernce

tr,

0 — Torsy H (E,Z) — H (£ Z) — H;T’(,\';Z) — 0,

where H’TT(,\'; Z) denotes the subgroup of r.-invariant elements.

4.2.3. Lemma. Let [ = H4(X;Z)/ Tors and let L% be the sublattices of
To-invariant and r.-skew-invariant elements of L. Then Hy(E;Z)/ Tors is an
even lattice isometric viatr to L""(%), which is L™ with the modified pairing

(#,y) — 5(x 0 n).

Proof of Lemmas §.2.8 and 4.2.3. The transfer H.(E; R) —~ H}"(X; R) for
R=Qand R=2Z/q, 4 odd, is an isomorphisin {(see, e.g., [Br]). Thus, in the
integral homology we have Kertr, = Torsy H,(E;Z), and, to complete the
proof of 4.2.2, it ouly remains to show that try reduced modulo torsion maps
Hy(E; Z)/ Tors outo L*7.

Denote L = Hy(E;Z)/ Tors and L' = trL C L, where tr is the integral
transfer reduced modulo torsion. Then L' C L*7 is a subgroup of finite index.
The identity trrotry = 2(zoy) implies that L = L’'(L) as a lattice and, since
L is unimodular, the discriminant gronp of L’ is 2-pertodic of dimension equal
tork L = rk L'. Since, due to Lemma 4.2.1, the index of L' in Z and, hence,
in Lt7 is odd (tr & Z/2 is a monomorphism) and discr L7 is also 2-periodic
(Lemma 3.3.2), these two subgronps coincide.

Thus iry provides an isometry betweeu the lattices Hy(E;Z)/ Tors and
I_J""(.IE) and an isomorpliisin between the groups H4(E;Z)/ Tors and Lt7.
The lattice L'”(%) is even due to Corollary 4.1.6. O

4.3. Eigeuspaces of con},. Let now E be a generalized Enriques surface
equipped with a real structure conj: £ — E. The following fact is well known
and follows tmmediately from Lefschetz fixed point theorem (part (1)) and
Hirzebruch signature theorem (part (2)). Note that Statement (2} applies, in
fact, to any real algebraic surface, and Statement (1) applies to any surface £

with H(E;Q)=0.

4.3.1 Lemna. Let L = [4(E;Z)/ Tors and let LE be the subgroups of
conj, -invariant amd conj_-skew-jnvariant elements of L. Then

(1) k¥ = %(l,-_,(E) +v(Ea)) =1, kL™= %(1,._,(5) — v(Ee)) + 1

—

(@(E) = x(Ea)),  o(L™) = ~(a(E) + v(En)).

(2) o(L*) = -

2
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5. KKALININ'S SPECTRAL SEQUENCE AND VIRO HOMOMORPHISMS

Inn this section we summarize some auxiliary results from aigebraic topology
of involutions. The constructions below are presented in both the cohiomology
and homology settings. They require, in principle, a cautious choice of the
cohomology and liomology theories used, as well as certain appropriate condi-
tions on the underlying topological spaces. Oue possibility is to use the sheaf
theories and suppose that the topological spaces involved are locally compact
and finite dimensional. Fortunately, in this paper we do not need any definite
choice and can use any homology theory (or even several theories). The rea-
son is the fact that all the results are applied to the best topological spaces
one can possibly expect—smooth compact manifolds.

Throughout. this section ¥ is a good (see the paragraph above) topological
space with luvolution ¢: ¥ — Y.

5.1, Kalinin’s homology spectral sequence,

5.1.1. There exist a filtration

0= }-n-é-l CF*cC-..C }'“ = f{_(FiXC),

r

a Z—graded spectral sequence (H7,d%), where

d;: H; — Hiio1, d;+r_| od: =0,
(H? d?) is the chain complex of Y, and H;‘H = Ker d;/ I d;—r+l’

and homomorphisms v, : F© — H™ such that

(1) HY = H.(Y) and d} = | + ¢

(2) a cvele =, € H survives to H] if and only if there are some chains
Up = Epy Yptly oo s Uptr—1 i Y so that Qyipy = (1 4+ ca)yi. In this
case dixmy, = (14 ¢ )tppr-13

(3) by, annihilates F9*Y and maps F9/F+ isomorphically onto H,

(4) the filtration, spectral sequence, and homomorphisms are all natural
with respect to eqiivariant mappings.

Wlhen necessary, we will use the notation H7 = HZ(Y) and F? = FU(Y)
to indicate the original space Y.

The original construction of this spectral sequence is dite to 1. Kalinin {Ka]?,
who derived it from the Borel-Serre spectral sequence and related results
by Borel (see [Bo]). This construction is briefly outlined in Appendix B.
Property (2} is proven in [D]. [n Appendix A we give an alternative description
of Kalinin’s spectral sequence, waicl is based upon the Smith exact sequence.

The following results are straightlorward consequences of 5.1.1.

*He presented thie result ondy in ity cohomologieal setting (see 5.3 Lelow), but the con-
struction is lterally translated to the homaology langunge.



16 ALEXANDER DEGTYAREV AND VIATCHESLAV KHARLAMOV

5.1.2. Covollary. IfY is connected and Fixc # @, then
(1) Ho(Y) = H3(Y) = H(Y) = Z/2;
(2) each nonzero element of H(Y) which survives to H{®(Y') is nonzero
in H3(Y).

5.1.3. Corollary-definition. If a cycle admits a representation by an equi-
variant chain, 1t survives to H(Y'). Thus, in particular, there are tantological
homornorphisms H,(Fixc) — H*(Y); with certain ahuse of terminology we
will call thenr the inclusion homomorphisms.

5.1.4. Corollary. One has H(Y) = H°(Ha(Y)).

5.2. Viro homomorphisms. The lhomomorphisms bv. appearing in Kali-
nin’s spectral sequence were ciscovered, in an equivalent fori, by O. Viro
before Walimn’s work. That is why we call themm Vire homomorphisms. The
following geometrical description of Viro hommomorphisms, given in terms
of Kalinin’s spectral sequence, is close to their original form dne to Viro
{cf. [VZ]).

5.2.1. Suppose that Fixc #£ @. Then

(1) bvo: H.(Fixe) — HJM(Y) is zero on Hy (Fixc); its restriction to
Ho(Fixc) — HE(Y) = Ho(Y') coincides with the inclusion homomor-
phism (¢f 5.1.2 and 5.1.3);

(2) a (nonhomogeneons) element & € H.(Fixc) represented by a cycle
2w helongs to F, = Kerbv,_; (see 5.1.1) if and only if there exist
some chains y;, | <7< p, so that dyy = @ and Mipy = x4+ (L4 )
for i > 1; the class of w + (1 +c. )y in HP(Y') represents then by o

This result is proven in [D].

5.2.2. Evident Covollary. For any p the Viro homomorphisin by, is zero on
Hyp(Fixc) and coincides with the tnclusion homomorphisi (see 5.1.3) when
restricted to Hp(Fixe) — H(Y).

5.3. Kalinin’s cohomology spectral sequence, Thouglh in applications
the homology groups are more transparent. and easler to manipulate with, in
a number of intermediate considerations it is the cohomology language that is
more convenient and gives the results. In particular, the cohomology spectral
sequence has the advantage that it carries a canonical mltiplicative structure;
we will use this structire to introduce i a formal way and to evaluate (in
the general case, see Appendix B) the mtersection pairing in the homology
spectral seqnence.

5.3.1. There exist a filtration

H™(Fixe) =F, DF, 1D -DF =0,
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a Z—graded spectral sequence (H;,d}), where

di: HY — H™ it g = ),

(Hg,dy) is the cochain complex of Y, and HY | = Ker def Imddte=t,

and homomorphisms bv™ : H., — H*(Fix¢)/F,_; such that

(1) by? maps HY, isomaorphically onto FyfFy_y;

(2) the spectral sequence, homomorplisms, and filtration are all natural
with respect to equivariant mappings;

(3) the spectral sequence is multiplicative, the muitiplication being in-
duced by the cup-product in Hy; the filtration and homomorphisms
bv? preserve the multiplication;

(4) HI(Y) is a graded differential module over H® (via the cap-product);
the homology filtration and homomorphisms by, preserve the module
structire,

Tlhis spectral sequence is dnal to that of 5.1.1 in the following sense: HI =
Hom(H7,Z/2), Fr—y = Ker{H"(Fixc) — Hom(F";Z/2)], and di and bv? are

dual to di_ .4 and by respectively.

The cohomology part of this statement is proved in ([Na]; the rest is the
standard relation between dual cohowmology and homology objects.

5.3.2. Covollary. If'Y is a closed n-dimensional manifold and Fixe # @,
then for any v, 1 € » € +0o, one has H* = Z/2, and the product map
HEQ@ HITP — HD is a nondegenerate pairing.

To onr kuowledge, the only publication where this result is stated explicitly
is [Ka]. It is a straightforward consequence of the Poincaré duality and a
simple lemna on spectral sequences which states that, given a multiplicative
spectral sequence of Z /2-algebras, if for some » = ry one has H! = HY, = Z/2,
and the produet paring HI' ¢ H'™P — H! 15 nondegenerate for r = ry, then
so 1t is for all ¥ = rq, ..., 00 {(¢f. Leinma 3.1.2).

5.3.3. Corollary (the dual version of 5.3.2). IfY is a closed n-dimensional
manifold and Fixc # @, then the intersection pairing in H.(Y') descends to a
nondegenerate pairing H¥ ¢ H3L  — Z /2.

—=r

Poincaré duality hetween cohotnology and Lomology translates 5.3.2 into
5.3.3, along with the above proot.

The pairing H» & HIZ, — Z /2 mtrodneced in 5.3.3 is called below the
mdersection form.
5.4. Application to a veal structure of n complex ssurface. Let Y be a
compact nonsingular complex surface with o real structure ¢: ¥ — Y. Then
the Z/2-homology fundamental class [Yg] of Y = Fix ¢ is well defined.
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5.4.1. Lenuna. The Stiefel-\Whitney class wy(Y) survives to H°(Y). The
projection of wx(Y) in H°(Y') coincides with bva[¥g].

Proof. As any Chern or Stiefel-Whitney class, w.(Y) is realized by the fun-
damental class of a c-invariant divisor. (The earliest reference which we could
find in the literature is [BH]; the statement is based on the simple observation
that Schubert. cycles are defined over R and even over Z.) Thus, ws survives
to H5°(Y). The other part of the lemma follows from 5.3.3, 5.1.4, and the
fact that the iimage of [Yg] in #.(Y) coincides with the characteristic class of
the twisted intersection foriu (cf. the proof of Lenmnas 4.1.1 and 4.1.2). O

Let Cy,Cq,...,Cp be the components of Yg. Denote by {C;) € Hy(Fixe)
and [C;] € H.y(Fixc) the classes represented by a component C;, and consider
the following values of Viro homomorphisims:

- bvo(Ch) in H*(Y);

- bvy o and by {Ci = C}) in H(Y) (where o is an element. of Hy(Yr),

and (C; = C}) = (Ci) = (Cj)),

- bva[CGi], bvaa, bvy{(Ci = C3), and bva(o + (G = C4)) in A(Y).
From 5.2.1 and 5.2.2 it immediately follows that:

- all the above classes but the last three are always well defined;

- bvs s defined if and only ifbvy o = 0, 1e., ilin. o = (1 +c¢. )y, where
y s a cycle in Y. In the latter case bva o is represented by the cycle
(14¢)ya, where g2 is any 2-chain in ¥ such that dye + (1 +c.)in belougs
to Yz aud represents o;

- bvo(Ci = €} is defined if and only if bv({Ci = C;) = 0. The latter
class is represented by the equivariant circle {1 + ¢.)y, where 3 is a
segment, in Y joining a point in C; and a point in Cj; it vanishes if
(1 4 e.)i1 bounds in ¥ {for sonie appropriate chioice of 31), and in this
case bvy(C; — C5) is represented by (1 4+ ¢.)y2, where gy is any 2-chain
i Y with dy = (L + ey,

- bva(a+{C; = ;) is defined if and only if bvy oo = by ({C; = C}); in this
case it is represented by the cyele (1 4 eJ)ys, where ys is a 2-chain sach
that @y consists of an equivariant circle representing bv{C; — C;) and
a cycle representing o in Y.

Oue can smoothen all the chains above. For our purpose it is sufficient to

smoothen them in a tubular neighborhood W of Ya and thus to represent. ihe
last, four classes near Yg by smooth equivariant 2-submanifolds of Y.

Remark. If e. = id on H (Y}, then one can ignore the term {14 c.)y in the
above description of bv. This is the case, e.g., if Y is a generalized Enricues
surface.

5.4.2. Interseetion matrvix. The intersection form on H(Y) = Imbvy is
that definmd Ly Table 2, where (.. C) are sone counected compounents
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of Yr, aud «, fi are some 1-dimensional homology classes in Yg. The intersec-
tion o 3 is regarded as an element of Hy(Yz), and (o B)[Y§) and (« o B)[Ci)
are, respectively, the total intersection munber and its part which falls into C;.
bij stands for the Kronecker symbol: &;; = 1 and b;; = 0 if i # j. The inter-

section form extends linearly Lo the classes of the form hva(w + {C; = C}}), as
ifbva o and bvo{C; — C}) were well defined.

TABLE 2
bvo{Ci - CJ-) by ey I)Vg[C;]
|)V'_:(C‘k - C[) 0 0 6:’1— + lsil
by /4 0 (v oA | (BeB)(Ci]
I)v-_.[C.'k] biv + bk {rv o ov)[Cy] 8k x(Cy)

Proof. Pick some smooth equivariant representatives (see above) of two ele-
ments of the table. By 5.3.3, their intersection number in Ha(Y) is equal to
the intersection mmuber of the corresponding classes in 3. By a small equi-
variant perturbation pnt the representatives in a position without common
points in W \ Fixe (see above). Since the interseciion munbers are cousid-
ered modulo 2, one can ignore all the hnaginary intersection points, which
appear in pairs (cf., lor example [Kh2], Lennna 2.3), and counting the inter-
section points in W of some (not necessary equivariant now) perturbations
of the cycles gives the desirecd result. When connting bva[C;] o bvs § and
Lv2{C;] o bv4[Ci], one should take into cousideration the fact that the normal
bundle of Fix¢ in Y is (anti-)isomorphic to its tangeut bundle. O

Remark. One can avoid the geometrical arguments in the proof and to gen-
eralize the result to Ligher dimensions, see Appendix B.

6. VIRO HOMOMORPIHISMS IN GENERALIZED ENRIQUES SURFACES

Recall that we denote by £ a generalized real Enriques surface, which is
supposed to have nouempty real part: £z £ @.

The main goal of this section is to prove Propositions 6.1 and 6.2 below. In
the proofs we use Kalinin’s homology spectral sequence HI; we denote dim H7
by ;.

6.1. Dimension of the discrimninant space. Let £ he an (M — d)-surface,
and let ‘D= he the discriminant space of the sublattice of conj-skew-invariant
vectors in H+(E,Z)/ Tors. Then:

d—=dimD= = 0 il either

(1) Ex has a component Vigq (ie., wi(Eg) # 0}, or
(2) Eg is nonorientable and hoth the halves are nonempty;
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d —dim' D™ =2 il'either
(1) ER is nonorientalle, wy(Eg) = 0, and one of the halves is empty, or
(2) Eg is orientable and both the halves are nonempty;

d—dim D™ may e 2 or 4 if Eg is orientable and one of the halves 1s empty.

6.2. Relations between real components. There is at least one and at
most two relations between the elements of H3° (L) /w4 (E) realized by the fun-
damental classes of the components of Eg. One relation is bvy[Eg] = wa(E);
the only other possible relation is bvy[ESD] = vy [E8D] = 0 (mod wa( E)).

6.3. Proof of Proposition 6.1.

6.3.1. Lemma. Let €y, Cy be two components of Eg. Then by (C\—Cs) =0
if and onldy if these two components helong to the same half of Ep.

Proof. Pick two points ¢; € C; and connect them with a path ¥ in £. By
5.1.2, bv{Cy — Cy) = 0 il and ouly if the loop § = (conjy)~' v is homologous
to zero in H(E). Thus by {C — C4) = U if and only if é lifts to a loop in X.
Suppose that € € EY and lift. v to a path 7 with the endpoints ¢, 2. Then
6 =5 (tF)7is a lift of & which connects 1V, and . It is a loop if and
only if tV% =%y, ie, cx € EYP. O

6.3.2. Lemma. Let «v he an eletnent of Hy(Ewx). Then by # 0if and only
ifwow =1, where w € If{{Eg) is the characteristic element of the covering
Nz — Em. Moreover, by o« # 0 whenever 0® = 1,

Proof. Since Hi(E) = Z/2, from 5.1.2 it. follows that bv, « = 0 if and ouly if
in. oo € H (E) is zero, or, equivalently, if w o v = 0. The last. assertion follows
from Lemma 1.3.2: if w(Eg) # 0, then w = w(Fg). O

6.3.3. Lemma. The Stielel-\WWhitney class wy(£) (which, due to 5.4.1, always
survives to HY(E)) represents a nonzero element in H5(E) if and only if
either

(1) Em has a component Vagyr (Le, wy(Ex) #0), or
(2) Egm is nonorientable and both the halves are nonempty.

Proof. By 5.3.3 and since ws( £} is a characteristic eleinent. of tlie intersection
form, wy(E) # 0 in HM(E) if and only il there is an element x € H.(Er)
with (bve£)? # 0. According 1o H.4.2 such an x can be found in one of the
following three forins: (i) = = [("y], where C) C Eg is a component of odd
Euler characteristic; (i) w = o 4+ (¢} = C4), where «« € H{Er) is an element.
with o = L and v, o £ 0; (i) x = v € H(Ez) with o = 1 and bvy e = 0.
In (i} we have case (1) of the lenuna. In (i), accorcding to 6.3.1, we have
case (2). Finally, (iti) contradicts 10 6.3.2. O
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6.3.4. Lemma. H{(E) # 0 if and only if either

(1) Ew is nonorientable, or
(2) Eg has a component Ty, or
(3} both the halves of Eg are nonemnpty.

If H{E) # 0, then the spectral sequence collapses at HZ; in particular,
2 =B =0. IFHX(E)Y =0, then 3 — p3 = 0 or 2 and 2 = A5 = 0.

Proof. By 5.2.1, H*(E) = bvy Hg((Fixe). According to 6.3.1 and 6.3.2, a
homogeneous element 2 € H.(Er) with bv,x # 0 is either o € A, (£Rr} with
won = 1 (cases (1) and (2} of the lemma, see 1.3.2) or {(C) — (4}, where
C; C EF) are two components from different halves of Eg (case (3) of the
lemima).

The last statement of the lemma is a straightforward consequence fromn
the relations 43 = 45° = 1 and g{ = | 2 A and from the existence of the
nondegenerate pairing in the spectral sequence. In the case H{® # 0 one has

B2 =00l H¥(E) is killed by &*, and g2 —= 45 = 2if it is killed by 4*. O
1= P i il £

6.3.5. Eud of the proof.
By definition, 2d = A.(E) — #2. According to Lemma 4.3.1, we have
2dim D™ = by(E) — b3, where 6 = dim H{von)_, H4{E; Z)/ Tors). Therefore,

2d = dimDT) = [(2 =47 = (57) + (05 = 427 + 2 (B = 13))].

The first. term of this expression is zero if HY(E) # 0 and 2 or 4 otherwise,
see 6.3.4. Applying Lemma 3.1.1 to the exact sequences

0 — Torss H(E;Z) — HA{E,ZYO )2 — (HAEZ)/ Tors) @ Z/2 — 0,
0— Ho(EZ)YRZ)2 — HE) —Z[2 — U

gives that 37 —63 is equal to 2 if wa (E) # 0iu HF(E), and it is equal to 0 or —2
otherwise. The combination 43 — b3 = 0 and wa(£) # 0 in H3(E) is excluded
by an additional argument: the intersection forin on H;(E) is nondegenerate,
hence, ws+{ £}, which generates Torsy Ho(E;Z/2) C H+(E), and an arbitrary
clement, which generates the quotient Ho(E)/(Hy(E,Z)® Z/2) and thus has
a nonzero intersection with we (£), must either both survive to H3(E) or both
cdlisappear.

Now thie lemima follows [rom Lenunas 6.3.3 and 6.3.4 and the (mod2)-
congruence given by Lemma 5.1.2(2). O

6.4. Proof of Proposition G.2.

The relation boo[Eg] = wa( £) is given by Lemma 5.4.1.

Suppose that bvo([C] + - + [(F]) = kwa(E), k € Z/2, is a relation
other than bvy{E§"] = 0 (inod wa{E)) or bvy[ELP] = 0 (mod w,(£)). This
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means that one of the components C; involved in the relation, say Cy, belougs
to E§V, aud there is another component of E§), say D, which does uot. belong
to the relation. Then Lv.(C) — D) i1s well defined, and, according to 5.4.2,
bva(Cy — D) o bva([Cy] + -+ + [Cr]) = I and (bv2(C) — D))* = 0. On the
other hand, wn{E) survives to HM(E), and, since un(E) is the characteristic
class, one has bvo{Cy — D)o urs{ E) = (bv4(C) — D))? = 0. This contradicts to
bvo([Ch] + - 4 [C)]) = kwa(E) and bva{Cy = D)o bvy([Cy] 4+ -+ {C/]) = L.

7. PROOF OF THE MAIN RESULTS

Below, as in Section 2, E is a geuneralized real Enriues surface with
nouempty real part, conj: £ — E is the real structure on £, and X is the
double covering of £ with the Enrigues involution 7: X' — X' and two real
structures 1D 112) determined by counj.

7.1. Proof of Theorem 2.1.1. By the hypothesis, the fundamental class
of X&l) vanishes in ff5{X). Ou the other hand, it is equal to the image of the
fundamental class of 4} under the transfer homomorphism tr: Hy(E) —
Hy(X), whose kernel is generated by um(E) (see Lemma 4.2.1). Thus, the
half EL) realizes either 0 or ws(E) in H.(E). Since, according to Lem-
ma 5.4.1, the union EEVD U EEY realizes wa(E) in H°(E), the half E§? real-
izes either wy(E) or 0. In any case at least one of the two lialves realizes zero
in H3°(E).

Suppose that ¢ C E&” is a component. of type Va1 and that Eg") has
at least one component, say, (5. Then, by 5.4.2, bv[E§D] o bvo[C] = 1 and
l)Vg[Eég)] obva(w (Ch) +(C) = C4)) = L, i.e., both the halves realize nontrivial
classes in H7X(E). This contradiction proves the first assertion.

Suppose now that each of the two halves coutains a nonorientable compo-
nent C; C Eg) {which, due to the first statement, must be of an even genus).
Pick some classes av; € H () with bvyp oy # 0. Then for both (4,7) = (1,2)
and (4, 7) = (2, 1) one has bvy(erj + (€ = C4)) o bvo[ES)] = I, which is also
a contradiction. O

7.2. Proof of Theorems 2.1.2 and 2.2.1. Let D~ be the discriminant
form of the sublattice of couj,-skew-invariant vectors in Ha(E;2Z)/ Tors. From
Lemima 6.1 it follows that, nuder the hypotheses, d = dimPD™ = 2 or 4. Since
the dimension is nonnegative, o 2 2,

All the congruences are derived {from y(£Eg) = a(E) + 2BrD~ (mod 16)
given by Lemma 4. 1.3 (1) (inst like the other congrnences known in topology
of real algebraic manifolds, ef. [Khi], [M], and [N1]).

If d =2, then D~ = 0 and BrD~ = 0. This gives the congruence. Tle
fact that Eg is of type | [ollows from Corollary 4.1.5.

Ifd =3, then dimD~ = 1. Hence D™ = (:I:%) and BrD™ = £1.
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Ifd =4 and \(Eg) = a(E)+8 (mod 16), then BrD~ =4 and dimD™ = 2.

The only such form is the one given by the (2 x 2)-matrix (1:,2 1{2). This

form is even and Corollary 4.1.5 applies to prove that Eg isof type I. 0O

7.3. Proof of Theovems 2.2.2 and 2.2.3, [u addition to the lattice L =
Hs(E; Z)/ Tors with involution conj,, the eigenlattices LT of conj,, and their
discriminant, forms D¥ | let. us consider the sublattice A/’ of Lt generated by
the classes s1,...,sp € L realized by the spherical components of Eg (with
some orientations), and denote by N the orthogonal complement of A/’ in L,
Recall that L and all its sublattices are even, see 4.2.3.

7.3.1. Lemuna. IF A s not primitive in Lt then either Ex has a half {15}
oftypel withI =0 (mod 4), or £y = kS, it isoftvpe |, and k= 0 (mod 4}. If
all the kb spherical components constitute one half of Ex and, besides, D™ =
and tk N =k =2, then k =0 (maod 8).

Proof. Since s; © s; = —2&;, nonprinmitiveness of A/’ means that there is
an ¢ € L such that 26 = s; + - -+ 5, 1 > 0. (We simplify the notation
and assume that the relation involves the first { components.) Pick such a
relation with the simallest possible number  of components. Then, due to 6.2
and 6.3.4, either the first { spherical components form a hall {{5} of Ex of
type I, or {{5} = Eg and Ex is of type 1. Since [ = —222% the first part of the
lemma follows from the fact that L¥ is an even lattice®,

Suppose that all the spherical components form together one half of Eg.
As it follows from the first part of the proof, no partial sum of s;,..., s 1s
divisible by 2 (as otherwise the corresponding components would form a half}),
and the primitive hnll A of A" in Lt is generated by M’ and an = € L
snch that 2w = s, + -+ + s¢. Thns, the discriminant form of M" is the
nondegenerate part. of the restriction of —2(0f + - + 6}), 0; € Z/2, to
0, + -+ 0 = 0. In partienlar, dimdiscr M” = k — 2 and discr M" is
an even form. If D~ = 0, then Pt =0 and LT is unimodular. If, in addition,
tk N =k — 2, then, since dimdiser ¥ = dimdiscr A" = & — 2, the lattice %N
is integral and unimodular. Besides, it is even, since so are discr M” and Lt.
Hence, bk = —o(M’') = rr(i—,N) —o{LT)=0 (mod 8). O

7.3.2. Lemma. If A s primitive in LY and dimdiser M’ + dim D~ >
dimdiser ¥, then either £y has a half {15}, or Eg = IS, where | # 0 aud
1= 2¢(y) (mod 4) for some non trivial element y € D™ 1f, in addition, | = k,
dimD~ = l.and vk N =k =1, then k = Br D~ (mod 8).

Remeark. 10 dii D™ = 1, then D~ countains only one nontrivial element, and

“As it Tollows fram the existence of equivariant representatives of the Chern classes,
ef. 5.4.1, Lt is even for any compact camplex {and even quasicomplex) surface with a real

structiure,
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2q(y} = BrD~ {(mod 8). In all cases y = :{;y_ (mod L~} for some element.
y— € L™, and 2¢(y) = 142 (mod 4).

Proof. Denote by Af the primitive hull of L= @ A’ in L. Since M and N are
the orthiogonal complements of each other in the unimodular even lattice L,
their discriminant forms are anti-isometric. On the other hand, dimdiscr A+
dimD™ > dimdiser N = dimdiscr A by the hypotlieses, and, hence, L= @ M’
is not primitive in L and the subgroup I C discr M (see 3.3.4) is noutrivial:
for some { > 0 there exists an element y_ € L™ which represents a nonzero
element y € diser Af’ so that the class s = .]3(_1;_ + 514 -+ -+ s1) belongs to L.
Then sy + ---+ s; = s + conj, 5. Thus sy + -+ -+ & vanishes in H(L) and
therefore the element realized by the corresponding ! spherical components
of Eg in H(H.(E,Z)) is either O or .

Due to 6.2 and 6.3.4, eitlier these components form a hal{ of Eg, or Ep = IS
and [ = k. Furthermore, 2¢(y) = L4% = sy + -+ s1)? = { (mod 2).

If the additional assminptions ﬂold, then discr A is an even discriminant
form of diumeusion (& — 1). Therefore, as in 7.3.1, -.i;N is an integral even
unimodular lattice and & - BrD~ = rr{.f—,f\’) =0 (mod 8). O

Now, in order to complete the proof of theorems 2.2.2 and 2.2.3, consider
separately the different. cases.

7.3.3. The case EFg = 45 (Theorem 2.2.2). Comessatfi-Severi inequality
x(Er) € WYYE) gives d 2 3 4+ hHYE). Hence d 2 3 and, if d = 3, then
o(E) = 2 = bha(E). In the latter case a caleulation using Leinma 4.3.1 shows
that L= is a positive definite lattice of rank | and L* is a negative definite
lattice of rank 2& — 1. ln particular, dim®P= = 1 and Ber'D™ = 1. By 4.1.3,
this implies that &£ = | (inod 4). This congruence excludes, in particular, the
second choice £ =15,/ =0 (mod 4) in Lemma 7.3.1. The theorem follows
now from 7.3.1 and 7.3.2, which cover the two possibilities for A’ and both
give the same decomposition {4pSTU{{4g+ 1)S} (with I = 4¢ + 1 in the latter
case). O

7.5. The case Eg = Vo, U kS (Theorem 2.2.3). From Lemma 4.3.1(1) it
follows that tk LT = 2k +d — 2 and, hence, dimdiser ¥V Ltk N = k4+d =2 If
d =0, then LT is a nnimodular [attice and dimdiser 477 > dimdiser N. Hence
A’ canuot be prititive and 7.3.1 applies. Corollary 4.1.5 gives the missing
information: Eg is of type I If = 1, then dim'D~ = | and dimdiscr N €
k — 1, aud the statement follows from 7.3.1 and 7.3.2. The possibility “4 =0
(mod 4), EF is of type I” for £ = (1 arises from the case when Af’ is not.
pritnitive: then & = LG st be divisible by 4. Ifd = 2, then D~ is one of the
formis given in Table 3. P~ = 1 is the exceptional case of Theorem 2.2.3 when
) may be trivial. (In Tact, £ 0s trivial in this case since dimD~™ = d - 2
and, according to Lenmma 6.1, Fg st consist of a stngle half.) Ta all the
other cases 7.3.1 and 7.3.2 give all the values of &*) (mod4) listed in Table 1.
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TABLE 3

Odd forms Even forms
n- BrD- D~ Br D~

- IR

0 (1;2 1{2) 4
2
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|
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|
13 fas]—=
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The remaining case d = 3, = %3 follows from Theorem 2.2.1, see the
remark in 2.2. (Though, due to 6.6 and 4.1.3, in this case dimD™ = 3, and
one can also apply 7.3.2.)

Finally, to decide whether type [in (1) and (3} is L or L it sutlices
to notice that, under the hypotheses, w2(E) represents a nontrivial element,
in H°(E)} (see Lemma 6.3.3) and, heuce, a half is of type I,s if aud only if
its fundamental class vanishes in HY(E), i.e., if it belongs to the kernel of
the intersection form. Using 5.4.2 one can easily see that the spherical haif
realizes wa(EY); Leuce, it is of type I, O

. CONSTRUCTION

8.1. General idea (see [KhD] for details). Let X be the A 3-surface ob-
tained as the double covering of ¥ = Cp! x Cp! branched over a non-singular
curve C C Y of bi-degree {4,4). Denote by s: ¥ — ¥ the Cartesian prod-
uct of the nontrivial involutions (1 : v) — (—u : v) of the factors. If € is
s-symuuetric, s lifts to two different. involutions on X, which conmite with
the deck translation d of X' — Y. If, besides, { does not pass through the
fixed points of s, then exactly one of these two involutions, which we denote
by r, is fixed point {ree (see, e.g., [H] or [BPV]), and, hence, the orbit space
FE = X/ris an Enriques surface.

Suppose now that ¥ is equipped with a real structure conjy. which com-
mutes with s, and C is a real curve, Then s o conjy is another real structure
on ¥ and C. We denote the real point. sets of these two structures by V)
and C§Y i = 1,2 (i = | corresponding 1o conjy. ) and call them the halves
of ¥ and (' respectively. The involutions conjy and s o conyy lift. to four
different commuting real stractures (100 102 = 7otV d ot and d o t(*))
on X, whicli, in turn, descend to two real structures on E; we call them the
exposittons of . A choice of an exposition 1s determined by a choice of one
of the two liftings ¢V, £¢*) of conjy to X

We use for ¥ a quadric in €p® real iu respect to the standard complex
conjugation invalution and invariant in respect to the real symmetry s: Cp® —
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Cp®, (zoray:zy:2y) w— (2giw):—xzy: —x3). Since the bi-degree of C is even,
Cg) separates }'g‘} into two parts, which have Cg) as their common boundary
(at least one of the two parts is non-empty unless )’é‘) 15 empty). The fixed
point set. \§¥) of tU) is the pull-back of one of the parts. Thus, a choice of ¢{!)
is equivalent to a choice of one of the two parts of Y§!), and, since #{*) = rot(}),
the latter determines as well the part of Y3 whose pull-back is Fix#(?). This
correlation is easily controlled due to the fact that .\'&“ and .\'g") are disjoint.
and, hence, the pull-back of a point. of Y41 N Y¢*) is contained in exactly one
of the sets X§V, .V§Y). (Note that in all the examples we use here the above
intersection is not empty.)

To counstruct the branch curve € € ¥ we start. with a singular s-symumetric
curve C € Y, given by an equation f = 0, and perturb it to the curve C
given by f + ¢t = 0; here f and /h are Liomogeneous real bi-degree (4,4)
polynomials either both s-symmetric or both s-skew-symmetric and ¢ is a
small real parameter. All the facts necessary to construct a perturbaiion and
to control its topology can be found in [KhiD, Sect. 4].

8.2. The distributions of 2ViUAS. 1t suflices to construct the distributions
{aSYU {2V] U LS} and {V) UaSTU {Vi UbS} with (a,b) = (1,3), (2,2), or
(3, 1); the rest is constracted in [KhD]. We start with the ellipsoid ¥ given by
xi = xi + x4+ 3 and the singular curve = C U Cy, where Gy and C» are
cut. on ¥ by x3 = 0 and 2(x3 — x3) = xj respectively (see Fig. 2(a}, which
represents the two halves of Y, which are both topological spheres, and C.
The two black dots in each figure are the fixed poiuts of the restriction of s
to the correspouding half.) To perturb C' we take for i the equation of a bi-
degree (4,4) s-synunetric real curve which intersects the two real halves of C
at. etght poiuts (the ramification poinis); all these points must be outside of
the ovals of C and different. from the fixed points of s. Then, under a proper
clioice of the sign of ¢, the portions of the real part of (:'1 whiclh are either instde
the ovals of C; or hetween pairs of the ramification points double, and the rest
of C disappears (see, e, Fig. 2(b), which corresponds to the distribution
{35} U {2V4 U 5}, to obtain the other distributions note that one or both the
ovals surrounding the fixed points can be moved to the ‘left hand’ half, and the
pair of sinall ovals can be moved to the ‘right hand’ half). If the exposition is
chosen so that .\',g") covers the interior of the two ovals surrounding the fixed
points of s, then these two ovals produce the V| components of Eg; the other
pairs of symunetric ovals produce spheres.

8.3. The distributions of 2V, 045, The distributions constructed here are
{VaUaShu {VouhbS} for all («, b) except (0,0), (4,0), (2,2), aud (0,4). (The
first exception is fonnd in [KhD], the others, in [N2], see the remark at the end
of 2.3.) Let ¥ be the hyperboloid xf = wi+r3—w3, and let C = CUCy, where
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(a)

FIGURE 2

C, and Cy are given, respectively, by x2 = 0 and (223 — 73)% = e(z? + =3)
for some small real € > 0 (see Fig. 3(a), which represents the projections
of the affine part xy # 0 of )']é” and }';3(2' to the planes (zy : # : r3) and
(zo @ x) @ ixa) respectively; note that the right half of C coincides with the
visible counter of Y§*!). The s-symmetric real perturbative term is chosen
so that its zero set does not iutersect the right half of C\ and intersects its
left. half at 4(a — 1) points, « = 1.2,3, located close to the fixed points of s.
Under a proper choice of the sight of the perturbation, the right half of Cy
doubles and the ramification points generate 2(a — 1) ovals which do not
contain the fixed points of s (Fig. 3(b)). The exposition is chosen so that
the two strips containing the fixed points of s in the right half Y§*) of ¥ are
covered by X§; these two strips produce the components Vi of Eg. Thus
we obtain the distributions {Vo UeSTU{Vo ULS} witha = 1,2, 3 and b= 1.
To construct surfaces with b = 0, we replace 6'3 witl the curve given by
(23 — x2)? = e(xd — #3) for some small real € > (; this makes the two ovals
at the top of the front side (and the bottom of the back side) of Fig. 3(a)
and (b) disappear.

Uu

(a) (b)
FIGURE 3

8.4. The distributions of ViUV, ULS. Tt suffices to construct the distri-
butions {VaU Vi UaSPU{bS} and {VaUaSTU{ViULS} with2< a+b< 4
and « 2 L; the rest is foumd in [KhD]. (In fact, liere we also cover the case
1 € a+b < 3) Let us start with a quartic Q@ C Bp® with (k + 1) real
components, 1 < & < 3, obtained by perturbing the union of two conics (see
Figure 4; in urrler to reduce the munber of real components one should change
the pertnrbation so that two or three upper ovals form a single oval). Pick an
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oval O (the lowest one in Figure 4) and denote by L the double tangent to O
and by L., 0 € ¢ € &, another tangent, which together with L separates in
the real projective plane O from a other ovals of Q.

2(k — a) ovals

FIGURE 4 FIGURE 5

We make use of the following technical result, whose proof we postpone to
the end of this section.

8.4.1. Lemuna. The union LUL, can he perturhed to an irreducible conic K
witich is still tangent to O at three points, has no other real intersection points
with (2, and such that O is in the onter part of the oval of K.

Let K be the conic given by the lemma. Consider the donble cover ¥
of the projective plane branched over K. Denote by § the deck translation
involution, by A its fixed point set. (which projects to K, and by Q the pull-
back of Q. Due to 5 (cf. 8.1), each of ¥, Q and K has two real halves. }-"L{l) is
the hyperboloid shown in Figure 5: Q-g” lias a component (the pull-back of Q)
with three nondegenerate double points i [;']g” and (k& —a) pairs of symmetric
ovals. The other half ¥§*) is an ellipsoid in which Q§ has « pairs of ovals
disjoint. from K§*). Now (¥, s) is obtained from (Y, 5) by the following real
s-symunetric biratioual translormarion: we Llow up the three singular points
of @ and then blow down the proper transforns of A and the two generatrices
Gy, Gy of ¥ throngh one of the singular points (more precisely, through the
singular point whose image in B p? is close to the tangency point of L, and O).
Let C be the trausforin of Q. It is easy to see that CS) cousists of a large
oval O (the transform of the singnlar component) surrounding (& — a) pairs of
symimetric ovals and three isolated double points: one (the inage of K} is fixed
under s, and the two others (the images of (71, (72} ave synunetric. The other
half Cj',g“') consists af ¢ pairs of ovals and aun isolated double point (the image
of K). All the ovals but. @ are not. nested and do not. surround the singular
points of C. Finally, we pertuth o oa nonsingular symmetric curve ¢
{see 4.3.1 tn {KhD]); the fixed double point, which produces the ¥y component.
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of the resulting Enrigues surface, can be made to pop up in either side, and
the two syuunetric double points may either form a pair of symnetric ovals or
disappear. Tlns, the distributions obtained are {VaU ViU (k—a+£)S}u{aS}
and {VaU (k —a+¢)S}U{V, UaS}, where e =0, 1.

Proaf of Lemma 8.4.1. Given an imaginary point u € @, define an invo-
lution p, of a Zariski open subset of the syiunetric power S3Q in the fol-
lowing way: for a generic triple (z,x2,r3) € S3Q there is a unique conic
through u, @i, :xy, &y, w3, it intersects @ at three more points yy, y2, y3, and we
let. p (@, 20, 23) = (y1, 42, y3). Clearly, the above conic is tangent to Q at
xy, w9, 0y il and only if (xy,xy, 2:3) is & fixed point of p,.

Denote by ay,ay, a3 the three tangency points of LU L, and Q, and by v
one of the two imaginary intersection points of L, and Q. Then the graph T,
of pr, intersects the diagonal A C $3Q x S3Q at a = (uy, aa, a3} x (a1, az, aa)
transversally. (Note that $3Q is smooth at this point.) Indeed, let pi, ps be
the two projections. S?Q x S*Q — S3Q, and let ¢; be some real generators of
the tangent spaces T, Q, which we regard as basis vectors of i, ay.u0)5°Q.
Then T, A is spanned by ple; + pieq, 1 = 1,2,3, and T,y 1s spanned by
e+ ogphe, = 1,2, 3, with some real o < 0. (To see that, one can move
one point at a time; then the conte is still reducible, and it s easy to estimate
the tangent vectors.) Thus, for any other point v close to » the graph of p,
also has a unique (and hence real) intersection point with A close to «, lLe.,
there is a real conic K through »' tangent to Q at three real points close
to ay, ay, aq. I the line (#'%') is not tangent to @, this conic is irreducible.
Finally, to control the topology (actually, 1o chioose one of the two possible
real directions of the perturbation), just note that A" lias no real intersection
points with (#'#'); hence, this line lies outside of the oval of K, and if v/ is
chosen so that (v'1) intersects O at. two real points, then O is also outside. O

Remark. The involution utilized in the proof is similar to that from [GH,
Sect. T}, where it is used for a similar pnrpose. It also seems possible to apply
Shustin’s approach [Sh).

APPENDIX A
VIRO HOMOMORPHISMS AND SMITH EXACT SEQUENCE
A.1l. Viro homowmorphisms and differentials. Recall that the Smith ez-
act sequence of a Z/2-space (Y, ¢} is the exact sequence
- a . -
e Uy (Y Fixe) 2 1 (Fixe) e H, (Y, Fixe) —
i, 41 -
—— H,(Y)

refe or,

Hp(Y', Fixc) —,

where Y/ = Y/e ix the orbit space, in: Fixe — ¥ is the inclusion, pr: ¥ —
Y is the projection, tr: H (Y, Fixe) — Hu(Y) is the transfer map, and
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rel: H, (Y'Y — H.(Y’, Fixc) is the relativization map. The connecting homo-
morphism A is defined as follows. Given a relative cycle ¥ in (Y, Fixc), Nift
it to a chain y in ¥. Then dy = dy + tr = for some cycle = (Y, Fixe), and
welet Ay =y & =

Viro homomorphisms and the ditferentials of Kalinin’s spectral sequence
are incorporated in the Smith exact sequence. To extract them, one should
regard both dj and by, as additive relations (i.e., partial many-valued homo-
morphisms) H,(Y) — Hppr—1(Y) and H.(Fixe) — Hp(Y'), and cousider the
relation A~': H,(Fixe) d H,(Y', Fixe) — Hpp1 (Y, Fixc) inverse to A (see,
e.g., [McL] for the notion of additive relation and its properties).

A.1.1. Proposition. The differentials of Kaliuin's spectral sequence and Vi-
ro homormorphisms, regarded as additive relations d: Hp(Y) — Hpyr 1Y)
and bv,: Ho(Fixe) — H,(Y') respectively, are given by

rI; = trpgeat o(A™H"" e pr, and
‘ i
l)"f'(Ziél' &) =iyt g,

where, in the latter equation, x; € Hi(Fixc) and yf, € H),(Y', Fixc) is defined
recursively via yy =0, i, = A7 x o i) € Hip (Y, Fixe).

Proof. To prove the first assertion, pick a cycle x, tn ¥ and consider some
cycles ¥t in (Y, Fixe), p €1 < p+r = 1, representing the iterated pull-backs
(A=Y =P (0@ prx,). By the definition of A, for i > p one gets dy! = 0 and
there are some chains 3 in ¥ such that pry; = 3 and @y = tryo) for i > p.
Now, replacing each g} with y and using thefact that tropr = 1 + ¢., one
obtains the definition of dj, given in 5.1.1.

The second assertion is proved similarly: we start with a sequence of cy-
cles x; in Fixe, 0 € 1 € p, choose relative cycles 3t in (Y7, Fixc¢) so that
Ayipy = =i yi, and lift them to chains y in Y5 this gives the definition
of by, given in 5.2.1. 3

A.2. Whitehead (semi-exact) triplos. According to Proposition A.2.1
the relations troA~="*! o pr form a sequence of differential relations in the
sense of Puppe, see [P], which generates Kalinin’s spectral sequence. Thus
the latter can be derived from the Smith exact sequence. Below, in A3, we
describe this derived spectral sequence in a direct way. For this purpose,
we need a slight modification of the imachinery of exact couples (see [Ma] or
[McL]). Some elenients of this madification are contained in {Wh].

A.2.1. Dufinition. A Whitchead (semi-czact) triple ¢ = (H, D, Do, 8, %)
is a triangle
C: I
;’/ \"?
b ——— D
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of abelian groups and homomorphisms which is exact at. D and D and such
that (1) D is a subgroup of D, and (2) yo /i = 0.
The homology yroup of € is H(C) = Kery/Im 3.

Given such a C, one can define the derined triple C' = (H', D', D'; o, ', %)
as follows. Consider d = Joy: f — H and let H' = Kerd/ lind, D' =Ima,
and D' = D'ND. The new maps o’ and 7' are induced by a and v respectively,
and A" is given by ' = foa~! (in the sense that g'd’ = Bd, where d' = «d).

A.2.2. Proposition. The derived triple of a Whitehead triple is well defined
and Is a Whitehead triple. There is an exact seqnence

0 — D'/D — D/D — H({') — H({C) — 0,
where the middle homomorphismi D/ D — H(C') is induced by B, and the

others are the natural projections.

Proof. Both the assertions can be proved by diagram chasing in the ini-
tial Whitehead triangle. (The exact sequence in question is, in fact, the

Ker — Coker sequence for D «— D 2 Ker y.) O

Due to A.2.2, starting with a Whitehead triple € = C', one can define the
sequence C" = (€'~ 1)’ of derived triples and, as usual, its limit,

ce: H™
;.1"":()/ \-y"‘
which is still a Whitehead triple with g™ = 0 and «™ onto. The terms H"
of €' and differentials d": " — H" defined above form a spectral sequence,

which converges to H™. From the second part of A.2.2 it. follows that there
are two filtrations

HIC™®)YD H D H' D> - | where H' = Ker[H(C™) — H(C"Y)], and
D/D=F"DF' 5. | where F' = Im[Dr+1/ DMt — D/ D),

and the isomorphisims
Fre 2 e
induced by #r*! establish an isomorplhism of the associated graded groups

Grg[(D/DY/(D™ ) D™)) == Grjy Ker[H{C™) — H(C)).
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Remark. Note that, in general, Y # H(C™) and N30 Hr £0.

A.2.3. Proposition. Let ¢ be an exact triple (i.e., H(C) = 0) with nilpo-
tent « (i.e., there is a positive integer n such that o™y = 0 on all the ele-
ments y € D on which it is well defined). Then there are finite filtrations
0=sF"tc...cFlCcF' =D/Dand0=HA"*' C...C H' C H" = H™
and an isomorphism Gr(D/D) 2 Gry, H™ of the associated graded gronps.

Proof. By the liypotlesis, 0™ is identically zero on D™. Thus D*+! =Dt =
0 and y**! = 0; hence, C™ = "+ and H(C™) = H™ = H"! = H(C"**),
and, in particular, H*+t! = 0. Besides, H(C) = 0, and thus #" = H~. O

A.3. The spectral sequence derived from the Smith exact sequence.
Given a Z/2-space (Y, ¢), its Smith exact sequence obviously forms an exact
triple
H.A(Y)
in.t Lr/ \l‘e|e pr,

H.(Fixe) e H.(Y' Fixe) = H.(Y'; Fixe).

If both Y and Fix e have homotopy type of finite dimensional cell complex-
es, their homology are graded groups with degree bounded from both above
and below, and A, being a map of degree —1, is nilpotent. Hence, accord-
ing to Proposition A.2.3, one abtains a spectral sequence H! = H (V) =
H.(Fixc). Instead of the nonhomogeneons filiration FP and Viro homomor-
phisius by, FP — H Proposition A.2.3 provides the honiogeneous filtra-
tions _F;’,' on f(Fixe) and H"" on H and isomorphisms ) : f;’/ﬁi‘“ —
H?ﬂ*”ﬁ# :

Let FP be the image of F4H 0 He (Fixe) in F4¥r/Fetrdl s For p fixed
the groups Fi_; form a filtration on F7/F'+! and simple comparing Propo-

r=i
sition A.L.1 and definitions in A.2 gives the following result:

A.3.1. Proposition. The above spectral sequence coincides with Kalinin's
. . P
spectral sequence HU(Y), p 2 L. and there are isomarphisms Fl /.F"';fl =

f;’/f,’,"“ which make the following diagram comunnite:

by . -
P~ tad] q+r Iz r+1
'Fv /j:sr—l ”-:+:-/Hq+r
=] I

TP Endl ”": T rptl

FUIFIY YD ——= HIJHE,

Remark. In particular, Proposition A.3.1 gives an alternative proof of the
fact that Viro homomaorphisms induce isommorphisims of the associated graded
groups.
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Remark, Note that, like HY(Y) and o), the Viro homomorphisms and fil-
tration F* can be derived algebraically from the Smith exact sequence {cf.
Proposition A.1.1). To do that one can use the following properties of the
original exact triple: £, D, and D are graded groups with bounded degree;
B and vy are homomorphisins of degree 0; v is a homnomorphism of degree —1;
and D is represented as a direct sum D = D& (D/D).

APPENDIX B. INALININ'S INTERSECTION FORM

B.1. The local case. Kalinin’s spectral sequence aud, in particular, Viro
homomorphisins admit an obvious relative version. We make use of such a
version to do some calculations in a neighborhood of the fixed point set. Then,
in the next subsection, we apply the result. obtained to establish {in the global
case) a relation between Kalinin's intersection formn («, b) +— (bv. a o by, b},
a,b € H.(F) and the Poincaré intersection form (&, y) — zoy, x,y € H.(F),
see Theorem B.2.1..

B.1.1. Lemnna. Let v he au m-ditnensional vector humdle over a finite cell
complex F, and let T and IT he the associated disk and sphere bundles,
respectively, supplied with the antipodal involution. Then the homology fil-
tration F* associated with KNalinin's spectral sequence of (T, dT) is given by
Fmre = w(w)" ' N Hy (F), where w(v) = | 4w (v) 4+ wa(v) 4 ... s the total
Stiefel-Whitney class of v.

Proof. Given a topological space Y with involution ¢: ¥ — ¥ and an inte-
ger &k, 0 € & € 0o, denote by Y, the twisted product

(B.1.2) Y = Y 5 S5 /{{0 %) ~ (e, 98) ),

where ¢: 5% — S* is the antipodal involution on the standard sphere S*.
It. is clear (see, e.g., [D]) that T} and (JT); are, respectively, the disk and
the sphere bundles associated with v &y over Fi = F x Rp*, where 3 is the
tautological linear bundle over Bpf. Let 4i; € H;{Rp*) be the generators. (We
let iy = 0 fori < Oor > 4&.) In [D] it is shown that a snfficient condition for a
class 3 i, oy € H:(F), to belong to Fy is that the image of S @hg_1oiin
Ha_1(Ty, 0T;) under the inclusion map H.(F,) — H.(T,, dT,) should vanish.
(In [D] only the absolute case is considered, but the proof works in the relative
case withont any change.) The wnclision map H.(Fy) — H.(T,, 9T,) is equal
to the composition of the multiplication by w,, (v 2 ) = 3 w;(¢) @A™ and
Thom isomorplism, and spetling out the product w, (@) N3 2 @ hgo
and taking into account the coefficients of those of i; which are not identically
zero in {_(BpY¥} shows that the above safficient condition is equivalent to
w(v) N Y w; € Hyyou(F), ie, 3w € wlv) ' N Hyyo(F). A priori, the
sihgroup obtained is only a portion of F?, bhut comparing the diinensions
shows that, in lact, these two subgroups coincide. O
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B.1.3. Covollarvy. Let F, v, T, and dT be as in Lemma B.1.1, and let
th: Hoyu (T, 0T} — H(F) be the Thom isomorphism. Then for any class
a € Hy(F) one has bv g (0=t (v) Na) = th ™ a.

Proof. The result. has actually been proved for the case when F is a ¢-
dimensional polyliedron with f{ (F) = Z/2, and « is the generator of the
latter group: in this case w1 () N« is the only nontrivial element in F9+™,
th™" « is the only nontrivial elenient in Hyem (T,0T), and bvyg,, : F4tm —
Hoym (T, 0T) is an isomorphisin. In general, one can find a simgular ¢-
dimensional polylhedron f: P — F with H (P) geuerated by a single ele-
ment. [P] so that @ = f.[P]. The result follows then from the naturality
of bv. and th. O

B.2. The global casec.

B.2.1. Theoremn. Let Y De a smooth closed N-dimensional manifold with
a smooth involution ¢: Y — Y, and let F' = Fixe he the fixed point set of c.
Then for any two classes « € F' and b € F? one has

w(v)N{aob) g Frie-N

and
bypaobvyh="hv, ,_~[w(v)n(uob)]

where w(v) is the total Stiefel-Whituey class of the normal bundle v of F
inYy.
First, let us prove the following lennna:

B.2.2. Lemma. Let Y, ¢, and F be as above. Denote by Dy : H*(Y) —
HAY) and Dp: [H7(F) — H(F) the Poincaré duality maps in Y and F
respectively, and Ly D.: H*(F) — H.(F)} the map o — o N (w™(v) N [F}).
The:

(1) D. induces isomorphisms Fa_, — FT

(2) given z € F,, one has Iw'\"-"'(D,',l bv,2) = D7'e mod Fy_poy.

Proof. From the naturality of Kalinin’s spectral sequence and Corollary B.1.3
it. follows that the only nontrivial element of F¥ is w=!(v) N [F] and, hence,
[Y] = byvy(w=Yw) O [F]). Thus, D. is the multiplication by the generator
of FN; hence, it maps Fy_, to F*. Furthermore, D, is an isomorphism (as
composition of Poincaré duality and multiplication by an invertible element),
and comparing the dimensions shows that so is its restriction to Fy_, — FP.
(Recall that dimFy., = dim F? due to 5.3.1 and 5.3.2.)

From tlie above it {ollows that D,.I:VN"’(DF1 bv, #) € Fp,, aud oune has
(see 5.3.1(4)):

by, (D v (DT vy 2)) = Dyt v, 2 0 [Y] = by,
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since Ker bv, = F+1 this gives D. bvN-"(D;l bv, ) =& mod Fr+!. O

Proof of Theorem B.2.1. By the definition, w(v)N(eob) = DIl'anb €
Fn-p NFIC FPH=N aud adirect calculation nsing Lemma B.2.2 (2) shows
that bv,y4,-n (D7 tanb) = Dyt bvyan bvgb =bvyaobvyt O

We wounld like to also mention the following imimnediate consequence of B.1.1
and B.1.3:

B.2.3. Proposition. Let Y, ¢, F, and v be as in Theorem B.2. Pick a coin-
ponent I; C F of dimension (N —m), and denote by in;: F; — Y the inclusion.
Then FINH.(F) Cw™ ' (v) N Hyqo(F), and for any class a € F9 one has
in; bvga = [w(v) NV algem |F. , where in' iy the inverse Hopf homomorphism and
[-lg=m stands for the (¢ — m)-dimensional commponent of a nonhomogeneous
homology class.

Proof. The first statement. follows [rom the naturality of the filtration and
Lemma B.1.1 applied to v|g,. To prove the second one just note that in} is the
composition of the relativization homomorphisin Ho (Y} — H(T;, dT;) and
Tlhom isomorplism H (T, 0T:) — H,- . (F;), and apply Corollary B.2.2. 0O

APPENDIX C.
VIRO MOMOMORPIISMS AND STEENROD OPERATIONS

Let Y be a good topological space (see the first. paragraph of Section 5)
with an involution c.

Recall the original construction of Kalinin's spectral sequence (see [Ka]
or [D] for details). Consider the tibration Y., — Bp™ = % /u (see B.1.2 for
the definition of ¥,) aud its Borel-Serre spectral sequence H!, = H.(Y) ®
H.(Bp™) = H.(YS). For q big enough, the cap-product by the generator h €
HY(Rp™) defines isomorphisms H)) o — H and Hyp(Yoo) — Hy(Yo)), see
[Ba]. Furthermore, the composition of the Kunneth formula and the homo-
morphism induced by the inclusion (Fixc)a, = Fixe x Bp™ « Y., defines an
isomorphism H(Yw) = H.(Fixc), loc. ¢if. By definition, Kahnin’s spectral
sequence is the stabilization H(Y) = lin /], = H.(Fixc) = lim H (Yo ).

Since in this paper we are mainly dealing with homology groups, let us
consider homology Steenrod operations Sq,: (YY) — H,_ (Y}, which, at
least when ¥ has finite homology in each dimension, are just dual to the
cohomology Steenrod squares Sq': HP=H(Y) — HI(Y) (see [SE] for details).

As it is known (see, for example, [MceC, Theorem 6.10]), the Borel-Serre
spectral sequence H, (Y ) H(Bp™) = I.(Y~) respects Steenrod operations:

C.1. Lemma. In the Borel-Scire spectral sequence H.(Y) @ H(Bp™) =
H.(Ya,), there are some natural homomorphisms (homology Steenrod opera-
tions) Sq,: H. . — H 12 0. so that

- - -,

(1) Sq, conumnute with the differentials, Le., Sq,od” = d" o Sqyy;
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(2) for each r > 1 the operations on H!}! coincide with those induced
hy Sq, on HI, via (1);

(3) the operations on H!, = H.(Y)® H.(Rp™) are defined hy the Steen-
rod aperations on Y via Sq (e @ hy) = Sqp ¢ @ by,

{4) Sq, converge to the Steenrod operations in Y.

C.2. Definition. Given = € H,(Y) and t 2> 0, define the weighed Steenrod
operation Squo = E"Si$¢ (f:_-jg') Sq; &, where P > p+1 is a power of 2. (The

binomial coefficients do not. depend on P, see, e.g., Lemma 1.2.6 in [SE].}

C.3. Theorem. The Steenrod operations naturally descend to HF(Y) so
that for any x € FP and t 2 0 one has Sq, bvp, @ = by, _, Sq,r.

Proof. Pick some P > 1+ dimY which is a power of 2. Since H  does

not depend on ¢ 3» 0, one can replace the stabilization homomorphisms

. r gr . £ r — I3 Shiely e ; s .
Nh: H1{.<1+1 — H, with n‘h : H,-,q+P_ HY,, which commute with :Sq, and,
hence, induce some operation on H7(¥'). (Indeed, under the assumption on P
one has S ¥ =0 for 1 € j < ¢, and Cartan forimla applies.) The induced
operation depencs on the initial vow; if one starts with Sq,: Hip — H]_, p,
it obvionsly coincides with that induced by Sq,: H,(Y) — H,.—(Y).

Since S¢j, is natural, it only remains to evaluate it on, say, Hp(Fixc)a, =
Hp(FixexRp™). Forau element x®hp_,, & € H,(Fixe), the Cartan forinula
gives

. . ) T yPepy o
Sape =P ggiq S4GaDSa_jhpop = Yoeic (;__,!) S & @ hpopt4,

and, after dropping the h factors, one obtains ‘::[,.r a
Applying the last result to the Bockstein homomorphism Sq, gives:

C.4. Corvollary. For any class « = Z‘-g,, w; € FP one has

Seqy by, (E;g,- ;) = vy (z.‘g,. Say#i+ 50 Tpenj)-

C.3. Covollavy. If p = 2, then (see the notation in 5.4) Sq, bv,[C] =
bvy wy (C3) and Sqp bva{o + (= Gy} = byvy o

Renark, Tn general, HX2(Y) Is a subquaotient. group of Hy. (Y). It is a
subgroup, Corollary C.4 allows to find all the classes in H > (Y') which have an
integral representative. For exainple, this applies when p = 2, Y is conuected,
and c. acts trivially on Hy(Y).
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APPENDIX D.
‘(FENERALIZED ENRIQUES SURFACES’ WITH wy(E) = 0

In this section we assume that E satisfies all the axioms of generalized
Euriques surfaces (see 1.2) except the requirement ws(E) # 0, i.e., £ is the
orbit space of a generalized Kid-surface X by a fixed point free holomorphic
involution 7: X' — X, and wy(£) = 0. As in the case wy # 0, the components
of Ex may be of one of the types 5,, V,, or T, (see 1.3). Note that Ex has
no nonorientable components of odd genus (i.e., Vag4a}, as the fundamental
class of such a component. wonld have square 1.

Obviously, all the results of Sections 4 and 6, with ‘w.(E)’ replaced with
‘generator of Torsy Ha(£;Z)’, are still valid for this class of surfaces.

D.1. Swrfaces with nonorvieutable real part. Below, for brevity, we say
that Ex or E§) is of type [ if its fundamental class belongs to the image of
Torsy Ho(E, Z) in Ho(E).

D.1.1. Theorem {(cf. Theorem 2.1.2). If Eg is nonorientable, then Eg con-
sists of a single half and the restriction Na — Ep of the projection N\ — E
is the orientatiou double covering (i.e., there is no components of type T,).
Besides, E is an (M — d)-surface, d 2 2, and

(1) ifd =2, then y(Eg) = a(E) (mod 16) aud Eg is of type i,

(2) if d =3, then x(Eg) = a(E) £ 2 {mod 16},

() ifd =4 and y(Eg) = o(E)+ 8 (mod 16), then Eg is of type [,

Proof. Pick a nonorientable component. ¢!y C E§Y and a disorienting cycle
o e H{C). It Eg‘” # O, say, Eg“ D Cy, then [bvy(n +{(C, = Cuo))]P=1. IT
there is an orientable component Cy and a class § € H (C3) which does not
vanish in 1 (E), then [bva(a + /4)]* = 1. ln both the cases we constructed
a class w € H(E) with =% = 1; this contradicts to the assumption that
wa(£) = 0.

From Corollary C.5 it. follows that, under the hypotheses of the theorem,
bvy x can be represented by an integral cycle for any & € F2. Indeed, since
Egr has only one half, there are no classes of the form bva{a + (C; = Cj)),
and, since wu(E) = 0, each nonorientable component € of Ex is of even
genus (otherwise one wonld have (hvo[(5])? = 1); hence, bvy w(Ci) = 0,
and C.5 applies. Thus, H5°(E) is a subquotient. of H{H4(E;Z)), and, since
H4(E) does have nonintegral classex, disn'D™ < o (see Lemma 5.1.2 for the
definition of D~). Due to the (inod 2)-congruence (Letmma 5.1.2) it must be
dim D™ = o — 2, and the rest of the proof repeats that of Theorem 2.2.1. O

D.2. Surfaces with oricntable real part.

D.2.1. Theovem (ef. Theorems 2.1.2 and 2.2.1). If E is an (M — d)-surface
with orientalde real parct aund either Ex Js trivially covered by Xg (i.e., there
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is no compounents of type T,) or Er consists of a single half, then d 2 2 and

(1) ifd =2, then y(ER) = a(E) (mod 16) and Eg is of type [;
(2) ifd =3, then x(Er) = a(£) £ 2 (mod 16);
(3) ifd =4 aud y(E3) = o(E)+ 8 (mod L6}, then Eg is of type 1.

D.2.2. Theovem (cf. Theorem 2.2.2). Let £ he an (M — 3)-surface with
Em = k5. Then Eg = {4pS} U {{4dq + 1)5}, hoth the halves being nonempty
unless k=1 {mod 8).

D.2.3. Theovem (cf. Theorem 2.2.3). Let Eg = T, ULS. Suppose that E is
an (M — d)-surface and y(Er) = a(E) +28 (mod 16). Then for all the values
of (d, 8) listed in Table 1 in 2.2 one has Eg = {T, WV S}u{k(N)S), where k(%)
(mod 4) is given in the table and k3! £ 0 with the possible exception of the
case d = 2, 6 =0, En Is of type |. Besides, there are the following additional
restrictions:

(1) ifd =0, then hoth the halves {as well as Eg itsell) are of type I;

(2) ifd =0, then &) # 0 unless k& =0 (mod 8);

(3) ifd =1 and kY = 0, then either k = 6 (mod 8), or k = 0 (mod 4)

and B is of type 1.

Proaf of Theorems D.2.1, D.2.2, and D.2.3 repeats that of Theorems 2.2.1,
2.2.2, and 2.2.3 respectively and is based on the modification of Lemmas 6.2
and 0.1 given below (Lemmas D.2.4 audd D.2.5 respectively). O

D.2.4. Lemma. There s at least one and at inost two relations hetween the
images of the components of [Eg] in H(E)/"Torsy Ho(E;Z). One relation
is [Ea] = 0; the only other possible relation is [E$D) = [E)] = 0.

Proaf. The relation [Eg] = 0 follows from Lenina 5.4.1. An eletnent vanishes
in H2(E)/ Torse Ho(E; Z) it and only if it annililates all the integral classes
in H5°(E), e, all the classes except bva{a + (C; = C;))} with by {Ci = ) =
bvy v # 0 (see Corollary C.5). If bvo[Cy]+- - = Uis arelation, ¢, C E&l), and
there is another compounent Dy C Eg), then bvy(Cy = D)o (bvo[Ch]+... ) = L,
which is a contradiction. O

D.2.5. Lemma, Let £ he an (M — d)-surface with orientable real part,
and let D™ he the discriminant form of the sullattice of conj-skew-invariant
vectors i Ho(E;Z)/ Tors. Then:
d = dim'D™ if Eg has a component. T, and both the halves are nonempty;
d=2+dnn'D il either
(1) Ea has a component T, and one of the halves Is etnpty, or
(2) Ea has no compoucnts T, aud bhoth the halves are nonempty,
d=2+dmD™ ard +dim D™ if By lias no components T, and one of the
halves is empty.
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Proof 1s essentially the same as that of Lemma 6.1, with Lemmas 6.3.3
and 6.3.4 replaced with the following statements (where the first one follows
from Corollary C.5, and the secoud one is obvious):

D.2.6. En beiug orientable, Torss Hy(E; Z) does not vanish in HSC(E) (i.e.,
there is a nonintegral class in H3*(E)) if and only if Ex has a component T,
and hoth the halves are nonempty.

D.2.7. Ex bheing orientable, H{*(E) # 0 if and only if either

(1) Ew has a components Ty, or
{(2) both the halves are nonempty.

Remark. Probably, one can enforce Theorem D.2.3 taking iuto account the
class represeuted by the component T,
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