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Introduction :
The Schottky problem is the problem of characterizing the Jaco-

bians of algebraic curves among all principally polarized abelian
varieties. The three most successful approaches to this problem are
associated with the names of Schottky-Jung, Andreotti-Mayer, and
Novikov. The special properties used to characterize Jacobians are,
respectively, the existence of Prym varieties, the large singular
locus of a Jacobian theta divisor, and the differential equations
satisfied by Jacobian theta functions. '

The purpose of these notes is to describe how closely each appro-
ach is known to characterize Jacobians, and especially to relate these
three apriori independent approaches. '

Novikov’'s approach has come the closest. The Novikov Conjecture,
proved by Shiota, says that an indecompgosable abelian variety X 1is a
Jacobian if there are 3 translation-invariant vector fields Dl’Dz'D3
on X and a scalar d so that the theta function of X satisfies
the "KP" differential equation corresponding to these constants. In
some ways, though, this solution is still not satisfactory. First, it
is not clear how to convert the KP equation into explicit equations
in the natural coordinates on moduli space, the theta nulls. Then
there is the question of eliminating the choices (Dl,Dz,D3,d) invol-
ved, and the fact that the locus we get in dg consists of Jacobians
’q together with»all decomposable abelian varieties. Finally, from an
algebro-geometric point of view, Novikov's condition may be considered
to be "too strong". We discuss the differential-equations approach in
Chapter 3, and in particular we propose a stronger version (3.1) of
the Novikov Conjecture, i.e. a weaker condition which should suffice
to characterize Jacobians among indecomposable abelian varieties.

The Andreotti-Mayer condition, on the other hand, is too weak.
The locus defined by it contains Jacobians as an irreducible compon-~
ent, but does contain other components. Beauville and Debarre have
shown that the Andreotti-Mayer locus contains Novikov's locus as well
as several of its variants. We discuss this approach in general in
Chapter 1, then return to it in Chapter 4 with an analysis of the
components of the Andreotti-Mayer locus in genus ¢ 5.



The strength of the Schottky-Jung approach is somewhere in be-
tween. The conjecture is much stronger (i.e. the condition satisfied
by Jacobians is much weaker) than Novikov's, yet I am aware of no evi-
dence against it. A precise version of the conjecture is stated in
(2.11). It implies the strong version of Novikov (3.1), as well as the
four conjectures (2.13-2.16) of van Geemen and van der Geer, and vari-
ous analogues. Again, we first discuss the general theory, including a
proof that Jacobians are a component of Schottky, in Chapter 2, and
then in Chapter 5 we sketch proofs of Conjecture (2.11) in genus 4
(Igusa’'s theorem) and genus 5.

These notes evolved from lecture series which I gave at the CIME
meeting in Montecatini and at UNAM in Mexico City, in the spring and
summer of 1985. The lectures included background material on moduli
spaces and their compacitifications (Satake-Baily-Borel, toroidal,
stable curves}, the algebraic theory of theta functions, the theory of
Prym varieties, and the three approaches to the Schottky problem. The
original version of these notes has become much too long for the pres-
ent format; I hope it will appear in the near future as a book on the
moduli of curves and abelian varieties. The present version is more or
less an extract from the last chapters of the book.

I heartily thank Eduardo Sernesi and Felix Recillas for the invi-
tations to give the lectures which started this project, and for the
warmth of their hospitality. I am also grateful to the many people
with whom I discussed the Schottky problem over the years, including
Arbarello, Beauville,'CIemens, Debarre, Mumford, van Geemen, van der
Geer and many others. special thanks go to the Max-Planck-Institut fir
Mathematik which provided the perfect conditions for completing this
work, and to Karin Deutler for the excellent typing job.



_3_

CHAPTER O
Theta functions

We recall some notation and results from the theory of theta
functions. The ‘reader may prefer to skim through this introductory
chapter, or to skip it and refer to it later as needed.

The moduli space dg of g-dimensional principally polarized
abelian varieties (ppav) is the quotient '

- (1)
dy 1= H/To

where Mg is Siegel'’'s half space
Hg:=(ﬂ symmetric gxg complex matrix, im(Q)>0),

and

rél) := Sp(29,Z)

is the integral symplectic group, acting on Hg properly discontinu-

ously. For a subgroup

r1evel c F(l)
g g

of finite index we have the corresponding level moduli space

level level
o :t= H /T
g g/g !

a finite branched cover of dg.

éevel on mg

action of r;evel [ Zzg on mg x Cg, where

The action of T lifts to a properly discontinuous

level

A B
r=(CD)€rg



acts on:
© My by R — (AR + B)(cR + D) !
(0.1) . ¢ by %Yca+np?
.29 t-1_ ,D~C
Z by ¥ (_B A)'

d1eve1

’

We let ag denote the quotient. It maps naturally to

level

and for high enough level (i.e. small enough Fg Tg) it gives

a universal abelian variety, i.e. the fiber over the isomorphism class

[X] is isomorphic to X. On the other hand, if (-1) € r;evel then

the generic fiber is the Kummer variety
(0.2) K(X) := X/(%1).
The level groups which we will encounter are:

(0.3) The principal congruence subgroup
r(m .. (y € r{1) | ¥ = 1 mod. n).

The quotient dén) parametrizes ppav's A with a chosen basis for
the finite group An of points of order n in A. For n 2 3, the

action of F(n) is fixed point free (so dén) is non-singular) and
&én) is a universal abelian variety. For n = 1,2, dén) has quoti-

ent singularities and the generic fiber of aén) — dén) is a Kummer
(0.4) The theta group

t

F(2'4) = {y = (2 g) € Féz) | diag "AcC = diagtBD = 1 mod. 4}.

g

This sits between Féz) and Fé4). The universal object &52'4) is a
family of Kummer varieties,
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(0.5) Fix a primitive vector v € ZZg, and let

mrg t= {y €T | yv = v mod. 2},
aré2'4):= {(y € r{z2.4) | ¥v = v mod. 4}.

The corresponding moduli spaces will be denoted ﬁdg, ﬁdé2'4). Here
ﬁdg parametrizes isomorphism classes of ppav's A € dg with a mar-

ked, non~zero point of order 2, p € Az, and %déz’4) has a similar
interpretation with a level (2,4)-structure and a point of order 4.

The natural coordinates on these spaces are given by the various
types of theta function. Riemann’s theta function is

4 : Ng b cg — C
(0.6)

3(Q,2z) := Z g exp ﬂi(tnﬂn + 2tnz).
n€zZ

For given @, it is a section of a line bundle L = OX(G) on the ppav
X=X5. L is in the principal polarization on X; taking a different
. with the same X may cause L to be changed via translation by a

point of order 2 in X. The 1line bundle L2 therefore depends on
X € d alone.
g

The theta divisor 6 C X 1is given by the vanishing of 4&8. It is
a "theta characteristic", i.e. a symmetric divisor representing the
principal polarization. Its translates by points of order 2 in X
are the other theta characteristics.

For e,6 € Qg, we have the "theta functions with characteris-

tics":

8[2](0,2) i= 2 exp vi(t(n+e)ﬂ(n+e)+2t(n+e)(z+6))

nelg
(0.7)

i = exp vi(teﬂe + 2te(z+6)) « 3(Q,z+0e+5) .



The space of sections HO(XQ,Lk) is kg-dimensional, and an explicit
basis is given by the "k-th order theta functions":

(0.8) 8, [e1(a,2) := 815/%] (xn,kz)

for e € (Z/kl)g (they depend on e only modulo Kk).

We will make much use of the map given by the second order theta
functions

g
0. g t: H x €C? — U
(0.9) 2 g g

82(0,7,)6 1= Sz[e](ﬂ,z)

(where Ug is the standard representation of the Heisenberg group, or

29

we can think of it as shorthand notation for € .) We also consider

the projectivized version of 82:

Xt M ox cd — P(Uy)

called the Kummer map. From the transformation properties of & it
follows that x factors through the universal Kummer variety:

. o(2,4)
(0.10) X 2%y P(U) -

Two other theta maps which we will need are

.

a d(;'4) — P(Ug)

and

. (2,4) ___,
Bo: ol P(Uy_)

obtained by restricting x to the O-section of
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(2,4) _, 4(2,4)
aq “ g '

respectively to the natural section (which is torsion of order 4) of
gy (204) _, g4(2,4)
g g9
At level-w, these maps are given explicitly by:

a(), = 9,[e](R,0) = 3[662](29,0)

(0.11)

B(R), := 3[662 132](2n,0).

The entries of a are called the theta nulls. Finally, we can get rid
of the annoying level on the left, by dividing by the Galois group

o= (1) ,n(2,4)
Gg(2,4) =T "' /T

of d(;'4) over dg,'on the right. We get maps:

a : dg — W(Ug)/Gg(2,4)
(0.12)
B : ﬂdg —_— P(Ug_l)/Gg_1(2,4).

(Gg(2,4) has a natural, "Heisenberg" action on P(Ug). We omit the
details.)

There is one basic identity relating & to the second-order
theta functions:

(0.13) Riemann's Quadratic Identity:

8(Q,z+w)-8(Q,z-w) = ) 9,[01(0,2)+9,[0] (,w).
o€ (z2/22)°

Geometrically, this gives an identification of the Kummer map x
with a "dual" map x*. For fixed X, x 1is simply the map given by

-

the linear system on(ze)l = |L?| on x:



X : X — wuo(x,ax(ze))*.

on the other hand, fix a theta characteristic

8, e.g. by choosing a

period matrix 0 for X and taking 68 as <{(z|9(Q1,z) = 0}). We get a

map

x© 1 X — mno(x,ox(ze))

X ——*Bx-+8_x

where Bx means the translate of 8 by x. Riemann's Quadratic Iden-

tity can be reformulated as:

(0.14) Kummer Identification Theorem There is a (natural) isomorphism
PR (x,0,(20)) — Pu’(X,0,(20))" which takes x to x . '

We mention one more property of the theta function. It satisfies

the following analogue of the heat equation:

2
38 1 3°8

(0.15) = — .
90,5~ Zwi(I¥65) 9z;0925

More algebraically, this gives a natural
tangent space to moduli,

Ty g ,

with the dual of the '"quadratic differentials"®

2
S TOX.

identification of the
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CHAPTER 1
Andreotti-Mayer

The approach based on the singularities of 6 is the least suc-
cessful of the three approaches which we consider. Historically it was
the first, and conceptually it is the easiest, so we start with it. We
define the Andreotti-Mayer locus and sketch the proof that Jacobians
form a component. We also touch on some rather deep results of Green
and Welters which are closely related to the Andreotti-Mayer approach
but also reappear elsewhere in these notes.

§ 1.1 Sina(8) for Jacobians

The basic property of Jacobians used in the approach of
Andreotti-Mayer is:

(1.1.) Proposition. Let 6 be the theta divisor of a Jacobian J(C)
of a curve C € Ag. Then:

Dim(Sing(8)) 2 g - 4.

This is based on Riemann’'s Theorem and Riemann’s Singularity
Theorem, which say that 6, Sing(8) on a Jacobian can be described in
terms of linear systems on the underlying curve:

~ 130
8 % Wy,
Sing(8) = wk
g-1

where WS is the subvariety of Picd(C) ¥ J(C) consisting of line

d
bundles of degree d on C with h0 2 r+ 1. The well-developed
theory of linear systems on curves [ACGH] provides many ways to esti-

mate the dimensions of these varieties:

(1) This is a special case of the Existence Theorem in Brill-Noether

theroy, since for
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we have
p :=g-(r+1l1l)y(g=-d+r) =g =2°2=9g =~ 4.

(2) An elementary argument for this special case is based on checking
that for any divisor

D. = g-3
D0 p1 +...F pg_3 € S C

there is a divisor

= g-1
D D0 + p -2 + pg_ € 5 Cc

g 1
such that hO(D) 2 2. Generically the inequality will be an equality,

so we lose only 1 dimension in mapping to Pic(C).

(3) We give another argument which introduces the very important re-
lationship of Sing(6) with quadrics of rank 4. Assume we are given

i.e. a double point of 6. The projectivized tangent cone PTE(B) is
thus a quadric Q. By Riemann's Singularity Theorem,

Q = U span(¢(D))
DE € |

where ¢ 1s the canonical map of C. Q therefore contains a l-para-

meter family of linear subspaces of codimension 1 in Q , or of co-

dimension 2 in Pg_l. Therefore Q 1is a quadric of rank ¢ 4. Its ver-
tex is therefore a linear subspace of codimension { 4 which is con-

tained in Tf(sing(e)).
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§ 1.2. The_ e - e oci

We want to define a series of loci

given by the property:

k

A € ﬂg if dlm(81ng(BA)) 2 k",

To avoid problems of ‘existence and smoothness of the universal abelian
variety ag, we work initially at level «, i.e. in mg. We define:

$ = ((n,z) € 1'% = mgxcg/zzg | z € sing(8,)>

Q

T o2 Qg e dém) = mg, the natural projection.
k - — 3 -1 =
m% 1= {(Q;z) € Tg)l dlm(n'z)w (M) 2 k) kK=0,1,...
N oi= 3 c 4\ =i
g =T Cdy g
k k K .
T ﬁg — Hg' the restriction of .

By construction, 'N; is in mg, but it is clearly r{1) _snvari-
ant, so it determines a locus in dg which we also denote Hg. The

Andreotti-Mayer locus is then [AM]:

di 1= 497% c 4 .
g

§ 1.3 Jacobians are a component of Andreotti-Maver

(1.2) Theorem [AM] fg is an irreducible component of dﬂg.

Proposition (1.1) tells us that ?g C dﬂg. The idea is to show

that at a generic C € ﬂg we have an equality of tangent spaces

Trc)y?g ® Ty(c)4y-
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or equivalently that the conormal spaces agree. The heat equation
gives an interpretation of quadrics in canonical space as cotangent
directions, at J(C), to dg. With this interpretation, the conormal

to jg' becomes the space

I, := ker(sH%(0,) — Ho(wC®2

R )

of quadrics through the canonical curve. We claim that the conormal to
d#g is given by

a%g

I.(8) := span{(z——s—) |E € sing(8)}.
2 aziazj |§

Note that 12(9) is a subspace of 12, by Riemann’s Singularity Theo-
rem.

(1.3) Lemma Let

be a curve in %g,
= w(X) C Ng, its projection,

E - 3

(x,E) € X, a point.

Then the tangent cone Txx C Tng to the curve X at x 1is con-

tained in the hyperplane

dd
Ga) | (x,g) = ©

(This lemma follows immediately when we differentiate @8 along
X, using the vanishing

We can conclude that 12(8) is contained in the conormal to ﬂﬂg
at J(C), by combining the lemma with the heat equation (0.15) and
with some sort of irreducibility assumption, for instance it suffices

to assume:

v
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(Al) Sing(8) is precisely (g - 4)-dimensional.
(A2) sing(®) is irreducible.

(These assumptions imply that for any curve X C dﬂg passing
through the point J(C) € $g, and any f € Sing(Bc), there is a lift

XE c 83-4 of X passing through (J(C),£f), so we can apply (1.3) to

Xe o
g)

To prove Theorem (1.2) it therefore suffices to exhibit a curve
X satisfying (Al), (A2) and: ‘

(A3) I, = I,(8).

The argument clearly breaks down without the irreduciblity (A2),
since quadrics coming from points § in different components of
Sing(6) could give directions normal to different curves X 1in d#g.
Still, we may weaken (A2) to:

(A2') For each component & of Sing(8), the quadrics

2
a"s
{(aziazj)lf

e € 5>

span 12(6).

In the original proof [AM], Andreotti and Mayer consider trigonal
curves C. Here (A2) fails, but (Al) and (A2') are easy: Sing(8) con-
sists of two components, each (g-4)-dimensional. One is

0

g4’ T = the trigonal bundle},

(L=1L,®T | L, € W

the other is its image under the involution

-1
L — wa @ L ~.
Symmetry implies that the components span the same subspace of 12(9),
which is therefore all of 12(6). This explicit description of
Sing(8) then allows direct verification of (A3), proving the theorem.

v QED
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§ 1.4 Further resultsv

It turns out that all three assumptions made in the proof of
Theorem (1.2) hold, at least generically. We discuss these next.

(Al) By (1.1), we know that dim(Sing(B)) is always at least g - 4.
An easy dimension count shows that equality must hold generically. A
theorem of Martens [ACGH, p. 191) says that equality holds if and only
if C is non-hyperelliptic. -

(A2) The irreducibility of Sing(6) for generic C .also follows from
Brill-Noether theory. In fact, the Fulton-Lazarsfeld Connectedness
Theorem together with Gieseker's Smoothness Theorem [ACGH, pp. 212 and

214] imply that Wg is irreducible for generic C whenever the

Brill-Noether number p is 21.

A more precise result is known in our case, when r = 1: Teixidor

[Tx] shows that wé

liptic (branched double cover of an elliptic curve) or a certain type

is irreducible except when C 1is trigonal, biel-
of curve of genus 5.

(A3) Andreotti and Mayer showed that 12(8) = I, for trigonal C,
hence for generic C. There are several other loci where the equality

can be checked directly, e.g. for bielliptic curves. The best result
was proved by Mark Green:

(1.4) Theorem [G] For any non-hyperelliptic curve c of genus

g 2 4, the space I, of quadrics through the canonical curve ¢(C)
is spanned by the tangent cones to BC at its double points, i.e.
I,(8) = I,.

In particular, this implies that I, is spanned by quadrics of
rank §{ 4, since we saw in the third proof of (1.1) that tangent cones
to 6 at double points are quadrics of rank { 4. This also produces a
simple proof of Torelli's Theorem, in fact a recipe for recovering a
curve (not hyperelliptic, trigonal or a plane quintic) from its
Jaco@ian: the canonical curve ¢(C) is the intersection of the tan-

gent cones to "8 at its double points.
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Next we descirbe a result of Welters' which is closely related to
Green's Theorem. Given a curve C, we define three loci in J(C):

. Fo i= 0 (D),
D€|29|,m0(D)24

F! := n (6 UG_ ).

C " fesing(g) ¢ £

Fg := N (95) = {(a € J(Cc) | a + sing(8) C 8.
E€Sing(8)

(1.5) Theorem (Welters [We]) For a curve C of genus g, the surface
(C - C) C J(C) 1is equal to:

(1) F. ., if g=3 or g2 5.
(2) Fg, if g2 % and C is not trigonal \
(3) Fg , if g 2 5.

When C is of genus 4, it has two trigonal bundles TO'Tl

(possibly equal); in this case

F.= (C -.C) U (T, - T

C l)°

We observe that for non-trigonal ¢, (2) =2 (1), since

(8g U B_¢) € (D¢ |26], my (D) 2 4.

£

By Teixidor's results [Tx] on the irreduciblity of Sing(8), we can
also deduce (3) 2 (2), so the main difficulty is in proving (3).

One connection with Green's Theorem is given by the following
weak version of (1.5), which follows from (1.4):

(1.6) Corollary (Weak vesion of Welters' Theorem) C - C is a compon-
ent of F, (g 2 4) and F,, F§ (g9 2 5).

Since clearly C - C 1is contained in the three loci, it suffices
to show that they are 2-dimensional at 0. Green's Theorem says that

-
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c=n PT_0,
hence set-theoretically
¢ = PP (N, (B, U B
0( £ ( 3 _f))

so the tangent cone is the cone over €, a surface (and of course,

equal exactly to TO(C -C)).

The main connection of the two theorems is in the proofs, both of
which make heavy use of the geometry of the (g - 1)-st symmetric

product Sg_lc, which is a desingularization of 6.
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CHAPTER 2
Schottky-JdJung

After reviewing some basic properties of Prym varieties, we de-

fine the Schottky loci (there are several of them: ﬂ?g, Vébig), Vg)
in §2.2, and show that Jacobians are in these 1loci. The main fact
known about these loci is that Jacobians are actually a component; we
sketch that in §2.3, and then conclude with a series of conjectures,
all of which follow from what should be considered "The Schottky-Jung

Conjecture", (2.11).

§ 2.1 Prym varieties

The property of Jacobians used in the Schottky-Jung approach is
the existence of Prym varieties. In this section we briefly review the
definition and some basic facts about Pryms.

Consider an unramified double cover

of a curve C € #g. By Hurwitz’ formula, the genus of ¢ is 2g - 1.
For given C, the set of double covers w# 1is in 1 - 1 correspon-
dence with the set

J,(C) \ (0)

of nonzero points p or order 2 in J(C). There are induced maps on
Jacobians,

T : J(C) — J(O)

Nm : J(E) — J(C).

* .
The kernel of = 1s (0,n), where u € Jz(C) corresponds to w as
above. The kernel of Nm also has two components which we denote

-
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P, P, where P C J(C)

is an abelian subvariety, and P~
of P

a translate
by a point of order 2.

Since Nm is surjective, P is
(g - 1)-dimensional. The principal polarization on J () induces
twice a principal polarization on P; more precisely:
(2.1) Wirtinger’'s Theorem [M1} Riemann's theta divisor 8 c J(E)
intersects P in twice a divisor E

=]

in the principal polarization:

In particular,

we can think of P
(P,E) € &

in a natural way as a ppav,
g-1" called the Prym variety of

(C,n). The assignment
(C,u}) — P = P(C,u)

gives a morphism of moduli spaces

P : KA — o
g g-1

called the Prym map.

Let J,J denote J(C), J(C) respectively, and let J', J' de-
note the respective torsers (= principal homogeneous spaces) of effec-

tive divisors in the principal polarizations of J,J. We have a pull-
back map

and a pushforward

t .
11'* .

J' —— (divisors in twice the principal polarization).
(2.2) Splitting Thecorem For any divisor 6 € J'

in the principal po-
larization on J, the pushforward of

T splits:

wi(r 1 (B)) =8 + 0,
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(2.3) rym-Kummer Identific o heore M2 Let L0 - be a line
bundle on C satisfying L%z X ue® We and let L := W*LO. (We think

of LO,L as elements of J', J! respectivley.) Then:

(1) L determines a subvariety PL C 3‘, a translate of P.

(2) Ly determines a natural (i.e. equivariant under the action of
the Heisenberg group) embedding

ik
iL0 : |28 — |26

(where £=,8 are the natural theta divisors on P,J).

(3) The Kummer map Xp can be identified with =}, i.e. the following
diagram commutes:

We also mention that the Abel-Jacobi map

induces an "Abel-Prym" map

AP : ¢ — P.

While the "derivative" (Gauss map) of AJ 1is the canonical map, the

derivative of AP 1is the Prym-canonical map C — pI~2 given by the
linear system O ® u.
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§ 2.2, chottky loci

At level-« , we define the Schottky locus to be:

¢(®) ;= p7L(image a) C H_.
g B " (image a) g
From the transformation properties of theta functions it follows that
9éw)‘ is the inverse of a locus Q?g C ﬁdg, defined by

ng := Y (image a)

.
Xx(iu) = xP(O) for some choice

= {(X,un) € ﬁdg 1
: of SH € X and some P € dg-l

(The last condition can also be interpreted as an equality of sets in
P(Uy_1) /Gy

Xy (1) = Xp(P,)

with %p := (A € X4 | 2n = pu).) However, yém) does not come from a
locus in dg (equivalently, Yém) is dr-invariant but not necessarily

F(l)-invariant). We therefore have two loci in dg:

Qéblg) = (X € dg | (X,n) € %dg for some p € X, \ 0
¥ = (X € o X € %d for all € X, \ 0},
g gl(,u) g p 5

(2.4) schottky-Jung Theorem (f{S]1,{SJ],[FR],{F],{M27). Q?g c ﬁyg.

(2.5) Corollary. % C9% C y(blg).
9 g9 g

The point is, or course, the existence of Prym varieties. Both
results follow from
(2.6) Schottky-Jung Identities. For (C,u) € %Ag with Prym variety
P(C,n), we have an equality (in P(Ug_l)/Gg_l):

v
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‘a(P(C,n)) = B(J(C),n).

(This equality can be lifted to P(Ug_l) by being careful to choose

the right level-(2,4) structure on P corresponding to a given one on
J. In this form (2.6) is known as the Schottky-Jung proportionality.)

This is Jjust an analytic expression of the Splitting Theorem
(2.2):

T(rtre)) =8 +e,

where the LHS is interpreted via the Kummer-Prym Identification Theo-
rem (2.3), and the RHS via the general Kummer Identification Theorem

(0.14) (applied to the divisor 91 for some (any) choice of %u).

2

§ 2.3 Jacobians are a component of Schottky

| The title result of this section was proved by van Geemen:

(2.7) Theorem [VG1l}] fg is an irreducible component of Qg.

In the sequel we will need a small improvement, with similar

proof:

(2.8) Theorem [D2)] %}g is an irreducible component of ﬁyé, hence

fg is an irreducible component of Véblg).

Both proofs are based on degeneration to the boundary of moduli
space, s0 let us begin with recalling the Satake-Baily-Borel compacti-

fication

~S =S =8

dyDd g 2...04d; D d,
where do is a point and
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Its boundary, 8, is therefore irreducible, and is just a compactifica-

tion of dg-l‘
spaces have reducible boundaries. We need a more precise description

of the boundary of ﬂdg.

The corresponding compactifications of level moduli

Consider a corank ~1 degeneration in @dg with general fiber
(X,r), and let A € x2 be the vanishing cycle (reduced mod. 2). In
terms of the Z/2Z-valued intersection pairing (= Welil pairing) on X,

we have 3 possibilities:

I. A=

IT. N#p, (A,pn) =0

IIT. (A,un) # 0.

I

IT ,III
’

These give (at least) 3 boundary components a-,d d of

&S .

g9
(2.9) Lemma ([D21]1,{vG2] The boundary of ﬁgz has exactly 3 irredu-
cible components, described as above. They are isomorphic to the’
Satake-Baily-Borel compactification of dg-l' ﬁdg_l, dg—l respective-
ly.

The idea for proving the theorems is then to analyze the boundary
behavior of Schottky.

. {tion. _ .
(2.10) Proposition 6(&99) F R VG u iyg (ﬁ?g_l), where
. . s ~ ogll {]
ipg @ % ) C ﬁgg-l X g7 > Fd
is the natural inclusion.
I ITI

and &
boundary of the locus of products

The reason & are in ﬁ?g is that they are the

which is in ayg since
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B(XxY,m1u) = B(X,n) x a(¥),

I1

and the latter becomes a(Y¥Y) if (X,p) € @3?. 3 is not in this lo-

cus (since allﬁgi is empty!), and van Geemen shows that

T _ .
e'ﬂg N9™" = i (A _1).

The argument is now concluded by an induction. For Theorem (2.7), we

need to show that the tangent cone to 3-; at a point J(C) of
39-1 C 6(?3) is an irreducible component of the tangent cone to §;

there. The latter is the jnptersection of the tangent cones to 597; at
the points (J(C),un) for p € J2 \ 0, so it suffices to show the cor-
responding statement at a Jacobian point of any one of the 3 1lifts

III

»BI,BII,B . van Geemen does this at 81. The picture is as follows:

. For. X € dg—l Cc 634'; , the projectivized tangent cone IPTxE; is
the Kummer variety K(X) := X/(%1).

. Let X denote also the corresponding point of BIQ_HS. Then
PT, ﬁ?; maps isomorphically (by the forgetful map W; — 33) to
=S
PT ~ K(X).
)(dg (X)

. When X = J(C), the subvariety

=3

T3 c)¥g © PTr(c)q

is a surface, the Abel-Jacobi image of C - C in K(X). (Ditto for

s S
PT J(C)?F C IPTJ(C)T

. For any X € dg-l C 6133 , IPTXW; can be computed by pulling
back T(image a). It turns out to be the base locus, in K(X), of the

linear system
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oo = 10420082 ,%%

00 {0}

= {5 € |ox(29)| Imulto(s) > 4).

By Welters' Theorem (1.5), this base locus is known when X = J(C) is
a non-hyperelliptic Jacobian: it is again the surface C - C, except
in genus 4 when it contains additionally the point i:(T0 - Tl) € K(X),

where T,/ T, are the g%'s on X. In any case, C - C .is a compon-
ent of the base locus, proving (2.7).

In proving (2.8) we do not have the freedom to switch boundary

II. The map K(X) — P(I'y,)

is then replaced by a projected Kummer map

components, so we must work at 4 given by

the linear system FOO

K(X) —/—X P(Uy_,)

where X — X is the double cover determined by p, and

is the natural projection onto an eigenspace. The proof requires a se-
cond "blowup" (i.e. computaﬁion of tangent cone to the tangent cone),
and is then reduced to an analogue of Welters' Theorem, a question on
the linear system |2BP| on a Prym.

§ 2.4. Conjectures

Unfortunately, Q?g does have components other than Jacobians.
We have already noted that

ﬁy’g . Ekdl x dg-l .

and more generally

ﬁ?g D ﬁ}g_k x o k 2 4. t

k L
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(For k ¢ 3 the RHS is in the closure of ﬁfg.)

For many purposes, the toroidal compactifications E; [(AMRT],
and especially Voronoi's, are more convenient than the hightly-singu-

lar E;. In corank 1 (i.e. at generic points of the boundary compon-

ents), a toroidal compactification looks like the blowup of Eg along
its boundary. We thus have

and 6(@33) has 3 components with analogous descriptions.

In the toroidal version, the symmetry of 61 and GIII breaks:

if we define

ﬁ?; := B~} (image a)

for appropriate extensions «,8 of «,B, then ﬁ?; contains 61535

but not aIIIEE;. The point is that J extends to the Satake com-

pactification near 61, but only to the toroidal compactification near

aIII. (This can be seen already on the Prym level. The Prym map

4

gU — o extends to % : ﬁ]g — o where ﬁ]g is a stable-

g g-1 g-1'
curve compactification. Its boundary components 61, gttt map to
ﬂg-l with 2-dimensional fibers. The extension of % to &v depends
only on the image point in Ag-l (Wirtinger's reducible double cov-
ITII

ers), but the extension to & depends on the fiber (Fay's double
covers with 2 branch points) (cf. $4.2). This implies the correspon-

ding statements for B, since by the Schottky-Jung Identities (2.6),
B =a o $.) The upshot is that @?; contains 61535, but is only gu-

aranteed to contain the zero-section of BIII§E§ ~ X over

— o
g-1 g-1
a general ppav (and a surface in K(X) for X = J(C) a Jacobian, by
the previous analysis of &).
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Finally, we will see in Chapter 5 that 995 contains another co-

mponent ﬂ%o, the moduli space of (intermediate Jacobians of) cubic
threefolds with an even point of order 2. Assembling the pieces, we
arrive at what we consider to be the natural formulation of the
Schottky-Jung problem:

(2.11) Conjecture, The Schottky locus equals

_ ) 0 = _
ﬁ?g_ﬁ?guaﬂgu@f@ *“g—s)uk§’4§§g—kx°‘k ,

where ~  denotes (Voronoi's) toroidal compactification.

(2.12) Corollary (of the conjecture). 9g = ?g

(The conjectured components other than ﬁ?g do not contain a
complete fiber of ﬁdg over dg.)

If another component of ﬂ?g is discovered, the conjecture will
of course need to be modified. As van Geemen pointed out though, the

normal direction at X € 34 to o, ~ 61532 along the locus #¢° of
cubic threefolds is given precisely by the difference of trigonal bun-

dles t(TO - Tl) € K(X) [Co]. Since this is the only exception to

Welters' Theorem, one hopes that %¢° is the only non-trivial compon-
ent of ﬁwg other than Jacobians. (Of course, it is still possible

that components exist which do not meet aIayg, or meet it tangential-
ly to one of the known components.)

In {vGvdG], van Geemen and van der Geer made (more or less) the
following 4 conjectures (our versions of (2.13), (2.15) are slightly

stronger):

Conijectures [vGvdG]

(2.13) The base locus of FOO in a Jacobian J(C) is the surface
c - C.
(2.14) The base locus of FOO in an indecomposable non-Jacobian X

is (0).
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(2.15) The intersection xx(X) N (image a) in a Jacobian X = J(C)

is the surface %(C - Q).

(2.16) The intersection xX(X) N (image a) in an indecomposable non-

Jacobian X is (0).

Conjecture (2.13), with a slight modification, has since become
Welters'’ Theorem. The base locus of FOO can also be described as the

intersection
xx(X) n Tx(lmage a),
hence the analogy between the two pairs of conjectures.

(2.17) Proposition. The [vGvdG]) conjectures follow from (2.11).

Indeed, these conjectures ekpress the fact that, at Jacobian and

non-Jacobian points of alﬁﬁg and 6III§§§ , the tangent cone to ﬁ?g
is the tangent cone to the known components in the RHS of (2.11). (X
must be assumed indecomposable to avoid the stupid components in

(2.11).)

By considering the behavior of ﬁ?g at aII, we can make onhe

more conjecture (recall that BIIﬁyg is ng-l , not all of ﬁdg_l);

(2.18) Conjecture. Let C — C be an unramified double cover with
Prym P. We have maps

Kummer Xp * P — [P(Ug_l)/Gg_1

Projected Kummer wr o Xy ¢ T — P(Ug_l)/Gg_l.

Then the intersection of the images is the image of SZE/i, which maps

to K(J), K(P) by the Abel-Jacobi, Abel-Prym maps respectively.

v
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If we believe Conjecture (2.11) as a scheme-theoretic statement,
we get stronger versions of the conjectures. For instance, we "blow
up" Conjectures (2.13), (2.14) at 0 : for any ppav X, let

Too00 ¢

(s € T o | mult (s) 2 6.

Taking fourth-order terms gives an exact sequence

0 —T — I = — |

000 00 1 (]

0
P9~

so we can think of I'so’To00 as a linear system of quartics on

PTOX = Pg-l. From (2.11) we deduce:

(2.19) Conjecture. The base locus of the linear system F'oo’Tooo ©f

quartics in P91 » PTOX is the canonical curve $(C) C Pg_l, if
X = J(C) 1is a Jacobian, and is empty if X is an indecomposable ppav

which is not a Jacobian.

The case of Jacobians follows from Welters' Theorem. For non-
hyperelliptic curves it gives a very explicit prescription for re-
covering a curve from its Jacobian.



-29-

CHAPTER 3
Novikov

The theta function of a Jacobian satisfies a family of differen-
tial equations ("KP") which yield the best answer to the Schottky pro-
blem to date. The geometric explanation of these equations is based on
the trisecants of a Jacobian Kummer variety; we discuss this in §3.2.
Novikov's Conjecture (= Shiota‘'s Theorem), saying that an abelian
variety whose theta function satisfies XP 1is either a Jacobian or a
product, is seen in §3.1 to follow from a more general conjecture
which is in turn equivalent to Conjecture (2.19). We conclude with a
brief description of the work of Beauville and Debarre which shows
that the Novikov locus, of ppav's satisfying the KP equation (or
various analogues), is contained in the Andreotti-Mayer locus, and in
particular it contains the locus jg of Jacobians as a component.

§ 3.1 More conjectures

Our starting point in this section is Conjecture (2.19), itself a
corollary of Conjecture (2.11). We interpret it first in terms of
linear differential relations satisfied by the vector-valued second-

order theta function °

whose projectivization gives the Kummer map x, and then in terms of
non-linear differential equations satisfied by 8 itself.

(3.1) Conjecture (Differential Characterization of Jacobians)

An inedecomposable ppav X 1is a Jacobian if and only if its second-
order theta function satisfies a constant-coefficient linear differ-
ential relation (i.e. polynomial in constant vector fields on X) of
the form

4 ——
((Dl) + (lower order terms)) 32(9’3)|z=0 = 0,

where 1 is any period matrix for X (i.e. @ € mg maps to X € dg)

and © .D; is a constant vector field on X.
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This conjecture is simply a reformulation of (2.19). An element

of I = |0x(29)| is a linear combination of the entries of 6,; it is
in FOO if and only if all derivatives of order < 4 of this combina-
tion vanish at 0. Hence all the quartics in roo/rooo vanish at some

D1 € TOX if and only if DiBZ(Q,O) is a linear combination of lower

order operators applied to 9219,0).

It is now natural to ask for the explicit form of the differen-
tial relations satisfied by Jacobian theta functions. Since the base

locus of in J(C) 1s the canonical curve ¢(C), we know

I‘OO/FOOO
that these equations are parametrized by C. We will find their expli-

cit form in §3.2:

(3.2) Proposition (Differential Relations for _Jacobian _ Theta
Functions). Let 0 be a period matrix of a Jacobian X = J(C). Then

82(0,0) satisfies precisely a one-dimensional family of inequivalent
differential relations of the form (3.1). This family is parametrized
by C; the equation corresponding to p € C is of the form

2

4 -
(D] - DyD, + D3 + d) sz(n,z)]z=0 =0,
where d 1is a scalar constant, and the constant vector fields Dl'
pz, D3 are determined by their values at AJ(p) (image of p under
Abel-Jacobli), where they span the osculating line, plane and solid to

AT (C).

(3.3) Coro Novikov's Conjecture ubrovin's Form An indecom-
posable ppav X 1is a Jacobian if and only if its second-order theta
function satisfies a differential relation of the form (3.2).

This follows immediately from (3.1) and (3.2). Together the con-
jectures say that if 82 satisfies any equation of type (3.1) then we
are on a Jacobian and the equation is of the form (3.2). Novikov's
Conjecture has been proved by Shiota [Sh], but (3.1) is open.

The differential relations (3.1), (3.2) satisfied at 0 by the

vector-valued 82 can be converted to a non-linear differential
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equation satisfied by the (scalar valued) theta function. This follows
immediately from Riemann's Quadratic Identity (0.13):

8(z + w)d(z - w) = ) 8,001(2) 8,00 (w).
o€ (Z/22)9

We treat one of the variables, say w, as a constant, and apply a aif-
ferential operator to both sides, then evaluate at z = 0; this gives
a differential expression in 8(w), on the left, and on the right a
linear combination of the entries of the vector obtained by applying
the operator to & at z = 0. For instance, (3.2) becomes:

2
4 3 2.2
DJ# + 8 - 4D78 - D8 + 3(D]9)° - D D8 - & + D8 - D,9
(3.4)
2 2, 1..2 _
+ D38 - 8 - (D,8)° + 5a8° = 0.

This is known as Hirota's bilinear form of the KP (= Kadomtsev=-
Petviashvilli) equation. The standard form of this differential equa-
tion is:

(3.5) (uxxx + uux - ut)x + uyy = 0.
Direct substitution shows that (3.4) for 8 1is equivalent to the KP
equation (3.5) for u := (log S)xx'

§ 3.2. Trisecants and the P ie ch

The Kummer variety of a Jacobian, as embedded in P(Ug), has a
four-dimensional family of trisecant lines. The KP equation (3.2),
as well as a whole hierarchy of equations satisfied by Jacobian theta
functions, express limiting cases of the existence of these trise-
cants. Our presentation here is based on ideas of Gunning, Welters and

Arbarello-De Concini.

(3.6) Lemma. Let a,b,c,d be points of a curve C. The various
translates of the divisor 6 € J(C) satisfy the following inclusions:
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UB) D (8,_qUB,_.)N (e ue

(2) Oaip—c-a a-c Y %p-a

(3)

[6a+b-c—d v 9—a—b+c+d] 2 [ea—b+c—du e-a+b-c+d]n [Ba-b-c+du B-a+b+c-d]'
2 2 2 3 2 2

where the choices of halves are compatible, i.e. we fix one of the

22g a+b-c-d

values of and determine all other expressions accord-

2 14
ingly: J
<a-bzc~d = 2tb-c-d _ . acb-ctd . _atb-c-d _ 3  etec.
2 2 2
Proof.

(1) follows from Riemann-Roch. (2) follows from (1) by expanding
the RHS as union of four intersections: the inclusion of each in the
IHS is equivalent to (1), with the letters permuted, after transla-
tion. (3) is equivalent to (2) via translation by the fixed value of
at+b-c-d

2 -
QED

This lemma is classical (Mumford [M3)] attributes it to Weil), but
its interpretation via trisecants was first noticed by Fay:

(3.7) Corollary [F] For a,b,c,d € C, the three points

a+b-c-d a-b+c-d a-b-c+d

x (555, x (3250, x (TS

of the Kummer are collinear. (The halves must be compatible as in

(3.6) (3).)

The corollary is just a restatement of (3.6)(3), using the Kummer
Identification Theorem (0.14).

We see that a Jacobian Kummer has a 4-dimensional family of tri-
secants. The group JZ(C) of points of order 2 acts 1linearly on
P(Ug) inducing translation on K(JZ(C)), hence acts on the variety of
trisecants. Let S be the quotient. It is clear from (3.7) that S

is birationally equivalent to S4C, and an easy additional computation

shows that
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biregularly. Let us see what happens to a trisecant as we bring the
points a,b,c,d together:

Choose a point a € C, and write down the Taylor expansion in cY
of the Abel~Jacobi map near a, in terms of a coordinate t on C
near. a:

(3.8) AT(t) = AJ(a) + tD, + tD, + £p+...

where D.,D are constant vectors in €Y. (We can also think of

LIYERE
them as translation-invariant vector fields on J(C).)

For general a,b,c,d, (3.7) says that the 3 vectors in Ug

a+b-c-d a-b+c-d a-b-c+d
)y 3 ) )

are linearly dependent. Let us bring two of the points together, say
¢ — a. The 3 vectors become:

b-d b+d

b-d
8205570« D550 9,5 - a).

Next we may proceed in two different ways:
(A) Bring d — b. The vectors become

§,(0), D,D19,(0), 9,(a - b)

where Di is the first term in the Taylor expansion of AJ(C) near

b. (Recall that 9, is even, so its first derivatives at 0 wvanish.)
Now let us take b near a, corresponding to the value t of
the coordinate at a. Differentiating (3.8) gives.

. ' 2
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while 82(a - b) becomes

2.2 3 4,.2 4
8,(0)+t“D]9,(0)+2t D D, 9, (0) +t" (D5+2D D +D )8, (0) +. ..

. 2 ’ -
or, subtracting 82(0) + t D1D182(0).
4 2 4
t [(D2 DlD3 + D1)82+...].

Setting this to equal a linear combination of 82(0) and DlDisz(O)
gives an infinite sequence of differential relations obtained by equa-
ting successive powers of t to 0. The leading term (coefficient of

t4) gives exactly Proposition (3.2). (D3 may have to be replaced by a
linear combination of D3 and Dl‘)

(B) In the previous computation we brought d to b, i.e. considered
fourtuples of the form (a,b,a,b), resulting in the trisecant becoming
a tangent line at 0 meeting K(J(C)) elsewhere (at Bz(a - b)).
Instead, we may bring d to a, i.e. consider fourtuples (a,b,a,a).
The limiting trisecants now become flexes of the Kummer, at the point

82(359), i.e. we obtain the linear dependence of
a-b a-b 1.2 a-b
920553700 D850 Dy + 30408, (550)

Again, we obtain an infinite set of differential relations satisfied
by 92. The first of these is again (3.2), but the relation of this
sequence to the one described above is not clear. Arbarello and
De Concini show in [AdC1l] that this sequence of egquations is a conse-
quence of the "KP hierarchy", an infinite systems of PDE’'s, starting
with (3.5), which can be interpreted as an infinite-dimensional com-
pletely integrable Hamiltonian system.

The fact that Jacobian theta functions satisfy the KP equation,
indeed the KP hierarchy, was discovered by Krichever. That led Novikov
to conjecture (3.3). Dubrovin observed in [Du] that the Hirota form
(3.4) of the equations is equivalent to the differential relation
(3.2), and proved that Jacobians form a component of the locus of
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ppav's whose theta functions satisfy (3.2). Mulase [Mu] showed that an

indecomposable ppav whose theta function satisfies the KP hierarchy is
a Jacobian. Arbarello and De Concini showed [AdCl], based on earlier
work of Gunning and Welters [We2], that a finite subset of this hier-
archy suffices (the equations in (B) above corresponding to powers of

t up to 69 - g! + 1). The Novikov Conjecture itself was proved by
Shiota [Sh]; a simplified proof is in [AdC2]). Various analogues have
been proposed, but remain open. For instance, Welters asks in [We2]
whether the existence of one trisecant of the Kummer variety forces it
to come from a curve. 4

§ 3.3. Andreotti-Mayer vs. Novikov

(3.9) Theorem [BD] A € dg is in the Andreotti-Mayer locus dﬂg if
it satisfies any of the following conditions:
(1) There are distinct points x,y,z € A such that

ene_ co._ uUe_.
z X y

(2). The Kummer variety K(A) has a trisecant.

(3) The theta function 9, satisfies the KP equation (3.2).

Consider the map
R : A\ (0) — Div(8)

sending a € A \ (0) 'to the divisor 6 n Ba in 6. This extends to a
morphism

R : A — Div(9)

where A is the blowup of A at 0: a point in the exceptional divi-

sor, corresponding to a vector field D on A, goes to the divisor

1

{z € Al8(2) = D,8(z) = 0} C 8.

The theorem of Beauville and Debarre follows from:
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(3.9 bis) Theorem [BD]. Assume A satisfies:

(0) The divisor R(a) C'e is reducible for some a € A.
b

Then either A € dﬂg or A contains an elliptic curve E such that
Eo 08 = 2,

Condition (1) implies (0) for a =z € A\ (0). By (0.14), condi-
tion (2) is equivalent either to (1) or to a limiting form, so it also
implies (0). Fianally, (3) implies (0) for a in the exceptional di-
visor, corresponding to the vector D, in (3.2). This is immediate
from Hirota's version (3.4) of (3.2): setting § = D.9 = 0 we get a

1
product,

2,,2 2 _ 2, _ 2
0 = 3(D]8)° - (D,8)° = (\/3D18 D219)(\/§D18 + D,8).

The idea for proving (3.9 bis) is that if A ¢ dﬂg then 6 is
singular in codimension > 3, hence is locally factorial; the reducbile
R(a) is thus the sum C + C' of two effective Cartier divisors in
6. These in turn come from divisors on A, and the resulting configu-
ration forces the existence of E. Finally, the existence of E can
‘be ruled out assuming conditions (1), (2) or (3).
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CHAPTER 4
Andreotti-Maver in low genus

.

In this chapter we present the results of ([M2], (B] and [Dl1]:
dﬂ4, the first non-trivial Andreotti-Mayer locus, consists of 34 and
another divisor (Gnull) in d4; dﬂs consists of ?5, products, and
Pryms of bielliptic curves. The idea is to study Sing(8) for Prym
varieties and their degenerations, and to use the dominance of the

Prym map to dg for g { 5.

§ 4.1 Sing(B8) for a Prym

(4.1) [o) M2 Let P = P(C,u) be the Prym variety of
(C,n) € ﬁﬂg. If P is in the Andreotti-Mayer 1locus A then
(C,u) 1is one of the following:

g-1’

(a) hyperelliptic

(b) trigonal

(c) Dbielliptic (i.e. branched double cover of an elliptic curve)

(d) g =5, ¢ has a vanishing even thetanull L, and L ® p is even

(i.e. L satisfies 22 - Wear ho(L) = 2,ho(L ® u) = 0).

(e) g=6, C 1is a plane quintic curve, and p .

(i.e. no%u @ 0.(1))) is even.

The converse is also true. In case (a), P 1is a hyperelliptic

Jacobian, in Ng:i, or a product of two, in ﬂg:i.
(e), P 1is a Jacobian (cf. Corollary ?4.12) for (b)). In cases (c),

In cases (b) and

(), P is not a Jacobian, but it follows from the description of
Sing(¥) below that P is still in dﬂg_l.

The starting point for the proof is Wirtinger's Theorem (2.1):

\

8 Np= 2%,

Let ¢ — C be the double cover given by un. After translation, we

can think of a point of P as given by a line bundle L on C
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&
that L can represent a singular point of =:

satisfying Nm(L) = o (and a parity condition). There are two ways

Type (1): mult#(a) 2 4.

Type (2): multL(ﬁ) = 2, and T.,P C TL§.

L

(4.2) Lemma In any component of Sing (&) whose dimension is
2 9 - 5, the generic point is of type (2).

This lemma allows Mumford to ignore type (1) singularities. Type
(2) singularities can be described directly, and the question is
transformed to finding all curves C€ on which

dim (wé) >d - 4

for some d { g - 2. By a theorem of Martens and Mumford ([M2, appen-
dix] or [ACGH, Ch. IV, Theorems (5.1), (5.2)]}), this occurs only for

the exceptional curves listed in the theorem.

§ 4.2, Prym is proper

The Prym map

P FH — o
g g-1

is not proper, but can be made proper as follows. Let ﬁﬁg denote the
stable-curve compactification of Qﬂg. By the universal extension pro-

perty of the Satake-Baily-Borel compactification EZ_ [Bo], there is

1
an extension

F @ o S

g-1°
We then define (ﬂ‘g)allowable to be the 1inverse image 1n ﬁfg of
the open subset dg-l' The resulting map '

’ % (R4

allowable g)allowable - dg—l
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is then a proper extension of 2%.

It is more interesting to interpret this extension geometrically,
i.e. to describe which degenerate double covers are allowable. There
are 5 "types" of boundary components: first we have the 3 components

GI, 611, aIII

ing components of aaag. Additionally, we have two families of boun-

of aﬁﬂg which are the restrictions of the correspond-

dary components consisting entirely of covers of reducible base-
curves:

-ak ’ for 1§k {g-1, parametrizes double covers ¢ —>c

where C 1is reducible:

C=XU_Y
p

with Y,X of genera Kk,g-k respectively, meeting transversally at

p, and ¢ is the double cover corresponding to a point of order 2
B€ T, (¥) \ (0).

. ak g-k ’ for 1 { k ¢ g - k, parametrizes reducible covers with
!

C as above but p supported on both X and VY.

It is quite easy to see that BI, BIII and 6k are allowable,
while BII, Bk g-k are not. The degenerate double covers in al
’
("Wirtinger covers") are of the form
c:=3X/(p~aq), C:= (X, 1l X))/(p, ~ a;.495 ~ P;)

where X € Ag—l' P,9 € X, and XorX, are two copies of X. The limit-

ing Prym in this case is just J(X). The degenerate double covers in

III

d ("Beauville covers") are of the form

C:i=X/(p~q), ©&:=%(p~q
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where X € jg-l and X — X is ramified at p,q. The limiting Prym

P(C/c) 1is just P(§/X). (Fay showed in [[F] that the Pryms of double
/
covers with two branch points are ppav’'s.) A ak-cover is of the form

and its limiting Prym is J(X) x P(Y¥/Y).

This takes care of '"corank 1 degenerations" of double covers, but

the same ideas extend to arbitrary degenerations: any stratum of ﬁ]g
is locally the intersection of several boundary components (some of
these components have self-intersection), and the result is allowable
iff only allowable components are inveolved. More explicitly:

Lad

(4.3) Definition A branched double cover C — C of stable curves

is:

(1) A stablé Wirtinger degeneration if it is of the form

C = (X, 1l X))/(py ~ a3+ 9y ~ Py)
C:=X/ (p~4q),

with X stable.

I

(2) An allowable reducible degeneration, if C Y UE X (where Y

i i

is stable, X = ||;.;X" is the disjoint union of stable curves X7,

and the glueing set p = {pl}ieI contains one point in each Xi) and

the corresponding cover is C = X, || B, Y || Elxl with X, % X, ® X

and ¥ — Y any stable double cover.

(3) A stable Beauville degeneration if the branch points of the map

X — X of normalizations are precisely the inverse images of the no-

des. -
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The result is then:

(4.4) Theorem [B] A stable, branched double cover = : ¢ — c is al-
lowable if and only if it is either

(a) a stable Wirtinger,
C=X/(p~ Q)
with X treelike (i.e. the graph of components of X is a tree); or:

(b) allowable reducible,

where each connected component of X 1is treelike, and where

<2
l
<

is stable Beauville.

§ 4.3 Sing(8) for generalized Pryns

Beauville has extended Mumford's analysis to allowable covers of

singular curves:

(4.5) Theorem [g]' Consider a stable Beauville degeneration C — C

with Prym P = P(C/C) € dg-l'

(1) If P € ﬂg:i, C 1is either hyperelliptic or a union ¢C = Co Uc

with #(c, N C) = 2.

1
1)

(2) If P € ”3:4' C 1is either hyperelliptic or hyperelliptic with 2
points identified.
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= x9-5

(3) If P € dh,_, =47,
(a) trigonal

(b) hyperelliptic with two points identified

(¢) bielliptic, g 2 6

C 1is one of the following:

'(d) g =5, C has a vanishing theta null, C — C is even
‘(e) g = 6, a plane quintic with even double cover.

(f) hyperelliptic with two pairs of points identified.

(g) g = 5, a genus-4 curve with vanishing theta null and

with a pair of points identified.

(h),(1),(3), ¢ = c0 U Xl, #(X0 N Xl) = 4, and either:

(h) neither Xo nor Xl is rational.

(i) X, is rational, X hyperelliptic of genus 2 3.

1
(3) X, is rational, X, is of genus 3, wxl X oxl(xo n Xl)
(hence g = 6).
It was known already to Wirtinger [W] that & : ﬁﬂg — dg-l is
dominant for g ¢ 6. (This is easiest to see by computing the differ-

ential of % along the locus al

with §4.2, one gets

of "Wirtinger covers".) Combining

(4.6) Lemma % : (ﬁﬂg)

allowable o is surjective for
g §{ 6.

allowable g-1

One can therefore completely analyze dﬂg for g ¢ 5: By Theorem
(4.4), anything in dﬂg, is either a Wirtinger Prym (which is a
Jacobian or product of Jacobians), or a product, or a stable Beauville
Prym which is therefore in the list (4.5). Going through the list,

Beauville deduces:

(4.7) Corollary. dﬂ4 has 2 irreducible components: 34 and the
divisor 8 411 ©Of ppav's with a vanishing theta null.

(4.8) Corollary. All components of dﬂs other than 35 are contain-

ed in the divisor 8nu11'
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(Unfortunately, ] is contained 1in N5 but not in

null

L oaa_.

45 5°)

§ 4.4 The tetragonal construction

We describe a simple procedure, the tetragonal construction,

which takes a tower

(4.9) Iy Lpl

where f 1is a 4-sheeted branched cover (i.e. C 1is tetragonal) and

7 is an unramified double cover, and yields two new towers

(4.9)4 ¢; » ¢y > P i=o0,1

of the same type. Such a tower is uniquely determined by a representa-

tion p of vl(Pl \ {(branch points}) in the Weyl group WD, of the

Dynkin diagram:

(In general, the Weyl group We is the group of signed permutations
of n 1letters, and WD in its subgroup of index 2 consisting of
even signed permutations.) Now D, has a special automorphism a, of
order 3, (1200 rotation), not present in any other D, This gives
an outer automorphism a of WD4. Therefore representations of any
gorup in WD4 come in packages of three: p, a © p, a2 o p. In parti-
cular, we get (4.9)i (% = 0,1) starting with (4.9).

(More explicitly, starting with (4.9) we construct a
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1 with a natural involu-

1

(le = 24)-sheeted branched cover f*E —s P

tion. This breaks into two components, each of degree 8 over P
and invariant under the involution, yielding (4.9)1, cf. [D1]).)

(4.10) Theorem [D}1]) The tetragonal construction commutes with the

Prym map:

P(C/C) = P(Eo/co) % P(C/C).

Consider the special case where w7 1in (4.9) is the split double

cover. The 1lé6~sheeted branched cover f*E then splits into 5 com-

ponents of degrees 1,4,6,4,1 respectively over Pl. The components

of degree 4 make up C, — C which is isomorphic to C — C. The

1 1’

remaning components give
Pt F P — T ]t

where T 1is a trigonal curve and T its double cover. One sees easi-
ly that this special case sets up a bijection

C, a tetragonal curve T ,a trigonal curve of genus
(4.11) — g+l with an unramified
of genus g double cover T

This bijection, the trigonal construction, was described by Recillas
[R]. Group theoretically it corresponds to the exceptional isomorphism

54 — WD3

which arises from the coincidence of Dynkin diagrams A (In ge-

D L]
3" 73
neral, the symmetric group S, is the Weyl group WAn_l.) Theorem

(4.10) thus yields:

(4.12) Corollary [R] If (T,T) corresponds to C via the trigonal

construction, then P(T/T) % J(C).
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(In particular, this shows that case (b) in Mumford's Theorem
(4.1) leads to Jacobians.)

The tetragonal construction (4.9) (though not Theorem (4.10)) can
be deduced from the trigonal construction (4.11): starting with a tri-
gonal T of genus g + 1, choose a rank-2 isotropic subgroup of
(J(T))z, i.e. 3 points of order 2 ”'“o'“l satisfying

(4.13) u + Ho + By = o, (u,po) =0 € Z/2Z.

0!
0!

gi. Finally, each of these curves comes with a point of order 2 in

1

These points of order 2 determine double covers T,T
C , each with a

T of T. Ap-
+CA0C

plying (4.11) we get 3 curves of genus g:

its Jacobian, hence a double cover: for C, this point is the common

image in J(C) = P(T/T) of Ho and Hye

Using the tetragonal construction, we can obtain many identifica-
tions among Prym varieties of special curves.' As an illustration, let

us consider double covers of bielliptic curves. If CO,C1

are branch-
ed double covers of an elliptic curve E with disjoint branch loci,

we form the fiber product

¢ has 3 involutions :rl, with quotient Cl, (i =0,1), and their

%1 which is fixed-point free, yielding an un-

composition Tt :
ramified double cover C — C of a quotient curve C which is itself

bielliptic. We say that C — C is a Cartesian cover.

Let 8 = %g be the moduli space of bielliptic curves of genus
g. The space ﬁ%g of bielliptic curves with a double cover has

[9%;] + 1 components:
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~

1 ¢ 1¢ [ggl], consists of Cartesian covers C — C aris-

. ﬁﬁi,

ing from a pair of covers c® — E, ¢l — E where c° 1is of genus
i, ¢! of genus g + 1 -i.

. A% consists of all non-Cartesian covers.

0

Each of these components is (2g - 2)-dimensional. Since each bi-

elliptic curve has a l1l-dimensiocnal family of gi's, we have ample room

to play with the tetragonal construction. The result:

(4.14) Proposition

(1) #(@2))
able Pryms of hyperelliptic curves with two pairs of points identi-
fied.

is (2g - 2)-dimensional and is also the locus of allow-

(2) @(ﬁﬁi), for i > 1, is (2g - 3)~dimensional, and is also the lo-
cus of Pryms of reducible allowable covers ¢ —C where

C = X, U Xy C = io u il, X is hyperelliptic of genus i - 2, X,
is hyperelliptic of genus g - 1 - 1i.

(3) #(98,) = #(a%,).

In particular, when g = 6, Beauville's list becomes guite short.
(The anouncement in [Dl] is wrong. I thank 0. Debarre for pointing
this out.)

(4.15) Theoren. dﬁs consists of the 12-dimensional locus 35 of

Jacobians, the ll-dimensional locus ﬁl X d4 of products, and the 3

loci 9(9%1), i=1,2,3, of Cartesian bielliptic Pryms (these have

dimensions 10,9,9 repectively.)
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CHAPTER 5
Schottky=-Ju in low genus

In §5.1 we try to explain why the unexpected component ﬂ%o (of
intermediate Jacobians of cubic threefolds with even point of order 2)
pops into the Schottky 1locus ﬁ?g in genus 5 (hence also for
g 2 5). This explains our formulation of the Schottky-Jung Conjecture
(2.11).

The case g = 4 of the conjecture amounts to Igusa's'Theorem. In
the last section we sketch a new proof of this result, based on the
various symmeties of Pryms and thetas, and in the same spirit we out-
line our recent proof (yet unpublished) of the conjecture in genus 5.

§ 5.1. metry of t theta maps

In this section we discuss an extension of the tetragonal cons-

truction to arbitrary curves. Let Q € i be a curve, and

g+l
A0, g, By By =Hg topg)

an isotropic rank-2 subgroup of J2(Q). For i =0,1,2 we have a Prym
variety

Py = P(Quuy) € 4
and on it a uniquely determined semiperiod Vo image of any p
(j # 1) in P;. The result is:

b

(5.1) Theoxem [D3]. B(Pi;vi) is independent of i = 0,1,2.

This has many geometric applications. Taking Q = T to be tri-
gonal, we find ourselves in the situation of (4.14): each Pi ‘is a
Jacobian of a tetragonal curve, the three are related via the tetra-
gonal construction, and this special case of (5.1) follows from (and
is slightly weaker than) Theorem (4.10). Taking (Q,uo) to be a
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Wirtinger (aI) degeneration, (5.1) becomes the Schottky-Jung identi-
ty (2.6).

Of interest to us is the case that Q 1is a plane quintic curve,
o is an odd point of order 2, Ho (hence also ul) is even. By
Theorem (4.1) (e), PO and Pl are Jacobians of curves of genus 5,
but P, is not.

Let %€ C ds be the 10-dimensional locus of Pryms of gquintics
with odd covers. (It is known ([CG], [M2], {T]) that this is precisely
the locus of intermediate Jacobians of cubic threefolds.) Its 1lift to

ﬁds splits into two components ﬁ%o, gl , where ﬁ%oparametrizes pre-

cisely the pairs (Pz'vz) arising as above.
(5.2) Theorem [D3], The locus %e° of intermediate Jacobians of

cubic threefolds with an even point of order 2 1is a component of the
Schottky locus 995.

The inclusion #%¢° c 395 follows immediately from the symmetry
result (5.1) and the Schottky-Jung identities (2.6). The proof that

de® is actually a component was suggested by van Geemen. It is analo-
.gous to the proof that %% 1is a component of %%, Theorems (2.7) and

(2.8): the closure of ﬁ%o meets 6I%d5 X d4 in the locus of

Jacobians 24, and by a result of Collino [Co] the projectivized nor-

mal cone to 61 along d¢® at J(C) € 34 is given by the point

£(Ty - T, ) € K(J(C)),

0]

where T_.,T are the g%'s on C. This is precisely the exceptional

0’"1
case in Welters' Theorem (1.5): for generic C, the point :!:(T0 - Tl)

is not in C - C, hence forms a component of the base locus of FOO ’

which proves the theorem.

.The theorem implies, of course, that € C wéblg). We will see be-

low that € 1is not in 95.

-
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§ 5.2. Schottky in genus ¢ 5

The theta map (0.12):
Bzl — P(U,_1) /Gy,

extends to a proper map on an appropriate toroidal compactification,

. =5t
B : aag — w(ug_l)/cg_l.

For g ¢ 5 this map is surjective. Our strategy is to study the geo-

metry of this map and to use it to completely describe ﬁ?g.

(5.3) Theorem For C € 13, the inverse image

8 a(a(e)))

consists of two copies of the Kummer K(J(C)): one is

g~ (c)) c FA,,

the other is the fiber over J(C) € A3 of the natural map

alﬁzz — alﬁij
// /I

ﬂ3 —_— A3.

(5.4) Corollary (Igusa [I])). The Schottky locus ﬁ94 is irreducible,

hence is precisely Q$4. In particular,

(big) _ =
O = 94 = ?4.

Here is a sketch of the proof of (5.3). First, it is clear that

the two copies of K(J(C)) are indeed in B-l(a(J(C)). Consider the

equivalence relation ~ on ﬁzf generated by the relation
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"(Po,vo)_x (Pl,ul) if they are related via the theta symmetry (5.1)".
One verifies that the equivalence class of (C,u) € 934 consists

of two copies of the Kummer K(P(C,un)), .as in the statement of the
theorem. We end up with a quotient map of §,

t 7
Fd, /) ~ — P'/ G (2,8)

and by a degeneration argument we conclude that this map is an isomor-

phism over the image of a, so ﬁ_l(a(J(C))) cannot contain anything
new.

I would like to point out that the fiber of B over a point of

P7/G3(2,4) not in image(a) 1is not known. It is a deformation of the
singular variety (consisting of two Kummers meeting along a surface)
which is the fiber over a point of image(a), but it should be inter-
esting to have an explicit description.

(5.5) Theorem The compactified map

. =t 15
B f 535 —— P77/ G, (2,4)

is generically finite of degree 119. Its Galois group is (contained
in) 50;(2), the special orthogonal group preserving a quadric of

Witt-defect 1 in P’(F,).

(5.6) Theorem The closed Schottky locus @?; has four components:

...___t
7ot 0 t I—t =t t
Rf. =de¢ U HF U ORI U (A, x Fd)).
(I.e. Conjecture (2.11) is true in genus ¢ 5.)

. = . .
{(5.7) Corollary 95 35

.The proofs, at present, are very complicated. They rely on de-
tailed knowledge of the structure of the Prym maps
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$ : FU —> o

for g ¢ 6. This knowledge is obtained by applying the tetragonal con-
struction to everything in sight. For instance, 96 is generically
finite of degree 27 [DS] with Galois group

WE6 o~ 806(2),
the symmetry group of lines on a cubic surface: two lines intersect or
not according as the corresponding curves are obtained from each other
by one tetragonal move or a segquence of two such moves. We can thus

define an equivalence relation on 535 by the theta symmetry (S5.1),

as in (5.3), but now we get a generically finite relation. Starting

with any point of 535 we get, in the first generation,
54 = 27 - 2

equivalent objects. Theorem (5.5) involves showing that the second
(and last) generation adds another 64 objects fitting together in a
highly symmetric configuration, and that this equivalence spans the
fibers of p. Theorem (5.6) then requires computation of the local de-
gree of B on each of the 4 known components (these degrees are
1,54,64,0 respectively), and checking the normal bundles to make sure
that no extra components arise via blowup (i.e. contribute 0 to the
degree) .



-52-
REFERENCES

fACGH]) E. ARBARELLO, M. CORNALBA, P. GRIFFITHS , J. HARRIS,
Geometry of algebraic curves, vol. I, Springer-Verlag,
New York (1985).

[AdAC1] E. ARBARELIO, C. DE CONCINI, On a set of'equations
characterizing Riemann matrices, Ann. of Math. 120 (1984),
119-140.

[AdC2] E. ARBARELLO, C. DE CONCINI, Another proof of a con-

jecture of S.P. Novikov on periods and abelian integrals
on Riemann surfaces, Duke Math. J. 54 (1987), 163-178.

[AM] A. ANDREOTTI, A. MAYER, On period relations for
abelian integrals on algebraic curves, Ann. Scuola Norm.
Sup. Pisa 21 (1967), 189-238.

[AMRT] A. ASH, D. MUMFORD, M. RAPOPORT , ¥. TAI, Smooth com-
pactification of locally symmetric varieties, Math. Sci.
Press, Brookline (1985).

[B] A. BEAUVILLE, Prym varieties and the Schottky problem.
Inv. Math. 41 (1977), 149-196.

{BD] A. BEAUVILLE, O. DEBARRE, Une relation entre deux
approaches du probleme de Schottky, preprint.

[Bo] A. BOREL, Some metric properties of arithmetic quotients
of symmetric spaces and an extension theorem, J. Diff.
Geo. 6(1972), 543-560.

[CG] H. CLEMENS, P. GRIFFITHS, The intermediate Jacobian of
the cubic threefold. Ann. Math. 95 (1972), 281-356.

[Co] A. COLLINO, A cheap proof of the irrationality of most
cubic threefolds. Bolletino U.M.I. (5) 16-B (1979),
451-465.

[D1] R. DONAGI, The tetragonal construction. AMS Bull. 4
(1981), 181-185.

[D2] R. DONAGI, Big Schottky, Inv. Math. 89 (1987), 569-599.

[D3] R. DONAGI, Non~Jacobians in the Schottky loci,

Ann. of Math. 126 (1987), 193-217.

[DS] R. DONAGI, R. SMITH, The structure of the Prym map,
Acta Math. 146 (1981), 25-102.

[Du] B.A. DUBROVIN, Theta functions and non-linear equations,
Russian Math. Surveys 36, no2 (1981}, 11-92.

[F] J. FAY, Theta functions on Riemann Surfaces,
Springer-vVerlag, Berlin and New York, 1973, Lecture Notes,
Vol. 352.



[FR]

[G]

[1]

(M1]

(M2]

[(M3]

(Mu]

[R]

(s]

(SJ]

(Sh]

[T]

[(Tx]

[VG1]

[VG2]

[VGVAG]

(W]

[We] .

[We2)

_53_

H. FARKAS , H. RAUCH, Period relations of Schottky type on
Riemann surfaces, Ann. of Math. 92 (1970), 434-461.

M. GREEN, Quadrics of rank four in the ideal of a canonical
curve. Invent. Math. 75 (1984), 85-104.

J. IGUSA, On the irreducibility of Schottky’'s divisor,
Journal of the Fac. of Science Tokyo, 28 (1981), 531-545,

D. MUMFORD, Theta characteristics on an algebraic curve,
Ann. Sci. E.N.S. 4 (1971), 181-192.

D. MUMFORD, Prym varieties I. Contributions to Analysis,
325-350, New York, Acad. Press, 1974.

D. MUMFORD, Curves and their Jacobians, Ann Arbor, Uni-
versity of Michigan Press, 1975.

M. MULASE, Cohomological structure in soliton equations
and Jacobian varieties, J. Diff. Geo. 19 (1984), 403-430.

S. RECILLAS, Jacobians of curves with a gi are Prym

varieties of trigonal curves, Bol. Soc. Math. Mexicana 19
(1974), 9-13.

F. SCHOTTKY, Zur Theorie der Abelschen Funktionen von
vier Variablen, J. Reine und Angew. Math. 102 (1888),
304-352.

F. SCHOTTKY, H. JUNG, Neue Satze Uber symmetralfunctionen
und die Abelschen funkticnen, S.-B. Berlin Akad. Wiss.
(1909).

T. SHIOTA, Characterization of Jacobian varieties in terms
of soliton equations. Inv. Math. 83 (1986), 333-382,.

A. TJURIN, Five lectures on three dimensional varities,
Russ. Math. Surv. 27 (1972).

M. TEIXIDOR, For which Jacobi varieties is Sing 6 redu-
cible, preprint.

B. VAN GEEMEN, Siegel modular forms vanishing on the moduli
space of curves, Inv. Math. 78 (1984), 329-349.

B. VAN GEEMEN, The Schottky problem and moduli spaces of
Kummer varieties, U. of Utrecht thesis, 1985.

B. VAN GEEMEN, G. VAN DER GEER, Kummer varieties and the
moduli space of curves, Am. J. of Math. 108 (1986),
615-642.

W. WIRTINGER, Untersuchungen uber Thetafunctionen, Teubner,
Berlin, 1895. .

G. WELTERS, The surface C - C on Jacobi varieties and 2nd
order theta functions, preprint.

G. WELTERS, A criterion for Jacobi varieties, Annals of
Math. 120 (1984), 497-504.



