MINIMAL ATLASES OF CLOSED SYMPLECTIC
MANIFOLDS

YU. B. RUDYAK AND FELIX SCHLENK

ABSTRACT. We study the number of Darboux charts needed to cover
a closed connected symplectic manifold (M,w) and effectively estimate
this number from below and from above in terms of the Lusternik—
Schnirelmann category of M and the Gromov width of (M, w).

1. INTRODUCTION AND MAIN RESULTS

A symplectic manifold is a pair (M,w) where M is a smooth manifold and
w is a non-degenerate and closed 2-form on M. The non-degeneracy of w
implies that M is even-dimensional, dim M = 2n. (We refer to [11] and [23]
for basic facts about symplectic manifolds.) The most important symplectic
manifold is R?"” equipped with its standard symplectic form

n
wo = Zdﬂ:‘z A dy;.
i=1
Indeed, a basic fact about symplectic manifolds is Darboux’s Theorem which
states that locally every symplectic manifold (M?" w) is diffeomorphic to
(R?",wg). More precisely, for each point p € M there exists a chart

@: B*(a) = M
from a ball
B™(a) : = {z eR>™ | 7z? < a}

to M such that (0) = p and ¢*w = wy. We call such a chart (B*"(a),¢) a
Darboux chart. In this paper we study the following question:

Given a closed symplectic manifold (M,w), how many Dar-
bouzx charts does one need in order to parametrize (M,w)?

In other words, we study the number Sg(M,w) defined as
Sp(M,w) := min{k| M =B, U---UBy}
where each B; is the image ¢; (B?*"(a;)) of a Darboux chart.
An obvious lower bound for Sg(M,w) is the diffeomorphism invariant
B(M) := min{k|M =By U---U By}
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where each Bj; is diffeomorphic to the standard open ball in R?".
The volume associated with a symplectic manifold (M mn w) is

Vol(M,w) = l'/ w".
nJm

In particular, Vol (B2"(a)) = % a™, as it should be. The volume of any

symplectically embedded ball in (M, w) is at most
v (M,w) = sup { Vol (B2”(a)) | B?"(a) symplectically embeds into M}.
Another lower bound for Sp(M,w) is therefore
Vol (M, w) J
D(M,w) := |—229 g

(W) { (M, w)
where || denotes the maximal integer which is smaller than or equal to x.
Notice that v(M,w) = & (Gr(M,w))" where

Gr(M,w) = sup {a | B?"(a) symplectically embeds into (M, w) }

is the Gromov width of (M,w). The symplectic invariant I'(M,w) is there-
fore strongly related to the Gromov width. We abbreviate

AMM,w) := max{B(M),I'(M,w)}.
Summarizing we have that
(1) AMM,w) < Sp(M,w).
Before we state our main result, we consider two examples.

1) For complex projective space " equipped with its standard Kéhler form
wsr we have B(CP") = n+ 1 and I'(CP",wsr) = 2. In particular,

MCP", wgr) = B(CP") > I'(CP",wgr) ifn>2.
It will turn out that Sg(CP",wgr) = AM(CP™",wsr) =n+1if n > 2.

2) We fix an area form o on the 2-sphere $2, and for k& € N we abbreviate
$2(k) = (%% ko). Then B ($? x $%) = 3 and T (3%(1) x $*(k)) = 2k + 1.
In particular,

A($2(1) x $2(k)) = [ ($*(1) x $2(k)) > B($* x 8%) if k> 2.
It will turn out that Sg ($%(1) x $%(k)) = A ($%(1) x $%(k)) = 2k + 1 if
k> 2.

We refer to Examples 2 and 4 in Section 5 for more details.
Our main result is

Theorem 1. Let (M,w) be a closed connected 2n-dimensional symplectic
manifold.

(i) If \(M,w) > 2n + 1, then Sg(M,w) = A\(M,w).

(i) If M\ M,w) <2n+1, thenn+1 < AN M,w) < Sp(M,w) < 2n+ 1.
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Remarks. 1. The assumption in (i) is met if [w]|~,(ar) = 0, see Proposi-
tion 1 (ii) below. It is also met for various symplectic fibrations, see Sec-
tion 5.

2. Theorem 1 implies that
n+1 < A M,w) < Sg(M,w) < 2n+1 if A\(M,w) # Sg(M,w).
The following question is based on the examples described in Section 5.

Question. Is it true that A\(M,w) = Sg(M,w) for all closed symplectic
manifolds (M,w)?

Theorem 1 essentially reduces the problem of computing the number
Sp(M,w) to two other problems, namely computing B(M) and T'(M,w).
As we shall explain next, the diffeomorphism invariant B(M) can often be
computed or estimated very well.

Recall that the Lusternik—Schnirelmann category of a finite CW-space X
is defined as

cat X :=min{k | X = A1 U...U A},
where each A; is open and contractible in X, [20, 4]. Clearly,
cat M < B(M)

if M is a compact smooth manifold. It holds that cat X = catY whenever
X and Y are homotopy equivalent. However, the Lusternik—Schnirelmann
category is very different from the usual homotopical invariants in algebraic
topology and hence often difficult to compute. Nevertheless, cat X can be
estimated from below in cohomological terms as follows. Let H* be singular
(or Cech, or Alexander-Spanier) cohomology theory, with any coefficient

ring, and let H* be the corresponding reduced cohomology. The cup-length
of X is defined as

(X)) :=sup{k|uy - uy # 0,u; € H*(X)}.
It then holds true that
(2) cat X > cl(X) + 1,
see [7]. If X is connected, an estimate of cat X from above is given by
cat X < dim X + 1.

This inequality can be substantially improved as follows. Recall that X is
said to be p-connected if it is path connected and its homotopy groups m;(X)
vanish for 1 < i < p. It turns out that

dim X

p+1

for every p-connected and finite CW-space X. Another useful property of
the LS-category is

(4) max{cat X,cat Y} < cat(X xY) < cat X +catY

(3) cat X < +1
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for any C'W-spaces X and Y. Proofs of all the above statements and much
additional information on LS-category can be found in [4, 12, 13]. O

Summarizing we have that
(5) c(M)+1 < cat M < B(M)
for any smooth manifold. Furthermore, if M™ is closed then B(M) < n+1,
see [19, 26, 36]. Hence,
(6) cd(M)+1<catM <B(M)<n+1
for any closed n-dimensional manifold.
These inequalities may be substantially improved if M is symplectic.

Proposition 1. Let (M,w) be a closed connected 2n-dimensional symplectic
manifold. Then

n+1<cl(M)+1<catM <B(M)<2n+1.

Moreover, the following assertions hold true.
(i) If m (M) =0, thenn+1=cl(M)+1=cat M =B(M).
(ii) If [w]lxo(ar) = 0, then cat M = B(M) = 2n + 1.

(iii) If cat M < B(M), thenn > 2, n+1 = cl(M) +1 = cat M and
B(M) =n + 2.

On the other hand, the computation of the Gromov width and hence of
the number I'(M,w) is often a very delicate matter. Fortunately, there has
recently been some remarkable progress in this problem, see Section 5.

The paper is organized as follows. In Section 2 we prove Theorem 1. In
Section 3 we study the minimal number S5 (M,w) of equal symplectic balls
needed to cover (M, w) as well as the minimal number S(M,w) of symplectic
charts diffeomorphic to a ball needed to parametrize (M,w). In Section 4
we prove Proposition 1, and in the last section we compute the numbers
S(M,w), Sg(M,w) and Sg(M,w) for various closed symplectic manifolds.

Acknowledgements. The idea behind the proof of Theorem 1 belongs to
Gromov. We are very grateful to Leonid Polterovich for explaining it to us.
The first author was supported by NSF, grant 0406311.

2. PROOF OF THEOREM 1

In view of the inequalities (1) and (6), Theorem 1 is a consequence of

Theorem 2.1. Let (M,w) be a closed 2n-dimensional symplectic manifold.
(i) If I'(M,w) > 2n+ 2, then Sp(M,w) =T'(M,w).
(ii) If I'(M,w) <2n+1, then Sp(M,w) < 2n+ 1.



5

Proof. We start with describing the idea of the proof, which belongs to Gro-
mov and is as simple as beautiful. For each Borel set A in M we abbreviate
its volume )
.—_ n
w(A) = ) w".
Moreover, we define the natural number k by
(M) b 'M,w) if T(M,w)>2n+2,
ol 2n+1 if T'(M,w)<2n+ 1.

By definition of I'(M,w),

w(M
0 1(M,w) > HED
By definition of (M, w) we find a Darboux chart ¢: B?*(a) — B C M such
that
u(M

0(B) > (T)
In view of this inequality, and since dim M + 1 < k, we shall find a cover of
M by k sets CL,...,CF where each set @7 is essentially a disjoint union of

small cubes, and where
7 (@j) < wu(B) for each j.

Using this and the specific choice of the sets @7 we shall then be able to
construct for each j a symplectomorphism ®7 of M such that ®7(C7) C B.
The k Darboux charts

(@j)_l op: B(a) - M

will then cover M, and so Theorem 2.1 follows.

FIGURE 1. The idea behind the map ®7.

Notice that ((‘Zj ) might be very close to p(B). In order that the “cubes”
in @7 all fit into the ball B, the map ®’ should therefore not distort the
cubes too much. We shall be able to find such a map ®/ by constructing an
appropriate atlas for (M,w) and by constructing the set G/ carefully.

Step 1. Construction of a good atlas of (M,w)
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Let k be the natural number defined in (7). In view of the estimate (8)
the real number ¢ defined by

101w) = HO o

is positive. By definition of v(M,w) we can choose a Darboux chart
©0o: B2"(a0) — By M
such that
w(Bo) > @ +e.

Since M is compact, we find m other Darboux charts ¢;: B**(a;) — B; C M
such that

) a = | 3.

We can assume that
(10) Bi ¢ JBj, i=0,...,m.
J#i
Given open subsets UCVot R?" we write U € V if U C V, and we say that
a symplectic chart (U , 95) is larger than a symplectic chart (U, ) if U € U

and ¢ = @|y. Using this terminology we can also assume that each chart
(B2”(ai), goi) is the restriction of a larger chart. Then the boundaries of the

images Bg, B1, ..., B, are smooth. Using that M is a normal space we next
choose for i = 0,...,m numbers a] < a; so large that with B} = ¢; (B*"(a}))
we have
M

(1) n(mp) > 20
and

m
(12) M =B

=0
After renumbering the charts (B**(a1),¢1) , ..., (B*(an), ¢m) we can then

assume that B; N B{ # 0. In view of (10) and since the boundaries of B
and B(, are smooth, the open set

Iy
B\ By = [Jw
i=1
is non-empty and consists of finitely many connected components U; with
piecewise smooth boundaries. For each ¢ € {1,...,I1} we choose a point

pi € 836 Nnou;.

Here, 0A denotes the boundary of a subset A of M. We let T1 be the
rooted tree whose vertices are the root pg and the points p; and whose edges
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are [po,pi], i = 1,...,I;. For notational convenience we set Uy = By and
0 = B as well as
W =wund, i=1,...,1I.

It might well be that U; = @ for some 4. Clearly,

1 I 1
(13) U B, = O U; and U@; = | Ju,
i=0 i=0 i=0 =0

cf. Figure 2.

FIGURE 2. The sets U] C Uy and U, C Uy and the points
p1 € 8U6 NoU, and py € 8’% N oUs.

The tree T7 corresponding to Figure 2 is depicted in Figure 4. We also set
Uy = B*(ag) and ¢g = ¢g: Uy — Ug and define the symplectic charts

Uz‘:%—l(ui)’ b=l Ui =W, i=1,...,11.

Notice that each chart (U;, ¢;) is the restriction of a larger chart.

If m > 2, the assumption (12) implies that we can renumber the charts
(B2"(a2),g02) e (B2"(am),<pm) such that By N Uil:O Bl # (. In view of
(10) and since the boundaries of Bo, B{, and B/ are smooth, the open set

1 I
(14) 32\U§§: H W,

1=0 i=I1+1

is non-empty and consists of finitely many connected components U; with
piecewise smooth boundaries. In view of the second identity in (13) and
the definition (14) of U; we find for each i € {I; +1,...,I2} an index i €
{0,...,I1} such that OU; N OU; # 0, and we choose a point

i € Ou; N ou;.

We let Ts be the tree obtained from the tree J7 by adding the vertices p; and
the edges [pg-,pi], i=n+1,...,I,. Weset W, = W;NB, fori = I;+1,..., 1.
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Then

2 I
Uz = Ju  awd  JT =
i =0 =0

cf. Figure 3.

FIGURE 3. The sets U; C Uz and the point ps € OU) N OUs.

The tree T corresponding to Figure 3 is depicted in Figure 4.

b1 b1 ps3
Po -< Po o<
b2 b2

FIGURE 4. The trees 77 and Js.

We define the symplectic charts
U=¢;' W), ¢i=eolv,:Ui—W, i=L+1,... 1.

Notice again that each chart (U, ¢;) is the restriction of a larger chart.
Proceeding this way m — 2 other times we find a sequence

O::I()<11 < o< Iy,
of integers and [ : = I, + 1 open connected sets U; C M, i =0,...,[, with

piecewise smooth boundaries such that for each j € {0,...,m — 1},
i T+

(15) B \JB = [ W
i=0 i=I;+1

Moreover, defining j(i) by the condition i € {Ij(i) +1,...,Ij(i)+1} and
setting U, = U; N B;’(i)+1 we have found for each i € {1,...,l} an index
i€{0,..., 14} such that au;_. N OU; # () and have chosen a point

(16) pi € OU; N AU,
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The vertices of the rooted tree T = T, consist of the root py and the points
pi, and the edges of T are [pz,pi], i=1,...,1
The identities (9) and (15) imply that

!
(17) M= Ju
i=0
and that Eézou(ui) — p(M) as a} — aj for all j = 0,...,m. Choosing
ag, - - - ,ay, larger if necessary we can therefore assume that
!
(18) ST h) < p(M) +e.
i=0

We replace the symplectic atlas {gpi: B?(a;) — B;, i =0,... ,m} by the
symplectic atlas {¢;: U; — U;, i =0,...,l}. Here, we still have (U, ¢g) =
(B2n(a0)7 900)7 and

Ui = SO]_(i)—i-l (uz) ) ¢Z = @j(i)—i—l‘Ui: UZ - uia 1= ]-7 s 7l'

Each chart (U;, ¢;) is the restriction of a larger chart ggz U; — U;. While
p; ¢ U; in view of (16), we have p; € ﬁiﬂ U, for i = 1,...,l. Our next goal
is to replace the charts 51 (71 — ﬁz by charts ”(ZZ 17Z — ﬁl such that for
each ¢ > 1 the transition function

{/;;l O'@Zz 'lzz_l (ﬁlﬂﬁo — ”Lf/;;l (ﬁzﬂﬁl>
is the identity near qZ;l(pZ) We first of all set (170, {/;0) = ((707 50)_ In order
to construct (‘71, zzl) we first define a symplectic chart (‘A/l, 121\1) by

Vi= [d (51_1 o 1;0) (Q1)] - (Ul) , Y1=¢1od (51_1 o ”Jo) (q): Vi = U,
where we abbreviated ¢ : = 1’/;5 Y(p1). We then find
(19) (1,/;61 o 121) (1)=q1 and d (1,/;61 o {ﬁ\l) (q1) = id.

We obtain the desired chart (‘71, zzl) from the chart (171, 121) with the help
of the following lemma.

Lemma 2.2. Assume that ¢: U — U’ is a symplectomorphism between two
domains U and U’ in R*™ such that ¢(q) = q and dp(q) = id at some point

qg € U. Then there exist open neighbourhoods W C W € U of q and a
symplectomorphism p: U — U’ such that p|lw = id and p|U\W = ¢|U\W.

Proof. We can assume that ¢ = 0. Following [11, Appendix A.1] we repre-
sent the map ¢ by

r = a(&mn)
= b(&n).
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Since dp(0) = id, we have det (ag(0)) = 1 # 0. According to Proposition 1
in [11, Appendix A.1] we therefore find a smooth function w defined on a
neighbourhood N C R?"(z,7) of 0 such that

§ = :E—{—W(l‘,?])
(20) {y = n+w;7(:r,n)-

We can assume that w(0) = 0. In view of the identities ¢(0) = 0 and
dp(0) = id and the relations (20) we find that all the derivatives of w up to
order 2 vanish in 0, i.e.,

(21) w(z,n) = O (|@n)*).
Choose a smooth function f: [0,00[ — [0,1] such that

s<1,

o ={1 25

and denote the open ball of radius s in R?"(x,n) by B,. For each £ > 0 for
which Bs. C N we define the smooth function w®(z,n): Bs. — R by

w(z,n) = f(Z](x,n)]) wlz,n).
Then
(22) we|p, =0 and WE| B3\ Bye = W|By.\Bo. -
Abbreviating ¢ : = (z,n) and r : = || we compute
wi(¢) = f1(5) £5w(Q) + f (£) we(©),
iG

r j T 61 187
Wo© = 1) ES @)+ (5) 1 (% - ) (o)
() 2 (w6 Q) + Fug (©)
+ £ (£) weig, ()
where i,j € {1,...,2n} and where §;; denotes the Kronecker symbol. In
view of the estimate (21) we therefore find that

wi,(Q) = £O(®) +20(*) +O(r) = O(r), (€ Bs,

and so
(23) w(zn) = O (J@n)l®). (z.n) € Ba

We in particular conclude that det (1,, + wyy,(x,7)) # 0 for all (z,7) € Bs.
if € > 0 is small enough. The relations

g = $+w5($777)
(24) {y = n+wg(m,n)

therefore implicitly define a symplectic mapping ¢° near 0, see again [11,
Appendix A.1]. The C?-estimate (23) implies that ¢ is C'-close to the
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identity and that for € > 0 small enough, ¢° is defined and injective on all
of

Us. = {(&,m) € R* | (24) holds for (z,7n) € Bs.} .

In view of the estimate (23) each of the sets
U = {(&n) € R | (24) holds for (z,n) € B}, <3,

is contained in the domain U of ¢ and is diffeomorphic to an open ball pro-
vided that € > 0 is small enough. According to the identities (22), the map
¢° is the identity on U and coincides with ¢ on the “open annulus” U3, \U—QEE
It follows that ¢° (US.) = ¢ (US.). We smoothly extend °: U5, — R*" to
a symplectic embedding p: U — R?" by setting p(z) = ¢(2), 2 € U \ US..

Then p(U) = ¢(U) = U’, and setting W = Uf and W= Us. e Us. C U we
find that plw = ¢°|ye = id and p\U\W = 90’U\W' The proof of Lemma 2.2
is complete. O

In view of the identities (19) we can apply Lemma 2.2 to the symplecto-
morphism

1,/;61 ot : 121_1 (ﬁoﬁfh) — 1;61 (ﬁoﬁfh)
which fixes ¢1, and find open neighbourhoods Wy C Wl S 121_ ! (ﬁo N ﬁl)
and a symplectomorphism
pL: 121_1 (ﬁoﬂﬁl) — %‘1 (ﬁoﬂﬁl)
such that
(25) pilwy =id and  pal g qni £ = Yot o

Set 171 = ‘A/l In view of the properties (25) of p; the map zzlz ‘71 — ﬁl

defined by
By = { Yoopr on Jl_l @Oﬂﬁl),
(01 on Vi \ Wy
is a well-defined smooth symplectic chart such that
'(2;0_1 O'(Zli ’(2;1_1 (ﬁoﬂﬁl) — ’(2;0_1 (ﬁoﬂﬁl)
is the identity on the open neighbourhood W of ¢; = ”(ZO_ 1(p1). Assume now
by induction that we have already constructed new charts 1;: V; — U; for
j=1,...,1—1. Since i < i, the chart (UZ, qbg') is already replaced by the
chart (V@ z/@). Applying the two-step construction shown above to the pair
(Vi, 1/12), (UZ-, <;$Z-) we find a new chart ¢;: V; — U; such that the transition
function

Grtodis O (W) — 3 (W)
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is the identity on an open neighbourhood W; of ¢; = ”(ZZ_ 1(pl-). In this way
we construct a new symplectic atlas

- {Ji: v, — 1, i:o,...,z}.
Recall that U; € ﬁl The collection
A = {’(/JZ ‘/Z — Ui, ZZO,,l}
of smaller charts defined by
Vi=o7 W), =il Vi = W

is the good atlas of (M,w) we were looking for. We still have (Vo,z/Jo) =

(B2"(a0),900) and Uy = By. We also recall that each set U; is connected
and has piecewise smooth boundary.

Step 2. The dimension cover D (2n, k)

Let k > 2n + 1 be the natural number defined in (7). In this step we shall

construct a special cover D(2n,k) of R?® by cubes. Our construction is

inspired by an idea from elementary dimension theory, see e.g. [5, Figure 7].
We denote the coordinates in R?" by x1, ..., Z2,, and we let {e1,...,ea,}

be the standard basis of R?". Given a point ¢ € R?" and a subset A of R?"

we denote the translate of A by ¢ by

g+A={q+alacA}.

By a cube we mean a translate of the closed cube C?" = [0,1]?" C R*".
We define the (2n x 2n)-matrix M (2n, k) as the matrix whose diagonal is
(k,1,...,1), whose upper-diagonal is

k 2n  2n—1 4
2n? 2n—17 2n—27"""7 3?

=~
[\][N)
~

and whose other matrix entries all vanish. E.g.,

5200

3 3 4 2 01 30
med =33 wea=|g Y sas=|) o 59
2

00 0 I

We consider the infinite union of cubes
¢'@2nk) = ) M@2n, k)w+C*

vEZ2"
and its translates

eI (2n,k) = (j — ey + € (2n,k), j=2,...,k,

and we abbreviate

D(2n, k) an

IIC?v

cf. Figure 5 and Figure 6.
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Z2 Z2

I

FIGURE 5. Parts of the dimension covers ©(2,3) and ©(2,4).

FIGURE 6. A part of the intersections €!(4,5) N
{(z1, 22,23, 74) | 33 =0 — 3,24 =0}, i = 1,2,3.

Finally, we define for each subset A of R?" and each m € {1,...,2n} the
cylinder Z,,(A) over A by

Zm(A) = {a+ ey |ae A, N eR}.
Recall that the distance between two subsets A and B of R?" is defined as
dist(A,B) = inf{la—b||a € A, be B}.
Given v > 0 and a subset A of R?" we denote the v-neighbourhood of A by
N,(A) = {z € R?" | dist(z, A) < v}.
We abbreviate the positive number

(26) J := min (k_2" L )

2n 0 2n—1

Lemma 2.3.
(i) For each j € {1,...,k} and any cube C of €7 (2n, k) we have

dist(C, ¢ (2n, k) \ C) = 4.
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Moreover,
Zy (Int C)N & (2n,k) = | J kley +Int C
leZ
and
Zm (Ns(C) N (2n,k) = | J@n—m+2)ley +C, m=2,....2n.

lez
(ii) We have

k
D(2n,k) = | J&(2n,k) = R™
j=1

and the interiors of the sets € (2n, k) are mutually disjoint.

The proof, which is elementary, is omitted.

Step 3. The cover of M by small cubes
Let A = {¢;: V; = W;, i =0,...,1} be the symplectic atlas of (M,w) con-
structed in Step 1 and let ®(2n,k) = U§:1 ¢7(2n, k) be the dimension cover

of R?" constructed in the previous step. For any r > 0 and any subset A of
R?" we set
rA = {rz|ze A}

and we denote by |A| the Lebesgue measure of A. Fix i € {0,...,l}. For
d; > 0 we define €7 (d;) as the set of those cubes C' in d;€7(2n, k) for which

(27) CCV; and dist(C,0V;) > d;

and we abbreviate i
Di(dy) = | €(di).
j=1

In view of the identity (17) and since M is a normal space we find open sets
U; € U; such that

! !
M=Ju = Uu
1=0 1=0

Choose d; > 0 so small that w;l(ﬁi) C 9D;(d;). Then

!
(28) M =i (Di(dy)) .-
i=0
Also notice that the homogeneity of the sets Cg (d;) implies that
CH(d)| — L|Vi| as di—0
for all j € {1,...,k}. Choosing d; > 0 smaller if necessary we can therefore
assume that
(29) el(d)| < (Il + ie)
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for all i € {0,...,l} and j € {1,... k}.
We denote by €7 = €’(dy, . ..,d;) the union of cubes “of the same colour”

1
¢ = (Juwi(edy), j=1,... .k
=0

The cubes ¢;(C) in wi((’:g (d;)) are called i-cubes. For each connected com-
ponent X of €7 we define the height of X as the maximal h € {0,...,[} for
which X contains an h-cube. The set €7 decomposes as

l
¢ =1]¢
h=0

where G{L is the union of the components of G/ of height h. In view of (28)
we have

k l
(30) M=JUJe.
j=1h=0

According to the estimates (29) we can choose for each i € {1,...,l} a
number

(31) v € 10,8

such that

(32) (1420 |€l(di)| < £ (1Vil + 4<)

for all j € {1,...,k}. Since v; < § < 1, the conditions (27) imply that
(33) Nl/idi(c) CV
for any cube C in ©;(d;).

Lemma 2.4. If the numbers dy,...,d;—1 > 0 as well as the ratios d;/d;+1,
1=0,...,1—1, are small enough, then the following assertions hold true.

(i) € C Uy for each j € {1,...,k} and h € {0,...,1}.
(ii) Any component K of €} contains only one h-cube ¢y, (C), and

w;l(ﬂc) C Nuhdh(c)7 hzl,,l

Proof. We denote by ‘Pg = ng (do, . ..,d;) the partial union of cubes
1
P = Jwi(@(d)), i=0,....5j=1,..k
g=1

E.g., ng = zpl((’:{(dl)) and ‘.Pg) = @J. Generalizing the above definition we
define the height of a connected component X of P/ as the maximal h €
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{i,...,1} for which X contains an h-cube. The set Tg decomposes as
T? = HTZ,h
h=i

where fPi ;, is the union of components of ‘.Pg of height h.

Since ‘P{ consists of finitely many disjoint closed cubes, we can choose
d;_1 > 0 so small that each cube of wl_l(QI{_l (dl_l)) intersects at most
one cube of iP{ for each j. Then each component X of fP{_Ll contains only

one [-cube. We denote the distinguished cube in X by C(X). Since TP{
is a compact subset of the open set U;, we can choose d;_; so small that
fP{_l ; € U; for each j. Moreover, choosing d;_; yet smaller if necessary we
can assume that

(34) Y (K) € Noy, (17 (€(%)))

for each component X of CP{_U and each j.

Since ‘P{_l consists of finitely many disjoint compact components, we can
choose d;_o > 0 so small that each cube of ¥;_» (@{_2 (dl_g)) intersects at
most one component of fP{_l for each j. Then each component X of T{—Zh
contains only one h-cube, h = [,] — 1,1 — 2. We denote this distinguished
cube again by C(X). If h € {l,1 -1}, then €(X) = C(X) where X is the
unique component of fP{_l’h contained in X, and if h = [ —2, then C(X) = K
is an (I — 2)-cube. Since TP{_LZ is a compact subset of the open set U; and
since {‘P{—l,l—l is a compact subset of the open set U;_1, we can choose d;_»

so small that fP{_ﬂ Cc U; and 9’{_2 1—1 C W;—q for each j. Moreover, the
compact inclusions (34) imply that we can choose d;_s so small that

U1 (K) C Ny, (7 (E(X)))

for each component X of T{_2 ; and each j. Choosing d;_5 yet smaller if
necessary we can also assume that

U 1K) € Noyya, (v (€(K)

for each component X of TP{_Q —p and each j.

Repeating this reasoning [ —2 other times, we successively find d;_1, ..., dg
such that assertions (i) and (ii) of the lemma hold true for all h € {1,...,1}
and all j. Since G{) C Up by definition of G{), the proof of Lemma 2.4 is
complete. O

For h > 1 the sets M \ G{L do not need to be connected. Define the
saturation 8$(A) of a closed subset A of R?" as the union of A with the
bounded components of R?" \ A. For a closed subset A of Uj;, for which
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S (¢;1 (A)) C Vj, we set
S(A) = vn (8 (v, 1 (A))).

By Lemma 2.4 (ii) and the inclusions (33) we have 8(¢,;1(e{1)) C W for
all j € {1,...,k} and h € {0,...,l}. For j € {1,...,k} we can therefore
recursively define compact subsets of Uy by

s = s(el),

!
s, = sl | s, h=i-1,....0.
g=h+1
Then each set M \Sgl is connected. A component of ng is just the saturation
of a component of ng which is not enclosed by any component of U;: hal .

Each component X of Sfl has piecewise smooth boundary, and according to
Lemma 2.4 (ii) it contains only one h-cube 9 (C), and

(35) Pt (K) € Nypa, (C), h=1,...,1

While a component of S] is a cube of GJ and a component of 83 is the union
of a cube of GJ and the overlapping cubes of GO, a component, of SJ might
contain a cube of GJ which is disjoint from C’J U G%, cf. Figure 7.

FIGURE 7. A component of 8%.

If the ratios dp /dp1, h =0, ... ,{—1, are small enough, then Lemma 2.4 (ii)
implies that a component of €} cannot be enclosed by a component of Cj
for some g < h, and so the sets 8?1, h =0,...,l, are disjoint. We finally

abbreviate
l
= s
h=0
and read off from (30) and the definition of the sets 8{1 that

k
(36) M=|]8
=0
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Step 4. Moving the cubes of the same colour into B

In order to move the sets 87 into By we will have to choose the d; yet smaller.
We shall then be able to construct for each j a Hamiltonian isotopy ®J of M
which first moves 86 to a “dense cluster” around the center of By and then
successively moves S{L to a “shell” around the already constructed cluster
UbZs @(8)), h=1,....1.

The main tool for the construction of the maps ®7 is the following elementary
lemma.

Lemma 2.5. Let K be a compact subset of R*™ and let g be a point in
R?". Denote by X the convex hull of the union K U (q+ K). For any open
neighbourhood U of K there exists a symplectomorphism T of R*™ which is
supported in U and which translates K to ¢ + K.

Proof. We follow [11, p. 73]. We choose a smooth function f: R** — R
such that flx = 1 and f|gzn\y = 0. Define the Hamiltonian function
H:R*™ — R by

H(z) = f(2)(z,—Jq)

where (-, -) denotes the Euclidean scalar product on R?" and where J denotes
the standard complex structure on R?” defined by

wolz,w) = (z,—Jw), zw e R>™,

Recall that the Hamiltonian vector field Xy of H is given by Xg(z) =
JVH(z). We conclude that the time-1-map 7 of the flow generated by X g
is a symplectomorphism of R?" which is supported in U. Moreover, for
z € K we have

Xu(z) = JVH(2) = J(=Jq) = ¢,

and so 7(z) =z + ¢ for all z € K. O

We denote by B, the open ball of radius  in R?". We recursively define
the open ball B,, and the open “annuli” A7» = B, \ B,, , by

Th—1

(37) Brol = & (1Vol+4he),
(38) (A;;;_l - %<|Vh|+%s), h=1,...,1
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The definitions (37) and (38), the identities |V}| = p (Uy) and the estimate
(18), and the estimate (11) and the identity |B?"(a()| = p(B{) imply that

1< 1
= 2 (Wi 75re)
pM) |

S TR E*TE

< |B*(ap)|

l
(39) B, | + Z ‘A;; 1

and so

(40) By, U U Alh - C B*(ap).
h=1

Consider again the symplectic atlas 2 = {¢p: V}, = Uy, h=0,...,1} of
(M,w). Recall that 9o: Vj — Ug is the Darboux chart og: B?"(ag) —
Bo and that the sets U and Vj, are connected and have piecewise smooth
boundaries. Also recall that there exist larger charts vy : XN/h — Up. We
can assume that the sets U; and 1~/h are also connected and have piecewise
smooth boundaries. We fix j € {1,...,k}. The construction of the map @6
will somewhat differ from the one of the maps @fl for h > 1 since @6 (86)

will not be disjoint from Sg. We start with constructing <I>6.

Proposition 2.6. If the numbers dy, . ..,d; > 0 as well as the ratios d;/d;+1,
it =0,...,0 =1, are small enough, then there exists a symplectomorphism
<I>(J)(0f]\)/[ whose support is disjoint from Uﬁl:l S?l and such that @} (86) C
¢0 Bro .

Proof. We recall that 86 is the set of “free” cubes in G{), Le., each component
of 8) is a cube of €} which is not enclosed by any component of ngzl (?{L.
We abbreviate &g : = 1, 1 (S(J)). Since & is contained in €}(dp), we deduce
from the estimate (29) for ¢ = 0 and the definition (37) that

(41) 1So| < |Brl.
We denote by 9 the standard decomposition of R?” into closed cubes,
0:= U v+ [0,1]*"
vEZ2N

and for each v > 0 and each subset A of R?" we denote by Q(v, A) the set of
cubes in v which are contained in A. Let sg be the number of cubes in &.
The estimate (41) implies that after choosing dy > 0 smaller if necessary we
find g9 > 0 such that Q (do + €9, By,) contains at least so cubes.
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Recall that £ > 2n+1 and recall from the estimate (39) that 7o < \/ay /7.
We define 79 > rg by

~ 2 1
(42) To = min{émi 1700 5 (ro—i- a6/7r>}

and we denote by Gg’t the set of cubes in &g contained in By, Since
By, C B?(af)) and since Bf, = 1o (B*" (%)) is disjoint from U, and S{L C Up,
h > 1, the set By, is disjoint from ¥y ' (81), h > 1. In particular, G is the
set of cubes in €} (dp) contained in By, cf. Figure 9. We abbreviate the set
of exterior cubes in &g by

S5 1= &0\ &p".
Lemma 2.7. For dy and g9 small enough there exists a symplectomorphism
0 of Vo such that
(i) the support of 0 is contained in By, and disjoint from G&**;
(ii) @ maps each cube of G into a cube of Q (do + €0, Br,);
(iii) the set of cubes in Q (do + €0, Br,) containing a cube of 0 (S§) is

contractible.

Proof. Using Lemmata 2.3 and 2.5 we successively construct symplectomor-
phisms 05,,,05,_1,...,01 such that 65, “collapses” 68“ along the x9,-axis
and 0; “collapses” 0,11 0--- 009, (68“) along the z;-axis, 1 =2n —1,...,1,
and such that the composite map

0 = 010---00s,

meets assertion (i) as well as assertions (ii) and (iii) with Q (do + €0, Br,)
replaced by Q (dy + €o, By, ), cf. Figure 8.

|

FIGURE 8. The map 6 = 0, o 65 for j = 1.

In order to see that assertions (ii) and (iii) can be fulfilled as stated, we infer
from the definition of the set do€’(2n,k) D S given in Step 2 that
diam &I

Tiam 0 (STE) (63“:) — o as dyg — 0 and g9 — 0.
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In view of the choice (42) of 7y we can therefore choose dy and gy so small

that 0 (68“) C Q(do + €0, Byy), as desired. O
Lemma 2.8. If the numbers dy,...,d; > 0 as well as the ratios d;/d;+1,
i =0,...,0 =1, are small enough, then there exists a symplectomorphism

O¢ of Vo such that
(i) the support of ©¢ is compact and disjoint from

(U sﬂ) U o (&5);

(i) ©g maps each cube of G5 into a cube of Q(do + €0, Bry)-

Proof. The set U \ ngzl ng might not be' connected for any choice of
do, . ..,d;, in which case not every cube in 8 can be moved into g (B,)
inside Ug \ Uél:l 8{1. This is the reason why we work in the extended chart
Jo ‘70 — ﬁo We choose the numbers dy, ..., d; so small that each compo-
nent of Uh 1 SJ which intersects Ug is contalned in uo The component uo

of Uy \ thl Sh containing B, then contains S(J), and the set Vowo ( ) is
an open connected set with piecewise smooth boundary which contains Gy

&
&

FIGURE 9. Half of the subset §g = &It U S of V.

In order to move the cubes in G§* into B,, we shall associate a tree with
&X', Recall that G5 is a subset of do€’ (2n, k). We enlarge G&** to the set

St defined as the set of cubes in d@(2n, k) \ &2 which are contained in
Vo. Abbreviate

P— k it m=1,
Tl 2n—m+2 if me{2,...,2n}.
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We say that two cubes C' and C’ of ég"t are m-neighbours if
Cl =(C4=* do)\mem

for some m € {1,...,2n} and if their convex hull is contained in Vo. Ac-

cording to Lemma 2.3 (i) the (interior of) the convex hull of two neighbours

does not intersect any third cube of @e"t, cf. Figure 5. We define Gj, to

be the graph whose edges are the straight lines connecting the centers of
ext

neighbours in éo , and we define Gy to be the graph obtained from G by
declaring the intersections of edges to be vertices, cf. Figure 10.

ERER S Sy

FIGURE 10. Part of the graph G associated with @SXt.

Since ‘70 is an open connected relatively compact set with piecewise smooth
boundary, we can choose dj so small that the graph Gy is connected. Choos-
ing dy yet smaller if necessary, we can also assume that

(43) Vandy < TO;TO

and that the convex hull of any two neighbours in @8“ is contained in
‘70 \ B, We then in particular have that Sg is disjoint from B,,. Let Oy
be a cube of &' whose distance to By, is minimal. We choose a maximal
tree Ty in §g which is rooted at the center of C';. Denote a vertex of Ty
represented by the center of a cube C' of G§' by v(C) and write < for the
partial ordering on &&** induced by Ty. We number the s§*' many cubes in

S8 in such a way that

(44) v(C;) < v(Cy) = i< 7.
We finally recall that Q (do + €0, By,) contains at least sg cubes. In view
of Lemma 2.7 (iii) we can therefore choose cubes Q1,...,Q sgxt from the set

Q(do + €0, Bry) \ 0 (S") in such a way that each of the sets

(45) o (s u Qs
g=1
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i=1,...,s8" is contractible.
We are now in a position to move the cubes of G§' into B,,. We shall
successively move C; into Q;, i = 1,...,s&". Define 7y € |rg,7o[ by 7o :

= (ro + 70)/2. In view of the assumption (43) we can then estimate the
diameter of a cube in &G§' by

(46) Vandy < 7/“\0 —7p.

We first use Lemma 2.5 to construct a symplectomorphism ¥, of ‘70 whose
support is contained in V{y and disjoint from

ext
80

U csuo(ept)

g=2
and which maps C; into Q1. Indeed, since C} is a cube of G§** closest to
By, and in view of the estimate (46) we can first move C into the annulus
By, \ By, without touching |J,~, Cy, and in view of Lemma 2.7 (iii) we can
then move the image cube along a piecewise linear path inside By, \ By, to
a position from which it can be moved into B, to its preassigned cube Q)1
without touching 6 (Sg*).

Assume now by induction that we have already constructed symplec-

tomorphisms 9, which moved the cubes C, into the cubes @, for g =

1,...,7—1. We are going to construct a symplectomorphism ¥; of V3 whose
support is contained in V{y and disjoint from
g i—1
(47) U culJeues)
g=i+1 g=1

and which maps C; into Q;. Let -y be the piecewise linear path from v(C;) to
v(C4) determined by the tree Ty. Because of (44), all the cubes of &g on
v except C; have already been moved into B,,. Using Lemmata 2.3 (i) and
2.5 we can therefore move C; along « to (the “former locus” of) Cy without
touching ngi+1 Cy. More precisely, let o be a segment of v, i.e., 0 is a
straight line which is parallel to a coordinate axis and connects two vertices
v and v’ of Gg. Let R be the convex hull of the cubes C,, and C,s congruent
to C; and centered at v and v’, respectively. In view of Lemma 2.3 (i), the
closed rectangle R either is disjoint from y>i+1 Cg or it touches some cubes
Cj, j > 141, along a face. In the first case, we can directly apply Lemma
2.5 to move C,, to C, without touching ngz‘ +1Cy. In the second case, we
first move the touching cubes C; a bit away from R, then move C, to Cy,
and then move the displaced cubes back to their former locus, cf. Figure 11.
We can do this in such a way that the support of the resulting map 7, which
translates C, to C is disjoint from J ;4 Cy. Since R is contained in

‘A/o \B—TO we can also arrange that the support of 7, is contained in ‘70 \B—ro
Composing the maps 7, corresponding to the segments of v we obtain a
symplectomorphism 7; whose support is contained in V[ and disjoint from the
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= E L E | L E |

Ficure 11. How to move C, to C, along a path blocked by
C; and Cj.

Cy

set (47) and which maps C; to C. Since the set (45) is contractible, we can
now proceed as in the construction of ¥; and construct a symplectomorphism
9¥; which moves the image of C; at C into @); without touching the set (47).
The composition 1; o 7; is as desired.

After all, the composite map

Oy = ('lgsgxt o ngxt) o--+0(¥g07)0th
is a symplectomorphism of Vo which meets assertions (i) and (ii). O

Let 6 and ©¢ be the symplectomorphisms guaranteed by Lemmata 2.7
and 2.8. The symplectomorphism

0000001y

of ﬁo smoothly extends by the identity to a symplectomorphism <I>6 of M
whose support is disjoint from (J,_, 8] and such that ®}(8}) C o (By,)-
The proof of Proposition 2.6 is complete. O

Proposition 2.9. If the numbers dy, ... ,d; > 0 as well as the ratios d;/d;+1,
i =0,...,1 =1, are small enough, then there exists for each h =1,...,l a
symplectomorphism @% of M whose support is disjoint from

l

h—1
Ueys) v U s
g=0

g=h+1

and such that @%(S%) C o (A’"h )

Th—1

Proof. We first explain the construction of <I>]i. Recall from the end of
Step 3 that 8 C U; is the union of those components of €] which are not
enclosed by any component of U%:Q C{L. Each'component X consists of a
1-cube 91 (C') and some overlapping cubes of €}, and

PTHK) © Noyay (O) € W

For any cube C of Qﬁ{ (d1) we denote by C"* the closed cube of width (1 +
2v1)d; concentric to C. This is the smallest closed cube containing the
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neighbourhood N, 4, (C) of C. We abbreviate

G, = UC”’ 1
where the union is taken over those cubes C' of (’Z{ (dq) that lie in v ! (S{)
In view of the choice (31) the cubes C*' are disjoint. Since the compact
subset 1 L (8]1) of V1 is disjoint from the compact subset 1) . (Uh22 S%) of
V1, we can choose v; > 0 (and for this dy > 0) so small that & is disjoint
from 1,[)1_1 (Uh22 ng) Since for each cube C*! in &7 the cube C belongs to

(’:{(dl), we read off from the estimate (32) for ¢ = 1 and the definition (38)
for h =1 that

(48) 1] < |Az].

Let s; be the number of cubes in &;. The estimate (48) implies that after
choosing d; > 0 and v; > 0 smaller if necessary we find 1 > 0 such that
(9] ((1 + 211)dy + €1, Aﬁ(l)) contains at least s; cubes.

We next choose the numbers do,...,d; so small that each component
of U%:Q 8?1 which intersects U; is contained in U;. The component U; of
Up \ Uﬁlzz 87, containing By, then contains 8}, and the set 1711/11_1 (ﬁl) is an
open connected set with piecewise smooth boundary which contains G;.

We enlarge & to the set G defined as the set of cubes in d1¢7(2n, k)

which are contained in V;. O

In order to complete the proof of Theorem 2 we choose dy, .. .,d; > 0 such
that the conclusions of Propositions 2.6 and 2.9 hold for each j € {1,...,k},
and we define the symplectomorphism ®7 of M by

= &) o 0®] o .

In view of Propositions 2.6 and 2.9 and the inclusion (40) we then have
l
o7 (87) = o (U si)
h=0
l . .
- 0
h=0

C Yy (an(a{)))
C  Bo.
This and the identity (36) imply that the & Darboux charts
(<I>j)_1 owo: B*(a) - M

cover M. The proof of Theorem 2 is finally complete, and so Theorem 1 is
also proved. O
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3. VARIATIONS OF THE THEME

Consider again a closed 2n-dimensional symplectic manifold (M,w). In the
symplectic packing problem, one usually considers packings of (M,w) by
equal balls, see [10, 22, 35, 1, 2, 30]. In analogy to this we study the number

Sg(M,w) = min{k|M =B, U---U By}
where now each B; is the symplectic image ¢; (B*"(a)) of the same ball .

Theorem 3.1. Let (M,w) be a closed 2n-dimensional symplectic manifold.
Then Theorem 1 holds with Sg(M,w) replaced by S5 (M,w).

Proof. 1In the proof of Theorem 1 we have covered (M,w) by equal balls
and have thus proved Theorem 1 with Sg(M,w) replaced by Sg(M,w). O

Clearly,
(49) Sp(M,w) < Sg(M,w).
For every a > 0 we denote by Emb (B(a), M) the space of symplectic em-

beddings of (B2n(a),w0) — (M,w) endowed with the C'*°-topology.

Corollary 3.2. Assume that \(M,w) > 2n + 1 or that Emb (B(a), M) is
path-connected for all a > 0. Then Sg(M,w) = S5 (M,w).

Proof. 1f A(M,w) > 2n + 1, then Theorem 1 and Theorem 3.1 yield
SB(M,w) = A(M,w) and S5(M,w) = A(M,w).
Assume now that Emb (B(a), M) is path-connected for all a > 0, and

choose k = Sp(M,w) symplectic embeddings ¢;: B?"(a;) — M such that
M = Ule ¢i (B*"(a;)). We choose & > 0 so small that

k
M = U ¢i (B*(a; —€)),

i=1

and set a = a; —e. We can assume that a] = max;a,. The identity
Sp(M,w) = S5 (M, w) follows from

Lemma 3.3. For each i > 2 there exists a symplectic embedding
Z;: B™ (a’l) — M
such that ;| p2n(a1) = @il B2n(at)-
Proof. By assumption, there exists a smooth family of symplectomorphisms
¢t: B?(a;) — M such that
0} = @1lpm(e) and @] =@
Consider the subsets

A= U {t} x ¢t (B2"(ai)) and B = U {t} x ¢t (B2"(a;))

t€[0,1] t€[0,1]
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of [0,1] x M. Since each set ¢! (B?*"(a;)) is contractible, there exists a
smooth time-dependent Hamiltonian function H: A — IR generating the
symplectic isotopy ¢! o (go?)_l : ¢1 (B*(a;)) — M. By Whitney’s Theorem
there exists a smooth function f: [0,1] x M — [0,1] such that f = 1 on
Band f =0on M\ A. Let ® be the time-1-map M — M of the flow
generated by Hamiltonian fH. Then

—1 n
© =gio(e) on g (B¥(a})).
We define the embedding ¢; := ® o p1|gen(,,): B?"(a;) — M and find that

on B*(a}) we have

~ 1 —
@Z:(bosplzspgo(gplo) nglzspilospllosplzgpll.

The proof of Lemma 3.3 is complete, and so Corollary 3.2 is also proved. O

The spaces Emb (B(a), M) are known to be path-connected for all a > 0
for n = 1 and for a class of symplectic 4-manifolds containing (blow-ups
of) rational and ruled manifolds, see [21]. No closed symplectic manifold is
known for which Emb (B(a), M) is not path-connected for some a > 0. We
thus ask

Question 3.4. Is it true that Sg(M,w) = S5(M,w) for every closed sym-
plectic manifold (M,w)?

We next study the “symplectic Lusternik—Schnirelmann category” S(M,w)
defined as

S(M,w) = min{k|M =U; U---UU}
where each U; is the image ¢; (U;) of a symplectic embedding ;: U; — U; C
M of a bounded subset U; of (]Rzn,wo) diffeomorphic to the open ball in
R>".

Theorem 3.5. Let (M,w) be a closed 2n-dimensional symplectic manifold.
Then S(M,w) < 2n + 1.

Theorem 3.5 will follow from a stronger result dealing with coverings by
displaceable sets. We say that a subset U of M is displaceable if there exists
an autonomous Hamiltonian function H: M — R whose time-1-map ¢y
displaces U, i.e., g (U) N U = (). Define the invariant Sqis(M,w) as

Sais(M,w) = min{k| M =U; U---UU}

where each U; is as in the definition of the invariant S(M,w) and is in ad-
dition displaceable. Coverings by such subsets U; play a role in the recent
construction of Calabi quasimorphisms on the group of Hamiltonian diffeo-
morphisms of (M,w) in [6], see also [3].

Theorem 3.6. Let (M,w) be a closed 2n-dimensional symplectic manifold.
Then Sqis(M,w) < 2n + 1.
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Of course, B(M) < S(M,w) < Sgis(M,w). Theorem 3.6 thus implies
Theorem 3.5, and Proposition 1 and Theorem 3.6 yield

n+1l <cdM)+1<catM < B(M) < S(M,w) < Sgis(M,w) < 2n+1

and B(M) = S(M,w) = Sais(M,w) = 2n + 1 if [w][r,ar) = 0. For the
2-sphere we have 2 = S (SQ) < Sdis ($2) =3.

Question 3.7. Is it true that B(M) = S(M,w) for every closed symplectic
manifold (M, w)?

Proof of Theorem 3.6: Theorem 3.6 is a consequence of the construction in
the previous section and the following

Proposition 3.8. For every € > 0 there exists a symplectic embedding
i (U,wp) — (M,w) of a bounded subset U of R*" diffeomorphic to a ball
such that (U) is displaceable and

M
Ul > %—5.

Indeed, choose € > 0 so small that
M M
p(M) £ > p(M)

2 2n+1°
For the set ¥(U) C M guaranteed by Proposition 3.8 we then have

p(M)
p@WU) > 5 =7

Repeating the construction in the proof of Theorem 2.1 with the ball B =
¢ (B?"(a)) replaced by ¢(U) and with k = 2n + 1, we find a covering |JU;
of M by 2n + 1 domains U; C M which are diffeomorphic to balls and
displaceable.

Proof of Proposition 3.8: We fix ¢ > 0. Let k € N and d > § > 0. For
Jj € NU {0} we denote by &;4 the translation by jd in the x-direction and
by 1_q/2 the translation by —d/2 in the y;-direction. Consider the open

subsets Cj(d) = &5 <7']_d/2 (]O,d[Q”)> and

N (k, d, ) ﬁ ( (2k + )d[x]—5,5[2”_1)

of (R?™,wy).

Figure 12 shows a set N (k,d,§) C R?" for k = 1.
According to [31, Section 6.1] there exist k, d and § and a symplectic em-
bedding ¢: N (k,d, ) — (M,w) such that

k
(50) [[ci@] > ) —e.

J=0
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N U
d
2
i 3d 1
_d
2

FIGURE 12. The sets N and U for k£ = 1.

Set N*(k,d,8) = N(k,d,8) N {y; >0}, and denote by ONT(k,d,d) the
boundary of this set. For v > 0 we set

U, = {z e N*(k,d,é) | dist (z,0N" (k,d,6)) > v},

For v < § the set U, is connected and diffeomorphic to a ball. In view
of (50) we can choose v < § so small that

p(M)

For such a choice of k, d, 6 and v we abbreviate N = N (k,d,d) and U = U,,.
We shall construct a Hamiltonian isotopy ¢; of R?" which is generated
by an autonomous Hamiltonian function with support in N and such that
©1(U)NU = 0. The autonomous Hamiltonian diffeomorphism & of (M,w)
defined by

z if z ¢ ¥ (N)

then displaces 1 (U). In order to construct the Hamiltonian isotopy ¢, we
choose a smooth function f: R — R such that on |0, (2k + 1)d[ the graph of
f is contained in 7 (N) and lies above 7(U). Then the Hamiltonian function
H:R?* — R defined by

o - { vopredl(s) ifzev(N)

z1
H(xl)yl)x%'"?yn):_/ f(S)dS
0
generates the isotopy

¢t: (:1:17y17:1:27'”7yn) — (mlayl _tf($1)7$27"‘7yn)7 te [07 1]7

which satisfies ¢¢(U) C N for all ¢ € [0,1] and ¢1(U) NU = (. Choose now
a smooth function h: R?® — [0, 1] which is equal to 1 on Usefo,1 9¢(U) and
vanishes outside N. The Hamiltonian isotopy ¢; generated by the Hamil-
tonian function hH is then as required. O
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4. PROOF OF PROPOSITION 1

Since (M,w) is symplectic, [w]™ # 0, and so n + 1 < cl(M) + 1. The first
statement in Proposition 1 follows from this estimate and from (6).

A main ingredient in the remainder of the proof is the following theorem of
W. Singhof, who thoroughly studied the relation between B(M) and cat M.

Theorem 4.1. (Singhof, [33, Corollary (6.4)]) Let M™ be a closed smooth
p-connected manifold with n > 4 and cat M > 3. Then

(a) B(IM) = cat M if cat M > %’.
mtptdl m+p+4
(b) B(M) < ’VW-‘ if cat M < W

(Here, [x] denotes the minimal integer which is greater than or equal to x.)

Notice that if we consider only symplectic manifolds, the assumptions
dimM > 4 and cat M > 3 in Theorem 4.1 can be dropped. Indeed, if
dim M = 2, it is easy to see that we are in the situation of (a) in Theorem 4.1;
and if cat M = 2, then £ dim M < cl(M)+1 < cat M = 2 yields dim M = 2.

(i) If M is simply connected, (3) shows that cat M = n + 1, and since
p = 1, we are in the situation of Theorem 4.1, item (a), so B(M) = cat M.

(ii) Tt has been proved in [28] that [w]|.,ar = 0 implies cat M = 2n + 1,
and so the claim follows together with B(M) < 2n + 1.

(iii) As we remarked above, B(M) = cat M if n = 1. So let n > 2 and
assume that B(M) > cat M. By (i) we have p = 0. The claim now readily
follows from Theorem 4.1. |

Remarks 4.2. 1. The inequality cl(M)+1 < cat M can be strict: For the
Thurston-Kodaira manifold described in [23, Example 3.8] we have mo (M) =
0 and hence cat M = 5, but cl(M) = 3, see [27]. More generally, cl(M)+1 <
cat M = dim M + 1 for any symplectic non-toral nilmanifold, see [29].

2. It follows from [17, Prop. 13] and [4, Prop. 3.6] that there exist closed
smooth manifolds with cat M < B(M). No symplectic examples are known,
however.

Examples 4.3. 1. If (M 2”,w) admits a Riemannian metric with nonneg-
ative Ricci curvature and has infinite fundamental group, then
by (M
cat M > n+1+ # and by (M) >0,
see [25, Theorem 4.3]. In particular, cat M > n + 2, and so cat M = B(M)
by Proposition 1 (iii).

2. Assume that the homomorphism [w]"~!: HY(M;R) — H* }{(M;R)
(multiplication by the class [w]"~! is a non-zero map. Kihler manifolds
with H'(M;R) # 0 have this property. Using Poincaré duality we see that
cl(M)>n+1,and son+2 < cat M = B(M).
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5. EXAMPLES

In this section we compute or estimate the number Sg(M,w) for various
closed symplectic manifolds (M, w). In view of Theorem 1 and Proposition 1,
understanding Sg(M,w) is often equivalent to understanding the Gromov
width Gr(M,w). Our list of examples therefore resembles the list of mani-
folds whose Gromov widths are known.

We shall frequently use the following well-known fact.

Lemma 5.1. (Greene-Shiohama, [9]) Let U and V' be bounded domains in
(]R2,da; A dy) which are diffeomorphic and have equal area. Then U and V
are symplectomorphic.

1. Surfaces. A closed 2-dimensional symplectic manifold is a closed ori-
ented surface equipped with an area form.

Corollary 5.2. Let (X4,0) be a closed oriented surface with area form o.
Then

2 ifg=0,
SB(E!NU) = { 3 ifg>1.

Proof. In view of Lemma 5.1 we have Sg(3,,0) = B(X,), and so the corol-
lary follows in view of Proposition 1. a

2. Minimal ruled 4-manifolds. As before we denote by X, the closed
oriented surface of genus g. Recall that there are exactly two orientable
$2-bundles with base >4, namely the trivial bundle ¥, x $2 — >, and the
nontrivial bundle £, x $2 — ¥, [23, Lemma 6.25].

a) Trivial 8*-bundles. Fix area forms oy, and og: of area 1 on ¥y and $2,
respectively. By the work of Lalonde-Mc Duff and Li—Liu every symplectic
form on ¥, x $? is diffeomorphic to aosy, @ boge for some a,b > 0 (see [16]).
We abbreviate Xy(a) : = (X4, a0y,) and $2(b) : = (3%, bogz).

Corollary 5.3. For $2(a) x $2(b) with a > b > 0 we have
€{3,45} if 1<e<3

Sg ($(a) x $2(h)) § €{4,5}  if <<
=2 +1 if ¢2>2
cf. Figure 13, and for ¥4(a) x $2(b) with g > 1 and a,b > 0 we have
€ {4,5} if 0<§ <2,

SB(zguo><$2@o){

cf. Figure 14.

=2 +1 if ¢2>2
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Sp (S%(a) x S%(b))

W k= Ut OO N

SylIS]

1 2 3 4
FIGURE 13. What is known about Sg ($2(a) x $%(b)) and
SB (3% x 3%, wa).

SB (Zg(a) X Sz(b)), SB (Zg X SQ,wab)

= Ot O 3 oo

e

FIGURE 14. What is known about Sg (X4(a) x $%(b)) and
SB (Zg X S2,wab).

Proof. Proposition 1, item (i) yields B($2 x $2?) = 3. Moreover, the Non-
Squeezing Theorem implies that Gr($2(a) x $2(b)) = b, and so

T ($%(a) x $°(0)) = [ 22] + 1.
The first half of the corollary now follows from Theorem 1.

Applying the inequality (2) and the estimate (4) we find that cat(¥X, x
$2) = 4, and so B(X,x$?) = 4 in view of Proposition 1, item (iii). Moreover,
it follows from Theorem 6.1.A in [1] that

I (Z4(a) x $2(b)) = |max (1,22)] + 1.

The second half of the corollary now follows from Theorem 1. O

b) Nontrivial $2-bundles. Let A € Ho(X, x $%;7) be the class of a section
with self intersection number —1, and let F' be the homology class of the
fiber. We set B = A+ $F. Then {F, B} is a basis of Ho(X, x $%R). For
a,b > 0 we fix a representative wgy, of the Poincaré dual of aF'+bB. By [23,
Theorem 6.27] and the work of Lalonde-Mc Duff and Li-Liu (see [16]),
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1. Every symplectic form on $2 x $? is diffeomorphic to wg, for some
b
a > b) > 0.
2. Every symplectic form on X, x $2, g > 1, is diffeomorphic to wy for
some a,b > 0.

Corollary 5.4. For (32 x $2,wy) with a > % > 0 we have

; 1 a 3
6{3,4,5} ’lf §§E<§’
S (8% x $%,wap) ¢ € {4,5} if 3<9<2,
%41 i g2
cf. Figure 13, and for (Zg X Sz,wab) with g > 1 and a,b > 0 we have
€ {4,5} if 0<% <2,

> 2
SB( gMS,wab){ :L%aJ_i_l if ¢ >2,

cf. Figure 14.

Proof. Since 82 x $? is simply connected, B($? x $2?) = 3 in view of
Proposition 1, item (i). Moreover, based on Biran’s work [1] it has been
computed in [30] that

I (%2 x 8% we) = [ 2] +1.
The first half of the corollary now follows from Theorem 1.
Using the Leray—Hirsch Theorem, we find that cl (Zg X $2) = 3, and so
cat (Zg X $2) > 4. On the other hand, ¥, x $? having a section, and it is
not hard to see that cat (Eg X $2) < 4 (cf. the proof of Proposition 3.3 in

[32]). In view of Proposition 1, item (iii) we conclude that B(X, x $?) = 4.
Moreover, it has been computed in [30] that

I' (S x 8% we) = |max (1,3%)] + 1.

The second half of the corollary now follows from Theorem 1. O

3. Products of surfaces. As before we denote by X, the closed oriented
surface of genus g. In view of the previous example we assume g > 1. If
g = 1 we write T? = ¥1. By a theorem of Moser [24], any two area forms
on ¥, of total area a are diffeomorphic. We write ¥,(a) for this symplectic
manifold.

Corollary 5.5.
(i) S (T%(a) x Zy(b)) =5 if $ <

(i) Sp(Zy(a) x Tp(b)) =5 if 2 < ¢ <

SEISE NG
IN]IS)

Proof. By Proposition 1, item (ii) we have that
B(¥yxX¥p) =5 forall g,h>1.
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Using Lemma 5.1 we see that the discs B%(a) and B?(b) symplectically em-
bed into $,(a) and Xp(b), respectively. Therefore, the ball B4(min(a, b)) C
B?(a) x B?(b) symplectically embeds into ¥,(a) x $5(b), and so
I'(E4(a) x ¥p(b)) <5 whenever % <84 <3
Claim (ii) now follows from Theorem 1.
We prove Claim (i) following [14]. For each ¢ > 0 we consider the rectangle

R(c) ={(z,y) eR*|0<z <1, 0<y<c}
and the linear symplectic map
©: (R(c) X R(c),wp) — (R?xR?,wp)
(1,91, 22,92) = (21 + Y2, 91, Y2, Y1 + T2)
where wg = dxy A dy; + dxa A dys. Let T?(1) = (IR2/Z2, dzi A dyl) be the

standard symplectic torus. Then the projection p: (1R2, dxy A dyl) — T?(1)
is symplectic, and so the composition

(p x id) o p: R(c) x R(c) — T%(1) x R?
is also symplectic. It is easy to see that this map is an embedding and that
((p x id) o ) (R(c) x R(c)) C T?*x] —¢,0[x]0,c +1[.

In view of Lemma 5.1 the ball B*(c) symplectically embeds into R(c) x R(c),
and | — ¢,0[x]0, ¢+ 1] symplectically embeds into ¥,(c(c+1)). We conclude
that the ball B4(c) symplectically embeds into 72(1) x £,(c(c+ 1)) for each
c>0,ie.,

Cr (T2(1) x By(d)) > 1 (m - 1) for each d > 0.
This estimate and a computation yield
['(T%(a) x 24(b)) = I (T%(1) x 8y (2)) < 5 whenever ¢ < 5.
Now, the already proved Claim (ii) and Theorem 1 imply Claim (i). O

Remark 5.6. Assume that g > 1, h > 2 and ¢ > % The method used in
the proof of 2) in Corollary 5.5 only yields the linear estimate

SB (Z4(a) x Tx(b)) < |22] +1.

A variant of the method used in the proof of 1), however, yields the estimate

a

SB (Zg(a) x By(b)) < C(h) —"—
(log )

where C'(h) > 0 is a constant depending only on h (see [14]) .

4. Complex projective space. Let CIP" be the complex projective space
and let wgr be the unique U(n + 1)-invariant Kéhler form on CP"™ whose
integral over CP! equals 1.
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Corollary 5.7. Sg (CP",wsr) = n+ 1.
Proof. In view of Proposition 1, we have
S (CP",wsr) > B((CP") > n+ 1.
On the other hand, we define for 0 < i < n maps f;: B**(1) — CP" by

ey — . . s N/ 2. .. . .
i L = yoos — Lo 1251t A N A I
f 4 (21 ,Zn) |:Zl Zi—1 1 |Z’ Zi+1 z

It is well known that f; is a symplectomorphism between B*"(1) and CP™\
S;, where S; = {[u1 : ... w1 20wy c ... up] =2 CP™ L s the i-th
coordinate hypersurface (see e.g. [15]). Since

CP" c Lnj fi (B*(1)),

=0

we conclude that also Sg(CP",wsr) < n+1, and so the corollary follows. O

Remark 5.8. By a theorem of Taubes [34], any symplectic form on CIP?
is diffeomorphic to awgr for some a # 0. In view of Corollary 5.7 we thus
have

Sp(CP2,w) =3 for any symplectic form w on CP2.

5. Complex Grassmann manifolds. Let G}, be the Grassmann mani-
fold of k-planes in C", and let oy, ,, be the standard Kahler form on Gy, ,, nor-
malized such that oy, is Poincaré dual to the generator of Hy (G n; Z) = Z.
Since (Gp—kns On—kn) = (Gkn, Okn), We can assume that

ke {l,....|2]).
We define the number py, , by

(k=112 (k(n — k)
Phn = =Dl =k + )l (n— k)l

Notice that py , = deg(p(Gy,n)) where

(51)

p: Gy — CPH)!

is the Pliicker map [8, Example 14.7.11], and so py,,, is indeed an integer.
Since (G1,p,01,n) = (CP" ! wsr), we assume k > 2.

Corollary 5.9.
SB(G24,024) € {5,...,9}, Sp(G2s5,025) €1{7,...,13},
Se(G2,6,026) € {15,16,17},
SB(G2,n,02,n) = p2,n + 1 for alln > 7,
SB(Gkns Okm) = Pk + 1 for all k > 3.
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Proof. Since Gy, p, is simply connected and since

(52)

dim Gy, = 2k(n — k),

we read off from Proposition 1, item (i) that

(53) B (Gkn) = k(n— k) + 1.
Moreover,
Pin
4 1 ns n) = 7
(54) Vol (G,ns Ok,n) o= B))!
(see [8, Example 14.7.11]), and it has been proved in [18] that

The
(55)

The
and

(1
2]

(8]

(9]
(10]
(11]
(12]
(13]
(14]

(15]

GI‘ (Gk,mak,n) = 1.
refore,
r (Gk’,n’ Jk,n) = DPkn + L
corollary now follow from the identities (52), (53) and (55), Theorem 1

a straightforward computation. a
REFERENCES
P. Biran. Symplectic packing in dimension 4. Geom. Funct. Anal. 7 (1997) 420-437.

P. Biran. A stability property of symplectic packing. Invent. Math. 136 (1999) 123
155.

P. Biran, M. Entov and L. Polterovich. Calabi quasimorphisms for the symplectic
ball. Commun. Contemp. Math. 6 (2004), no. 5, 793-802.

O. Cornea, G. Lupton, J. Oprea, D. Tanré,. Lusternik-Schnirelmann category. Mathe-
matical Surveys and Monographs, 103. American Mathematical Society, Providence,
RI, 2003. .

R. Engelking. Dimension theory. North-Holland Mathematical Library 19. North-
Holland Publishing Co., Amsterdam-Oxford-New York; PWN—Polish Scientific Pub-
lishers, Warsaw, 1978.

M. Entov and L. Polterovich. Calabi quasimorphism and quantum homology. Int.
Math. Res. Not. 2003, no. 30, 1635-1676.

S. Froloff and L. Elsholz. Limite inférieure pour le nombre des valeurs critiques d’une
fonction, donnée sur une variété. Mat. Sbornik 42(5) (1935) 637-643.

W. Fulton. Intersection Theory. Second edition. A Series of Modern Surveys in Math-
ematics. Springer-Verlag, Berlin, 1998.

R. Greene and K. Shiohama. Diffeomorphisms and volume preserving embeddings of
non-compact manifolds. Trans. Amer. Math. Soc. 255 (1979) 403-414.

M. Gromov. Pseudo-holomorphic curves in symplectic manifolds. Invent. math. 82
(1985) 307-347.

H. Hofer and E. Zehnder. Symplectic Invariants and Hamiltonian Dynamics.
Birkh&user 1994.

I. M. James. On Category, in the sense of Lusternik and Schnirelman. Topology 17
(1978) 331-348.

I. M. James. Lusternik—Schnirelmann category. In Handbook of algebaric topology. Ed.
by 1. James, Elsevier Science B. V., Amsterdam, 1995, 1293-1310.

M.-Y. Jiang. Symplectic embeddings from R*" into some manifolds. Proc. Roy. Soc.
Edinburgh Sect. A 130 (2000), 53-61.

Y. Karshon. Appendix to [22].



(16]

(17]

37

F. Lalonde and D. McDuff. J-curves and the classification of rational and ruled
symplectic 4-manifolds. Contact and symplectic geometry (Cambridge, 1994), 3—42,
Publ. Newton Inst. 8, Cambridge Univ. Press, Cambridge, 1996.

P. Lambrechts, D. Stanley and L. Vandembroucq. Embeddings up to homotopy of
two-cones in Euclidean space. Trans. Amer. Math. Soc. 354 (2002) 3973-4013.

G. Lu. Gromov-Witten invariants and pseudo symplectic capacities. Israel J. math
(to appear). Preprint dg-ga 0103195.

E. Luft. Covering manifolds with open discs. Illinois J. Math. 13 (1969) 321-326.

L. Lusternik and L. Schnirelmann. Méthodes Topologiques dans les Probléemes Varia-
tionelles. Hermann, Paris 1934.

D. Mc Duff. From symplectic deformation to isotopy. Topics in symplectic 4-manifolds
(Irvine, CA, 1996), 85-99, First Int. Press Lect. Ser., I, Internat. Press, Cambridge
1998.

D. Mc Duff and L. Polterovich. Symplectic packings and algebraic geometry. Invent.
math. 115 (1994) 405-429.

D. McDuff and D. Salamon. Introduction to Symplectic Topology. Second edition.
Oxford Mathematical Monographs, Clarendon Press, Oxford University Press, New
York 1998.

J. Moser. On the volume elements on a manifold. Trans. Amer. Math. Soc. 120 (1965)
286-294.

J. Oprea. Category bounds for nonnegative Ricci curvature manifolds with infinite
fundamental group. Proc. Amer. Math. Soc. 130 (2002) 833-839.

P. P. Osborne and J. L. Stern. Covering manifolds with cells. Pacific. J. Math. 30
(1969) 201-207.

Yu. B. Rudyak. On analytical applications of stable homotopy (the Arnold conjecture,
critical points). Math. Z. 230 (1999) 659-672.

Yu. B. Rudyak and J. Oprea. On the Lusternik—Schnirelmann Category of Symplectic
Manifolds and the Arnold Conjecture Math. Z. 230 (1999) 673-678.

Yu. Rudyak and A. Tralle. On symplectic manifolds with aspherical symplectic form.
Topol. Methods Nonlinear Anal. 14 (1999) 353-362.

F. Schlenk. Packing symplectic manifolds by hand. To appear in J. Symplectic Geom.
F. Schlenk. Embedding problems in symplectic geometry. De Gruyter Expositions in
Mathematics. Walter de Gruyter Verlag, Berlin. 2005.

W. Singhof. Generalized higher order cohomology operations induced by the diagonal
mapping. Math. Z. 162 (1978), 7-26.

W. Singhof. Minimal coverings of manifolds with balls. Manuscripta Math. 29 (1979),
385-415.

C. Taubes. SW = Gr: from the Seiberg-Witten equations to pseudo-holomorphic
curves. J. Amer. Math. Soc. 9(3) (1996) 845-918.

L. Traynor. Symplectic packing constructions. J. Differential Geom. 42 (1995) 411—
429.

E. C. Zeeman, The Poincaré conjecture for n > 5. Topology of 3-manifolds and related
topics. Prentice Hall, Englewood Cliffs, N.J., 1962, 198-204.

(Yu. B. RuDYAK) UNIVERSITY OF FLORIDA, DEPARTMENT OF MATH., 358 LITTLE
Harn, PO Box 118105, GAINESVILLE, FL 32611-8105, USA
E-mail address: rudyak@math.ufl.edu

(F. SCHLENK) MATHEMATISCHES INSTITUT, UNIVERSITAT LEIPZIG, 04109 LEIPZIG,
GERMANY
E-mail address: schlenk@math.uni-leipzig.de



