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Quaternion structure on the moduli space of Yang-Mills connections

Mitsuhiro Itoh

1. This article is a continuation of [13]. We define in [13] a
canonical Riemannian structure < , > on the moduli space M-
of SU(n)- anti-self-dual connections over a compact oriented
Riemannian 4-manifold (M, h). It was also showed that this
Riemannian structure is Kdhler when M 1is a complex Kidhler sur-
face. Moreover the formula of the Riemannian curvature tensor

was derived by making use of the Green operators of the Laplacians
associated.to a connection. The method developed there is applied
also to the moduli spaces of Einstein-Hermitian connections over
a compact Riemann surface (i.e., a compact complex curve) to

show that these moduli spaces admit the canonical K&hler metric
of nonnegative holomorphic sectional curvature and hence of non-

negative scalar curvature.

Assume that (M, h) be a complex 2-torus with a flat metric
or a K3 surface with a Ricci flat metric. As is well known,

these spaces carry covariantly constant, globally defined almost

3 . . - - .
complex structures {Ii} I=1 satisfying I,I, = -I,I, I , in
other words, they admit a global orthonormal frame {mi} i=1 of

the bundle A2+ of self-dual 2-forms which is covariantly con-
stant. These spaces are characterized by that their holonomy

group is contained in Sp(1) = sU(2) .



We say such a structure {Ii}

i=1 satisfying 1112 = -1211 = I3

to be a quaternion structure on M .

We will discuss in this article geometrical structure of the
moduli spaces of anti-self-dual (or Einstein-Hermitian) connections
over a 4-manifold (M, h) with a covariantly constant quaternion

structure.

Note that only the complex 2-torus with flat metric and the
K3 surface with Ricci flat metric are compact oriented Riemannian

4-manifolds admitting a covariantly constant gquaternion struc-

ture.

We formulate the main results of this article in the follo-

wing form.

Theorem 1. Let (M, h) be a complex 2-torus with a flat metric
or a K3 surface with a Ricci flat metric. Let P be a G-prin-

cipal bundle over M ( G is a compact simple Lie group) and
M~ the moduli space of irreducible anti-self-dual connections

-~

on P . Then the Riemannian manifold (M , < , >) admits a co-
variantly constant, guaternion structure. Namely its holonomy

group is contained in Sp(n), 4n=dim RM- .

Theorem 2. Let (M, h) be as in Theorem 1. and P a U{(n)-

principal bundle over M . Then the moduli space ME of irre-

ducible Einstein-Hermitian connections on P 1is endowed with a



canonical Riemannian structure < , > so that its holonomy
group is contained in a symplectic group.

While these spaces (ﬁ-, < ,>) and (ﬁE, < , >) are Ricci
flat Kihler manifolds because of their holonomy groups by the aid
of general theory on quaternionic Kihler manifolds ([4], [1] and
[18]), we exhibit in § 5 a nontrivial Riemannian curvature iden-

tity from which the Ricci curvature actually vanishes.

Theorem 3. Let M be a complex 2-torus or a K3 surface ad-
mitting a Hodge metric (that is, a Kd&hler metric whose Kdhler
form Q is cohomologuous to one pulled back the Kdhler form of
the Fubini-Study metric under an embedding M — PN( C)) . Let
M(r, Cqr cz) be moduli of [Q]-stable holomorphic vector bundles
over M with fixed rank r and Chern classes cieHZi(M; z),
i=1, 2 . Then M(r, Cqv cz) carries a canonical Kdhler structure

whose holonomy group is contained in Spi{n).

By Yau's theorem [20] there is a Ricci flat Kidhler metric

h on M whose Kihler form is cohomologuous to 9 so that (M, h)

2

carries a global, covariantly constant orthonormal frame of A™_ .

Since the stability of vector bundles depends on the cohomology
class [Q] we have a one-to-one correspondence between M(r, Cyr c2)
and the moduli space ME of Einstein-Hermitian connections on a

U(n)-principal bundle P over (M, h) with ci(chcr)=ci, i=1, 2

({141, [16] and [8]). Hence, Theorem 3 is a direct consequence of



Theorems 1 and 2.

REMARKS (i) It is conjectured that these spaces over a K3 sur-
face are irreducible in the sense of deRham, that is, their holo-

nomy group is exactly a symplectic group.

(ii) These moduli spaces are complex symplectic manifolds, i.e.,
admit non-degenerate holomorphic 2-forms, since their holonomy
group is a subgroup of Sp(n) . Mukai proved in [17] that the
moduli of simple (or stable) sheaves on an abelian surface or a

K3 algebraic surface has a symplectic structure. Recently Kobayashi
generalized Mukai's theorem with respect to moduli space of simple
holomorphic vector bundles on a higher dimensional compact com-
plex symplectic manifold ([15]). We can generalize Theorem 1 and 2
over a higher dimensional compact Riem@nnian manifold whose holo-
nomy group is a subgroup of a symplectic group. However, the moduli
spaces over such a manifold are generally no longer smooth mani-

folds because of cochomology groups of higher degree.

(iii) In general M({r, Cyr cz) is not a compact space. To com-
pactify this space we must add (semi-)stable sheaves to it. The
space Ml(r, Cqr c,) is a symplectic K#hler manifold due to [5]

and [3] if it happens to be compact and nonsingular.

(iv) Let M_k be the moduli space of SU(2) -anti-self-dual connec-

tions with anti-instanton number k=c2(Px6 Cz)[M] . Then its compacti-

fication M, admits a structure of stratification ([9]);

k
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here M(l) is the symmetric i-fold product of M . Since each

stratum carries a canonical quaternion structure over a complex
2-torus with a flat metric or a K3 surface with a Ricci flat
metric, this whole space must admit a quaternion structure con-

sistent with this stratification.

(v} The Euclidean 4-space R4 is a typical 4-manifold admitting

a covariantly constant quaternion structure. Due to [2] and [7]

~

the moduli space Mk_ of based (anti-) instantons on m4 carries
a complex structure and its dimension diman~ is 42 . The space

~

Mk- should be endowed with a canonical quaternion structure.

(vi) At any reducible anti-self-dual connection the moduli space
M~ is singular and can be actually described by the quotient of

a slice S; c under the isotropy FA which is mapped Fa -equi-
r
2

variantly to 2Zero(¢) of analytic functions ¢;H1 —> H =
, /1"A A +A

0 0 0
H m1® HA w,® H w

A 2 A Y3 - However, the canonical Riemannian structure

is well defined on S_ and hence on Zero(¢)/ .
A'E/F FA
A .
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2. Riemannian structure on the moduli spaces.

We give in this section a definition of the canonical Rie-
mannian structure on the moduli space of anti-self-dual connec-

tions (for more detail, see [13]).

Let (M, h) be a complex 2-torus with a flat metric or a
K3 surface with a Ricci flat metric. Let P be a c” G-prin-
cipal bundle ( G ; a compact simple Lie group). We denote by A
and G the set of all c® connections on P and all c” gauge
transformations of P , respectively. With respect to the adjoint
bundle 8, = PxAdg ( g is Lie algebra of G ) we denote by QP(gP]
the space of c” gP—valued p-forms; Qp(gp) = T(M; Aﬁ@ gp), pz0
A is an affine space associated tokthe vector space 91(gp) .
From the metric h together with the Killing form of g we defi
naturally a pointwise positive definite inner product on the bund
A§® 35 and then a global inner product on _Qp(gp) . The inner

product ( , ) is invariant under the action of G defined by

(g, 9) —> gle) = Ad(g e .

For each connection A we have its curvature FA =d A +

1/2[AAA] € Qz(gp); F: A— Qz(gp) . From the Hodge operator *

induced from the canonical orientation of M the bundle of 2-for

splits into Ai = Ai + AE , where Ai denotes the eigenspace sub

bundle of eigenvalue + 1. A connection A is called anti-self-

dual if p, FA = 0 , where p_ is the orthogonal projection: A;

2
—_— A+ v P+(a)

1/2(a + * a) . The set AT of all anti-self-dua



connections is a subset of A invariant under G . Here the
action of G on A is given by (g, A) — g(a) = Lg-1(dg) +
Ad(g_1)A . The quotient space M = A /G , which we call moduli
space of anti-self-dual connections, is considered as a space
parametrizing G -orbits in A~ . The moduli space is a subset

of the quotient space B = A/G of connections on P .

We say connection A to be irreducible when the covariant
derivative dA; Qo(gp) —_ 91(gP) admits trivial kernel. Relative

to the set A of all irreducible connections it is known that

the quotient space B = A/G , a dense subset of B , carries a
Banach manifold structure, if we complete A and G with suitable

Sobolev norms.

Since the tangent space TAA , A € A is canonically identi-

fied with 91(gp) , the G =-invariant inner product ( , } on it
descends to a Riemannian structure < , > on B so that the

-~

projection : A —> B is a Riemannian submersion. Its restriction

to M =M nB defines a Riemannian structure. We call it a canonical

Riemannian structure on M .

In order to study the structure < , > on M~ more explicitly

we define local coordinates on M~ by the aid of slices and the

Kuranishi map.

Denote by A~ = A~ n A the set of all irresucible anti-self-
A’ -~ -~

dual connections. We have the canonical projection TiA —> M .



We use the symbol [A] for an element n(A) in M .
For every [AJeM there exists a subset S; in A~
14

c , called a

slice at A , such that A € S and w(S, ) gives a neigh-
A’E AIE

)

-~
-

borhood of [A]l in M  and moreover m| - @ : Sy —>T(Sy |
14

A,e A,

is a homeomorphism. Actually, S, has the form of A N(A+

A,e
*
(B_NKer d,")) , here B_ is an e-ball in 91(gP) with center

*
at 0 and 4, : 91(gP)—>QO(gP) is the ( , )-formal adjoint of

dA . Note that the slice at A is identified with the subset in

Q1(gp) of the following form

*

(a€a’(gy) ; lal<e , @, a = 0 and 4w + 1/,lanal” = 0},

where d ' = p,.d, and [oa.l?

2 = p+°[.A.] .

We define next for a fixed connection A the Kuranishi map

*

- 1 1 - +* + +
= 1 Q (gP)——>Q (gP) by :A(a)= a+dA GA(1/2[aAa] }. Here d

A A

is the formal adjoint of dA+ and GA is the Green operator of
. 2 _ o+, +* 2 _ a2 2 = .

the Laplacian A+,A—dA dA .Q+(gP)—F(M,A+®gp)——>ﬂ+(gp). iy, is a

c” mapping in the sense of Frechét derivatives.

Since M is a complex 2-torus or a K3 surface, we have

Ker 4, , = {0} for any an€A” ([12, Proposition 2.3]). There-
14

fore we have for every AEA” a small >0 so that EA mapps
homeomorphically the slice S; c at A onto a neighborhood U
’
1 1

. . 1 _ _ *
of 0 1in the first cohomoclogy group HA = Ker bp v By = dA dA

A
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PROPOSITION 2.1 ([13, Proposition 2.5]). The moduli space M

is a €~ manifold with coordinate neighborhood system

tEplgm v U dpea™ |
A,e

Now we will give the canonical Riemannian structure < , >

on M~ in an explicit way.

The tangent space TAA=Q1(QP) , A€A has a unique ( , )-

orthogonal decomposition
-~ *
T A ='VA @ HA , V. = Im dA , H, = Ker dA {(2.1)

to define a semi definite inner product < , >A on TAA by

< 8 , 81 > = (8 , 8 Y, (2.2)

where Bh and B1h are the horizontal components of £ and

61 , respectively. Then < , > defines indeed the Riemannian

~

structure on B so that the projection: A——>B is a Riemannian

submersion and the restriction of < , > to each of slices is

the canonical Riemannian structure on M  ([13, Proposition 3.11).

In what follows we sometimes identify A + o and a for a

b g .
fixed A € A unless any confusion occurs.

The coordinate expression of < , > 1is given at each coordi-

nate system (2

_AIS- ’ UA) by

A,e
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-1 -1

<X, Y > = <(SA)* X, (EA)* Y >y ! x€UA, X, Y ¢ TXUA
(2.3)
= . - - =1 .
here x=z,(a) with A + a € SA,e and  (Z,), is an inverse of
: . - . - o1
the differential (_A)* : TaSA'E-——-NI‘xUA = HA .

We remark here that T S. = Ker d.* N Ker d.  since
a A,e A A+a

+ + +
dA+a8 = dA B + [a A B8] and hence

h

g =H BETA+a S (2.4)

A+a B’ A,e '

and further (&%,), coincides with H, over T S, for each
A A a A,e

A+ a € S; c where HA is the orthogonal projection: 91(gp)
1
—> H; ({13, Proposition 3.2]).

PROPOSITION 2.2. For each A € A~ the coordinate system

u,)

(Zalgz A is Guassian normal at 2,(0) = 0 with respect

A,e’
to the canonical Riemannian structure < , > .

The proof of this proposition is given at [13, Proposition

3.4].
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3. Quaternion structure on the moduli spaces.

Let (M, h) be as in § 2, that is, a complex 2-torus with
a flat metric or a K3 surface with a Ricci flat metric. The
canonical line bundle KM is trivial and the scalar curvature
vanishes. Hence we have a covariantly constant, holomorphic
2-form w on M . Thus, w + @ , Y=-1(w - w) and the Kihler form
Q@ define a global, covariantly constant and pointwise ortho-
normal frame of the bundle AE (up to constant factors). Note
that conversely a compact oriented Riemannian 4-manifold admitting
such a frame is isomorphic to a complex 2-torus with a flat
netric or a K3 surface with a Ricci flat metric ([10]).

As Ai at m € M is isomorphic to su(Tm) = {u € End(Tm);
h(uX, ¥) + h(X, u¥Y) = 0} , there exist then globally defined,

skew-symmetric endomorphisms {Ii}i=i satisfying the following

(i) Ii is covariantly constant, i = 1, 2, 3,

(ii) Ii is an almost complex structure; Ii2 = ~ id,
i=1,2, 3, (3.1)

(iii) I. I i+ 3 (3.2)

i 59 % figk Tk v

is completely skew-symmetfic and

( eijk €423 © 1 ‘) and the
triple {u,};_ ] of 2-forms defined by u(X, ¥) = A(I;X, ¥)

gives a global, covariantly constant, orthogonal frame of



-12-

N

AL (161, [19, formulas (3.1), (3.2)]).

Each Ii induces an endomorphism of the contagent bundle
Ay = T*M by (Ii a)x = a(Ii X) and hence a bundle endomorphism
of the tensor product bundle A; 23 8p - We will use the same

symbol for it. Note that Ii preserves ( , ) pointwise.

PROPOSITION 3.1 ([19]). The quaternion structure {Ii}i=? leaves

invariant KXer A; , A €A

Since Ker A; , A€ A is identified with the tangent space

- -~

M~ to the moduli space M , from Proposition 3.1 the restric-

}i=? to Ker A; defines in a natural way a quaternion

structure on M .

Tia

tion of {Ii

The proposition is derived from the following lemmas.

_ +* . _ 0
LEMMA 3.2. Ii(dAw) = dA (v ® mi), i=1,2,3, YEQ (gp). (3.3)

Proof. Since ¢ ® w; is a self-dual 2-form and wy is co-
variantly constant for I = Ii , 1=1,2,3, we get

+¥ - st i_ st i
dy" (v 8 wp) = '2 h® 7 (v wy ) dx” = - } VY yh™Tw .dx"

i,s,t
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= i J i i = - =
where w_ 1/, ¥ wijdx adx® is given by w; wyg ZIi h
k

Hence this reduces to ZIisszdxl which is equal to I(d,v) .

Each VY € Qi(gp) is represented by Eylemi . wlggo(gp) .
. i
We say y* to be the i-th component of ¥ . Then we obtain

LEMMA 3.3 ([19, (3.3), (3.4)1).
(1) d,*(I;a) = -2 {i-th component of dAfa} , (3.4)

and hence the i-th component of dA+(Iia) = 1/2dA*a, i=1,2,3,

and

(ii) the i-th component of dA+(Ija) = (3.9)

+ . .
eijk{k—th component of dA e} 1+ 3J .
Proof. We give a proof by our terminology.

(i); We have from Lemma 3.2 that for y € no(gP) (dA*Ia,w) =

*
-{a, I'dAw) = - (o, dA+ (v ® mI)) = -(dA+a, v ® wI) = —((dA+a,

. *
wg), V) . Hence d, Io = - (dA+a, wg) . which implies (3.4).

(11); (&, (T, w), ) = (3 (Tg@), v @ wy) = (Ije, a"”

(v © mi)) = Eijk(dA+“' vy ® wk) . Then we have (3.5).

PROPOSITION 3.4. The quaternion structure ({I.} on M

i"i=1
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is covariantly constant with respect to the Levi-Civita connec-

tion Vv of (M, <, > ).

From this proposition the holonomy group of the Riemannian
manifold (&_, < , >») 1is contained in a sypletic group. Hence we
obtain Theorem 1.

The rest of this section is devoted to the proof of Propo-
sition 3.4.

In order to get the covariant derivative of the almost com-
plex structure Ii which is considered as an endomorphism of the
tangent bundle T&- we develop it along a slice and obtain an ex-

pression of the developed almost complex structure

. : N - +a € S . Of cours
Jl,a : TaSA,e—_>TaSA,e for any A+a A,c e we have
= I, =0 .
Ji,a Il at a
Fix a connection A + oy in the slice S; . and let
I
- . Vo . -
SA',e' be another slice at A A+ ag - Since "(SA,e)n

- . o . - -1
"(SA',e') + ¢ , there exists a C mapping g : sA’Enn (m

(s;\.,e.))——> 6 ; o —> g such that g (A + a) is in s;.,e.

and Iy (A+a0) A' . This mapping g induces a transformation

0
¥ between these slices by V¥(A + a) = gu(A + a) . Its differen-

tial ¥, : T s, —> T is written as

A+a " A,e W(A+a)sA',s'

vy (B) = ga(B) +d

*q

¥(ara) * (3.6)

here ¢ € QO(gP) is uniquely determined from o« and 8 ([13,

§ 3 ]). The almost complex structure J = Ji at a on the

0

slice s; . must satisfy the following
r



—qs-

_ -1
Iy (8) = (¥, ) LIl (e })(8), B €T,

0 0 0 0

SA,e' (3.7)

since T S = Ker A; , and the almost complex structure

A' “A',¢!
developed along SA

- '3 . = ] =
et is just I Ii at A A + @y -

Note that each I, : Q1(gP)-—9 Q1(gp) commutes with any gauge

]
’

transformation.

LEMMA 3.5. Ja has the following form;

0
" *
J_(8) = T(B) + dy, ¢+ ", T(v @ w), (3.8)
0 0 0
or
J (8) = 1(8%) +4 ¢ (3.9)
ao A+a0 ’ *

where I of the right hand side is the almost complex struc-
ture defined on 91(gp) and ¢, v € QO(QP) are uniquely de-
termined by ey and 8 .

Proof. From (3.3) an inverse V¥ Voot v,

*q

0

is given by
%0

- -
W*ao (Y) = gao (Y) + dA+GO¢' Y €T A'SA',S'

here ¢ € Qo(gp) is determined from ay and vy . Hence
= -1 -1
Jao(B) = gm0 (I(W*aoe)) + dA+a0¢ reduces to (gm0 Igao)
. -1 _ -1 .
(B{ + quo (I(dA+aow')) + dA+a0¢ = I(8) + I(gm0 (dA+a0w )) +
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KR aAmo((gao”)w') , we have

d ¢ . Since g (d

A+a A+a

J (B) = I(8) + I(d y) + d ¢
ao A+uo A+a0

for v =g _1(w') . Hence (3.8) is obtained from Lemma 3.2.

o ]
0
The proof of (3.9) is given as follows. Decompose B8 as 8 =
v h v h + _
B" + 87 , B € VA+Ql , B € HA+a . Because d, (Ja (g)) =0,
0 0 0 0
+ 2 _ + v
dA+a0(I(B)) + A+,A+a0 (v © mI) = 0 . Then dA+u0(I(8 )) +
2 _ . h _
+,A+a0(w ® wI) = Q0 , since from (2.4) we have I(8)) =1I mA+“0
1 . 0 v _

(8) € Ker AA+a0 . But we have ¢' € Q (gp) so that B8 -.dA+a¢'
and then from (3.3) a2 ((¢"+y) ® w.) = 0 which concludes
+,A+a0 I
that (o' + y) ® wr = 0 since Ker Ai = 0 . That is,

V -
I(B') + dA+a0+*(w @ mI) =0 .

REMARKS. (i) From (3.9) and also (2.2) the quaternion structure

preserves the canonical Riemannian structure.

(ii) (3.9) coincides with (4.8) in [13]. In [13] the for-
mula (4.8) is showed by the aid of the canonical correspondence
between Q- on an SU(n)-principal bundle and the moduli space
Mh of holomorphic (0,1)-connections. We use here a method appli-
cable to a case of general simple Lie group without any aid of

Mh . ©

Proof of Proposition 3.4. Because for any A € A~ (EAlS_ /Uy)
-~ ' A,e

is a coordinate system at [A] in M it suffices to show that
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vl =0 at A , here J = Ji over UA is induced from Ji

being developed along the slice under EA .

/4
Let {x1.....x°} be an orthonormal basis of H; , and x =

£ 1

(x1.....x ) the coordinate in UACHA corresponding to it and

moreover a/axi, the canonical vector field on Upr i=l,.....2 .
We show the following assertion from which the Proposition is

obtained.

_ . L .9/,
ASSERTION. At x =0 Va/axl(JB/axj) = J(va/axl 3x%x~)
il j = 1’-.-16 -

The coordinate system is Gaussian normal at x = 0 from
Proposition 2.2. Then Va/axi(Ja/axj) at x = 0 coincides
. . k . .
with %(a/alej )‘(0)(a/axk)0 and is equal to d/dﬂojc(u(a/mJ)C(ﬂ

where c(t) = tXx~ is e i c i i
(t) a curve in UA orresponding to 3/8xl. By

its definition we have

1

Jc(t)(a/axi)c(t) = (EA)*a(t)Ja(t)(EA)*u(t) (a/axj)c(t) !

where «(t) is a curve in S; c defined by EA(a(t)) = c(t)
’

From the fact that (EA) A,c!

*g = HA over Ta S

Jc(t)(a/axj) = H

c(t) a Jatt) Yarey) v
here we set Yo (t) = (EA*g(t))_1(a/axj’c(t) , which is in

Ta(t) SA,E . Then
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= HA(d

4/ ae07c (e) 7 axI et satloYa ey Yarey)? -

From Lemma 3.5 we get and Ve in Qo(gp) with parameter

o
t such that

+ *

* dasa(t) e T Yara(r) (Pe® op) -

Tatt) Yare)) = T, ()

Therefore the differential is

d/dthJa(t)(Ya(t))= I(d/3¢10%a (t)’

+%
+ /3610 Yara(e) b ¥ Fara(r) We® o)

_ i
= I(d/dtloYG(t)) + [x A¢0] + dA(d/dtlo¢t) +
i +*
(XA (wg® o)1)+ " (/g0 g ® up)

here ([.a.]) : 91(gP) x Qz(gp) —— Q1(gp) implies the bracket
operation together with the metric contraction, and also we used

the fact that «(0) = 0 and %! in the sense of

a/

dt| a(t)
lo

Frechét derivatives. Since J = I at o« = 0 and I ‘commutes

with MA ,» we have ¢0 =Yg = 0 and hence

d/dthJC(t)(a/axj)C(t) = HA(I(d/dt‘OYG(t)))

I \By(d/ge107 (1))
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We have further mA(d/dt!OYa(t)) = d/dtldmAYa(t))
(8/axj)c(t) which is V3/, 1 3/ 353 at x =0 .

Therefore the assertion is verified.

= 43¢0
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4. Moduli space of Einstein-Hermitian connections.

We assume first that (M, h) is a compact complex surface

with a Kihler metric. Let P be a c” principal bundle over M

with structure group U(n) . For each connection A on P we

decompose its curvature FA into the sum of the center part 1/n
. s _ _ .

Tr FA.ldE and the trace free part F, = Fy 1/n Tr FA.ldE

according to the decomposition of u(n) c + su(n) . /—1/2“

Tr Fp is a closed 2-form representing c1(E) € HZ(M; Z); E =P
x ¢ .

g
DEFINITION 4.1. A connection A on a U(n)-principal bundle P

is called Einstein-Hermitian when Tr FA is a harmonic 2-form

of type (1,1) and FAS is anti-self-dual (p, FAS = 0) .

Like as an anti-self-dual connection Einstein-Hermitian
connection gives a connection minimizing absolutely the Yang-
Mills functional if ({c,(E) - E%l c1(E)2} [M] 2 0 . For each
Einstein-Hermitian connection A Tr A depends only on the

bundle P from the uniqueness of harmonic form representing

the cohomology class.
PROPOSITION 4.2. The following are equivalent for a connection

A .

(i) A is Einstein-Hermitian,

(ii) F is a

a gp—valued 2-form of type (1,1) whose con-
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traction AFA with the Kihler form Q is A.idE for a con-

stant A .

Proof. (i)==§>(ii) : This is obvious, since the harmonic form
Tr FA splits into p _Tr FA and p_ Tr FA and p, Tr FA =
a @ for a constant a , and moreover a 2-form Y is anti-

self-dual if and only if it is type (1,1) and AY = 0 ([11]).

(1i)=> (i) : We have AF, = AF,° + 1/ (ATr Fp).idg

which is equal to A.idE . Then the trace free part AF S

A
vanishes and ATr FA is constant. But this means over the Kdh-

ler surface M that the closed form Tr Fy of type (1,1) is

harmonic.

REMARK. Donaldson mentioned in [8] the equivalence in Proposi-
tion 4.2. Many authors define Einstein-Hermitian connection by

Proposition 4.2, (ii).

We say a connection A on P to be irreducible if Ker

{dA ; Qo(gp) —_— 91(gp)} is one-dimensional. We decompose the

(o] S

adjoint bundle 8p into gP = QP + gP where ch = Px_.C

Ad
and gps = prdsn(n) . Over chdA reduces to the ordinary

differential d . The irreducibility of a connection A im-
plies equivalently'that the restriction of dA t0 Qo(gps) is

injective.

-
-~

Now we will describe a slice for moduli space ME of irre-

ducible Einstein-Hermitian connections on P .
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PROPOSITION 4.3. Suppose that a connection A is Einstein-
Hermitian. Then, a connection A+a is Einstein-Hermitian if
and only if
a® =0
(4.1)
s]+

d;(as)+1/2[us A a =0

for the splitting o = o€ + o® .

1 . .
A+a a 5 (e A a] , A+a 1is Einstein

Hermitian if and only if Tr(dja+ % la A a]) =0 and P+((d,a

Proof. Since F = F_+ dAa +

+ {a A a])s) = 0 . These are equivalent to (4.1) because

1
2
s r s S s _
d a = dac + dAa and f[aAal® = [a"Aa”] , and also Tr(dAa) =
A
Tr (da®)
From this proposition we can define a slice at A for

ME . Denote by SA c @ subset in 91(§P) of the following

form

{a = o© o+ o€ Q1(g ) ; |a] <€ , a satisfies d,* = 0 and
P A

(4.1) 1}

As o and «® are chosen independently, SA c is written
14
c S
where
by a product SA'€1x SA,€2 ’ er

Sp .= {vV-1 a.idE ; a is a real harmonic 1-form on M , la|<e1}
1

(4.2)

and
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s s 1 s s * g + s
SA,52= {a™ € Q (gp ) Io. |<ez ' dA a=0, d, a (4.3)

+ (a5 A 31201 .

1
2

The quotient sA by the isotropy subgroup PA={g € G; g(a)

15/
Ta

= A } properly corresponds to a neighborhood of the space &E .
However, we can neglect the action of FA , Since FA is a sub-
group consisting of constant abelian gauge transformations and
_its action on g, "is trivial. Remark that SA?E1= {0} for M
with bi(M)=0 .

S

With respect to the slice sA,e at A we get the follo-
wing elliptic complex
+
d d
0
0—>0 (B;)-.A>Q1(B:)—A>ni(g;)—>0 (4.4)

-~

to define a local coordinate on ME at [A] by making use of

the Kuranishi map

REMARK. If we use here a notion of trace free anti-self-dual

connection, then (4.3) and (4.4) lead us to define moduli of
As
such connections ME . (In [8] such a connection was mentioned

as a projectively anti-self-dual connection).

-~

From (4.2) - (4.4) the moduli space ME has a locally
product structure; ME:H1deR(M; R)XME . Of course each of
them carries the canonical complex structure induced from M
compatible with the product structure. The dimension of Mg

is computed by the

»
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Atiyah-Singer index theorem from (4.4) and in fact is given by

ding, E«; = { 2n c,(E) - (n-1)c12(E) } Ml

(4.5)
-(n2-1) Pa (M)

(P, (M) = 1-g(M) + Pg (M) is the arithmetic genus of M‘).

Assume finally that the base space is a complex 2-torus

with a flat metric or a K3 surface with a Ricci flat metric.

-~

Then M; and hence M is a manifold with no singularities. By

E
the aid of the same arguments in § 2 and 3 we obtain a canonical
Riemannian structure < , > and a covariantly constant quater-

nion structure. Therefore we have Theorem 2.

On the center part factor of ME which is locally diffeo-
morphic to H;eR (M; R) , the canonical Riemannian structure re-
duces to a flat metric and the gquaternion structure is directly

*
inherited from the guaternion structure on T M .
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5. Some curvature identity

We show that the canonical Riemannian structure on the

moduli space M (or M; ) is Ricci flat by making use some

curvature identity.

The Riemannian curvature tensor R actually satisfies

the following identity.

PROPOSITION 5.1.

<R (X,Y) ¥,X > + 23 <R (X,I,¥) I,Y,X> =0, (5.1)

i=1
X,Y € H1A = T[A]M_ . Here {I,} 1is of course the quaternion

structure on M~ induced from (M, h) .

Like as holomorphic bisectional curvature on a Kihler mani-
fold, the left hand side of (5.1) represents "quaternionic" bi-
sectional curvature of two quaternion linear subspace Vx and

. 1
VY in H, . where Ve and VY are spanned by X and Y ,

respectively.

From (5.1) we can verify that the Ricci curvature vanishes.

3
LEMMA 5.2 [a A al™+ | [T;0a I.a]" =0, (5.2)
— i=1 ’

a € Q1(gp) .
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Proof. Let {wi} f=1 be the triple of 2-forms corresponding
to the quaternion structure {Ii} 2=1 on M . There exists at

each m € M a coordinate {x1,x2,x3,x4} so that it is Gaussian

normal at m and w, = dx1 A dx2 + dx3 A dx4 ;oWy = dx1 A dx3 +

1
4 2 4 2

dx~ A dx and =~ (dx1 A dx + dx° A dx3) at m . Then

w3

*
{1} on T M has the following matrix representation:

(5.3)

The formula (5.2) is derived by a straight computation and is

nothing but the formula (3.6) in [19].

LEMMA 5.3 For any X,Y € 91(59)

the i-th component of [XAY]+ = % {X,IiY} , 1i=1,2,3 . (5.4)

Here a skew-symmetric mapping {.,.} : 91(gp) x 91(QP) —_— QO(QP)

is defined by (5.5)
{X,¥}=} hlj[xi,Yj]
i,3
Proof. The i-th component is % ([X A Y], w;) " since lwi|2=2 .

Set 1i=1 . Then

([XAY] , w1) = [X1,Y2] + [Y1,X2] + [X3,Y4] + [Y3,X4] .

On the other hand, from (5.3)
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_ 2 1 4 3
I.¥ = Y1dx + dex - Y3dx + Y4dx

and then

{x.I1y} [X1,Y2] - [XZ,Y1] + [x3,y4] - [X4,Y3]

(5.4) for i=2 and 3 are similarly obtained.

Proof of Proposition 5.1. We have in [13] the formula of the

Riemannian curvature tensor;
< g(x,y) 7,X > = 3({X,¥}, G, ({X,¥}) - ([Xa¥1", G, ([xaY1%))
+ ([xaX1", G, ([¥a¥]™)) .
Then the left hand side of (5.1) is written by
3({X, ¥}, G,({X,¥})) + 3 g({X,IiY}. G ({X,I;Y1))
-(Ixa¥]", G (IXa¥1)) - %(XAIiY]+, G, ([XaI;¥1™))

+([xaX1*%, G, (1¥AY]™)) + T(IXAXTT, G, ([T ¥AT;¥1™))
1

The last two terms vanish because of (5.2) .

. + 1 =
since [Xa¥]® = 3 E{X,IiY}mi and G, (v 8 w;) = 2(Gay) ® w

1

14
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i=1,2,3, GA([xAy]+) reduces to }G,({X,I;¥}w; and then
i

((xa¥]", G [Xa¥1T) = z({x.xiy}, G, (X, I3Y1) . (5.6)
So
([XaL, Y17, GA[XAIiY]+) = g({X'IinY}’ G (X, I4I;¥D)

= ({X,Y}, G,{X,Y}) +jzi({x,xjy}, GA{X,IjY}) , i=1,2,3 .

Therefore we obtain (5.1).
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