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Introduction

The Schottky problem is the problem of characterizing the Jaco­

bians of algebraic curves among' all principally polarized abelian

varieties. The three most successful approaches to this problem are

associated with the names of Schottky-Jung, Andreotti-Mayer, and
. .

Novikov. The special properties used to characterize Jacobians are,

respectively, the existence of Prym varieties, the large singular

locus of a Jacobian theta divisor, and the differential equations

satisfied by Jacobian theta functions.

The purpose of these notes 1s to describe how closely each appro­

ach is known to characterize Jacobians, and especially to relate these

three apriori independent approaches.

Novikov's approach has come the closest. The Nov1kov Conjecture,

proved by Shiota, says that an indecomposable abelian variety X 1s a

Jacobian if there are 3 translation-invariant vector fields 01'02'03

on X and a scalar d so that the theta function of X satisfies

the I1Kpll differential equation corresponding to these constants. In

some ways, though, this solution is still not satisfactory. First, it

i6 not clear how to convert the KP equation into explicit equations

.in the natural coordinates on moduli spaee, the theta nulls. Then

there i6 the question of eliminating the choices (01,02,D3 ,d) invol­

ved, and the fact that the locus we get in ~g consists of Jacobians

'9 together with all deeomposable abelian varieties. Finally, from an

algebra-geometrie point of view, Novikov's eondition may be eonsidered

to be "too strong". We discuss the differential-equations approach in

Chapter 3, and in particular we propose a stronger version (3.1) of

the Novikov Conjecture, 1.e. a weaker condition which should suffice

to characterize Jacob.ians among indecomposable abelian varieties.

The Andreotti-Mayer condition, on the other hand, is too weak.

The locus defined by it contains Jacobians as an irredueible compon­

ent, but does contain other cornponents. Beauville and Debarre have

shown that the Andreotti-Mayer locus contains Novikov's locus as weIl

as several of its variants. We diseuss this approach in general in

Chapter 1, then return to it in Chapter 4 with an analysis of the

cornponents of the Andreotti-Mayer loeus in genus ~ 5.
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The strength of the Schottky-Jung approach is somewhere in be­

tween. The conjecture 1s much stronger (i.e. the condition satisfied

by Jacobians i8 much weaker) than Novikov's, yet I am aware of no evi­

dence against it. Apreeise version of the conjecture i8 stated in

(2.11). It implies the strong version of Novikov (3.1), as weIl as the

four conjectures (2.13-2.16) of van Geemen and van der Geer, and vari­

ous analogues. Again, we first diseuse the general theory, including a

proof that Jacobians are a component of Schottky, in Chapter 2, and

then in Chapter 5 we sketch proafs of Conjecture (2.11) in genus 4

(Igusa's theorem) and genus 5.

These notes evolved fram lecture series which I gave at the CIME

meeting in Montecatini and at UNAM in Mexico City, in the spring and

summer of 1985. The lectures included background material on moduli

spaces and their compacitifications (Satake-Baily-Borel, toroidal,

stable curves), the algebraic theory of theta functions, the theory of

Prym varieties, and the three approaches to the Schottky problem. The

original version of these notes has become much too long for the pres­

ent format; I hope it will appear in the near future as a book on the

moduli of curves and abelian varieties. The present version is more or

less an extract from the last chapters of the book.

I heartily thank Eduardo Sernesi and Felix Recillas for the invi­

tations to give the lectures which started this project, and for the

warmth of their hospital i ty . I am also grateful to the many people

with whom I discussed the Schottky problem over the years, including

Arbarello, Beauville, Clemens, Debarre, Mumford, van Geemen, van der

Geer and many others. special thanks 90 to the Max-Planck-Institut für

Mathematik which provided the perfect conditions for completing this

work, and to Karin Deutler for the excellent typing job.
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CHAPTER 0

Theta functions

We recall some notation and results from the theory of theta

functions. The' reader may prefer to skim through this introductory

chapter, or to skip it and refer to it later as needed.

The moduli space gJ of g-dimensiona1 principal1y po1arized
9

abelian varieties (ppav) is the quotient

gJ := IH Ir(l)
9 9 9

where

and

IH
9

is 5iege1'6 half space

~g:C(O symmetrie gxg complex matrix, im(O»O>,

r(l) :c Sp(2g,71)
9

is the integral symplectie group, acting on

ously. For a subgroup

rlevel c r (1)
9 9

IH
9

properly discontinu-

of finite index we have the corresponding level moduli space

9'I1evel :=
9

IH Irlevel
9 9 ,

a finite branched cover of

The action of rlevel
9

action of rlevel ~ 7l 2g on
9

1II •
9

on ~g lifts to a properly discontinuous

IH x cg, where
9

= (A B) € rlevel
'1 C D 9
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aets on:

(0.1)

•

•

by

by

by

o~ (An + B) (CO + D)-l

t(CO + D)-1

t -1 D -C
r = (-B A)·

We let ~g denote the quotient. It maps naturally to ~~evel,

and for high enough level (i.e. small enough r~evel in r g ) it gives

a universal abelian variety, i.e. the fiber over the isomorphism class

[X] is isomorphie to X. On the other hand, if (-1) € rlevel then
9

the generic fiber i5 the Kummer variety

(0.2) K ( X ) : = XI (±1) •

The level groups whieh we will encounter are:

(0.3) The principal congruence subgroup

ren) := (r € r(l) I r == 1 mod. n}.

n c: 1,2,

is non-singular) and

~(n) has quoti­
9

~(n) is a Kummer
9

--+~ (n)
9

A with a chosen basis for

n in A. For n ~ 3, the

~ (n)
9

The quotient ~(n) parametrizes ppav's
g

the finite group A of points of order
n

action of ren) i5 fixed point free (so

~(n) i6 a universal abelian variety. For
g

ent singularities and the generic fiber of

(0.4) The theta group

r(2,4) := {'f =
9

(A B) € r(2) I diag t AC == diagtBD _ 1 mod. 4}.
C D 9

This sits between r(2) and
9

family of Kummer varieties.

r(4). The universal objeet
9

is a
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(0.5) Fix a primitive vector v € Z29, and let

~r := {J € r I JV - v mod. 2},
9

~r(2,4).c (v € r(2,4) I vv d 4}
~ 9 • 9 9 - V mo. •

The corresponding moduli spaces will be denoted ~dg' ~d~2,4). Here

~~g parametrizes isomorphism classes of ppav's A € d g with a mar-

ked, non-zero point of order 2, ~ € A
2

, and ~~~2,4) has a similar

interpretation with a level (2,4)-structure and a point of order 4.

The natural coordinates on these spaces are given by the various

types of theta function. Riemann's theta function 1s

(0.6)

8(O,z) :=

For given 0, it is a section of a line bundle L = 0X(8) on the ppav

X = XO• L i5 in the principal polarization on X; taking a different

n with the same X -may causa L to be ehanged via translation by a

point of order 2 in X. The line bundle L2 therefore depends on

X € ~ alone.
9

The theta divisor e c X is given by the vanishing of 8. It is

a"theta characteristic ll , i. e. a symmetrie divisor representing the

prineipal polarization. Its translates by points of order 2 in X

are the other theta characteristics.

For E., 6 € lijg, we have the "theta functions with characteris­

tics ll :

8[~] (O,z) := l exp lri(t(n+E.)0(n+E.)+2 t (n+E.) (z+6))

n€719

(0.7)
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The space of sections HO(Xn,Lk ) is kg-dimensional, and an explicit

basis is given by the Itk-th order theta functions":

(O.S)

for ~ € (Z/kZ)g (they depend on ~ only module k).

We will make much use of the map given by the second order theta

functions

(0.9) 8 • rn x ~g ~ U
2· 9 9

(where Ug is the standard representation of the Heisenberg group, or

9
we can think of it as shorthand notation for ~2.) We also consider

the projectivized version of D
2

:

~ : rn x ~g ~ ~(U ),
9 9

called the Kummer map. From the transformation properties of 8 it

follows that ~ factors through the universal Kummer variety:

(0.10) ~
. 3:(2,4)

---+ IP (U ) •.
9 9

Two other theta maps which we will need are

a ~(2,4)
~ IP (U )

9 9

and

ß ~~(2,4) ---+ ~ (U
g

_
1

)
9

obtained by restricting )( to the O-section of
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~(2,4) ~ ~(2,4)
9 g'

respectively to the natural section (which is torsion of order 4) of

~~(2,4) ~ ~d(2,4)
9 g.

At level-oo, these maps are given explicitly by:

(0.11)

8 [E.~2ß(O) :=
E.

The entries of aare called the theta nulls. Finally, we can get rid

of the annoying level on the left, by dividing by the Galois group

G
g

(2,4) := r(1)/r(2,4)
9 9

of ",(2,4)
9

over d g , 'on the right. We get maps:

(0.12)

a : '" ~ ~(U )/G (2,4)
9 9 9

ß : ~~ ~ W(U l)/G 1(2,4).9 g- g-

(G
g

(2,4) has a natural, tlHeisenberg" action on IP (U
g

). We omit the

details. )

There 15 one basic identity relating

theta functions:

(0.13) Riernann's Quadratic Identity:

to the second-order

8(O,z+w)-8(O,z-w) = l 8 2 [a](O,z)-D 2 [a](O,w).

a€(71/271)9

Geometrically, this gives an identification of the Kummer map ~

with a"dual" map *X • For fixed x, is simply the map given by

the linear system IOx(28) I = IL2
1 on X:
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On the other hand, fix a theta characteristic 8, e.g. by choosing a

period matrix 0 for X and taking 8 as <zI8(O,z) = O}. We get a

map

X ............-+ 8 + 8x -x

where 8x means the translate of 8 by x. Riemann's Quadratic Iden­

tity can be reformulated as:

(0.14) Kummer Identification Theorem There 15 a (natural) isomorphism

IPHO
(X,Ox(28» ~ IPHO

(X,OX(28» * , which takes )( to )( *.

We mention one more property of the theta function. It satisfies

the following analogue of the heat equation:

(0.15) a8an:-:- =
~J

1 a28
2~i(1+Öij) aziaz j ·

More algebraically, this gives a natural identification of the

tangent space to moduli,

with the dual of the "quadratic differentials"
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CHAPTER 1

Andreotti-Mayer

The approach based on the singularities of 8 i5 the least suc­

cessful of the three approaches which we consider. Historically it was

the first, and conceptually it i8 the easiest, so we start with it. We

define the Andreotti-Mayer locus and sketch the proof that Jacobians

form a component. We also touch on some rather deep results of Green

and WeIters which are closely related to the Andreotti-Mayer approach

but also reappear elsewhere in these notes.

§ 1.1 8in9(81 for Jacobians

The basic property of Jacobians used in the approach of

Andreotti-Mayer is:

(1.1.) Proposition. Let 8 be the theta divisor of a Jacobian J(C)

of a curve C € ~g. Then:

Oim(8ing(8)) ~ 9 - 4.

This i5 based on Riemann' s Theorem and Riemann' s Singularity

Theorem, which say that S, 8ing(8) on a Jacobian can be described in

terms of linear systems on the underlying curve:

8ing(8)

where W~ is the subvariety of Picd(C) ~ J(C) consisting of line

bundles of degree d on C with h 0 ~ r +- 1. The well-developed

theory of linear systems on curves [ACGH] provides rnany ways to esti­

mate the dimensions of these varieties:

(1) This 1s a special case of the Existence Theorem in Brill-Noether

theröy, since for
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d = 9 - 1

p : = 9 - (r + 1) (g - d + r) ~ 9 - 2·2 = 9 - 4.

(2) An elementary argument for this special case 18 based on checking

that for any divisor

DO
= + + € sg-3cP1 ••• Pg - 3

there is a divisor

such that hOCD) ~ 2. Generically the inequality will be an equality,

so we lose only 1 dimension in mapping to Pie(C).

(3) We give another argument which introduces the very important re­

lationship of Sing(8) with quadrics of rank 4. Assume we are given

,
i.e. a double point of 8. The projectivized tangent cone ~Tf(8) 1s

thus a quadric Q. By Riemann's Singularity Theorem,

Q = U span(~(D»

D€lfl

where ~ is the canonical map of C. Q therefore contains a l-para­

meter family of linear subspaces of codimension 1 in Q, or cf co-

g-1dimension 2 in W • Therefore Q is a quadrie of rank ~ 4. Its ver-

tex is therefore a linear subspace of codimension S 4 which 1s con­

tained in T
f

(Sing (8».
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§ 1.2. TheoAndreotti-Mayer 10ei

We want to define aseries of loei

given by the property:

"A € JI~ if dim(Sing(8A» ~ k".

Ta avoid problems of 'existenee and smoothness of the universal abelian

variety ~g' we work initially at level 00, i.e. in rn g . We define:

~g := {(O,z) € ~~OO) = rngx~g/z29 I z € sing(80 )}

v : ~ ~ d(oo) = rn the natural proJ'ection.
9 9 g'

~~ := {(O,z) € ~g I dim(O,Z)v-
1

(O) ~ k} k = 0,1, ••.

Jlk := ~(~k) C d(oo) = rn
9 9 9 9
k k ' kv ~ ~ H , the restrietion of v.

9 9

By construction,
, k

is in IH but it is elearly r(l)-invari-JI g'9
ant, so it determines a locus in s4 which we also denote Jlk The

9 g.
Andreotti-Mayer locus i5 then [AM] :

Jl
g-4sdJ:= C s4 •

9 9 9

§ 1.3 Jacobians are a eornponent of Andreotti-Mayer

(1.2) Theorem [AM] is an irredueible compo~ent of ef.M •
9

,

Proposition (1.1) teIls us that , C &4~ • The idea is to show
9 9

that at a generic C € J we have an equality of tangent spaces
9
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or equivalently that the conormal spaces agree. The heat equation

gives an interpretation of quadrics in canonical space as cotangent

directions, at J(C), to ~g. with this interpretation, the conormal

to I g - becornes the space

I k (S 2HO() HO(wC~2»2 := er Wc ~

of quadrics through the canonical curve. We claim that the conormal to

~J(g is given by

a28
:= span{(az az ) I

i j f
If € Sing(8)}.

Note that I 2 (8) i5 a subspace of I 2 , by Riemann's Singularity Theo­

rem.

(1.3) Lemma Let

X be a curve in ~O
g'

X := V(X) C XO, its projection,
9

(x,f) €"X, a point.

Then the tangent cone TxX C T IH
x 9

tained in the hyperplane

to the curve x at x is con-

a8
(ao) I (x,f) = o.

(This lemma follows immediately when we differentiate 8 a10ng

X, using the vanishing

a8
8 = =az o. )

We can conclude that I 2 (8) is contained in the conormal to ~Jg

at J(C), by combining the lemma with the heat equation (0.15) and

with some sort of irreducibility assurnption, for instance it suffices

to assume:
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is precisely (g - 4)-dimensional.

is irreducible.

(These

through the

X C ,mg-4
f '-Og

Xf · )

assumptions imply that for any curve X C d~ pas~ing
9

point J(C) € 'g' and any f € sing(8c), there i8 a lift

of X passing through (J(C),f), so we can apply (1.3) to

To prove Theorem (1.2) it therefore suffices to exhibit a curve

X satisfying (Al), (A2) and:

The argument clearly breaks down

since quadrics coming fram points f
Sing(8) could give directions normal

still, we may weaken (A2) to:

without the irreduciblity (A2),

in different components cf

to different curves X in dJ .
9

(A2') For each component ............. cf Sing(8), the quadrics

span 1 2 (8).

In the original proof [AM], Andreotti and Mayer consider trigonal

curve5 c. Here (A2) fails, but (Al) and (A2') are easy: Sing(8) con­

sists of two components, each (g-4)-dimensional. One is

{L = La 0 T I La € W~_4' T = the trigonal bundle},

the other 15 its image under the involution

-1
L .........-+ Wc 0 L •

Symmetry implies that. the components span the same subspace cf 1 2 (8),

which i5 therefore all of 1 2 (8). This explicit description of

Sing(B) then allows direct verificatian of (A3), proving the theorem.

QED
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§ 1.4 Further results

It turns out th.at all three assumptions made in the proof of

Theorem (1.2) hold, at least generically. We discuss these next.

(Al) By (1.1), we know that dim(Sing(8» is always at least g - 4.

An easy dimension count shows that equality roust hold gener1cally. A

theorem of Martens [ACGH, p. 191) says that equality holds if and only

if C is non-hyperelliptic •.

(A2) The irreducibility of Sing(8) for generic C ,also follows from

Brill-Noether theory. In fact, the Fulton-Lazarsfeld Connectedness

Theorem together with Gieseker's Smoothness Theorem [ACGH, pp. 212 and

214] imply that w~ is irreducible for generic

Brill-Noether number p i5 ~1.

C whenever the

A more precise result is known in our case, when r = 1: Teixidor

[Tx] shows that w~ is irreducible except when C 1s trigonal, biel­

liptic (branched double cover of an elliptic curve) or a certain type

of eurve of genus 5.

(A3) Andreott1 and Mayer showed that 1 2 (8) = 1 2 for trigonal C,

'henee for generie C. There are several ~ther loei where the equality

ean be checked direetly, e.g. for bielliptic curves. The best result

was proved by Mark Green:

(1.4) Theorem [G] 'For any non-hyperelliptic curve C of genus

9 ~ 4, the space 1 2 of quadrics through the canonical curve ~(C)

i5 spanned by the tangent cones to 8 c at its double points, i.e.

In particular, this iroplies that 1 2 is spanned by quadrics of

rank ~ 4, since we saw in the third proof of (1.1) that tangent cones

to 8 at double points are quadrics of rank ~ 4. This also produces a

simple proof of Torelli's Theorem, in fact a recipe for recovering a

curve (not hyperelliptic, trigonal or a plane quintic) from its

Jacobian: the canonical eurve ~(C) i5 the intersection of the tan­

gent cones to . 8 at its double points.
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Next we descirbe a result of WeIters' which i8 closely related to

Green's Theorem. Given a eurve C, we define three loei in J(C):

F C : = n (D) ,
OE 128 I ,mo (D) ~ 4

F' : = n (8 U 8 )
e f€Sing (8) f -f'

Fe: = n (8f) = {a € J ( C) I a + s ing (8) C 8}.
f€Sing(8)

(1.5) Theorem (WeIters (Wel) For a curve C of genus g, the surfaee

(C - C) C J(C) i5 equal to:

(1)

(2)

(3)

Fe if

Fe ' if
F" if

C '

9 = 3 or 9 ~ 5.

9 ~ 5 and C is not trigonal

9 ~ 5.

When e is of genus 4, i t has two trigonal bundles

(possibly equal); in this ease

We observe that for non-trigonal C, (2) ~ (1), since

By Teixidor's results [Tx] on the irredueiblity of Sing(8), we can

also deduee (3) ~ (2), so the main difficulty is in proving (3).

One eonnection with Green' s Theorem i8 given by the following

weak version of (1.5), which follows from (1.4):

(1.6) Corollary (Weak vesion of WeIters' Theorem) C - C i8 a eompon­

ent of Fe (g ~ 4) and Fe' Fe (g ~ 5).

sinee cIearIy C - C i6 contained in the three loei, it suffices

to show that they are 2-dimensional at o. Green's Theorem says that
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hence set-theoretically

50 the tangent cone is the cone over C, a 5urface (and of course,

equal exactly to To(C - Cl).

The main conneetion of the two theorems i5 in the prbofs, both of

whieh make heavy use of the geornetry of the (g - 1) -st symmetrie

product sg-1c , which 1s a desingularization of 8.
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CHAPTER 2

Schottky-Jung

After reviewing some basic properties of Prym varieties, we de­

fine the Schottky loei (there are several of them: ~~ ~(big) ~)
g' 9 'g

in §2 . 2, and show that Jaeobians are in these loei. The main faet

known about these loei is that Jaeobians are actually a component; we

sketch that in §2.3, and then conelude with aseries of eonjeetures,

all of whieh fellow from what should be censidered nThe Schottky-Jung

Conj eeturen , (2. 11) •

§ 2.1 Prym varieties

The property of Jacobians used in the Schottky-Jung approach is

the existence of Prym varieties. In this section we briefly review the

definition and some basic facts about Pryms.

Consider an unramified double cover

-lT C--+C

-'er a curve C € ~g. Br Hurwitz' formula, the genus of C is 2g - 1.

For given Cr the set of double covers lT is in 1 - 1 correspon­

dence with the set

of nonzero points ~ er order 2 in J(C). There are induced maps on

Jacobians,

v* J(C) --+ J(C)

Nm J(C) ~ J(C).

abeve. The kernel of

The kernel of *v is (O,~), where ~ € J 2 (C) corresponds to lT as

Nm also has twe components which we denote
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P, P , where P C J(C) is an abelian sUbvariety, and P a translate

of P by a point of order 2. Since Nm is surjective, P is

(g - 1) -dimensional. The principal polarization on

twice a principal polarization on Pi more precisely:

induces

(2.1) Wirtinger' s Theorem (M1]

intersects P in twice a divisor

8 n P =

Riemann's theta divisor 8 C J(C)

E in the principal polarization:

2 ·';:- .

In particular, we can think of P

(P,E) € ~ l' called the Prym variety ofg-

in a natural way as a ppav,

(C,~). The assignment

gives a rnorphism of moduli spaces

eR.M -+ ~
9 g-l

called the Prym rnap.

Let J,J denote J(C), J(C) respectively, and let J', J' de­

note the respective torsers (= principal homogeneous spaces) of effec-

tive divisors in the principal polarizations of J,J. We have a pUll­
back map

17'*, :J' -t J'

and a pushforward

1T~ J' ~ {divisors in twice the principal polarization}.

(2.2) Splitting Theorem For any divisor 8 € J' in the principal po-

larization on J, the pushforward of *11' '8 splits:

*1T~(1T '(8» =8 +8~.
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(2.3) Prym-Kummer Identification Theorem (M2) Let LO
. be a line

L@2 * (We thinkbundle on C satisfying ::::: J.L 0 Wc and let L .- 1T LO·0
, .-

of LO,L as elements of J' J' respectivley.) Then:I

(1) L determines a sUbvariety

(2) Lo determines a natural

the Heisenberg group) embedding

PL C J', a translate of P.

(i.e. equivariant under the action of

(where E,8 are the natural theta divisors on P,J).

(3) The Kummer map ~P can be identified with 1T~, i.e. the following

diagram commutes:

We also rnention that the Abel-Jacobi map

,... ,...
AJ C--+J

induces an tlAbel-Pryrn" map

,...
AP C ----+ P.

While the "derivativen (Gauss rnap) of AJ i5 the canonical map, the

IP g - 2derivative of AP i5 the Pryrn-canonical map C ~

linear system Wc ~ J.L.

given by the
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§ 2.2. The Sehottky leei

At level~ , we define the SCAottky locus to be:

From the transformation properties of theta functions it follows that

16 the inverse of a locus ~~ c ~~ , defined by
9 9

rR,fJ
-1.- ß (image a).-

9

{ex,/l)
1

= '<p(O) for :hOiCe}.'<x(F) some
= € ~sd I

9 1 € X and P €of -IJ. same
2 g-l

(The last eondition ean also be interpreted as an equality of sets in

IP(U 1)/G 1:g- g-

1 I Ul(CO)with ~ := {A € X4 2X = IJ.}.) However, J g does not eome from a

loeus in ~ (equivalently, ~(CO) 18 ~r-invariant but not neeessarily
9 . 9

r(l)-invariant). We therefore have two loei in sd :
9

~(big) := {X € ~
9 9

(X,IJ.) € ~sdg for some IJ. € X2 \ O}

:= {X € sd I (X,IJ.) € ~~ for all
9 9

J.L € X
2

\ O}.

(2.4) Schottky-Jung Theorem (fSl,fSJ1,fFR1,fFl,fM211. ~:1 c ~~ .
9 9

(2.5) Corollary. :1 c ~ c ~(big).
9 9 9

The point is, or course, the existenee of Prym varieties. Both

results follow from

(2.6) Schottky-Jung Identities. For (C,IJ.) € ~j with Pryrn variety
9

P(C,IJ.), we have an equality (in ~(U l)/G 1):g- g-
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a(P(C,~» = B(J(C),~).

(This equality can be lifted to W(U 1) by being careful to chooseg-
the right level-(2,4) structure on P corresponding to a given one on

J. ~n this form (2.6) is known as the Schottky-Jung proportionality.)

This i8 just an analytic expression of the Splitting Theorem

(2.2):

*1T~(1T ' (8)) = 8 + 8
I.L

where the LHS i8 interpreted via the Kurnmer-Prym Identification Theo­

rem (2.3), and the RHS via the general Kummer Identification Theorem

(0.14) (applied to the divisor for some (any) choice of

§ 2.3 Jacobians are a component of Schottky

The title result of this ~ection was proved by van Geemen:

(2.7) Theorem [vG1J is an irreducible component of l:f •
9

In the sequel we will need a small improvement, with similar

proof:

(2.8) Theorem [D2J ~tg is an irredueible eomponent

'
9

is an irreducible component of ~~bi9).

of tfAl:f, henee
9

Both proofs are based on degeneration to the boundary of modul!

space, so let us begin with reealling the Satake-Baily-Borel compaeti­

fication

-s :> -s :> ••• :> -5
:J sd osd sd sd 19 g-1

where sd O is a point and

-s
\

-5 .....
~k·~k ~k-1 .....
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Its boundary, B, is therefore irreducible, and is just a compactifica­

tion cf JA 1. The corresponding compactifications of level modulig-
spaces have reducible boundaries. We need a more precise description

of the boundary of

Consider a corank -1 degeneration in ~~g with general fiber

(X,~), and let r.. € X
2

be the vanishing cycle (reduced mod. 2). In

terms of the Z/2Z-valued intersection pairing (= Weil pairing) on X
2

we have 3 possibilities:

I. r.. = ~

11. r.. ~ ~, (r.., ~) = 0

111. (r..,Jl) ~ o.

~s has exactly 3 irredu­
9

They are isomorphie to the'

~ ~~ ~ respective-g-l' g-l' g-l

These give (at least) 3 boundary components

(2.9) Lemma ([D21,[yG21 The boundary of

cible components, described as above.

Satake-Baily-Borel compactification of

ly.

of

The idea for proving the theorems is then to analyze the boundary

behavior of Schottky.

• trJ...J c;:;:r:rs ~ all r- . ~s1
11

• ~lti! ::n.w .- ~ ::nta· g-l g-l 9

1s the natural inelusion.

boundary of the locus of produets

The reason and aIll are in eEfS
9

is that they are the

which i9 in since

~Sl x tA l'g-



-23-

and the 1atter becomes a(Y) if (X,~) € ~~. all i8 not in this 10-

cus (since is empty!), and van Geemen shows that

The·argument is now conc1uded by an induction. For Theorem (2.7), we

need to show that the tangent cone to ,; at a point J (C) of

'g-1 C a(~;) is an irreducible component of the tangent cone to ~~

there. The latter i8 the intersection of the tangent cones to ~; at

the points (J(C),~) for ~ € J 2 \ 0, so it suffices to show the cor­

responding statement at a Jacobian point of any one of the 3 lifts

I 11 111 . Ia,a,a . van Geemen does th~s at a . The picture is as foliows:

• For. X € ~ 1 c a~s , the projectivized tangent coneg- 9
the Kummer variety K(X) := X/eil).

1s

IPT
X
~~ maps isomorphically (by the forgetful map

IPT~= ::::: K(X) •

Let X denote also the corresponding point of

~s

9

Then

to

When X = J(C), the sUbvariety

is a surface, the Abel-Jacobi image of C - C in K(X). (Ditto for

IPTJ~C)~~ C IPTJ(C)~;·)
• For any X € &4 C aIds , IPTX~gS can be cornputed by pulling

9-1 9
back T(irnage a). rt··turns out to be the base locus, in K(X), of the

linear system
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By WeIters' Theorem (1.5), this base locus i5 known when X = J(C) 18

a non-hyperelliptic Jacobian: it is again the surface C - C, except

in genus 4 when it contains additionally the point ±(To - Tl) € K(X),

where TO,T! are the g;'s on X. In any case, C - C .i8 a compon­

ent of the base locus, proving (2.7).

In proving (2.8) we do not have the freedom to switch boundary

components, so we must work at all. The map K(X) ~ w(r~o) given by

the linear system Too is then replaced by a projected Kummer map

• (p (U 2 )g-

.......
where X ~ X is the double cover determined by ~, and

'Ir • U ---+ U• g-1 g-2

i5 the natural projection onto an eigenspace. The proof requires a se­

cond "blowupll (i.e. computation of tangent cone to the tangent cone),

and is then reduced to an analogue of WeIters' Theorem, a question on

the linear system 128pI on a Prym.

§ 2.4. Conjectures

Unfortunately, ~~g does have components ether than Jacobians.

We have already noted that

lfA~g J eAgJ1 x si9-1

and more generally

~~ J~' k x sA k9 g-
k ~ 4.
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the RHS is in the closure of ~:I .)
9

For many purposes, the toroidal compactifications Sl~ [AMRT] ,

and especially Voronoi's, are more convenient than the hightly-singu-

lar ~;. In corank 1- (i.e. at generic points of the boundary compon-

ents) , a toroidal cornpactification looks like the blowup of

its boundary. We thus have

-s
Slf

9
along

and a(~t)
9

has 3 cornponents with analogous descriptions.

In the toroidal version, the symmetry of a I and a III breaks:

if we define

;:rcnt --1
'3lY' : = ß

9
(image a)

for appropriate extensions a,ß of a,ß, then ~t contains aI~t
9 9

but not alllitit The point is that ß extends to the Satake corn-g.

pactification near aI but only to the toroidal compactification near,

0 111 • (This can be seen al ready on the Prym level. The Prym map

~ : ~~ ~ ~ 1 extends to ~: ii ~ J l' where ii is a stable-
9 g- 9 g- 9

curve compactification. Its boundary cornponents a I , aIII map to

~ with 2-dimensional fibers. The extension of ~ to a I dependsg-l
only on the image po~nt in ~ (Wirtinger's reducible double cov-g-1

ers) , but the extension to a III depends on the fiber (Fay's double

covers with 2 branch points) (cf. §4.2). This implies the correspon­

ding statements for ß, since by the Schottky-Jung Identities (2.6),

ß = a 0 ~.) The upshot is that ~t contains aI~t, but 1s only gu-
9 9

aranteed to contain the zero-section of aIII~t - ~ ~ ~ over
9 g-1 g-1

a general ppav (and a surface in K(X) for X = J(C) a Jacobian, by

the previous analysis of ~).
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Finally, we will see in Chapter 5 that ~~5 eontains another eo­

mponent ~~o, the moduli space of (intermediate Jacobians of) euble

threefolds with an even point of order 2. Assembling the pieces, we

arrive at what we eonsider to be the natural formulation of the

Sehottky-Jung problem:

(2.11) Conjecture. The schottky locus equals

~ = ~ U aI~ U (~o x"J ) u
9 9 9 g-5 U i3"9-k x ~k

k~4

where denotes (Voronoi's) toroidal compactification.

(2.12) Corollary (of the conjecture). ~g ='g

(The conjectured components other than

complete fiber of ~dg ovar d g .)

do not contain a

is the only non-trivial compon­

(Of course, it is still possible

If another component of ~~ is discovered, the conjecture will
9

of course need to be modified. As van Geemen pointed out though, the

I~s 0normal direction at X €'4 to ~4 - a ~~5 along the locus ~~ of

cuble threefolds is given precisely by the difference of trigonal bun­

dIes ±(To - Tl) € K(X) [Co]. Since this is the only exception to

WeIters' Theorem,' one hapas that ~~O

ent of 5if;/ other than Jacobians.
9

that components exist which do not meet aI~tg' or meet it tangential­

ly to one of the known.components.)

In [VGvdG], van Geemen and van der Geer made (mere or less) the

following 4 conj ectures (our vers ions of (2. 13), (2 • 15) are sI ightly

strenger):

Con;ectures [vGvdGl

(2.13) The base locus of f oo in a Jacobian J(C)

C - C.

19 the surface

(2.14) The base loeus of f oo in an indecomposable non-Jacobian X

is (0).
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(2.15) The intersection Xx (X) n (image a) in a Jacobian X = J (C)

is the surface 1
"4(C - Cl·

(2.16) The interseetion xx(X) n (image a) in an indeeomposable non­

Jaeobian X i8 (0).

conjeeture (2.13), with a slight modifieation, has sinee become

WeIters' Theorem. The base loeus of f oo can also be deseribed as the

intersection

henee the analogy between the two pairs of conjectures.

(2.17) Proposition. The [vGvdGJ conjectures follow from (2.11).

Indeed, these conjectures express the fact that, at Jacobian and

non-Jaeobian points of aI~~ and aIII~;, the tangent cone to ~g

is the tangent eone to the known eomponents in the RHS of (2.11). (X

roust be assumed indeeomposable to avoid the stupid components in

(2.11) .)

By considering the behavior of we ean make ODeat

more eonjecture (recall that aII~zp
g

~~
9

is ~~ l' not all ofg- ~s1 1):g- -

(2.18)

Prym

Coojecture.

P. We have maps

Let
......
C --+ C be an unrarnified double cover with

Kummer )(p

Projected Kummer 1r 0 )( ......
J

......
J --+ ~(U l)/G l'g- g-

Then the intersection of the images is the image of S2C/ i , which maps

to K(J), K(P) by the Abel-Jacobi, Abel-Prym maps respectively.
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If we believe Conjecture (2.11) as a scheme-theoretic statement,

we get stronger versions of the conj ectures. For instance, we "blow

up" Conjectures (2.13),. (2.14) at 0: for any ppav X, let

mUltO(s) ~ 6}.

Taking fourth-order terms gives an exact sequence

so we can think of fOO/fOOO as a linear system of quartics on

g-1
~ToX ~ ~ • From (2.11) we deduce:

(2.19) Conjecture. The base locus of the linear system foO/fOOO of

IP g-1 g-1quartics in ~ IPT OX is the canonical curve 4J (C) C IP , if

X = J(C) is a Jacobian, and 1s empty if X is an indecomposable ppav

which is not a Jacobian.

The case of Jacobians follows fram WeIters' Theorem. For non­

hyperelliptic curves it gives a very explicit prescription for re­

covering a curve from its Jacobian.
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CHAPTER 3

Novikov

The theta function of a Jacobian satisfies a family cf differen­

tial equations ("KplI) which yield the best answer to the schottky pro­

blem to date. The geometrie explanation of these equations is based on

the trisecants of a Jacobian Kummer variety; we discuss this in §3.2.

Novikov's conjecture (= Shiota's Theorem), saying that an abelian

variety whose theta function satisfies KP is either a Jacobian or a

produet, is seen in § 3.1 to follow from a more general conjecture

which is in turn equivalent to Conjeeture (2.19). We conclude with a

brief description of the work of Beauville and Debarre which shows

that the Novikov locus, of ppav' s satisfying the KP equation (or

various analogues), i8 contained in the Andreotti-Mayer locus, and in

particular it contains the locus 'g of Jacobians as a component.

§ 3.1 More conjectures

Our starting point in this section 1s Conjecture (2.19), itself a

corollary of Conj ecture (2. 11). We interpret i t first in terms of

linear differential relations satisfied by the vector-valued second­

order theta function ."

whose projectivization gives the Kummer map ~, and then in terms of

non-linear differential equations satisfied by 8 itself.

(3.1) conjecture (Differential Characterization of Jacobians)

An inedecomposable ppav X is a Jacobian if and only if its seeond­

order theta function satisfies a constant-coefficient linear differ­

ential relation (i.e. polynomial in constant vector fields on X) of

the form

«D1 )4 + (lower order terms)) 8 2 (O,z) Iz=o = 0,

where 0 15 any period matrix for X

and: ~l is a constant vector field on

(i. e.

x.
n E IH

9
maps to X E gf )

9
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This conjecture is simply a reformulation of (2.19). An element

of f' = IOx(28) I i5 a linear combination of the entries of 82i it i5

in f oo if and only if all derivatives of order< 4 of this combina­

tion vanish at O. Hence all the quartics in foo/fooo vanish at some

D1 € TOX if and only if 018 2(0,0) is a linear combination cf lower

order operators applied to 8
2
'(0,0).

It is now natural to ask for the explicit form of the differen­

tial relations satisfied by Jacobian t~eta functions. since the base

locus of fOO/fooO in J(C) is the canonical curve ;(C), we know

that these equations are parametrized by C. We will find their expli­

cit form in §3.2:

(3.2) Proposition (Differential Relations for Jacobian Theta

Functions). Let 0 be aperiod matrix of a Jacobian X c J(C). Then

8 2 (0,0) satisfies precisely a one-dimensional family of inequivalent

differential relations of the form (3.1). This family is parametrized

by Ci the equation corresponding to p € C is of the form

where d 1s a scalar constant, and the constant vector fields 0
1

,

~2' D3 are determined by their va lues at AJ(p) (image of p under

Abel-Jacobi), where they span the osculating line, plane and solid to

AJ(C).

(3.3) Corollary (Novikov's Conjecture. Dubrovin's Form) An indecom­

posable ppav X is a Jacobian if and only if its second-order theta

function satisfies a differential relation of the form (3.2).

This follows imrnediately from (3.1) and (3.2). Together the con­

jectures say that if 8 2 satisfies any equation of type (3.1) then we

are on a Jacobian and the equation is of the form (3.2). Novikov' s

Conjecture has been proved by Shiota [Sh], hut (3.1) is open.

The differential relations (3.1), (3.2) satisfied at 0 by the

vector-valued 8 2 can be converted to a non-linear differential
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equation satisfied by the (scalar valued) theta function. This follows

immediately from Riemann's Quadratic Identity (0.13):

D(z + w)8(z - w) C l 8 2 [a](z) 8 2 [a](w).

a€(71/271)g

We treat ane of the variables, say w, as a constant, and apply a dif­

ferential operator to both sides, then evaluate at z = 0; this gives

a differential expression in 8(w), on the left, and on the right a

linear combination of the entries of the vector obtained"by applying

the operator to 8 2 at z = o. For instance, (3.2) becomes:

(3.4)

This is known as Hirota' s bilinear form of the KP (= Kadomtsev­

Petviashvilli) equation. The standard form of this differential equa­

tion is:

(3.5)

Direct substitution shows that (3.4) for 8 is equivalent to the KP

equation (3.5) for u:= (log 8) .xx

§3.2. Trisecants and the KP hierarchy

The Kummer variety of a Jacobian, as ernbedded in ~(U), has a
9

four-dimensional family of trisecant line5. The KP equation "(3.2),

as weIl as a whole hierarchy of equations satisfied by Jacobian theta

functions, express limiting cases cf the existance of these trise­

cants. Our presentation hare is based on ideas of Gunning, WeIters and

Arbarello-De Concini.

(3 • 6) Lemma. Let a, b, c, d be points of a curve c. The various

translates of the divisor 8 € J(C) satisfy the following inclusions:
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(3)

[9a +b - C - d U 9_a - b +C+d ) ~ [9 a - b +C - dU 9_a +b - C+d)n [9 a - b - C+dU 9_a +b +C - d )'
2 2 2 2 2 2

where the choices of halves are compatible, i.e. we fix one of the

22g values of a+b;c-d, and determine all other expressions accord­

ingly:

·a-b+c-d a+b-c-d a-b-c+d
2 := 2 - b + C, 2 .- a+b-c-d _ b + d etc

• - 2 ,.

Proof.

(1) follows from Riemann-Roch. (2) follows fram (1) by expanding

the RHS as union of four intersections: the inclusion of each in the

LHS 16 equivalent to (1), with the letters permuted, after transla­

tion. (3) 18 equivalent to (2) via translation by the fixed value of

a+b-c-d
2

QED

This lemma is classical (Mumford [M3] attributes it to Weil), hut

its interpretation via trisecants was first noticed by Fay:

(3.7) Corollary [F] For a,b,c,d € C, the three points

a+b-c-d a-b+c-d a-b-c+d
)( 2 ),)( 2 ),)( 2 )

of the Kummer are collinear. (The halves roust be eompatible as in

(3.6) (3).)

The corollary is just arestatement of (3.6) (3), using the Kummer

Identification Theorem (0.14).

We see that a Jacobian Kummer has a 4-dirnensional family of tri­

secants. The group J 2 (C) of points of order 2 acts linearlyon

~(Ug) inducing transiation on K(J2 (C», henee acts on the variety of

trisecants. Let S be the quotient. It is clear from (3.7) that S

1s bfrationally equivalent to s4 c , and an easy additional cornputation

shows that
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biregularly. Let us see what happens to a triseeant as we bring the

points a,b,e,d together:

Choose a point a E C, and write down the Taylor expansion in ~g

of the Abel-Jaeobi map near a, in terms of a coordinate t on C

near a:

(3.8)

where 01'02' ... are eonstant vectors in ~g. (We can also think of

them as translation-invariant veetor fields on J(C).)

For general a,b,e,d, (3.7) says that the 3 vectors}n U :g

8 (a+b-C-d) 8 (a-b+c-d) 8 (a-b-c+d)
2 2 '2 2 '2 2

are linearly dependent. Let us bring two of the points together, say

c ~ a. The 3 vectors become:

Next we may proceed in two different ways:

(A) Bring d ~ b. The vectors beeome

where 0i i8 the first term in the Taylor expansion of

b. (Recall that 8
2

is even, so its first derivatives at

AJ(C) near

o vanish.)

Now let us take

the coordinate at a.

b near a, corresponding to the value

Differentiating (3.8) gives.

t of
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while 8 2 (a - b) becomes

Setting this to equal a linear combination cf 8 2 (0) and D1Di82 (0)

gives an infinite seguence of differential relations obtained by equa­

ting successive powers of t to o. The leading term (coefficient cf

t 4 ) gives exactly Proposition (3.2). (03 may have to be replaced by a

linear combination of D3 and 0
1
.)

(B) In the previcus computation we brought d to b, i.e. considered

fourtuples of the form· (a,b,a,b), resulting in the trisecant becoming

a tangent line at 0 meeting K(J(C» elsewhere (at 8 2 (a - b».

Instead, we may bring d to a, i.e. consider fourtuples (a,b,a,a).

The limiting trisecants now become flexes cf the Kummer, at the point

8 2 (a;b), i.e. we obtain the· linear dependence of

Again, we obtain an infinite set cf differential relations satisfied

by 8 2 • The first of these 1s again (3.2), but the relation cf this

sequence to the ODe described above is not clear. Arbarello and

De Coneini show in [AdCl] that this sequence of equations i9 a conse­

quence of the "KP hierarchylt, an infinite systems of PDE's, starting

with (3.5), which ca~ be interpreted as an infinite-dimensional com­

pletely integrable Hamiltonian system.

The fact that Jacob!an theta functions satisfy the KP equation,

indeed the KP hierarchy, was discovered by Krichever. That led Novikov

to conjecture (3.3). Dubrovin observed in (Du] that the Hirota form

(3 • 4) cf the equations is equivalent to the differential relation

(3.2), and proved that Jacobians form a component cf the locus cf
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ppav's whose theta functions satisfy (3.2). Mulase [Mu] showed that an

indecomposable ppav whose theta function satisfies the KP hierarchy is

a Jacobian. Arbarello and De Concini showed [Adel], based on earlier

work cf Gunning and WeIters [We2], that a finite subset of this hier­

archy suffices (the equations in (B) above correspondin9 to powers of

t up to 6 9 • g! + 1). The Novikov Conj ecture i tself was proved by

Shiota [Sh]; a simplified proof i8 in [AdC2]. Various analogues have

been proposed, hut remain open. For instance, WeIters asks in [We2]

whether the existence of one trisecant of the Kummer variety forces it

to come from a curve.

§ 3.3. Andreotti-Mayer vs. Novikoy

(3.9) Theorem [BD] A € ~g is in the Andreotti-Mayer locus

it satisfies any of the following conditions:

(1) There are distinct points x,y,z € A such that

8 n 8 C 8 U 8 •z x y

if

(2).The Kummer variety

(3) 'The theta function

Cansider the map

has a trisecant.

satisfies the KP equatian (3.2).

sending a € A \ (0)

marphism

R : A \ (0) ~ Div(8)

·ta the divisor 8 n 8 a

R A--+ Div(8)

in 8. This extends to a

......
where A i8 the blowup of A at 0:

sor, corresponding to a vector field

a point in the exceptional divi­

Dl on A, goes to the divisor

{z € AI8(Z) = D18(z) = O} C 8.

The theorem of BeauviIIe and Debarre follows from:
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(3.9 bis) Theorem [BDl. Assurne A satisfies:

(0) The divisor R(a) C e -is reducible for some a € A.

Then either A € ~jg or A contains an elliptic curve E such that

E 0 a = 2.

Condition (1) implies (0) for a = z € A ~ (0). By (0.14), condi­

tion (2) is equivalent either to (1) or to a limiting form~ so it also

implies (0). Fianally, (3) irnplies (0) for a in the exceptional di­

visor, corresponding to the vector D1 in (3.2). This is immediate

from Hirota's version (3.4) of (3.2): setting 8 = D 8 = 0 we get a
1

product,

The idea for proving (3.9 bis) is that if A (~~ then 8 is
9

singular in codimension > 3, hence is locally factorial; the reducbile

R(a) is thus the suro C + C' of two effective cartier divisors in

8. These in turn come from divisors on A, and the resulting configu­

ration forces the existence of E. Finally, the existence of E can

-be ruled out assuming conditions (1), (2) or (3).
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CHAPTER 4

Andreotti-Mayer in low genus

In this chapter we present the results of [M2], [B] and [01]:

~~4' the first non-trivial Andreotti-Mayer locus, consists of '4 and

another divisor (8null > in d 4 ; ~~5 consists of '5' produets, and

Pryms of bielliptic curves. The idea is to study Sing(8) for Pryrn

varieties and their ~egenerations, and to use the dominance of the

Prym map to for 9 ~ 5.

§ 4.1 Sing(8) for a Prym

variety of

d.M l' theng-

p = P(C,~) be the Prym

the Andreotti-Mayer locus

Let

i8 in

(4.1) Theorem [M21

( C , J.L ) € ~.M • I f P
9

(C,J.L) is one of the following:

(a) hyperelliptic

(h) trigonal

(c) bielliptic (i.e. branched double cover of an elliptic curve)

(d) 9 = 5, C has a vanishing even thetanull L, and L 0 ~ i8 even

(i.e. L satisfies L~2 = wc' hO(L) = 2,hO(L ~ ~> = 0).

(e) 9 = 6, e is a plane quintic curve, and ~

(i.e. hO (J.! ~ 0e(l») is even.

The converse i8 also true. In case (a),

Jacobian,

(e) , P

(d) , P

Sing(2:)

in Ng-4
1 , or a product of two, ing-.. ~

15 a Jaeoh1an (cf. Corollary (4.12)

is not a Jaeobian, but it follows

below that P i5 still in d~ 1.g-

p is a hyperelliptic

g-3N 1. In eases (b) andg-
for (h». In cases (e),

from the description of

The starting point for the proof is Wirtinger's Theorem (2.1):

e n p = 22:.

<"V

Let C ~ C be the double cover given by J.L. After translation, we

can think of a point of P as given by a line bundle L on
<"V

C
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satisfying Nm(L) c Wc (and a parity condition). There are two ways

that L can represent a singular point of 3:

Type (1): mUltL (8) ~ 4.

Type (2): mUltL (8) = 2, and TLP C TLS.

(4.2) Lemma In any component of Sing (E)

~ 9 - 5, the generic point is of type ,( 2) •

whose dimension is

This lemma allows Mumford to ignore type (1) singularities. Type

(2) singularities can be described directly, and the question 1s

transformed to finding all curves C on which

dirn (W~) > d - 4

for same d ~ 9 - 2. By a theorem of Martens and Mumford ([M2, appen­

dix] or [ACGH, Ch. ,IV, Theorems (5. 1), (5.2)] ), this occurs only for

the exceptional curves listed in the theorem.

§ 4.2. Prym 1s proper

The Prym map

---+ gJ
g-l

[Bo], thera 1s

Ü denote the
9

extension pro-

is not proper, but can be made proper as follows. Let

stable-curve compactification of ~~g. By the universal

party of the Satake-Baily-Borel compactification ~s 1g-
an extension

ü
9

---+
-s
gJ 1·g-

We then define

the open subset

( ~~ ) to be the inverse image in9 allowable
~ 1. The resulting rnapg-

of

~allowable ---+&4g-1
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is then a proper extension of ~.

It is more interesting to interpret this extension geometrically,

i.e. ~o describe which degenerate double covers are allowable. There

are 5 "types" of boundary components: first we have the 3 components

a l , all, a lll of a~~g which are the restrictions of the correspond­

ing components of a~~g. Additionally, we have two families of boun­

dary components consisting entirely of covers of reducible base­

curves:

.ak '

where C

for 1 S k S 9 - 1, pararnetrizes double covers

is reducible:

C CI X U y
P

with Y,X cf genera k,g-k respectively, meeting transversally at
IV

p, and C i8 the double cover corresponding to a point cf order 2

J.L € J
2

(Y) \ (0).

c
• a fork,g-k '

a5 above hut J.L

1 ~ k S g - k, pararnetrizes reducible covers with

supported on both X and Y.

lt 15 quite easy to see that al , alll and a
k

11while a , ak , g-k are not. The degenerate double

("Wirtinger covers") are of the form

are allowable,

covers in al

where X € ~g-l' p,q € X, and XO,x
1

are two copies of x. The limit­

ing Prym in this case i5 just J(X). The degenerate double covers in

alll ("Beauville covers") .are of the form
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where X € ~ and X~ x is ramified at p,q. The limiting Prym
g-l J

pee/c) is just P(X/X). (Fay showed in [F] that ~he Pryms of double
/

covers with two branch points are ppav's.) A 8 k-cover is of the form

and its limiting Prym is J(X) x P(Y/Y).

This takes care of "corank 1 degenerations 11 of double covers, but

the same ideas extend to arbitrary degenerations: any stratum of ijg

i5 locally the intersection of several boundary components (some of

these components have self-~ntersection), and the result i5 allowable

iff only allowable components are involved. More explicitly:

""(4 • 3) Definition A branched double cover C ---. C of stable curves

is:

(1) A'stable Wirtinger degeneration if it i5 of the form

with X stable.

(2) An allowable reducible degeneration, if c = y U X
;Q

(where y

i5 stable, is the disjoint union of stable curves xi,

iand the glueing set E = {p }i€I contains one point in each

the corresponding cover 1s C = Xo 11 Y 11 Xl with Xo ~
120 EI

""and Y ---. Y any stable double cover.

(3) A stable Beauville degeneration if the branch points of the map
.....
X ~ X of normalizations are precisely the inverse images of the DO-

des ....
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The result i8 then:

(4.4) Theorem [Bl Astahle, branched double cover ~

lowable if and only if it i5 either

(a) astahle wirtinger,

C = XI (p ,.,. q)

c --+ C i5 al-

with X treelike (i.e. the graph of components of X is a tree); or:

•
(b) allowable reducible,

C = y U X,
E

where each connected component of X is treelike, and where

#V

Y --+ Y

is stable Beauville.

§ 4.3 Single) for generalized Pryms

Beauville has extended Mumford's analysis to allowable covers of

singular curves:

(4.5) Theorem [Bl -Consider a stable Beauville degeneration C -+ C

with Prym P = p(e/C) € ~ 1.g-

(1) If P € N~=~, C is either hyperelliptic or a union C = Co U Cl

with #(Co n Cl) = 2.

(2) If p.€ N~:1, C is either hyperelliptic or hyperelliptic with 2

points identified.
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J(g-5 CIf P € ~~ 1 = is one of the following:g- g-l'
(a) trigonal

(b) hyperelliptic wlth two points identified

(c) bielliptic, 9 ~ 6
.....

(d) 9 = 5, C has a vanishing theta null, C ~ C is even

'Ce) 9 = 6, a plane quintic with even double cover.

(f) hyperelliptic with two pairs of points identified.

(g) 9 = 5, a genus-4 curve with vanishing theta null and

with a pair of points identified.

(h) , (i) , (j), C = Co U Xl'

(h) neither Xo .nor

(i) Xo i6 rational,

(j) Xo 15 rational,

(hence 9 = 6).

#(Xo n Xl) = 4, and either:

Xl is rational.

Xl hyperelliptic of genus ~ 3.

Xl is of genus 3, Wx ~ 0x (Xo n Xl)
1 1

It was known already to Wirtinger [W] that ~: ~~g ~ ~9-1 15

dominant for 9 ~ 6. (This i5 easiest to see by eomputing the differ-

ential of ~ along the locus a I of "Wirtinger covers".) combining

with §4.2, one gets

(4.6) Lemma

9 ~ 6.

g,
allowable 1s surj eetiva for

One can therefore completely analyze ~~g for

(4.4), anything in ~.4I.g is either a wirtinger

Jaeobian or product of Jaeobians), er a product, or

Prym which is therefore in the list (4.5). Going

Beauville deduces:

9 ~ 5: By Theorem

Prym (which is a

a stable Beauville

through the list,

(4.7) Corollary. ~~4 has 2 irredueible eomponents: '4 and the

divisor 8 null of ppav's with a vanishing theta null.

(4.8) Corollary.

ed in the divisor

All cornponents cf

8 null ·

other than are contain-
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i5 contained in but not in

§ 4.4 The tetragonal construction

We describe a simple procedure, the tetragonal construction,

which takes a tower

(4.9)
....... lr
C ----+

where f is a 4-sheeted branched cover (i.e. C 18 tetragonal) and

lr is an unramified double cover, and yields two new towers

(4.9)i
.......
C.

1.

f.
1.C. --t

1.
i = 0,1

of the same type. Such a tower is uniquely determined by a representa­

1tion p of v1(W \ {branch points}) in the Weyl group WD4 of the

Dynkin diagram:

(In general, the Weyl group WCn is the group of signed permutations

of n letters, and WDn in its subgroup of index 2 consisting of

even signed permutat~ons.) Now D4 has a special automorphism a, cf

order 3, (120 0 rotation), not present in any other D. This gives
n

an outer automorphism a of WD 4 . Therefore representations of any

gorup in WD4 come in packages of three: p, a 0 p, a 2
0 p. In parti­

cular, we get (4.9)i (i = 0,1) starting with (4.9).
\

(More explicitly, starting with (4 .9) we construct a
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{16 = 2 4 )-sheeted branched cover f C --+ 1P 1 with a natural involu­•
tion. This breaks into two components, each of degree 8 over IP 1

and invariant under the involution, yielding (4.9)i' cf. [01].)

(4.10) Theorem [P1)

Prym map:

The tetragonal construction commutes with the

Consider the special case where ~ in (4.9) 19 the split double

cover. The 16-sheeted branched cover f.C then splits into 5 com­

ponents of degrees 1,4,6,4,1 respectively over ~1. The components

of degree 4 make up Cl ~ Cl' which is isomorphie to C --+ C. The

remaning components give

"V

where T i8 a trigonal curve and T its double cover. One sees easi-

ly that this special case sets up a bijection

(4.11) jT ,a trigonal curve of genus}
9+1 with an unramified

double cover T

This bijection, the trigonal construction, was described by Recillas

[R]. Group theoretically it corresponds to the exceptional isomorphism

whieh arises from the eoineidence of Dynkin diagrams

neral, the symmetrie group Sn i5 the Weyl group

(4.10) thus yields:

A
3

, D
3

• (In ge­

WA 1.) Theoremn-

(4.12) Corollary [R] If (T,T) corresponds to C via the trigonal

construction, then P(T/T) ~ J(C).
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(In particular, this shows that case (b) in Mumford' s Theorem

(4.1) leads to Jacobians.)

The tetragonal construction (4.9) (though not Theorem (4.10») can

be deduced from the trigonal construction (4.11): starting with a tri­

gonal T of genus 9 + 1, choose a rank-2 isotropie subgroup of

(J(T»2' i.e. 3 points of order 2 ~'~0'~1 satisfying

(4.13) (~,~o) = ° € Z/2Z.

Finally, each of these curves comes with a point of order 2 in

Jacobian, hence a double cover: for C, this point i8 the common

2 deterrnine double coversThese points of order

plying (4.11) we get

1
g4·
its

3 curves of genus g:

............ .....
T,TO,T1

C,C O,C1 ,

of T. Ap­

each with a

image in J(C) ~ P(T/T) of Jl o and

Using the tetragonal construetion, we can obtain many identifiea­

tions among Prym varieties cf special curves.' As an illustration, let

us ecnsider double covers of bielliptie curves. If CO,c1 are branch­

ed double covers cf an "elliptic curve E with disjoint braneh 10ei,

we form the fiber product

..... ° 1C := C xE C •

eomposition which is fixed-point free, yielding an un-

has 3 involutions

. ° 1T := T 0T

. i
• T , with quotient (i = 0,1), and their

ramified double cover C~ C of a quotient curve C which is itself

bielliptic. We say that
......
C --+ C is a cartesian cover.

be the moduli spaee of bielliptic curves cf genus

of bielliptie curves with a double cover has

Let ~ = ~
9

g. The space ekeA g
g+l[ 2 .] + 1 ccmponents:
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• ~~i' 1 ~ i ~ [9;1], consists of cartesian covers

ing from a pair of covers cO ~ E, cl ~ E where CO

i, Cl cf genus 9 + 1 -I.

~~o consists of all non-Cartesian covers.

'"C --+ C aris-

is of genus

Each of these components is (2g - 2)-dimensional. Since each bi­

elliptic curve has al-dimensional family of g~'S, we have ample room

to play with the tetragonal construction. The result:

(4.14) Proposition

(1) ~(~~1) i5 (2g - 2)-dimensional and is also the locus of allow­

able Pryms of hyperelliptic curves with two pairs of points identi­

fied.

(2) ~(~~i)' for i > 1, is (2g - 3)-dimensional, and is also the 10-

eus of Pryms of reducible allowable covers
.....
C --+ C where

c = Xo U Xl' C = Xo U Xl' X i5 hyperelliptic of genus

is hyperelliptic of genus 9 - 1 - i.

In particular, when

(The anouncement in [D1]

this out.)

9 = 6, Beauville's list becomes quite short.

i5 wrong. I thank o. Debarre for pointing

(4.15) Theorem. sd.44 5 consists of the 12-dimensional locus '5 of

Jacobians, the lI-dimensional locus ~1 x ~4 of products, and the 3

loei g. (!!IleA • ) , i = I, 2,3, of cartesian bielliptic Pryms (these have
~

dimensions 10,9,9 repeetively.)
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CHAPTER 5

Schottky-Jung in low genus

In §5.1 we try to explain why the unexpected component ~~o (of

intermediate Jacobians of cubic threefolds with even point of order 2)

pops into the Schottky locus ~';/9 in genus 5 (hence also for

9 ~ 5). This explains our formulation of the Schottky-Jung Conjecture

(2.11) •

The case g = 4 of the conjecture amounts to Igusa's Theorem. In

the last section we sketch a new proof of this result, based on the

various symmeties of Pryms and thetas, and in the same spirit we out­

line our recent proof (yet unpublished) of the conjeeture in genus 5.

§ 5.1. Syrnrnetry of the theta maps

In this section we diseuss an extension of the tetragonal cons­

truction to arbitrary eurves. Let Q € ~g+l be a curve, and

an isotropie rank-2 subgroup of J 2 (Q). For i = 0,1,2 we have a Prym

variety

P. = P(Q,Jli) € fA
1. 9

and on it a uniquely determined serniperiod

(j ~ i) in Pi. The result is:
~

Vi' image of any Jl.
J

(5.1) Theorem [D31. ß(F.;v.)
1. J.

is independent of i = 0,1,2.

This has many geometrie applications.

gonal, we find ourselves in the situation

Jacobian of a tetragonal curve, the three

gonal eonstruetion, and this special case

is 51 ightly weaker than) Theorem (4 . 10) .

Taking Q = T to be tri­

of (4. 14): each Pi' is a

are related via the tetra­

of (5.1) follows from (and

Taking (Q,Jl o) to be a
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wirtinger (al) degeneration, (5.1) becomes the Schottky-Jung identi­

ty (2.6).

Of interest to us is the case that Q is a plane quintic curve,

~2 i5 an odd point of order 2, MO (hence also MI) is even. By

Theorem (4.1)(e), Po and PI are Jacobians of curves of genus 5,

but P
2

i8 not.

Let ce C d 5 be the lO-dimensional locus of Pryms of quintics

with odd covers. (It i9 known ([CG], (M2], [T]) that this i9 precisely

the locus of intermediate Jacobians of cubic threefolds.) Its lift to

~~5 splits into two components ~~o, ~~1 ,where ~~Oparametrizes pre­

cisely the pairs (P
2

,u
2

) arising as above.

(5.2) Theorem [D3 ] ! The locus eA~ 0 of intermediate Jacobians of

cubic threefolds with an even point of order 2 is a component of the

Schottky locus ~~5.

The inclusion ~~O C ~~5 fellows imrnediately from the symmetry

result (5.1) and the Schottky-Jung identities (2.6). The proof that

~~O is actually a component was suggested by van Geemen. It is analo­

.gous to the proof that ~i is a cornponent of ~~, Theorems (2.7) and

(2.8): the closure of !'A~0 maets aI~s4 5 ~ ~ 4 in the locus of

Jacobians '4' and by a result of Collino [Co] the projectivized nor-

mal cone to aI along ~~O at J(C) € i
4

i8 given by the point

±(TO - Tl ) € K(J(C»,

where Ta,T1 are the g~'s on

case in WeIters' Theorem (1.5):

is not in C - C, hence ferms a

which proves the theorem.

c. This is precisely the exceptional

for generic C, the point ±(T O - Tl)

cornponent of the base locus of f aa ,

The theorem implies, cf course, that ~ C ~~big). We will see be­

low that ~ 18 not in ~5.
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§ 5.2. Schottky in genus $ 5

The theta map (0.12):

ß : ~~ ~ ~(U l)/G 19 g- g-

extends to a proper map on an appropriate toroidal compactification,

• ::;r;tß · ~~ ~ W(U l)/G 1·9 g- g-

For 9 ~ 5 this map i5 5urjective. Our 5trategy is to study the geo­

metry of this map and to use it to completely describe ~g.

(5.3) Theorem For C € ~3' the inverse image

consists of two copies of the Kummer K(J(C»: one is

the other is the fiber ovar J(C) € ~3 cf the natural map

---+

(5.4) Corollary (Igusa [I]). The Schottky locus ~~4 is irreducible,

hence i8 precisely ~i4. In particular,

~(big) = ~ = '4.
4 4

Here 1s a sketch of the proof of (5.3). First, it is clear that

the two copies of K(J(C» are indeed in ß-1 (a(J(C». Consider the

equi~alence relation - on ~t
4

generated by the relation
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One verifies that the equivalence class of

of two copies of the Kummer K(P(C,Jl», .as in

theorem. We end up with a quotient map of ß,

(C,~) € ~14 consists

the statement of the

and by a degeneration argument we conclude that this map is an isomor­

phism over the image of a, so ß-1 (a(J(C») cannot contain anything

new.

I would like to point out that the fiber of ß over a point of

W7/G3 (2,4) not in image(a) i5 not known. It is adeformation of the

singular variety (consisting of two Kummers meeting along a surface)

which i8 the fiber ovar a point of irnage(a), but it should be inter­

esting to have an explicit description.

(5.5) Theorem The compactified map

is generically finite of degree 119. Its Galois group 1s (conta1ned

in) SO;(2),

witt-defect 1

the special orthogonal group preserving a quadric of

in

(5.6) Theorem The closed Schottky locus ?Wt
5

has four components:

i'k:f t
5

(I·. e. Conjecture (2.11) 15 true in genus ~ 5.)

(5.7) Corollary ~5 =,1
5

•

wThe proofs, at present, are very complicated. They rely on de­

tailed knowledge of the structure of the Prym maps
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~
9

ek.M
9

--+ Ci
9-1

for 9 ~ 6. This knowledge 1s obtained by applying the tetragonal eon­

struetion to everything in sight. For instance, ~6 i5 generically

finite of degree 27 [DS] with Galois group

the symmetry group of lines on a cubic surface: two lines intersect or

not according as the corresponding curves are obtained from each other

by one tetragonal move or a sequence of two such moves. We can thus

define an equivalence relation on ~5 by the theta symmetry (5.1),

as in (5.3), but now we get a generically finite relation. starting

~ith any point of ~5 we get, in the first generation,

54 = 27 • 2

equivalent objects. Theorem (5.5) involves showing that the second

(and last) generation adds another 64 objects fitting together in a

highly symmetrie configuration, and that this equivalence spans the

fibers of ß. Theorem (5.6) then requires computation of the,local de­

gree of ß on each of the 4 known components (these degrees are

1,54,64,0 respectively), and checking the normal bundles to make sure

that no extra components arise via blowup (i.e. contribute 0 to the

degree).
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