# What are G-functions ? 

by

## Yves Andre

Max-Planck-Institut
fur Mathematik
Gottfried-Claren-StraBe 26
D-5300 Bonn 3
West Germany

MPI/87-28

## What are G-functions ?

## Yves André

INTRODUCTION. G-functions appeared in Siegel's paper [17] about diophantine approximation, and led in the context to an extensive literature (see [2] for a small list). Classically, they are convergent Taylor series $y=\sum_{n \geqq 0} a_{n} x^{n}$, with rational coefficients $a_{n}$ such that the common denominator of $a_{0}, a_{1}, \ldots, a_{n}$ grows at most geometrically in $n$. To our eyes, their interest arises mainly from the following conjecture (anonymous, but "in the air"):

CONJECTURE: G-functions which satisfy linear homogeneous differential equations with coefficients in $\Phi(x)$ come from geometry. The last expression means that such a function satisfies some differential equation which belongs to the smallest class stable by standard constructions (subfactor, * , ...) and extension, containing all Picard-Fuchs equations associated to the cohomology of algebraic varieties over $\mathbb{Q}(\mathrm{x})$.

The present paper is only a presentation of G-functions, and will form the first chapter of a forthcoming book on these topics. We first define (over number fields) three basic invariants of formal power series: the size $\sigma$, the stable
size $\tau$, and the global radius $\rho$, and give their yoga. The local-to-global presentation we have adopted is inspired from [2]. We then turn to examples: rational functions, diagonals, polylogarithms and generalized hypergeometric functions. For all these examples the conjecture holds true, although the latter case offers a non-trivial test (we settle it using Lefschetz's theorem). We try to precise the numerical invariants $\rho, \sigma$ in these examples. Our presentation of diagonals is inspired by Christol's [5]. At last we gather some "pathologies".

I thank the Max-Planck-Institut für Mathematik for generous hospitality during the preparation of this work, and H. Esnault for a useful conversation.

## NOTATIONS

GENERAL NOTATIONS. $\mathbb{N}$ is the set of natural numbers; $\mathbf{z}$ (resp. $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ ) is the ring (resp. the field) of integers (resp. of rational numbers, of real numbers, of complex numbers). If $p$ is a prime number, $\mathbb{F}_{\mathrm{p}}$ denotes the prime field $\mathbf{Z} / \mathrm{p}_{\mathrm{B}}$ "and $\mathbf{z}_{p}$ (resp. $\Phi_{p}$ ) the ring of p-adic integers (resp. the field of $p$-adic rational numbers). For $t \in \mathbb{R}$, we shall write $\log ^{+} t$ for $\log \operatorname{Max}(1, t)$; one has $\log ^{+} t_{1} t_{2} \leq \log ^{+} t_{1}+\log ^{+} t_{2}$. We denote by [t] the integral part of $t:[t] E \mathbf{z}$, $[t] \leqq t<[t]+1$. We denote by $\overline{\lim }$ (resp. lim ) the upper (resp. lower) limit of a sequence of real numbers. If $f, g$ are two functions of a real variable, with $g \geq 0$, we write $f=0(g)$ if there exists a constant $C>0$ such that $|f(x)| \leq C g(x)$ for all sufficiently large $x$; we write $f=o(g)$ (resp. $f \sim g$ ) if $\lim _{x \rightarrow \infty} f(x) /_{g(x)}=0$ (resp. 1 ).

PLACES

Symbols:
a fixed algebraic closure of the field of rational numbers,

K
a number field; that is to say, a subfield of $\overline{\mathbb{D}}$ which is a finite extension of $\Phi$,
$0_{\mathrm{K}}$
the ring of integers in $K$,


## Normalization:

$$
\begin{aligned}
& \mid \text { denotes the Euclidean absolute value on } \\
& K_{v} \text {, for } v \in \Sigma_{\infty} \text {, } \\
& \mathbb{T}_{V} \\
& \text { a completion of an algebraic closure of } \\
& \mathrm{K}_{\mathrm{V}} ;| |_{\mathrm{V}} \text { extends to } \mathbb{C}_{\mathrm{V}} \text {, }
\end{aligned}
$$

$$
i_{v}: K \longrightarrow \mathbb{C}_{v} \text { or } K_{v} \quad \text { the natural imbedding. }
$$

## Remarks:

The symbol $\sum_{\mathrm{V}}$ will denote a summation with all $v \in \Sigma(K)$. For any finite extension. $K^{\prime}$ of $K$, any $\zeta \in K$ and $v \in \Sigma(K)$, one has $|\zeta|_{V}=\prod_{W \in \Sigma\left(K^{\prime}\right)}|\zeta|_{K^{\prime}, w}$, and all factors

$$
w \mid v
$$

have the same value; see [15].

RINGS. Let $R$ be a commutative entire ring with unit. We shall use the following entire rings (with standard operations):
$R[x]$ the polynomial ring over $R$; more generally,
$R[\underline{x}]$ the polynomial ring in several commuting indeterminates
$\underline{x}=\left(x_{1}, \ldots, x_{v}\right)$ over $R$,
$R(x) \quad$ the fraction field of $R[x]$,
$R[[x]]$ the ring of formal powers series over $R$,
$\mathrm{R}(\mathrm{x}))$ the fraction field of $\mathrm{R}[\mathrm{[x]}]$,
$M_{\mu}(R) \quad$ the ring of square matrices of size $\mu$ over $R$;
we shall identify $M_{\mu}(R((x)))$ with $M_{\mu}(R)((x))$,
I or $I_{\mu}$ its unit,
$\binom{Y}{n} \quad$ for $\quad Y \in M_{\mu}(R),\binom{Y}{n}=(n!)^{-1} Y(Y-I) \ldots(Y-(n-1) I)$
whenever $n!$ is invertible in $R$.

We shall also denote by $M_{\mu, \nu}(R)$ the abelian group of matrices with $\mu$ rows, $\nu$ columns, whose entries belong to $R$. For $Y \in M_{\mu, \nu}(R)$, we shall denote by $i j Y \in R$ the (i,j)-entry of $Y$. Let us assume that $R$ is a field. For $Y \in M_{\mu, \nu}(R((x)))$, we shall denote by $Y_{n} \in M_{\mu, V}(R)$ the coefficient of $x^{n}$ in $Y$, and by ij $Y_{n} \in R$ the coefficient of $X^{n}$ in ${ }_{i j} Y \in R((x))$. For $Y, Z \in M_{\mu, \nu}(R((x)))$, the Hadamard product $\cdot Y_{*} Z \in M_{\mu, \nu}(R((x)))$ is defined by $i j^{\left(Y_{*} Z\right)_{n}}=_{i j} Y_{n} \cdot{ }_{i j} Z_{n}$ - Then$\left(M_{\mu, \nu}(R((x))),+{ }^{*}\right)$ is a (non entire) ring with unit; the entries of its unit are $\frac{1}{1-x} \in R((x))$.

```
What are G-functions ?
```


## § 1. HEIGHTS AND SIZES

### 1.1 Height of algebraic numbers [18]

Let $\zeta \in \overline{\mathbb{Q}}$ an algebraic number, lying in some number field $K$. If $\zeta \neq 0$, the following "product formula" holds:

$$
\sum_{\mathrm{v} \in}(\mathrm{~K}) \log |\zeta|_{\mathrm{v}}=0 .
$$

The (logarithmic absolute) height of $\zeta$ is defined to be

$$
\sum_{v \in \Sigma(K)} \log ^{+}|\zeta|_{v}=: h(\zeta) .
$$

Thanks to our normalizations $h(\zeta)$ depends only on $\zeta$ but not on $K$. Thus the height is well-defined over $\overline{\mathbf{0}}$. Let $\mathrm{p}=\mathrm{a}_{0} \Pi T\left(\mathrm{x}-\zeta_{\mathrm{i}}\right) \in \mathbf{Z}[\mathrm{x}]$ the minimal polynomial of $\zeta$ over $\mathbb{Z}_{\sim}$. Then the so-called Mahler measure of $\zeta$, defined as $M(\zeta):=\left|a_{0}\right| \prod \operatorname{Max}\left(1, \zeta_{i}\right)$, is related to the height via the formula

$$
\begin{aligned}
& {[\mathbb{Q}(\zeta): \mathbb{Q}] h(\zeta)=\log M(\zeta)} \\
& =\int_{0}^{1} \log \left|p\left(e^{2 \pi t \sqrt{-1}}\right)\right| d t \text { (Jensen's formula) } \\
& =\overline{\lim }_{n \rightarrow \infty} \frac{1}{n} \log \left|\operatorname{Resultant}\left(p, \sum_{i=0}^{n} x^{i}\right)\right| \underset{\text { formula) }}{(\operatorname{Langevin} ' s} \\
& \text { formula) . }
\end{aligned}
$$

For a finite family $\left(A_{k}\right)_{k}$ of matrices, such that all entries belong to $K$, we set

$$
h\left(\left(A_{k}\right)_{k}\right):=\left.\left.\sum_{v \in \sum_{(K)}} \log ^{r} \operatorname{Max}_{i, j, k}\right|_{i j} A_{k}\right|_{v} .
$$

Once again, this quantity does not depend on the choice of the number field which contains the entries $i j{ }^{A_{k}}$ of the $A_{k}$ 's. The following classical inequality holds:

$$
\begin{aligned}
& h(A B) \leq h(A)+h(B)+\log v, \text { for any } \\
& A \in M_{\mu, \nu}(\overline{\mathbb{D}}), B \in M_{\nu, 0}(\overline{\mathbb{Q}}) \text {. }
\end{aligned}
$$

### 1.2. Height of polynomials

Let $Y \in M_{\mu, \nu}(\bar{\Phi}[x]), Y=\Sigma Y_{n} X^{n}$. We write as usual $\operatorname{deg} Y=\operatorname{Max}\left\{n / Y_{n} \neq 0\right\}$ for $Y \neq 0$. We shall set:

$$
h(Y):=(1+\operatorname{deg} Y)^{-1} h\left(\left(Y_{n}\right)_{n}\right)
$$

1.3 Height of formula power series; G-functions

Let $Y \in M_{\mu, \nu}(\overline{\mathbb{Q}}[[x]]), Y=\sum_{n \geqq C} Y_{n} X^{n}$. We denote by $Y \leq N$ the truncated series $\sum_{n=0}^{N} Y_{n} x^{n} \in M_{\mu, \nu}(\overline{\mathbb{Q}}[x])$. We set:

$$
h(Y):=\sum_{N \rightarrow \infty}^{\lim _{n}} h(Y \leq N)
$$

This is a well-defined quantity in $[0, \infty]$. One checks immediately that this definition reduces to the previous one when $Y$ has only finitely many (actually $1+\operatorname{deg} Y$ ) non-zero coefficients.

DEFINITION. A G-function is a formal power series $y$, whose coefficients belong to some number field and whose height $h(y)$ is finite.

EXPLANATION. This is equivalent to the classical definition (Siegel [17]): $y=\sum_{n \geqq 0} y_{n} x^{n} \in K[[x]]$ is a G-function if and only if
i) for every $v \in \Sigma_{\infty} ; \sum_{n \geqq 0} i_{v}\left(y_{n}\right) x^{n} \in \mathbb{C}_{v}[[x]]$ defines an analytic function around 0 ,
ii) there exists a sequence of natural integers $\left(d_{n}\right)_{n \in \mathbb{N}}$ which grows at most geometrically, such that $d_{n} y^{m} \in O_{k}$ for $m=c, \ldots, n$. This equivalence will be proved in 2.3.
1.4 Size of Laurent series

Let $Y \in M_{\mu, \nu}(\overline{\mathbb{Q}}((x))), Y=\sum_{n \geq-N} Y_{n} x^{n}$. We set:
$\sigma(Y):= \begin{cases}0 & \text { if } Y \text { is a Laurent polynomial (i.e. if almost } \\ \text { all coefficients are } 0 \text { ) } \\ h\left(\mathrm{X}_{\mathrm{Y}}\right) & \text { otherwise . }\end{cases}$
One checks immediately that this definition depends only on $Y$, and not on $N$. The generalization to the case of a finite family of matrices is immediate.

We shall also use constantly the convenient notation:
$h_{v, n}(Y):=\left.\left.\frac{1}{n} \operatorname{Max}_{\substack{i \leq \mu \\ j \leq v \\ k \leq n}} \log ^{+}\right|_{i j} Y_{k}\right|_{v}$; here $v$ denotes a place
of some number field $K$ which contains the coefficients ij $Y_{k}$ of the ( $i, j$ )-entries of $Y$ for $i \leq \mu, j \leq \nu, k \leqq n$.

However the non-negative real number $\sum_{V} h_{v, n}(Y)$ does not depend on the choice of $K$ (by the remark made in the index of notations).

LEMMA 1. $\sigma(\mathrm{Y})=\overline{\mathrm{lim}_{\mathrm{n} \rightarrow \infty}} \sum_{\mathrm{V}} \mathrm{h}_{\mathrm{V}, \mathrm{n}}(\mathrm{Y})$.

Proof: if $Y \in M_{\mu, V}(\overline{\mathbb{Q}}[x, 1 / x])$, we clearly have $\lim _{\mathrm{n} \rightarrow \infty} \sum_{\mathrm{V}} \mathrm{h}_{\mathrm{V}, \mathrm{n}}(\mathrm{Y})=0$, so that it is enough to assume that the sequence $\left(1 / \varphi(1){ }_{1 \geq 0}\right.$ of non-zero coefficients of $Y$ is infinite. We then have

$$
\begin{aligned}
& =\left.\left.\overline{\lim }_{n \rightarrow \infty} \sum_{V} \frac{1}{n} \operatorname{Max}_{\substack{i \leq \mu \\
j \leq v \\
m \leq n}} \log ^{+}\right|_{i j} Y_{n}\right|_{V} .
\end{aligned}
$$

REMARK. We could everywhere replace the indexing set of summation $\Sigma(K)$ by $\Sigma_{f}$ (resp. $\Sigma_{\infty}$ ). Denoting by $h_{f}, \sigma_{f}$ (resp. $h_{\infty}, \sigma_{\infty}$ ) the corresponding notions - finite (resp. infinite) part of the height or size - the above proof shows that $\sigma_{f}(Y)=\overline{\lim _{n \rightarrow \infty}} \sum_{i} \sum_{p} h_{v, n}(Y)$. Assume that all coefficients of the entries of $Y$ lie in a fixed number field $K$. Let $d_{n}$ the common denominator in $\mathbf{N} \backslash\{0\}$ of the entries of $Y_{0}, \ldots, Y_{n}$. One has $\sigma_{f}(Y) \leq \log \overline{\lim }_{n \rightarrow \infty} d_{n}^{1 / n} \leqq d \sigma_{f}(Y)$. The elementary proof is omitted.

LEMMA 2. Let $Y \in M_{\mu, \nu}(\overline{\mathbb{Q}}((x)))$.
a) $\operatorname{Max}_{i, j} \sigma\left({ }_{i, j} Y\right) \leq \sigma(Y)=\sigma(\zeta Y) \leq \sum_{i, j} \sigma\left({ }_{i, j} Y\right)$, for any $\zeta \in \overline{\mathbb{Q}}$,
b) $\sigma(d / d x \mathrm{Y}) \leq \sigma(\mathrm{Y})$, for any $\mathrm{n} \in \mathbf{N}$,
c) if the residue $Y_{-1}$ of $Y$ vanishes, $\sigma\left(\int_{0}^{X} Y\right) \leq \sigma(Y)+1$,
d) for $\zeta \in \overline{\mathbb{D}}$, set $Y_{(\zeta)}:=\Sigma Y_{n} \zeta^{n} X^{n}$. Then $\sigma\left(Y_{(\zeta)}\right) \leq \sigma(Y)+h(\zeta)$.

Let $\left(Y_{[k]}\right)_{k=1}^{N}$ a subset of $M_{\mu, V}(\overline{\mathbb{Q}}((x)))$, then:
e) $\sigma\left(\Sigma Y_{[k]}\right) \leq \sigma\left(\left(Y_{[k]}\right)_{k}\right) \leq \Sigma \sigma\left(Y_{[k]}\right)$,
f) $\sigma\left({ }^{*} Y_{[k]}\right) \leqq \Sigma \sigma\left(Y_{[k]}\right)$,
g) if $\mu=v, \sigma\left(\prod_{[k]}\right) \leq(1+\log N) \sigma\left(\left(Y_{[k]}\right)_{k}\right)$.

Proof: the proof of $a, b, d, e, f$ is straightforward, using lemma 1. Let us prove c): by direct computation, we find

$$
h_{v, n}\left(\int_{0}^{x} Y\right) s\left\{\begin{array}{l}
h_{v, n}(Y) \quad \text { if } \quad v \in \Sigma_{\infty} \\
h_{v, n}(Y)+\frac{1}{n} \operatorname{Max}_{m \leq n} \log |m|_{v}^{-1} \text { if } \quad v \in \Sigma_{f},
\end{array}\right.
$$

so that $\sigma\left(\int_{0}^{X} Y\right) \leq \sigma(Y)+\overline{\lim } \frac{1}{n} \log$ G.C.M. $(1,2, \ldots, n)$, and the inequality c) follows from Ichebyshev's theorem. In order to prove g), we use a trick introduced in this context by Shidlovski (see Galochkin [12], lemma 7. First we assume without loss of generality that $Y_{[k]} \in M_{\mu}(\overline{\mathbb{Q}}[[x]])$. Let $K$ be the extension of $\mathbb{Q}$ generated by the $m$ first coefficients $i j^{Y} Y_{k l}$ of the entries ${ }_{i j} Y_{[k]}$ of the $Y_{[k]} \cdot s$, and set $Y=\prod_{k=1}^{N} Y_{[k]}$. We have
 finite place $v \in \Sigma_{f}$, this gives
(*) $\left.\left.\quad \log ^{+}\right|_{i j} Y_{m}\right|_{V} \leq \underset{m_{1}+\ldots+m_{N}=m}{\operatorname{Max}}$
$\left.\left.\sum_{k=1}^{N} \log ^{\mathrm{N}}\right|_{i_{k} j_{k}} Y_{k_{1} m_{k}}\right|_{v}$. $i_{1}, \ldots, i_{N}, j_{1}, \ldots, j_{N}$

By reordering $Y_{1}, \ldots, Y_{N}$, we may suppose that $m_{1} \geqq m_{2} \geqq \ldots \geqq m_{N}$, hence $k m_{k} \leq m$. This yields
$\left.\left.\log ^{r}\right|_{i j} Y_{m}\right|_{v} \leq\left.\left.\sum_{k=1}^{N} \operatorname{Max}_{m_{k} \leq m / k}^{\operatorname{Max}} \log _{k}{ }^{r} j_{k}\right|_{i_{k}, j_{k}} Y_{k, m_{k}}\right|_{v}$, from which we
deduce

$$
h_{v, m}(Y) \leq \sum_{h=1}^{N} 1 / k h_{v, m / k}\left(\left(Y_{[1]}^{*}\right), 1\right) .
$$

For an infinite place $v \in \Sigma_{\infty}$, we have to add an extra term to the right hand side of (*), namely $\left.\log \#\left\{m_{1}, \ldots, m_{k}\right) / \Sigma m_{k}=m\right\}+\log \cdot N^{\prime}$ which is $\dot{\sigma}(\mathrm{m})$; in this case we deduce

$$
h_{v, m}(Y) \leq \sum_{h=1}^{N} 1 / k h_{v, m / k}\left((Y /[k])_{k}+\sigma(1)\right.
$$

By summing over $v \in \Sigma(K)$, we find

$$
\sigma(Y) \leq\left(\sum_{k=1}^{N} 1 / k\right) \sigma\left((Y[1])_{1}\right) \leq(1+\log N) \sigma\left(\left(Y_{[k]}\right)_{k}\right)
$$

### 1.5 The stable size

Let $Y \in M_{\mu, \nu}\left(\bar{\Phi}((x))\right.$, and for any $N \in \mathbb{N}^{*}$, let $Y^{@ N}$ be a matrix whose entries are the monomials of degree $N$ in the
entries of $Y$. In view of inequality $g$, of the previous lemma, one can define the "stable" size $\tau(Y)$ to be

$$
\tau(Y)=\overline{\lim _{N \rightarrow \infty}}(\log N)^{-1} \sigma\left((1, Y)^{\oplus N}\right)
$$

LEMMA a) One has $0 \leqq \tau(Y)=\tau\left(Y^{@ N}\right) \leqq \sigma(Y)$ for any $N \in \mathbb{N}^{*}$. Let $Y_{1}, \ldots, Y_{N}$ be elements of $M_{\mu}\left(\bar{\Phi}((x))\right.$, and set $Y=\left(Y_{1}, \ldots, Y_{N}\right)$.
b) $\tau\left(\Sigma Y_{k}\right) \leq \tau(Y)$
c) $\tau\left(\prod Y_{k}\right) \leq \tau(Y)$.

Proof: straightforward, taking into account lemma 14.2 g ).

I hope that property c) justifies the label "stable size". By way of example, one can show that if $y \in O_{K}[1 / N][[x]]$ for some $N \in \mathbb{N}^{X}$, then $\tau(y)=0$ if $\sigma(y)<\infty$ (see exercise 3 below). This invariant occurs in the work of Chednovski [8].

## § 2. RADII

### 2.1 Local radii of convergence

Let $K$ be a number field, and let $y=\sum_{n \geqq 0} y_{n} x^{n} \in K[[x]]$. Then for any $v \in \Sigma_{K}, \sum i_{v}\left(y_{n}\right) x^{n} \in \mathbb{T}_{v}[[x]]$ defines a v-adic Taylor series $y^{(v)}$; we denote by $R_{v}(y) \in[0, \infty]$ its radius of convergence. By Hadamard's formula, $R_{v}(y)=\frac{\lim _{n \rightarrow \infty}}{}\left|Y_{n}\right|_{v}^{-1 / n}$. More generally, for any Laurent series $\left.y=\sum_{n \gtrsim-N} y_{n} x^{n} \in K(x)\right)$, we set $R_{V}(y):=R_{v}\left(x^{N} y\right)$; this definition depends only on $y$ but not on $N$.

### 2.2 The global radius

For $Y \in M_{\mu, v}(K((x)))$, we set
$\rho(Y):=\sum_{V} \log ^{+}\left(\operatorname{Min}_{i, j} R_{V}(i j Y)\right)^{-1} \in[0, \infty]$.

LEMMA 1. $\rho(\mathrm{Y})=\sum_{\mathrm{V}} \overline{\lim }_{\mathrm{n} \rightarrow \infty} \mathrm{h}_{\mathrm{V}, \mathrm{n}}(\mathrm{Y}) ; \rho$ is invariant under finite extension of $K$.

Proof: Hadamard's formula yields

$$
\rho(Y)=\left.\left.\sum_{V} \operatorname{Max}_{i, j} \overline{\lim } \frac{1}{n} \log ^{+}\right|_{i j} Y_{n}\right|_{V}=\left.\left.\sum_{V} \overline{\lim } \operatorname{Max}_{i, j} \log ^{+}\right|_{i j} Y_{n}\right|_{V} .
$$

Thus it is enough to show that

$$
\left.\left.\overline{\lim } \frac{1}{n \rightarrow \infty} \underset{\substack{\operatorname{Max} \\ i, j \\ \operatorname{msn}}}{\log }{ }^{+}\right|_{i j} Y_{m}\right|_{v}=\left.\left.\overline{\lim _{n \rightarrow \infty}} \frac{1}{n} \underset{i, j}{\operatorname{Max}} \log ^{+}\right|_{i j} Y_{n}\right|_{v} .
$$

This is a special case, for $t_{n}=\left.\left.\underset{i, j}{\operatorname{Max}} \log ^{+}\right|_{i j} Y_{n}\right|_{v}$, of the well-known inequality

$$
\overline{\lim }_{n \rightarrow \infty} \frac{1}{n} \operatorname{Max}_{m \leq n} t_{m} \leq \overline{\lim }_{n \rightarrow \infty} \frac{t_{n}}{n}:=1
$$

Indeed, for any $\varepsilon>0$, let $M_{E} \leqq N_{E}$ such that $\frac{t_{m}}{m} \leq 1+\varepsilon$ for $m \geq M_{\varepsilon}$ and $\frac{t_{m}}{m} \leq \frac{N_{\varepsilon}}{M_{\varepsilon}} 1$ for $m<M_{\varepsilon}$. Then $\frac{1}{n} \operatorname{Max}_{m \leq n} t_{m} \leq \operatorname{Max}\left(\operatorname{Max}_{m \leq M_{\varepsilon}}\left(\frac{m}{n}\right) \frac{t_{m}}{m}, \operatorname{Max}_{\varepsilon} \leq m \leq N_{\varepsilon}\left(\frac{m}{n}\right)^{t_{m}} \frac{m}{m}\right)$. The: second assertion comes readily from the first one.

REMARK. Here again we could replace the indexing set of
summation $\Sigma(K)$ by $\Sigma_{f}$ (resp. $\Sigma_{\infty}$ ). The above proof yields corresponding formulae $\rho_{f}(Y)=\sum_{V \in \Sigma_{f}} \overline{\lim } h_{v, n}(Y)$,
 and $\sigma_{\infty}(Y) \leq \rho_{\infty}(Y)$.

LEMMA 2. Let $\left.\mathrm{y} \in \mathrm{M}_{\mu, \nu}(\mathrm{K}(\mathrm{x}))\right)$.
a) $\operatorname{Max}_{i, j} \rho(i j Y)=\rho(Y)=\rho(\zeta Y)$, for any $\zeta \in K$.
b) $\rho(d / d x$ Y) $=\rho(Y)$
c) if the residue $Y_{-1}$ vanishes, $\rho\left(\int_{0}^{X} Y\right)=\rho(Y)$
d) for $\zeta \in K, \rho\left(Y_{(\zeta)}\right) \leq \rho(Y)+h(\zeta)$.

Let $\left(Y_{[k]}\right)_{k=1}^{N}$ a subset of $M_{\mu, \nu}(K((x)))$.
e) $\rho\left(\Sigma Y_{[k]}\right) \leq \rho\left(\left(Y_{[k]}\right)_{k}\right)=\operatorname{Max}_{k} \rho\left(Y_{[k]}\right)$
f) $\rho\left({ }^{*} Y_{[k]}\right) \leq \Sigma_{\rho}\left(Y_{[k]}\right)$
$g)$ if $\mu=v, \rho\left(\prod_{[k]}\right) \leq \operatorname{Max}_{k} \rho\left(Y_{[k]}\right)$.

Proof: straightforward.
2.3 We now prove the equivalence stated in 1.3. Let $y \in K[[x]]$. Assume that $h(y)<\infty$. By lemmata 1 of $\S 1.4$ and 2.2 , one gets $\rho_{\infty}(y)<\infty$ and $\sigma_{f}(y)<\infty$. The first (resp. second) inequality implies condition 1.3 i) (resp. 1.3 ii), taking into account remark 1.4. Conversely, assume that for any $v \in \Sigma_{\infty}, R_{\infty}(y)>0$ (condition 1.3 i) and that $\overline{\lim }_{\mathrm{n} \rightarrow \infty} \mathrm{d}_{\mathrm{n}}^{1 / \mathrm{n}}<\infty$ (condition 1.3 ii),
where $d_{n}$ denotes the common denomination in $\mathbf{N} \backslash\{0\}$ of $y_{0}, \ldots, y_{n}$. Then $\sigma(y) \leq \sigma_{\infty}(y)+\sigma_{f}(y) \leq \rho_{\infty}(y)+\log \overline{\lim _{n \rightarrow \infty}} d_{n}^{1 / n}<\infty$. $\square$

## § 3. SEVERAL VARIABLES, DIAGONALIZATION

3.1 All what precedes extends in a straightforward manner to the case of elements of $K[[\underline{x}]]=K\left[\left[x_{1}, \ldots, x_{\nu}\right]\right]$.

For a multi-index $\underline{n} \in \mathbb{N}^{\nu}$, we denote by $|\underline{n}|$ its length: $\Sigma n_{i} ; \underline{x} \underline{n}^{n}$ means $T x_{i}^{n_{i}}$. Let $y=\sum_{\underline{n}} y_{\underline{n} \underline{x}^{n}} \in K[[\underline{x}]]$; for any place $v$ of $K$, we set

$$
h_{v, n}(y)=\frac{1}{n} \operatorname{Max}_{|\underline{k}| \leq n} \log ^{+}\left|y_{\underline{k}}\right|_{v}
$$

We also define the global radius (resp. size, stable size) by:

$$
\begin{aligned}
& \rho(y)=\sum_{V} \overline{\lim }_{n \rightarrow \infty} h_{V, n}(y) \\
& \sigma(y)=\overline{\lim }_{n \rightarrow \infty} \sum_{V} h_{V, n}(y) \\
& \tau(y)=\overline{\lim }_{N \rightarrow \infty} \overline{\lim }_{n \rightarrow \infty} \frac{1}{n \log N} \sum_{V} \operatorname{Max}_{\substack{k \\
\mid \leq n \\
l \leq N}} \log ^{+}\left|\left(y^{l}\right)_{\underline{k}}\right|_{V} .
\end{aligned}
$$

For $v=1$, previous lemmata show the compatibility with original definitions.

### 3.2 Diagonalization

One defines the diagonalization map $\Delta_{\nu}$ from $K[[\underline{x}]]$ to $\mathrm{K}[\mathrm{fx}]]$ by the formula

$$
\Delta_{v}\left(\sum y_{\underline{n}} \underline{x}^{n}\right)=\sum_{n \geq 0} y^{\prime}(n, n, \ldots, n)^{x^{n}}
$$

This is a useful tool to produce G-functions, through the following lemma (see 4.2):

LEMMA. The following inequalities hold:

$$
\begin{aligned}
& \rho\left(\Delta_{v}(y)\right) \leq v \rho(y) \\
& \sigma\left(\Delta_{v}(y)\right) \leq v \sigma(y) .
\end{aligned}
$$

Proof: this follows immediately from the obvious inequality

$$
h_{v, n}\left(\Delta_{v}(y)\right) \leq h_{v, n v}(y)
$$

REMARK 1 (Deligne). Assume that for some infinite place $v$ of $K, y^{(v)}:=\sum i_{v}\left(\underline{y}_{\underline{n}}\right) \underline{x}^{\underline{n}}$ is analytic at $\underline{0} \in \mathbb{C}_{v}{ }^{v}$, with $v>1$. Then $\Delta_{\nu} y$ is represented by the integral formula

$$
\begin{gathered}
(2 \pi \sqrt{-1})^{-(\nu-1)}\left|x_{2}\right|=\ldots=\left|x_{\nu}\right|=\varepsilon \quad y \frac{d x_{2} \cdots d x_{v}}{x_{2} \cdots x_{v}} \text { for } \varepsilon \text { and }|x| \\
x_{1} x_{2} \ldots x_{\nu}=x
\end{gathered}
$$

This follows from the residue formula:

$$
\begin{gathered}
\left.(2 \pi \sqrt{-1})^{-(\nu-1)} \quad \left\lvert\, \begin{array}{ll}
\int x_{2}\left|=\ldots=\left|x_{v}\right|=\varepsilon\right. \\
x_{1} x_{2} \ldots x_{\nu}=x
\end{array} \quad \frac{d x_{2} \ldots d x_{v}}{x_{2} \cdots x_{v}}\right.\right\}=x^{n_{1}} \quad \text { if } \quad n_{1}=n_{2}=\ldots=n_{v} \\
\text { otherwise. }
\end{gathered}
$$

REMARK 2. It seems that diagonals were first introduced in the
study of Hadamard product (see e.g. [3]). This relationship is given by the formula:

$$
\Delta_{v}\left(y_{1}\left(x_{1}\right) \cdots y_{v}\left(x_{v}\right)\right)=y_{1} * \ldots * y_{v} .
$$

### 3.3 Geometric interpretation

Let us set $\mathrm{X}=\operatorname{Spec} \mathrm{K}(\mathrm{x})[\underline{x}] /\left(\mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\nu}-\mathrm{x}\right)$, with $v>1$. Let $(E, \nabla)$ be a coherent module with integrable connection over some affine open subset $U$ of $X$, and let $\sigma$ be some horizontal $K(U)$-linear map from $E$ to $K[\underline{x}]]$; in other words, $y:=\sigma(e)$, for $e \in \Gamma E$, is a solution in $K[[\underline{x}]]$ of an "integrable differential equation".

We consider the $\mathrm{K}(\mathrm{x})$-linear map:

$$
\Delta_{v, \sigma}: e \otimes \frac{d x_{2} \ldots d x_{v}}{x_{2} \ldots x_{\mu}} \longmapsto \Delta_{v}(\sigma(e)), \text { for all local sections }
$$

PROPOSITION. The map $\Delta_{\nu, \sigma}$ induces a horizontal map from the algebraic De Rham cohomology group $H_{D R}^{\nu-1}(U,(E, \nabla))$ endowed with Gauss-Manin connection relative to $K(x)$ (see [13]), to $K[[x]]$ endowed with exterior derivative.

Proof: the smooth scheme $U$ is affine, thus there is an isomorphism $H_{D R}^{\nu-1}(U,(E, \nabla)) \simeq E \otimes \Omega_{U / /_{K}}^{\nu-1} /_{\ddot{\nabla_{V-1}}}\left(E \otimes \Omega_{U /}^{\nu-2}, \quad\right.$, where the value
at $d / d x$ of the Gauss-Manin connection acts through
$\nabla\left(d / d\left(x_{1} x_{2} \ldots x_{\mu}\right)\right.$ on $E$. The statement would follow from

Deligne's integral formula if $\sigma(e)^{(v)}$ were analytic at $\underline{0}$ for some $v \in \Sigma_{\infty}$. However this can fail if $\underline{0}$ corresponds to an irregular singularity of ( $E, \nabla$ ) ; thus we shall rather translate a purely algebraic argument from Christol (see [5]). The relation $\Sigma \frac{d x_{i}}{x_{i}}=0$ in $\Omega_{X(K(x)}^{1}$, together with the formula $\Delta_{v}\left(x_{i} \frac{\partial \sigma(e)}{\partial x_{i}}\right)=x \frac{d}{d x} \Delta_{v}(\sigma(e))$, yields
$\Delta_{\nu, \sigma}\left(\nabla_{\nu-1}\left(e \otimes \frac{d x_{2} \ldots \widehat{d x_{i}} \ldots d x_{v}}{x_{2} \ldots \widehat{x_{i}} \ldots d x_{v}}\right)=\Delta_{\nu, \sigma}\left(\left(x_{i} \nabla\left(\partial / \partial x_{i}\right) e-x_{1} \nabla\left(\partial / \partial x_{i}\right) e\right) \otimes \frac{d x_{2} \ldots d x_{i} \ldots d x_{v}}{x_{2} \ldots x_{i} \cdots x_{v}}\right)\right.$

$$
=\Delta_{V}\left(x_{i} \frac{\partial \sigma(e)}{\partial x_{i}}-x_{1} \frac{\partial \sigma(e)}{\partial x_{1}}\right)=0 .
$$

Therefore $\Delta_{V, \sigma}$ factors through $H_{D R}^{\nu-1}(U,(E, \nabla))$. In order to prove the horizontality statement, we fix $x_{2}, \ldots, x_{v}$ and get
$\Delta_{v, \sigma}\left(x_{1} \nabla\left(\partial / \partial x_{1}\right) e \theta \frac{d x_{2} \cdots d x_{\nu}}{x_{2} \cdots x_{v}}\right)=\Delta_{\nu}\left(x_{1} \frac{\partial \sigma(e)}{\partial x_{1}}\right)=x d / d x \Delta_{\mu, \sigma}\left(e \otimes \frac{d x_{2} \ldots d x_{v}}{x_{2} \ldots x_{v}}\right)$.
ㅁ
COROLLARY 1. Assume that $H_{D R}^{\nu-1}(U,(E, \nabla))$ is finite-dimensional over $K(x)$ (assume for instance that $(E, \nabla)$ has only regular singular points) then for $y=\sigma(e)$ as above, $\Delta_{\mu}(Y)$ satisfies an ordinary linear homogeneous differential equation with coefficients in $K(x)$.

COROLLARY 2. Assume that $\sigma$ is a solution in $K[\underline{x}]]$ of the Picard-Fuchs system $H_{D R}^{\mu}(Y / K(\underline{x}))$ of a smooth proper $K(\underline{x})$-variety $Y$. Then $\Delta_{\mu, \sigma}$ is a solution in $K[[x]]$ of the Picard-Fuchs system $H_{D R}^{\mu+\nu-1}(Z / K(x))$ of a smooth $K(x)$-variety $Z$.

Proof: let $V$ be an open dense subset of Spec $K\left[\underline{x}, \frac{1}{x_{1} \cdots x_{v}}\right]$ such that $Y$ extends to a smooth proper morphism $Y_{V} \xrightarrow{f} V$, and let us denote by $g$ the obvious smooth morphism $V \longrightarrow \operatorname{spec} K\left[x_{1} \ldots x_{v}, \frac{1}{x_{1} \ldots x_{v}}\right]$. Let us consider the Cartesian squares:


According to the proposition, $\Delta_{\nu, \sigma}$ is a solution in $K[[x]]$ of $H_{D R}^{\nu-1}\left(U / K(x), H_{D R}^{\mu}(Z / U)\right)$.

On the other hand, there is the Leray spectral sequence

$$
\begin{equation*}
H_{D R}^{\nu-1}\left(U / K(x), H_{D R}^{\mu}(Z / U)\right) \Rightarrow H_{D R}^{\mu+\nu-1}(Z / K(x)) \tag{*}
\end{equation*}
$$

Let us extend the scalars $K$ to $\mathbb{C}$; since $f_{\mathbb{C}}$ is proper and smooth, the Leray spectral sequence of local systems $R^{\nu-1} g_{\mathbb{C}^{\star}} R^{\mu} f_{\mathbb{C}^{*}}(\mathbb{C}) \Rightarrow R^{\mu+\nu-1}\left(g_{\mathbb{C}^{\prime}}\right){ }_{\star}(\mathbb{C})$ degenerates [9] 2.4. It follows from the comparison theorem that (*) also degenerates as a spectral sequemce of $K(x)$-vector spaces with connection. Thus $\Delta_{\nu, \sigma}$ is a solution of $H_{D R}^{\mu+\nu-1}(Z / K(x))$.

REMARK 3. Combining corollary 2 with remark 2 , we get that if $\sum a_{n} x_{n}$ satisfies a Picard-Fuchs equation from projective geometry, then for any $N \quad \sum a_{n}^{N} x^{n}$ satisfies a Picard-Fuchs equation.

## § 4. EXAMPLES

We shall study four typical classes of G-functions, each of which is stable under Hadamard product; namely: rational functions, diagonals of rational functions in several variables, polylogarithms and hypergeometric functions (Geometric and hypergeometric series, were already put forward by C.L. Siegel [17], and G-functions borrow their generic name from these special cases). Each of these series satisfies some linear homogeneous differential equation, which turns out to come from geometry.

### 4.1 Rational functions

Let $y \in K(x)$, and let us write $p o l(y)$ for the set of poles of $y$. We may write $y$ as the quotient $p / q$ of two polynomials in $O_{K}[x]$. Let us write $N$ for the norm of the first non-zero coefficient of $q$; then $y \in O_{K}[1 / N]((x))$. On the other hand, it is immediate that $\rho_{\infty}(y)<\infty$. Since such series occur frequently, we state a

DEFINITION (Christol). A Laurent series $y \in K(x))$ is globally bounded if and only if
i) for any $v \in \Sigma_{\infty}, R_{v}(y)>0$,
ii) there exists $N \in \mathbb{N}^{x}$ such that $y \in O_{K}[1 /$ Ni] ( $(x))$.

LEMMA. Any $y \in K(x)$ satisfyies $\rho(y)=\sigma(y)=p(p o l(y))$.

Proof: we have $R_{v}(y)=\operatorname{Min}_{\zeta \in \operatorname{pol}(y)}|\zeta|_{v}$ for any $v \in \Sigma(K)$, whence the equality $\rho(y)=h(p o l(y))$.

On the other side, the fact that $y$ is globally bounded implies that $h_{v, n}(y)=0$ for almost all $v$, and all $n$. Using lemmata 1 of $\S \S 1.3$ and 2.2 , we come by the inequality $\sigma(y) \leq \rho(y)$. In order to show that it is an equality, it suffices to establish the existence of the limit $\lim _{n \rightarrow \infty} h_{v, n}(y)$ for any $v \in \Sigma(K)$; but this follows from the fact that coefficients of $y$ satisfy linear reccurence equations for $\mathrm{n} \gg 0$ (see next remark).

REMARK. The-lemma generalizes immediately to the case of a matrix $Y \in M_{\mu, v}(K(x))$. The stability of $M_{\mu, v}(K(x))$ under Hadamard product is easily seen using the characterization of rational series: $y \in K(x) \Leftrightarrow \exists N \in \mathbb{N}^{X}, \exists Y, Z \in M_{N}(K)$ such that $Y_{n}=\operatorname{tr} y, Z^{n}$ (existence of recurrence relations); we have the formula $\left(Y_{1} * Y_{2}\right)_{n}=\operatorname{tr}\left(Y_{1} \otimes Y_{2}\right)\left(Z_{1} \otimes Z_{2}\right)^{n}$, with obvious notations.

### 4.2 Diagonals of rational functions

We shall denote by $K[\underline{x}](\underline{x})$ the localization of the ring $K[\underline{x}]=K\left[x_{1}, \ldots, x_{v}\right]$ at the ideal generated by $x_{1}, \ldots, x_{v}$, and by $K\{\{x\}\}$ the henselization of $K[x]$ at the ideal generated by $x$ (i.e. the subring of $K[x]]$ of algebraic elements over $\mathrm{K}(\mathrm{x})$. )

DEFINITION. Elements in the target $\Delta_{V}(K[\underline{x}](\underline{x})$ ) of the diagonalization map restricted to $K[\underline{x}](\underline{x})$ are called diagonals of rational functions (over $K$ ).

REMARK 1. Let us consider again the geometric interpretation of $\Delta_{v}$ in § 3.3. In the present case, let $p / q \in K[\underline{x}](\underline{x})$, with $p, q \in K[\underline{x}]$. We may take for $U$ the subset of $X$ where $q$ does not vanish; $E=O_{U}$, endowed with exterior derivative $\nabla ; \sigma$ : the standard horizontal map $0_{U} \longrightarrow K[[\underline{x}]]$, where $x$ is replaced by $x_{1} x_{2} \ldots x_{v}$; e := p/q. We have $H_{D R}^{\nu-1}(U,(E, \nabla))=H_{D R}^{\nu-1}(U)$, the ordinary algebraic De Rham cohomology of the smooth affine scheme $U$. This is a finitedimensional $K(x)$-vector space; see [16] for an algebraic proof which does not use resolution of singularities. According to corollary 3.3, diagonals of rational functions satisfy "PicardFuchs" differential equations associated to smooth affine $K(x)-$ schemes.

LEMMA. Let $y \in K[[x]], y=\Delta_{v}(p / q)$ be a diagonal of rational function. Then $y$ is a globally bounded $G$-function, and $\sigma(\mathrm{y}) \leq \rho(\mathrm{y})<\infty$.

Proof: we may assume that $p, q \in O_{K}[\underline{x}]$; let us denote by $N$ the norm of $q(\underline{0}) \neq 0$. Then it is clear that $p / q \in O_{K}$ and $y \in O_{K}[1 / N][[x]]$. On the other side, the $v$-adic radius of convergence $R_{v}(p / q)$ is non zero for every $v \in \Sigma(K)$, and the same holds for $R_{V}(y)$ according to Hadamard's formula. This shows that $y$ is a globally bounded G-function. The
deduction $\sigma(y) \leqslant \rho(y)$ is made as in lemma 4.1. In fact, it could be shown that $\sigma_{f}(y)=\rho_{f}(y) \leq v h_{f}\left(q(\underline{0})^{-1}\right) \leq v h(q(\underline{0}))$.

It happens that diagonal of rational functions occur very frequently, even though it is often difficult to find the (nonunique) relevant rational function. To explain this fact, G. Christol [6] has set the following conjecture up:

CONJECTURE. Every globally bounded solution in $K[[x]]$ of $a$ linear homogeneous differential equation with coefficients in $\underline{K[x]}$ is a diagonal of a rational function.

We now prove that algebraic functions are diagonals of rational functions in two variables (Christol-Furstenberg [4][11]).

PROPOSITION. The equality $\Delta_{2}\left(K\left[x_{1}, x_{2}\right]\left(x_{1}, x_{2}\right)\right)=K\{x\}$ holds.

Sketch of proof: in fact we shall only consider the inclusion三. Let $y \in K\{x\}$ and let $r(y, x):=0$ be a polynomial equation for $y$. Assuming that $r(0,0)=0,\left.\frac{\partial r}{\partial y}\right|_{(0,0)} \neq 0,\left.\frac{\partial r}{\partial x}\right|_{(0,0)} \neq 0$, we shall exhibit a rational function $p / q$ such that $\Delta_{2}(p / q)=Y$. We set $q\left(x_{1}, x_{2}\right)=\frac{1}{x_{1}} r\left(x_{1}, x_{1} x_{2}\right)$, so that $1 / q \in K\left[x_{1}, x_{2}\right]\left(x_{1}, x_{2}\right)$, and $\left.\frac{\partial g}{\partial x_{2}}\right|_{(0,0)} \neq 0$.

Let us consider the following diagram (where $X$ and $U$ have the same meaning as in remark 1 , and $Z=X \backslash U$ ):

where all arrows are horizontal maps, and where the horizontal rows are the residue exact sequences: $\operatorname{Res}_{Z}$ is the "coefficient of $d q / q$ ", given at the stage of differential forms by $\operatorname{Res}_{Z}\left(p / q{ }^{d x_{2} / x_{2}}\right)=\left(\frac{\partial q}{\partial x_{2}}\right)^{-1} p /\left.x_{2}\right|_{q\left(x_{1}, x_{2}\right)=0}$.

Now the derivation $d / d x$ extends in a unique way to $K(x, y)$, whence a connection on this space, which can be identified with Gauss-Manin connection on $H^{0}(Z)$. It follows that the image of $y \in K(x, y) \simeq H^{0}(Z)$ under $\varphi$ is given by the class of $p / q \cdot d x_{2 /} x_{2}$, where $p=x_{1} x_{2} \partial q / \partial x_{2}$.

The following diagram of horizontal maps

(where $\sigma$ is defined in the above remark) shows that $\left(\Delta_{2}, \sigma^{\circ} \varphi\right)(y)$ satisfies the same differential equation as $y$, and $\left.\left(\Delta_{2, \sigma} \circ \varphi\right)(y)\right|_{0}=\left.x \Delta_{2}\left(\frac{1}{q} \partial q / \partial x_{2}\right)\right|_{0}=0$. It follows that $y=\Delta_{2}\left(\frac{x_{1} x_{2}}{q} \cdot \partial q / \partial x_{2}\right)$.

For a proof of the reversed inclusion $\subseteq$, with an argument from linguistics, see [10] 5.

REMARK 3: the stability of diagonals of rational functions under Hadamard product is immediate from the formula:

$$
\Delta_{v_{1}+v_{2}}\left(r_{1}\left(x_{1}, \ldots, x_{v_{1}}\right) r_{2}\left(x_{v_{1}+1}, \ldots, x_{v_{1}+v_{2}}\right)\right)=\Delta_{v_{1}} r_{1}^{*} \Delta_{v_{2}} r_{2}
$$

However the subclass of algebraic functions is not stable under * ; by way of counterexample, one may take (Jungen, 1931) :

$$
\begin{aligned}
(1-x)^{1 / 2} *(1-x)^{-1 / 2} & =\Delta_{4}\left(4 /\left(2-x_{1}-x_{2}\right)\left(2-x_{3}-x_{4}\right)\right)={ }_{2} F_{1}(1 / 2,1 / 2,1, x) \\
& =\sum_{n \geqq 0}\binom{2 n}{n}^{2}(x / 16)^{n}, \text { which is transcendental. }
\end{aligned}
$$

### 4.3 Polylogarithms

We turn back to more down-to-earth examples. Let $L_{k}=\sum_{n \geq 0} x^{n} / n^{k}$ be the $k^{\text {th }}$-polylogarithmic series. It satisfies the "unipotent" differential equation: $d / d x \frac{1-x}{x}(x d / d x)^{k} L_{k}=0$ obtained from the chain rule $x d / d x=L_{k-1}, L_{0}=x / 1-x$; the other solutions can be expressed by means of the functions 1, $\log x, \ldots, \log ^{k-1} x$.

LEMMA. One has $\rho\left(L_{k}\right)=0, \sigma\left(L_{k}\right)=k$.

Proof: this is a straightforward consequence of Tchebyshev's theorem. Moreover, we shall show elsewhere that $\tau\left(L_{1}\right)=1$.

REMARK. Integration of any formal power series $y$ is nothing but the Hadamard product $x y * L_{1}$.

### 4.4 Generalized hypergeometric functions

For $a \in Q$, we set $(a)_{0}=1,(a)_{n+1}=(a+n)(a)_{n}$, and for $\underline{a}:=\left(a_{1}, \ldots, a_{\mu}\right) \in \mathbb{Q}^{\mu}$ we set $\left(\underline{a}_{n}=\prod_{m=1}^{\mu}\left(a_{m}\right)_{n}\right.$. To any couple (ㄹ, b) in $(\mathbb{D}-\{-\mathbb{N}\})^{\mu} \times(\mathbb{Q}-\{\mathbb{N}\})^{\nu}$, we associate the hypergeometric function

$$
y=F(\underline{a}, \underline{b}, x):=\sum_{n \geq 0} \underline{(\underline{a}}_{n /(\underline{b})_{n}} x^{n} .
$$

LEMMA. The three conditions $\rho(\mathrm{y})<\infty, \sigma(\mathrm{y})<\infty$ and $\mu=\nu$ are equivalent. If they are satisfied, one has $\rho(y)=\sigma(y)=\sum_{m=1}^{\mu}\left(h_{f}\left(a_{m}\right)-h_{f}\left(b_{m}\right)\right)$.

Proof: either of the conditions $\rho(\mathrm{y})<\infty, \sigma(\mathrm{y})<\infty$ implies that for $v \in \Sigma_{\infty}, R_{v}(y)>0$, which implies in turn that $\mu \leq \nu$, and $R_{v}(y) \geq 1$ (hence $\rho_{\infty}(y)=\sigma_{\infty}(y)=0$ ). Let $N$ be the greatest common denominator of the $a_{m}, b_{m}$ 's ; for $p>N$ and $n \rightarrow \infty$, we have:

$$
\begin{aligned}
& \left|\left(a_{m}\right)_{n} /\left(b_{m}\right)_{n}\right|_{p}=O\left(p^{\log n}\right) \\
& \left|1 /\left(b_{n}\right)_{n}\right|_{p}^{1 / n} \sim p^{1 / p-1}, \\
& \operatorname{den}\left(N^{n}\left(a_{m}\right)_{n} /\left(b_{m}\right)_{n}\right)=o\left(e^{1 / \log n}\right),
\end{aligned}
$$

and $\left(\operatorname{den} N^{n} /\left(b_{m}\right)_{n}\right)^{1 / n} \sim n / e($ Stirling), see the appendix. The former two estimates, together with the divergence of $\sum_{p>N} \frac{\log p}{p-1}$, show that $\rho(y)<\infty \Rightarrow \mu \geqq v$.

The latter two estimates show that $\sigma(y)<\infty \Rightarrow \mu \geqq \nu$. Conversely the first and third estimates show that $\mu=\nu$ implies finiteness for $\rho$ and $\sigma$, and that

$$
\begin{aligned}
& \rho(y)=\sum_{p \ N} \overline{\lim _{n \rightarrow \infty}} h p, n \\
& \sigma(y)=\overline{\lim }_{n \rightarrow \infty} p \sum_{\mathrm{N}} \bar{X}_{\mathrm{N}} p, n .
\end{aligned}
$$

A straightforward computation (remarking that $\left|\left(a_{m}\right)_{n}\right|_{p}=\left|a_{p}\right|_{p}^{n}$ if $|a|_{p}>1$ then leads to the equality
$\rho(y)=\sigma(y)=\sum_{m=1}\left(\log\right.$ den $\left.a_{m}-\log \operatorname{den} b_{m}\right)$.

REMARK 1. We could define hypergeometric series for parameters ( $\underline{a}, \underline{b}$ ) in $(K \backslash\{-\mathbb{N}\})^{\mu+\nu}$ for any number field. However it follows from Chudnovski [7] that such a hypergeometric series is a G-function only if $(\underline{a}, \underline{b}) \in(\mathbb{Q} \backslash\{-\mathbb{N}\})^{\mu+\nu}$.

REMARK 2. G. Christol [6] has determined all globally bounded hypergeometric functions. The extra condition is the following one: let $N$ as above; then for any $M$ with $0 \leq M<N$ and $(M, N)=1$, and for any positive integer $j$ with $j \leqq \mu$, $\#\left\{i / M a_{i} \alpha M b_{j}\right\} \geqq \#\left\{i / M b_{i} \alpha M b_{j}\right\}$ (here $\alpha$ is the total ordering of $\mathbb{R}$ defined by

$$
\begin{gathered}
y \propto z \Leftrightarrow y+[-y]<z+[-z] \quad \text { or }(y+[-y]=z+[-z] \\
\\
\text { and } y \geqq z)) .
\end{gathered}
$$

Let us now introduce the classical Meijer G-functions, which however are not G-functions in Siegel's sense! These are integrals of Mellin-Barnes type over some suitable loop:

$$
\begin{aligned}
G_{v, \mu}^{m, n}(a, b, x):= & \frac{1}{2 \pi \sqrt{-1}} \oint \frac{\prod_{j=1}^{m} \Gamma\left(b_{j}-s\right) \prod_{j=1}^{m} \Gamma\left(1-a_{j}+s\right)}{\prod_{j=m+1}^{\mu} \Gamma\left(1-b_{j}+s\right) \prod_{j=n+1}^{v} \Gamma\left(a_{j}-s\right)} x^{s} d s, \\
& \text { for } 0 \leqq m \leqq \mu, 0 \leq n \leq v .
\end{aligned}
$$

In the case $\mu=\nu$, these functions satisfy some fuchsian differential equation. Namely, $z:=G_{\mu, \mu}^{m, n}\left(\underline{a}, \underline{b},(-1)^{m+n} x\right)$ satisfies the equation
(*) $\quad(-1)^{\mu} x \prod_{j=1}^{\mu}\left(\partial-a_{j}+1\right) z=\prod_{j=1}^{\mu}\left(\partial-b_{j}\right) z$ where $\quad \partial=x d / d x$, whose singularities are $X=0,(-1)^{\mu}$ and $\infty$.

The link with hypergeometric series is given by the formulae
$F(\underline{a}, \underline{b}, x)=\frac{\prod_{j=1}^{\mu} \Gamma\left(b_{j}\right)}{\prod_{j=1}^{\mu} \Gamma\left(a_{j}\right)}-G_{\mu, \mu}^{\mu, 1}(\underline{a}, \underline{b},-1 / x)=\frac{\prod_{j=1}^{\mu} \Gamma\left(b_{j}\right)}{\prod_{j=1}^{\mu \prime \prime} \Gamma\left(a_{j}\right)} G_{\mu, \dot{\mu}}^{1, \mu}(\underline{1}-\underline{a}, \underline{1}-\underline{b}, \underline{x})$
and
$G_{\mu, \mu}^{m, n}(\underline{a}, \underline{b}, x)=\sum_{k=1}^{m} \frac{\prod_{\substack{j=1 \\ j \neq k}}^{m} \Gamma\left(b_{j}-b_{k}\right) \prod_{j=1}^{n} \Gamma\left(1+b_{k}-a_{j}\right)}{\prod_{j=m+1}^{\mu} \Gamma\left(1+b_{k}-b_{j}\right) \prod_{j=n+1}^{\mu} \Gamma\left(a_{j}+b_{k}\right)} x^{b_{k}} \underset{\left(-a+1+b_{k},-b+1+b_{k}\right.}{\left.-\quad-1)^{\mu-m-n} x\right)}-$
where we set $\underline{h}=(h, \ldots, h)$ for any $h \in \mathbb{Q}$, see [1] 5.5. The latter formula shows that $G_{\mu, \mu}^{m, n}$ is a linear combination (with transcendental constant coefficients) of some siegel G-functions.

REMARK 3. In the case $\mu=\nu=1$, we have $F(a, b, x)={ }_{2} F_{1}(a, 1, b, x)$, the classical hypergeometric function, and it is well-known that equation (*) is a factor of a PicardFuchs equation [14]. For higher $\mu$, this is by no means obvious. However it remains that:

PROPOSITION. (for $\mu=\nu$ ) $F(\underline{a}, \underline{b}, x)$ satisfies some Picard-Fuchs differential equation.

Proof: according to remarks of § 4.2, we have

$$
F(\underline{a}, \underline{b}, x)=\underset{i=1}{\cup}\left({ }_{2} F_{1}\left(a_{i}, 1, b_{i}, x\right)\right)=\Delta_{V}\left(\prod_{i=1}^{V} 2_{1} F_{i}\left(a_{i}, 1, b_{i}, x_{i}\right)\right) .
$$

By corollary 2 in § 3.3 , it suffices to show that $\prod_{i=1}^{U} 2^{F}{ }_{1}\left(a_{i}, 1, b_{i}, x_{i}\right)$ satisfies a Picard-Fuchs differential equation associated $H_{D R}^{\mu}(Y / Q(\underline{x})$ for some proper smooth $Y$. Using Künneth formula in algebraic De Rham cohomology, it is enough to prove this statement for $v=1$. If $b \in \mathbb{N}^{\mathrm{x}}$, then ${ }_{2} \mathrm{~F}_{1}(\mathrm{a}, \mathrm{b}, \mathrm{x})$ is algebraic and the statement holds with $\mu=0$.

If $b \in \mathbb{N}^{\mathrm{x}}$. (so that $\mathrm{b} \notin Q$ by our hypergeometric series
$(b-a-1){ }_{2} F_{1}(a, 1, b, x)+a_{2} F_{1}(a+1,1, b, x)-(b-1){ }_{2} F_{1}(a, 1, b-1, x)=0$
$\mathrm{b}\left[\mathrm{a}-(\mathrm{b}-1) \mathrm{x}{ }_{2} \mathrm{~F}_{1}(\mathrm{a}, 1, \mathrm{~b}, \mathrm{x})+\mathrm{ab}(1-\mathrm{x}){ }_{2} \mathrm{~F}_{1}(\mathrm{a}+1,1, \mathrm{~b}, \mathrm{x})+(\mathrm{b}-1)(\mathrm{b}-\mathrm{a}) \mathrm{x}_{2} \mathrm{~F}_{1}(\mathrm{a}, 1, \mathrm{~b}+1, \mathrm{x})=0\right.$
in order to reduce ourselves to the case $a>0,1<b<2$.
In this case, Euler's integral representation
${ }_{2} F_{1}(a, 1, b, x)=(b-1) \int_{0}^{1}(1-t)^{b-2}(1-t x)^{-a} d t$ shows that $2^{F}{ }_{1}(a, 1, b, x)$ satisfies the Picard-Fuchs equation associated to the differential $\frac{d t}{u}$ over the smooth completion of the curve

$$
u^{N}=(1-t)^{(2-b) N}(1-t x)^{a N}, N=\operatorname{den}(a, b) .
$$

§ 5. COUNTEREXAMPLES

In this paragraph, we gather some "pathological" examples to show that there is no link in general between $\rho$ and $\sigma$ (we shall show elsewhere that for solutions of linear homogeneous differential equations with coefficients in $\bar{Q}(x), \rho$ and $\sigma$ are in contrast strongly related). We also state that $\rho$ and $\sigma$ are bad-behaved under inversion of functions.

### 5.1 A G-function whose inverse is not a G-function

Recall that $\rho\left(L_{1} / x\right)=0, \sigma\left(L_{1} / x\right)=1$. Let $y=x / L_{1}$, so that $y_{0}=1$ and $y_{n}=\sum_{m=1}^{n} \frac{y_{n-m}}{m+1}$. For each $p^{\text {th }}$ root of unity
$\zeta \in \mathbb{C}_{\mathrm{p}} \backslash\{1\}, L_{1} / \mathrm{x}$ vanishes at $1-\zeta$, and $|1-\zeta|_{v}=|\mathrm{p}|_{\mathrm{v}}^{1 / \mathrm{p}-1}$. Therefore $R_{v}(y) \leqq|p|_{V}^{1 / p-1}$ and $p(y)=\infty$. It will be shown elsewhere that $\sigma(y)=\infty$; it will follow that the composite series $\left.L_{1} \circ_{1} \in \mathbb{Q}[x]\right]$ is not a $G$-function, since

$$
x(1-x) d / d x\left(L_{1} \circ L_{1}\right)=y .
$$

5.2 An example with $\rho=0$ and $\sigma=\infty$

We set $\dot{y}=\sum_{k \geq 1} k^{-\left[k / \log ^{2} k\right]} x^{k}$. We readily compute

$$
h_{p, n}(y)=\left\{\begin{array}{l}
0 \text { for } p=\infty \\
\frac{1}{n} \operatorname{Max}_{k \leq n}\left[{ }^{k} / \log ^{2} k\right][\log \because k / \log p] \log p=o_{n}(1) \\
\text { for } p \text { a finite prime. }
\end{array}\right.
$$

Thus $\overline{\lim }_{n \rightarrow \infty} h_{p, n}(y)=0$ and $\rho(y)=0$. On the other side prime $\sum_{\infty} h_{p, n}(y)=\frac{1}{n} \log \underset{k \leq n}{g \cdot c \cdot m}\left(k^{\left[k / \log ^{2} k\right]}\right)$

$$
\geq \frac{1}{n} \sum_{p \leq n}(p / \log p-\log p) \longrightarrow \infty \quad \text { when } n \rightarrow \infty
$$

This shows that $\sigma(y)=\infty$.
5.3 An example with $\rho=\infty$ and $\sigma$ arbitrarily small.

Let $N \geq 0$ and let us set

$$
\mathrm{y}=\sum_{\mathrm{p}}^{\sum_{\substack{ \\\neq \infty}} \sum_{\mathrm{k} \geq 0} \mathrm{p}^{-\left[2^{p^{k}-\mathrm{N}} / \log \mathrm{p}\right]} \cdot \mathrm{x}^{\mathrm{p} \cdot 2^{p^{k}}} . . . . ~}
$$

We have $h_{p, n}(y)=\left\{\begin{array}{l}0 \text { for } p=\infty \\ {[2[n, p\}-N / \log p] \frac{\log p}{n} \text { for any finite prime } p,}\end{array}\right.$
denoting by $\{n, p\}$ the maximal power of $p$ such that $2^{\{n, p\}} \leq n / p$. Thus $\overline{\lim }_{n \rightarrow \infty} h_{p, n}(y)=2^{-N} / p$ in the latter case, and $\rho(\mathrm{y})=\infty$. Now we have

$$
\begin{aligned}
\Sigma h_{p, n}(y) & =\frac{1}{n} \sum_{p \leq n}\left[2^{\{n, p\}-N} / \log p\right] \log p \\
& \leq \frac{1}{n} \sum_{p \leq n} 2^{\{n, p\}-N} .
\end{aligned}
$$

We note that for $p \neq q$, then $\{n, p\} \neq\{n, q\}$, so that $\sum_{p \leq n} 2^{\{n, p\}} \leq 2^{\left\{n, p_{0}\right\}} \sum_{k=1}^{\infty} 2^{-k}$ for some $p_{0}, 2 \leq p_{0} \leq n$. Therefore $\sigma(\mathrm{y}) \leq 2^{-\mathrm{N}}$.

### 5.4 A globally bounded function with $\sigma<\rho$

Let us consider

$$
y=\sum_{k \geq 0} 2^{(-2)^{k}} x^{2^{k}}
$$

We . have

$$
h_{p, n}(y)=\left\{\begin{array}{l}
0 \text { for } p \neq 2, p \neq \infty \\
2^{2}\left[\frac{1}{2}\left[\frac{\log n}{\log 2}\right]\right]_{\log 2,}, \text { for } p=2 \\
\quad\left[\frac{-1}{2}\left[\frac{\log n}{\log 2}\right]\right] \\
\log 2, \text { for } p=\infty .
\end{array}\right.
$$

Thus $\sum_{p} \overline{\lim }_{n \rightarrow \infty} h_{p, n}(y)=2 \log 2=\rho(y)=\sigma_{f}(y)+\sigma_{\infty}(y)$, and $\overline{\lim }_{n \rightarrow \infty} \sum_{p} h_{p, n}(y)=3 / 2 \log 2=\sigma(y)$.

EXERCISES. 1) Show that $\sigma(y)=0 \Rightarrow \rho(y)=0$.
2) Assume that for all $v \in \Sigma(K), \lim _{n \rightarrow \infty} h_{v, n}(y)$ exists. Show that $\rho(\mathrm{y}) \leq \sigma(\mathrm{y})$.
3) Let $y \in K[[x]]$ and assume that $\rho(y, 1 / y)<\infty$,
a) Show that this condition is equivalent to
$\sum_{v \in \Sigma_{f}} \operatorname{Sup}_{n \geq 1} \frac{1}{n} \log ^{+}\left|y_{n}\right|_{V}<\infty$ (use the fact that for any $v \in \Sigma_{f}, Y(v)$ has no zero $\xi \in \mathbb{C}_{v}$ satisfying $0<|\xi|_{V}<R$, if and only if $r \longmapsto \operatorname{Sup}_{\mathrm{n}}\left|\mathrm{Y}_{\mathrm{n}}\right| \mathrm{r}^{\mathrm{n}}$ is a constant function on $] 0, R[$ ),
b) deduce that this condition is satisfied in particular if $y$ is globally bounded,
c) show that $\sigma(y) \leq \rho(y)<\infty$,
d) deduce that $\tau(y)=0$,
e) show that if $y(0) \neq 0,1 / y$ is a $G-f u n c t i o n ; ~ g i v e ~ u p p e r ~$ bounds for $\rho(1 / y), \sigma(1 / y)$,
f) show that if $Y(0)=0$, then for every $G-f u n c t i o n ~ z$, the composed series $z \in Y$ is again a G-function.
4) Consider the G-function $y$ of § 5.3: assume the finiteness of the set of solutions of the equation $p^{k}-q^{1}=m$ ( $m$ fixed but arbitrary), and show that, in point of fact, $\sigma(y)=2^{-N-1}$.

## Appendix

## Calculus of factorials

Following [6]3, we give estimates for the p-adic valuation $v_{p}\left((a)_{n}\right)$ of the rational number $(a)_{n}=\prod_{i=0}^{n-1}(a+i)$, for a $\in \mathbb{Q}-(-\mathbb{N})$. We first introduce general notations:
let $p$ be a fixed prime, and let $a \in \mathbb{Q} \cap \mathbb{Z}_{p}$, i.e. the denominator of $a$ is prime to $p$.

We define $R, Q$, and $f$ by the formulae:

$$
a=-R\left(a, p^{k}\right)+p^{k} Q\left(a, p^{k}\right)
$$

with. $R\left(a, p^{k}\right) \in \mathbb{N}, R\left(a, p^{k}\right)<p^{k}$, $f\left(a, p^{k}, n\right)=\left[\frac{n+p^{k}-1-R\left(a, p^{k}\right)}{p^{k}}\right]$

For instance, when $a=1$, we have $R\left(1, p^{k}\right)=p^{k}-1$ and $f\left(1, p^{k}, n\right)=\left[n / p^{k}\right]$. Let us remark that $f\left(a, p^{k}, n\right)-f\left(1, p^{k}, n\right)$. is periodic, with period $p^{k}$ in $n$; this leads to the equality
(1) $\left.f\left(a, p^{k}, n\right)-f\left(1, p^{k}, n\right)=y\left(<n / p^{k}\right\rangle-R\left(a, p^{k}\right) / p^{k}\right)$
where $\quad y(x)=\left\{\begin{array}{lll}0 & \text { if } & x \leq 0 \\ 1 & \text { if } & x>0\end{array}\right.$
and $\langle x\rangle=x-[x]$; we shall also use the notation

$$
\{x\}=-x-[-x]
$$

We extract from [6][14] a formula for $R\left(a, p^{k}\right)$ :
(2) $R\left(a, p^{k}\right) / p^{k}=\left\{a \Delta^{k}\right\}-a / p^{k}$ where the integer $\Delta$ satisfies the condition:
for some $N \in N^{*}$, such that $N|a|<p$ and $N a \in \mathbb{Z}$, $\Delta p=1 \bmod N \quad\left(i n\right.$ fact $N|a|<p^{k}$ is enough).

At last we recall the generalization for (a) $n$ (see [6]) of the classical equality $v_{p}\left((1)_{n}\right)=\sum_{k=1}^{\infty}\left[n / p^{k}\right]$ :

$$
\begin{equation*}
v_{p}\left((a)_{n}\right)=\sum_{k=1}^{\infty} f\left(a, p^{k}, n\right) \tag{3}
\end{equation*}
$$

Putting together (1), (2), (3), we find:

LEMMA, The following equality holds:
(4) $\quad v_{p}\left((a){ }_{n}\right)=\sum_{k=1}^{\infty}\left[n / p^{k}\right]+\#\left\{k \quad\right.$ such that $\left.\left\{\Delta^{k} a\right\}<\left(a / p^{k}+<n / p^{k}>\right)\right\}$.

REMARK: For $p^{k}>(a+n) N$, we have $\left\{\Delta^{k} a\right\} \geq 1 / N \geq a / p^{k}+\left\langle n / p^{k}\right\rangle$, so that the second term of the right-hand side of (4) is bounded by $\frac{\log \operatorname{Max}((a+n) N, 0)}{\log p}$.

## References

[1] BATEMAN H. and al., Higher transcendental functions, vol 1, Mac Graw Hill, New York (1953).
[2] BOMBIERI E., On G-Functions; in Recent progress in analytic theory, vol 2 , Academic press, London, New York, Toronto (1981) pp 1-67.
[3] CALDERON R.H., MARTIN W.T., Analytic continuations of diagonals and Hadamard composition of multiple power series, Transc. Amer. Math. Soc. 44 (1938) pp 1-7.
[4] CHRISTOL G., Sur une opération analogue à l'opération de Cartier en caractéristique nulle, C.R. Acad. Sc. 271 (1970)A pp 1-3.
[5] CHRISTOL G., Diagonales de fractions rationnelles et équations de Picard-Fuchs, Groupe d'étude' d'Analyse ultramétrique, (1984/85) $n^{\circ} 13,12 \mathrm{p}$.
[6] CHRISTOL G., Fonctions hypergéométriques bornées, Groupe d'étude d'Analyse ultramétrique, (1984/85) $n^{\circ} 13,12 \mathrm{p}$.
[7] CHUDNOVSKI D.V., CHUDNOVSKI G.V., application of Padé approximations to diophantine inequalities in values of G-functions, Lect. Notes in Math. 1135 Springer-Verlag, Berlin, Heidelberg, New York (1985) pp 9-51.
[8] CHUDNOVSKI D.V., CHUDNOVSKI G.V., application of Padé approximations to the Grothendieck conjecture on linear differential equations, Lect. Notes in Math. 1135 SpringerVerlag. Berlin, Heidelberg, New York (1985) pp 52-180.
[9] DELIGNE P., Théorèmes de Lefschetz et critères de dégénérescence de suites spectrales, Publ. Math. IHES 35 (1986) pp 107-126.
[10] FLIESS M., Sur divers produits de séries formelles, Bull. Soc. Math. Fr. t. 102 (1974) pp 181-191.
[11] FURSTENBERG H., Algebraic functions over finite fields, J. of Alg. t. 7 (1967) pp 271-277.
[12] GALOCHKIN A.I., Estimates from below of polynomials in the values of analytic functions of a certain class. Math. USSR Sbornik 24 (1974) pp 385-407. Original article in Mat. Sbornik 95 (137) (1974).
[13] KATZ N., Nilpotent connections and the monodromy theorem: application of a result of Turritin. Publ. math. IHES 39 (1970) pp 175-232.
[14] KATZ N., Algebraic solutions of differential equations. Inv. Math. 18 (1972) pp 1-118.
[15] LANG S., Algebraic number theory, Addison Wesley, Reading, Massachussetts (1970).
[16] MONSKY P., Finiteness of De Rham cohomology, Amer. J. of Math. 94 (1972) pp 237-245.
[17] SIEGEL K.L., Uber einige Anwendungen diophantischer Approximationen. Gesammelte Abhandlungen I, Springer-Verlag, Berlin, Heidelberg, New York (1966) pp 209-266.
[18] WEIL A., Arithmetic on algebraic varieties, Ann. of Math. 53 (1951) pp 412-444.

