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What are G-functions ?

Yves André

INTRODUCTION. G-functions appeared in Siegel's paper [17]

about diophantine approximation, and led in the context to

an extensive literature {(see [2] for a small list). Classically,

they are convergent Taylor series y = E anxn , with rational
nz0

coefficients a, such that the common denominator of

Agraqresesd, grows at most geometrically in n . To our

eyes, their interest arises mainly from the following

conjecture (anonymous, but "in the air"}:

CONJECTURE: G-functions which satisfy linear homogeneous
differential equations with coefficients in @(x) come from
geometry. The last expression means that such a function
satisfies some differential equation which belongs to the
smallest class stable by standard constructions (subfactor,

® , ...) and extension, containing all Picard-Fuchs equations

associated to the cohomology of algebraic varieties over Q(x)

The present paper is only a presentation of G-functions, and
will form the first chapter of a forthcoming book on these
topics. We first define (over number fields) three basic

invariants of formal power series: the size ¢ , the stable



size Tt , and the global radius ¢ , and give their yoga.

The local-to-global presentation we have adopted is inspired
from [2]. We then turn to examples: rational functions,
diagonals, polylogarithms and generalized hypergéometric _
functions. For all these examples the conjecture Holds true,
although the latter case offers a non-trivial test (we settle
it using Lefschetz's theorem). We try to precise the numerical
invariants p,0 in these examples. Our presentation of
diagonals is inSpired by Christol's [5]. At lasf we gather
some "pathologies".

I thank the Max-Planck-Institut fiir Mathematik for generous
hospitality during the preparation of this work, and

H. Esnault for a useful conversation.



NOTATIONS

GENERAL NOTATIONS., IWN is the set of natural numbers; T (resp.

®, R, € ) is the ring (resp. the field) of integers (resp. of
rational numbers, of real numbers , of complex numbers). If

p is a prime number,:Fp denotes the prime field z/pﬁ ~and
zp (resp. mp ) the ring of p-adic integers (resp. the field of
p-adic rational numbers). For t € R , we shall write log+t
for 1log Max(1,t) ; one has log+t + log+t We

+
1t2 s log t1

denote by [t] the integral part of t : [t] € Z ,

5

[t] ¢t < [t] + 1 . We denote by I1im (resp. lim ) the upper
(resp. lower) limit of a sequence of real numbers. If £,g are
two functions of a real variable, with g 2 0 , we write £ = 0(qg)
if there exists a constant C > 0 such that |£f(x)]| § Cg(x) for
all sufficiently large x ; we write f = olg) (resp, £ ~ g ) if

lim f(x)/g(x) = 0 (resp. 1 ).

X0
PLACES
- Symbols:
@ a fixed algebraic closure of the field
of rational numbers,
K a number field; that is to say, a sub-

field of @ which is a finite extension

of @,

OK the ring of integers in K

r



d = [K:Q] the degree of K over @ ,

L or I{(K) the set of all places of K ,

Ef (resp. I_ ) the subset of finite (resp. infinite)
places,

vlp or p = plv) v lies above the place p of @ ,

Kv a completion of K with respect to
v €EZ,

d, = [ v:(Dp(v)] the local degree at v € I ; one has :
d = )idv.

ujp
Normalization:
| lv the absolute value in X normalized

in the following way:

|p(v)|v = p{v) v/d if v € Ef (ultrametric case),
dv/d
|€|v = |E| if v € L, (Archimedean case), where
enotes e Euclidean absolute value on
d t the Euclid bsolut 1
KV  for v € Zm ’
mv a completion of an algebraic closure of
K, i | |, extends to €,



iv : K &> EV or K, the natural imbedding.

Remarks:

The symbol |} will denote a summation with all v € I(K)
v

For any finite extension. K' of K , any ¢ € K and
v € Z(K) , one has |g] = i
weL (K")
w|

v

|c|K| . ¢ and all factors

have the same value; see [15].

RINGS. Let R be a commutative entire ring with unit. We shall

use the following entire rings (with standard operations):

R[x] the polynomial ring over R ; more generally,
R[x] the polynomial ring in several commuting indeterminates
X = (x1,...,xv) over R , ‘
R(x) the fraction field of R[x] ,
R [x]] the ring of formal poﬁers series over R ,
R((x)) the fraction field of R[[x]] ,
MU(R) : the ring of square matrices of size p over R ;
» we shall identify Mu(Rf(x))) with Mp(Ri((x))',

I or Iu its unit,

(E) for Y € MU(R) ' (E) = (n!)_1 Y(Y-I)...(Y-(n-1) 1)

whenever n! is invertible in R .



We shall also denote by MLl V(R) the abelian group of matrices
7

with y rows, v columns, whose entries belong to R , For

YEM (R} , we shall denote by in € R the (i,3j)-entry of

TPV
Y . Let us assume that R is a field. For Y € Mu v(R((x))) .
I
we shall denote by Yn € MU v(R) the coefficient of x" in Y
r
and by ,.Y_ € R the coefficient of x? in .Y € R{(x)) . For
ij™n 1]
Y,Z € MU v(R((X))) , the Hadamard product - Y,Z € Mu v(R((x)))
r !

is defined by . (v,2) = ,.v - ijzn“i"fhenf'

(Mu v(R((x))),+,*) is a (non entire) ring with unit; the
1

entries of its unit are T%E € R{(x)) .



What are G-functions ?

§ 1. HEIGHTS AND SIZES

1.1 Height of algebraic numbers [18]

Let ¢ € @ an algebraic number, lying in some number field K .

If £ + 0 , the following "product formula" holds:

y log|g], = 0 .
vEL (K)

The (logarithmic absolute) height of ¢ 1is defined to be

+
. log |z|, =: h(z)
veErL (K)

Thanks to our normalizations h{(g) depends only on ¢ but
not on K . Thus the height is well-defined over @ . Let

p = aOTT(x—gi) € %2[x] the minimal polynomial of ¢ over & .
Then the so~-called Mahler measure of ¢ , defined as

M(g) := |ag| 17 Max(1,z;) , is related to the height- via the

formula

[@(z) : @) h(z) = log M(g)

. R B

2ntv/=7 oo T

= j1 log|ple 1)“]dt‘ (Jensen's formula)
0

n .
= Tim % log|Resultant(p, ) x*)| (Langevin's
ne i=0 formula)

For a finite family (Ak)k of matrices, such that all entries

belong to K , we set



h((A),) := Y log® Max |,.A | .
k'K ves (K) 1,9,k 137 lv
Once again, this quantity does not depend on the choice of the
number field which contains the entries ijAk of the A/ 's .

k
The following classical inequality holds:

h(AB) £ h(aA) + h(B) + log v , for any

A€ Mu’v(Q) s B € MU,@(Q) .

1.2.Height of polynomials

Let Y € MU v(a[XJ) , Y = ZYnxn . We write as usual
r

deg Y = Max {n / Y + 0} for Y % 0 . We shall set:

1

h(Y) := (1+ deg Y)" h((Y)) ) .

1.3 Height of formula power series; G-functions

Let Y €M _(Q{x)]) , Y= ] Yx" .We denote by Y s N the
U,V nie
N >
) n -
truncated series nzoynx € Mu'v(m[x]) . We set:

h(Y) := 1lim h(Yy £ N)
N
This is a well-defined quantity in [0,«] . One checks
immediately that this definition reduces to the previous one
when Y has only finitely many (actually 1 + deg Y )} non-zero

coefficients.

DEFINITION. A G-function is a formal power series y , whose

éoefficients‘belong to some number field and whose height hi(y)

ig finite.



EXPLANATION. This is equivalent to the classical definition

(Siegel [171): y = ynxn

nz0

€ K[[x]] 4is a G-function. if and

only if

. . n
i) for every v € I ; Y i,y )x

nz0
analytic function around 0 ,

€ Ev[[x]] defines an

ii) there exists a sequence of natural integers (dn) which
nenN

grows at most geometrically, such that dnym € Ok for

m=¢,...,n . This equivalence will be proved in 2.3.

1.4 .5ize of Laurent series

Let Y € M (@((x))) , ¥ = ) v x" . we set:
[VFAY n
nz-N
oY) := 0 if Y 1is a Laurent polynomial (i.e. if almost

all coefficients are 0 )

-h(kNY) otherwise .

One checks immediately that this definition depends only on Y

r

and not on N . The generalization to the case of a finite f;mily

of matrices is immediate.

We shall also use constantly the convenient notation:

1 +
v,n ; Max log Iinklv ; here v denotes a place

0f some number field K which contains the coefficients ink of

the (i,j)- entries of Y for i £p, jsv, k£n.
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However the non-negative real number | h, ,(¥) does
v r
not depend on the choice of K (by the remark made in the

index of notations).

LEMMA 1. o(¥) = Iim } h (Y) .

n-ew v at
Proof: if Y € Mu,v(m[x'1/X]) , we clearly have 1lim ) hv’n(Y) =0 ,
n-o v
so that it is enough to assume that the sequence (1/ ) of
©(1) 7159
non-zero coefficients of Y is infinite. We then have
- —_— 1 +
o(Y}) = 1im 1/ *h(Y¥qy,...,Y ) = Iim —— } Max log |,.Y, |
10w @1 0 ©(l) 10w ©(1) & isu ij"k'v
' ' v
ks (1)
R l +
= Iim § o gix log |inn|V .
n-w v igy
jsv
msn
u]
REMARK., We could everywhere replace the indexing set of
summation I(K) by Ef (resp. I_ ). Denoting by hf, O (resp.

h_, ¢, ) the corresponding notions - finite (resp. infinite)

part of the height or size - the above proof shows that

of(Y) = 1im z hV n(Y) . Assume that all coefficients of the
n-o»« v, L r
. 1 p

entries of Y 1lie in a fixed number field K . Let drl the

common denominator in N ~ {0} of the. entries of Y

1/n
n

0'--.’Yn

One has of(Y) <€ log lim d < dof(Y) . The elementary proof

n-»e

is omitted.
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LEMMA 2. Let Y € M (Z((x}))}.

a) Max o(,.Y) < o(Y) = o(gY) s} of,.Y) , for any ¢ € Q@ ,
i,3 i3

b) o(d/dx ¥) < o(Y) , for any n €N ,

c) if the residue Y of Y wvanishes, c(fX¥) s o) + 1,

-1

0
— .= n_n ‘
d) for 7 € @ , set Y(C) := L Y g x . Then
O(Y(C)) < o(Y) + h(zg)
Let (Y[k])E=1 a subset of Mﬁ'vtﬁ((x))) , then:

e) ol ¥[k])‘s q((Y{k])k) s.Zc(Y[k]) '

g) if u=v, o(TTY () 5 (1+log Mo ((¥[,)y)

Proof: the proof of a,b,d,e,f 1is straightforward, using

lemma 1. Let us prove c): by direct computation, we find

X
hv’n(fo v)s | h, (V) if veEg,

1 -1
h, ,(Y)+- Max log|m|V if vezx

r
Vi msn £

so that o(f* ¥) s o(y) + Tim I log G.C.M.(1,2,...,n) , and the

0 ,
inequality c) follows from Ichebyshev's theorem. In order to prove
g), we use a trick introduced in this context by Shidlovski (see

Galochkin [12], lemma 7. First we assume without loss of generality

that Y[R]E Mu(ﬁ[[x]]) . Let K be the extension of @ generated
" by the m first coefficii?ts inkl of the entries -inn{]of

the Y[k].s , and set Y =}I|—1 Y[k]' We have
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"
LY =) DR ¢ Y Y . For a
e T Bt B Bt e B L ly-q3 Nqmy
finite place v € Zf , this gives
(*) log |..Y | s Max ? log” | Y
IRV ne L emgem k=1 Tl ke Vv
igrecerdygr Jqreeerdy

By reordering Y1""’YN , we may suppose that m, 2 m,

1AV
L]
.
134
-

hence kmk S m . This yields

N

< ¥ Max Max log” |

N ' |, from which we
k=1 m sm/k i3, Ly dy kom v

Log™ |4 3¥nly

deduce

1/k h ( (Y

Pfﬁl)

oy

=

A
IHe~=12

v,m/k

For an infinite place v € I_ , we have to add an extra term to
the right hand side of (*), namely log#{m1,...,mk)/2mk = m} + log - N’

which is o(m) ; in this case we deduce

hy,n(¥) € 11/ by o () o (1)

i~

h
By summing over v € Z(K) , we find

N —_— e
o(Y) = ( ) 1/k)0((Y?i]Ll) < (1 + log N)o((Y
k=1 A

k1'%’

1.5 The stable size

- *
Let Y € Mu v(m((x)) , and for any N € N , let YQN be a

’

matrix whose entries are the monomials of degree N in the
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entries of Y . In view of inequality g , of the previous

lemma, one can define the "stable" size T(Y¥Y) to be

T(Y) = 1im (log N) 'o((1,v)°Y
Nowo
LEMMA a) One has 0 s t(Y) = T(YQN) S o(Y) for any N EIN* .

Let Y,,...,Y¥

be elements of Mutﬁ((x)) , and set Y = (Y,,...,Y)

1 N

b) T(Z Yk) S T(Y)

) t(TT ¥) s ©(¥) .
Proof: straightforward, taking into account lemma 54;2'§);

I hope that property c) justifies the label "stable size".
By way of example, one can show that if vy € OK[1/N][[X}] for
some N € N\ , then 1t(y) = 0 "if o(y) < » (see exercise 3 below).

This invariant occurs in the work of Chednovski [8].

2.1 Local radii of convergence

n

Let K be a number field, and let y = y,¥ € Kl[x]] . Then

nz0
for any v € ZK , L iv(yn)xn € EV[[x]] defines a v-adic Taylor
(v)

series vy ; we denote by Rv(y) € [0,»] its radius of
convergence. By Hadamard's formula, R (y) = lim ly |—1/n . More
Now Oy
generally, for any Laurent series y = |} “ynxn € K((x})) , we
nz-N
set Rv(y) 1= Rv(xNy) ; this definition depends only on y but

not on N .



2.2 The global radius

For Y € Mu,d(K((X))) , we set
- s -1
plY) := } log (Mln Rv(inO € [0,=]

v i,J

is invariant under finite

LEMMA 1. op(Y) = ) 1im hv’n(y) PP
VvV Ii—-x

extension of K .

Hadamard's formula yields

Proof:
p(Y) = ) Max lim 1 log+[ Y | =13 Tim Max log+] Y|
n ijn'v b i,3 ij'n'v
!

v i,j

Thus it is- enough to show that

-1 1 +
= Iim -~ Max log ]innlv .
noe i,

+
t, = Max log lijynlv , of the

This is a special case, for
i3
well-known inequality

t
Tim 111 Max t_ s Tim 2 := 1
n-o msn N-»0
tm
Indeed, for any € > 0 let ME g Ne such that o 1 + ¢

r
tm N8
for m 2 Me and S < T 1 for m < Me~' Then

t -
1 Max ¢ s Max( Max (9) I,  Max (@)E?) L -
msn msM_ \M/ T M <men \P
€ > €
‘The"second assertion comes readily from the first one.

REMARK. Here again we could replace the indexing set of
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summation Z(K) by Zf (resp. L ). The above proof yields
corresponding formulae pf(Y) =} 1im h, n(Y) ’
VEL, !
pm(Y) = Z lim h (Y) . Furthermore op(Y) = pf(Y) + p (YY) ,
VELZ v.n ®
o0 . .

and o_(Y) s p_(Y)

LEMMA 2. Let Y € M (K((x))) .
U,V _

a) ?ag o(in) = p(g) = p(gY) , for any ¢ € K

b) p(d/dx Y) = p(Y)

¢) if the residue Y

X
_q Vvanishes, p(f0 Y) = p(Y)

d) for ¢ € K , p(Y(C)) S p(Y) + hiz)

N

Let (¥ )
(k1 o

a subset of MH'V(K((X))) .

e) pl(X Y‘fk]) s D((Y[k])k) = M;X D(Y[k])

£) p(*¥pyq) € I (Yp)

Max pl(Y
k

[ Ta

g) if w=v , p(TT Y LR

Proof: straightforward.

8]
2.3 We now prove the equivalence stated in 1.3. Let y € K[[x]] .
Assume that h(y) < « . By lemmata 1 of § 1.4 and 2.2, one gets
p, (¥) < » and cf(y) < @ ., The first (resp. second) inequality
implies condition 1.3 i) (resp. 1.3 ii), taking into account
remark 1.4, Conversély, assume that for any v € r_ , R_(y) > 0

/n  » (condition 1.3 ii)

(condition 1.3 i) and that 1lim dn '

n-c
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where dn denotes the common denomination in N ~ {0} of

— .1
yv0'°°"yn . Then U(Y) p Gw(y) + Of(Y) s Ow(Y) + log lim dn/n < o

-
0

§ 3. SEVERAL VARIABLES, DIAGONALIZATION

3.7 All what precedes extends in a straightforward manner to the
case of elements of KI[[x]] = K[[x,,...,x 1]
For a multi-index n €N’ , we denote by |n| its length.

n,
Ing x2 means ] xil . Let y =} yngg € K[[x]] ; for any
n —

_—

place v of K , we set

h (y) =

+
v.n Max log ly&lV .

[k[<n

3=

We also define the global radius (resp. size, stable size) by:

p(y) =3 Iim hv,n(y)
vV noe
oly) = Iim ) hy o ()
n-e v
—_— 1 + 1
t{y) = Iim Iim ————= } Max log [{(y),]. -
Nowo e D log N & k| <n k'v
15N

For v = 1., previous lemmata show the compatibility with

original definitions.

3.2 Diagonalization

One defines the diagonalization map 8, from K[[x]] to

K{[x]1] by the formula
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n

n, _ e
A, Ty x=) = ) Ym,n,...,n)*

- nz0

This is a useful tool to produce G-functions, through the

following lemma (see 4.2):

LEMMA, The following inequalities hold:

D(A\)(Y)) < v oply)

O(Av(y)) S v oly)
Proof: this follows immediately from the obvious inequality

hv,n(Av(y)) < h (y)

v.nv

o

REMARK 1 (Deligne). Assume that for some infinite place v of

(v)

K, vy 2= L iv(yn)_>_c_E is analytic at 0 € mvv

r With v > 1 .,

Then Av Yy 1is represented by the integral formula

dxz...dx

(2n/=T) " (V1) f y —;————;—3 for ¢ and |x|
IX21="'=|xv|=€ 27 %y
small enough.
X, X,eeoX =X
172 \V

This follows from the residue formula:

4
dx....dx =X if n

(2m/=1) " V"1 f X2 2 v : 12
v =0 otherwise.

REMARK 2. It seems that diagonals were first introduced in the

.=n = e
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study of Hadamard product (see e.g. [3]). This relationship

is given by the formula:
Av(y1(x1) “ee yv(xv)) Rl SRR A

3.3 Geometric interpretation

Let us set X = Spec I((:<)[§]/(X % x -x) " with v > 1 . Let
17277y

(E,V) Dbe a coherent module with integrable connection over
some affine open subset U of X , and let ¢ be some
horizontal K(U)-linear map from E to KI[[x]] ; in other
words, v := og(e) , for e € Fg » is a solution in K[[x]] of
an "integrable differential equation".

We consider the K(x)-linear map:

A : e ® -2 v — Av(c(e)) , for all local sections
e of E

PROPOSITION. The map Av,c induces a horizontal map from the

algebraic De Rham cohomology group H§;1(U,(E,Q)) endowed with

Gauss-Manin connection relative to K(x) (see [13]), to KI[I[x]]

endowed with exterior derivative.

Proof: the smooth scheme U is affine, thus there is an isomorphism

H;;1(U;(E,V)) ~ E® 95;1 / , where the value
: Kix) o, . V-2
Vy-q(E® QU/ )
Kix)

at d/dx of the Gauss-Manin connection acts through

V(d/élx1x2...xu)) on E . The statement would follow from
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Deligne's integral formula if G(e)(v) were analytic at 0
for some v € I _ . However this can fail if 0 corresponds to
an irregular singularity of (E,V) ; thus.we shall rather

translate a purely algebraic argument from Christol (see [5]).

A i _ . 1 .

The relation I ?;; =0 in QX(K(x) + together with the

(. 3a(e)) _ d .
formula Av\xi Bxi = X 3% Av(c(e)) , yilelds

AN
dx?_...dxi...dxv dx ...dxi...dxv
VY = ¥

Av,c(vv—1(e8 ~ )) Av'o((xiV(a/axi)e x1V(8/8xi)e)® X%

xz...xi...dxv 2 i v

_ dole) _ dgfe) | _
_Av(xi ™, 1 ox, )‘ 0.

Therefore A factors through H;£1(U,(E,V)) . In order

r

to prove the horizontality statement, we fix XoreearX, and get

&x.,...dx
2 v)EA (x 30 (e}

x2...xv v Bx1

Av'o(x1V(3/Bx1)e® ) =x d/d Au (e®

,0 X2...x

COROLLARY 1. Assume that H;;1(U,(E,V)) is finite-dimensional

over K(x) (assume for instance that (E,V) has only regular

singular points) then for y = o(e) as above, Au(y) satisfies

an ordinary linear homogeneous differential egquation with

coefficients in K(x) .

COROLLARY 2. Assume that o is a solution in K[[x]] of the

Picard~Fuchs system HBR(Y/K(i)) of a smooth proper K(x)-variety

Y . Then Au . is a solution in K[[xl] of the Picard-Fuchs
r
- system HB;v_1(Z/K(x)) of a smooth K(x)-variety 2
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Proof: 1let V be an open dense subset of Spec K[ﬁ,;—;L—i—}
—_— 1°° %,
such that Y extends to a smooth proper morphism

Yv —£-> V , and let us denote by g the obvious smooth
morphism V —> Spec K[x1...xv, ;—;L—E—] . Let us consider the
100Xy

Cartesian squares:

Z > YV
£
4 4
U > V
v |- 1
X > Spec KLE, ;————;~]
1°°° 7y

According to the proposition, Av s is a solution in K[[x]] of

r

V=1 u
On the other hand, there is the Leray spectral sequence

* v=1 U u+v-1
Let us extend the scalars K to € ; since fm is proper and
smooth, the Leray spectral sequence of local systems

R\)_1gc* RME, (T) = Ru+\)—1(gfc)*(ﬂl) degenerates [9] 2.4. It
follows from the comparison theorem that (*) also degenerates

as a spectral sequemce of K(x)-vector spaces with connection.

. . . u+v=1
Thus Av;c is a sclution of HDR (Z/K(x))

REMARK 3. Combining corollary 2 with remark 2, we get that if
Zanxn satisfies a Picard-Fuchs equation from projective geometry,
then for any N Zaﬂxn satisfies a Picard-Fuchs equation.



§ 4. EXAMPLES

We shall study four typical classes of G-functions, each
of which is stable under Hadamard product; namely: rational
functions, diagonals of rational functions in several variables,
polylogarithms and hypergeometric functions (Geometric and
hypergeometric series, were already put forward by C.L.Siig?l
[17], and G-functions borrow their generic name from these
speciai cases). Each of these series satisfies some linear

homogeneocus differential equation, which turns out to come

from geometry.

4.1 Rational functions

Let y € K(x) , and let us write pol(y) £for the set of poles

of y . We may write y as the quotient p/q of two polynomials
in OK[x] . Let us write N for the norm of the first non-zero
coefficient of q ; then vy € OK[1/N]((x)) . On the other hand,
it is immediate that p_(y) < = . Since such series occur

frequently, we state a

DEFINITION (Christol). A Laurent series y € K((x)) is globally

Béunded if and only if

i) for any v €1, Rv(y) >0,
ii) there exists N € N such that y € OK[1/&]((x)) .

LEMMA. Aﬁ§” y € K(x)n_gétisfyies ply) = oly) = p(pol(y)) .
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Proof: we have Rv(y) = Min [§|V for any v € IZ(K) ,
rEpol (y)

whence the equality p(y) = h{poll(y)) .

On the other side, the fact that y is globally bounded
implies that hv,n‘y) = 0 for almost all v , and all n .
Using lemmata 1 of §§ 1.3 and 2.2, we come by the inequality
o{y) s ply) . In order to show that it is an equality, it

suffices to establish the existence of the limit 1lim hV n(y)

N -»00 ’

for any v € IL(K) ; but this follows from the fact that
coefficients of y satisfy linear reccurence equations for

n >> 0 (see next remark).

REMARK. The.lemma generalizes immediately to the case of a
matrix Y € Mu'v(K(x)) . The stability of Mu,v(K(x)) under
Hadamard product is easily seen using the characterization of
rational series: y € K(x) e 3 N EN® , 3Y,Z € MN(K) such that

Yn = tr Y,Zn {existence of recurrence relations); we have the

n
* = : . .
formula (Y1 Y2)n tr(Y1®Y2)(Z1®Z2) , with obvious notations.

4.2 Diagonals of rational functions

We shall denote by K[g](x) the localizatiqn of the ring
K[x] = K[x1,...,x;] at t;é ideal generated by XyrowerX
and by K{{x}} the henselization of K[x] at the ideal
generated by x (i.e. the subring of K[[x]] of algebraic

elements over Ki(x).)
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DEFINITION. Elements in the target A (K[x] (x)) of the

diagonalization map restricted to K[ﬁ](x) are called diagonals

of rational functions {(over K ).

REMARK 1. Let us consider again the geometric interpretation of
A, in § 3.3. In the present case, let p/gq € K[E](x) , with
P,g € K[x] . We may take for U the subset of X where g does

not vanish; E = OU , endowed with exterior derivative V ; ¢ :

the standard horizontal map OU —> K[{[x]] , where x |is
replaced by X XpeeoX i€ 3 p/q . We have
HB;1(U,(E,V)) = H;;1(U) , the ordinary algebraic De Rham

cohomology of the smooth affine scheme U . This is a finite-
dimensional K(x)-vector space; see [16] for an algebraic proof
which does not use resolution of singularities. According to
corollary 3.3, diagonals of rational functions satisfy "Picard-
Fuchs" differential equations associated to smooth affine_K(x)—

schemes.

LEMMA. Let vy € K[[x]] , y = Av(p/q) be a diagonal of rational

function. Then .y is a globally bounded G-function, and

gly) S ply) < = .

Proof: we may assume that p,q € OK[§] ; let us denote by N
the norm of qg(0) # 0 . Then it is clear that p/q € OK and
y € 0,[1/N][[x]] . On the other side, the v-adic radius of
convergence Rv(p/q) is non zero for every v € I(K) , and
the same holds for Rv(y) according to Hadamard's formula.

This shows that y 1is a globally bounded G-function. The
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deduction o(y) S p({y) is made as in lemma 4.1. In fact, it

could be shown that of(y) = pf(y) < \:hf (q(g)-1

) S v h(q(0))
It happens that diagonal of rational functions occur very
frequently, even though it is often difficult to find the (non-
unique) relevant rational function. To explain this fact,

G. Christol [6 ] has set the following conjecture up:

CONJECTURE. Every globally bounded solution in K[[x]] of a

linear homogeneous .differential equation with coefficients in

K[x] 1is a diagonal of a rational function.

We now prove that algebraic functions are diagonals of rational

functions in two variables (Christol-Furstenberg [4][11]).

bl

= K{x} holds.

PROPOSITION. The equality AZ(K[x1,x2](x1,x2))

Sketch of proof: . in fact we shall only consider the inclusion

> . Let y € K{x} and let r(y,x) := 0 be a polynomial equation

ar ar
oy 1 (0,0) ox | (0,0)

we shall exhibit a rational function p/q such that Az(p/q) =y .

for y . Assuming that r(0,0) = O, * 0, £ 0

We set q(x1,x2) r(x1,x1x2) ;, so that 1/g € K[x1,x '

- )

and g%L * 0
21(0,0)

Let us consider the following diagram (where X and U have the

same meaning as in remark 1, and Z = X~U ):
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Res
1 1 Zu{0} 0
0 > HDR(XU{O}) > HDR(U) —_————> H (Z2U{0}) —— 0
$\,
l ‘\\ (p b T
\\‘_‘,)
Res -
1 1 Z 0
0 > HDR(X) e ——— HDR(U) > H (2) ——> 0

where all arrows are horizontal maps, and where the horizontal

rows are the residue exact sequences: ResZ is the "coefficient

of dg/g ", given at the stage of differential forms by

Res,, ( dxz/)—iq—
es, (p/q X! 9., p/xziq(x1,x2)=0

Now the derivation d/dx extends in a unique way to K(x,y)

r

whence a connection on this space, which can be identified with
Gauss-Manin. connection on HO(Z) . It follows that the image of

y € K(x,y) = HO(Z) under ¢ 1is given by the class of p/q-dxz/

- X2
where p = X, X 8q/3x2 .

2

The following diagram of horizontal maps

HgR(U) < L HO(Z) < = K(x,y)
A2,01 ' 1
K[[x]] K[[x]]

(where o 1is defined in the above remark) shows that
(4, ,e®) ly) satisfies the same differential equation as vy ,
r

- 1 9q -
and (AZ,U°W)(Y)IO = x Az(q /sz)l = 0 . It follows that

0
X, X
= 172 . 3q
Y'Az( q /ax2)
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For a proof of the reversed inclusion < , with an argument

from linguistics, see [10] 5.

REMARK 3: the stability of diagonals of rational functions

under Hadamard product is immediate from the formula:

av +v2(r1(x1,...,x

- *
: )rz(xv PRTRRRNES S )) = Av r, Av r,

V1 1 Vit 1 2
However the subclass of algebraic functions is not stable under

* ; by way of counterexample, one may take (Jungen, 1931) :

(1-x) 172 1/2

«(1=x) 7% = 8, (4/(2-x7%,) (2-%4-%,)) = ,F.(1/2,1/2,1,%)

(2n)?(x ., \ o
= E-\Il} /16} , which is transcendental.
nz0

4.3 Polylogarithms

We turn back to more down-to-earth examples. Let

Lk = E xn/nk be the kth—polylogarithmic series. It satisfies
nz0

the "unipotent" differential equation: d/dx 12X (xd/ax)® 1, = 0
obtained from the chain rule xd/dx = L, _, , Ly = x/,__ ; the
other solutions can be expressed by means of the functions

1, log x,...,logk_1x

LEMMA. One has p(Lk) = 0, O(Lk) =k

Proof: this is a straightforward consequence of Tchebyshev's

theorem. Moreover, we shall show elsewhere that T(L1) = 1
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REMARK. Integration of any formal power series y 1is nothing

but the Hadamard product =xy = L1

4.4 Generalized hypergeometric functions

For a € § , we set (a)0 =1, (a) = (a+n)(a)n . and for

n+1

u
.= H =
a := (a1,...,au) €0 we set (a) ;ZL (a ) . To any couple

(a,b) in (@-{nhH* x (m—{iwi)v , we associate the hyper-

geometric function
y = Fla,b,x) = § @n/o)_ x

LEMMA. The three conditions ply) < o, o(y) <o and u = v

are equivalent., If they are satisfied, one has

o(y) = oly) = | (heta ) - he(b)) .
m=1

Proof: either of the conditions pl(y) < «, oly) < » implies

that for v e _ , Rv(y) > 0 , which implies in turn that

[= ]

o

U & v, and Rv(y) 2 1 (hence op_(y) =o_(y}) =0 ). Let N be

the greatest common denominator of the a_, bm's ;i for p > N

and n - «© , we have:

(a_) _ log n
m n/(bm)nl - o(p g ) .
p
1/n 1
1 /p-1
/(bn)nlp ~ P '

den(Nn(am)n/(bn}).q) - 0(e1/1°g n) ,
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( n 1/n
and \den N /(bm)n) ~ n/e (Stirling), see the appendix. The
former two estimates, together with the divergence of 2 log p .

p>N p-1
show that oply) <@ = u 2 v .

The latter two estimates show that o¢(y) < « = u 2 v . Conversely
the first and third estimates show that u =v implies finiteness

for p and o , and that

ply) = lim h
P}N now Pro
oly) = Iim }'h .
n-w p%ﬁ p,n

A straightfor d tatio e ki that
straig orward computation (remarking a |(am)n|p plp
if |a]p > 1 then leads to the equality

ply) = o(y) = Z (log den ém - log den bm)

m=1

REMARK 1. We could define hypergeometric series for parameters
(a,b} in (K\{éN})U+V for any number field. However it follows
from Chudnovski [7] that such a hypergeometric series is a

G-function only if (a,b) € (@~{-whH*"*V

REMARK 2. G. Christol [6] has determined all globally bounded
hypergeometric functions. The extra condition is the following
one: let N as above; then for any M with 0 £ M < N and
(M,N) = 1 , and for any positive integer j with Jj s u ,

# {i/Maia Mbj} 2 # {i/MbiaMbj} (here o is the total ordering

of IR defined by
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y oz ey + [-y] <z + [-2] or (y + [-y] =z + [-z]

and y 2z z )).

Let us now introduce the classical Meijer G-functions, which
however are not G-functions in Siegel's sense! These are

integrals of Mellin-Barnes type over some suitable loop:

=

m
F(bj-s)TT'F(1-aj+s)

Gm’n(a,b,x) 1= 1_ ¢ 9=1 3=1 x°ds ,
ver = 2n/~T Y
A TT r(1-b.+s) T T(a.-s)
j=m+1 3 j=n+1
for 0 £ m < py, 0 £n S v
In the case y = v , these functions satisfy some fuchsian

differential equation. Namely, z := G?'E(g,g,(-1)m+nx) satisfies
r

the equation

U H

(*)  (-1)Mx TT (3=a.+1)z = 'TT(a-bj)z where 3§ = x d/dx ,
3=1 J 3=1

whose singularities are X = 0, (—1)“ and = .

The link with hypergeometric series is given by the formulae

TTr(bj) TTr(bj)

Fa,b,x) = Ll—"—ah (a,b,~1/%) = Jﬁ%————«-cl'ﬁtl-g,l-g,x)
TTr(a.) TTrea.)
3=1 J 3=1 J

and
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m

TTr T(by=b )TT [(1+by-a.)
n 1 a Py
6 Mab, )= | 3+ x X F(-a+1+b, ,~b+1+b, ,
k1T|' r(1+b-b)—|' T (a;+b,) - T
j=m+1 j=n+1 J (-1) My

where we set "h=t(h,...,h) for any h € @ , see [1] 5.5. The
latter formula shows that Gﬂ'z “is a linear combination (with
14

transcendental constant coefficients) of some Siegel G-functions.

REMARK 3. 1In the case uyu = v = 1 , we have

F(a,b,x) = 2F1(a,1,b,x) , the classical hypergeometric function,
and it is well-known that equation (*) is a factor of a Picard-
Fuchs equation [14]. For higher 1y , this is by no means obvious.

However it remains that:

PROPOSITION. (for pw = v ) Fla,b,x) satisfies some Picard-Fuchs

differential equation.

Proof: according to remarks of § 4.2, we have

*<

F (alglx) =

v
(2F1 (ail1vbilx)) = Av(E2F1 (air1rbilxi)) .

i=1

By corollary 2 in § 3.3, it suffices to show that

1T 2F1(ai,1,bi,xi) satisfies a Picard-Fuchs differential
i=1

. . u
equation associated HDR(Y/ for some proper smooth Y .

Q(g))
Using Kinneth formula in algebraic De Rham cohomology, it is
enough to prove this statement for v =1 . If b € N° , then

F1(a,b,x) is algebraic and the statement holds with u = 0 .
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-

If b €N° (so that b ¢ @ by our_hypérggbﬁéﬁ}ic series

(b—a—1)2F1(a,1,b,x)+a2F1(a+1,1,b,x)—(b-1)2F1(a,1,b-1,x)=0
b[a—(b~1)x]2F1(a,1,b,x)*ab(1-x)2F1(a+1,1,b,x)+(b—1)(b-a)x2F1(a,1,b+1,x)=0

in order to reduce ourselves to the case a > 0, 1 < b < 2

'In this case, Euler's integral representation

1
,F,(a,1,b,%) = (b=1)f (1-6)°7%(1-tx) ®at shows that
. |

2F1(a,1,b,x) satisfies the Picard-~Fuchs equation associated
to the differential %% over the smooth completion of the
curve

u = (1-t (1-tx)aN , N = den{a,b) .

§ 5. COUNTEREXAMPLES

In this paragraph, we gather some "pathological" examples to
show that there is no link in general between p and o (we
shall show elsewhere that for solutions of linear homogeneous
differential equations with coefficients in ﬁ(x) ., p and ¢
are in contrast strongly related). We also state that p and

g are bad-behaved under inversion of functions.

5.1 A G-function whose inverse is not a G-function

Recall that p(L1/x) 0, o(L1/x) =1 . Let y = x/L1 , so that
Y Yhom th
Yo = 1 and Y = z — - For each p root of unity
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r € Ep\{1} » Ly/x vanishes at 1 - ¢ , and |1_C|V = |p|1/p-1 .

v
Therefore Rv(y) ES |P|:,/p-1 and p{y) = « . It will be shown
elséwhere that o(y) = = ; it will follow that the composite

series L1oL1 € Q[([x)] 4is not a G-function, since

X (1~x) d/dx (L1°L1) =Yy

5.2 An example with p = 0 and o0 = «

2
§ k- [k/log k] K

We set y = . We readily compute
k21 :
0 for p = o
h (y) = ..
p,n % Max [k/logzk]Ilog ¥/ Jlog p = on(1);;,

ksn log p
for p a finite prime,

Thus lim hp n(y) =0 and ply) = 0 . On the other side

r

n-®
1 [k/1og2k]
Y h  _{y) = =~ log grcem (k )
p prime % o P k<n
2 % } (p/log p - log p) —> « when n - = .,
. pPsSn
This shows that o(y) = « .

5.3 An example with p = «» and o arbitrarily small.

"Let N 2z 0 and let us set

k
p-2FP

pe-N
v = Z E p-[2 /log pl . X .

p prime k20
o0
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We have h = 9
av P’n{y)

{

denoting by {n,p} the maximal power of p such that

p{nipl n/p . Thus Tim h_ _(y) = 2 V/p in the latter case,
now P70

and pl(y) = =» . Now we have

-—

zh (y) = = % [2{n’p}-N/log pllog p
p.n psn

o}

pPsn

o 3 Y

We note that for p # q , then {n,p} #* {n,q} , so that

n,ppd = _y

. in;p} _
2 Y 2 for some p, , 2 £ py £n
k=1

Yy 2 s 2
Psn

Therefore ol(y) € Z-N

5.4 A globally bounded function with o < p

Let us consider

k k
y= 120075
kz0

0 for p#* 2, p % o«
[1[10 n]]

g2l2l109 21154 2, for p = 2

We . have hy oY) = {

]
; 2|log 2 log 2 , for p =

[2{n'P}'N/1og pl lQ%_E for any finite prime p,
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Thus ) Iim hp nl¥) = 2 log 2 = ply) = ogly) + o {y) , and

m ) h oY) = 3/2 log 2 = oly)
n-< p Pr -
EXERCISES. 1)} Show that o{y) = 0 = p{y) =0

2) Assume that for all v € E(K); lim hv n(y) exists. Show

n-»o !

that p(y) < oly)

3) Let y € K[[x]] and assume that opl(y,1/y) < « ,

a) Show that this condition is equivalent to

Yy  sup % log+|yn| < » (use the fact that for any

vEZf nz1 v _
v € Ef , Y(v) has no zero £ € € satisfying
0 < |£|; < R , if and only if r |——> Sup |yn1rn is a

n
constant function on J0,R[ ),

b) deduce that this condition is satisfied in particular if

y 1is globally bounded,
c¢) show that oly) s ply) < =,
d) deduce that T(y) =0 ,

e) show that if y(0) % 0, 1/y 1is a G-function; give upper

bounds for p(1/y), o(1/y) ,

f) show that if y(0) = 0 , then for every G-function =z ,

the composed series 2z € y is again a G-function.
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4) Consider the G-function y of § 5.3: assume the finiteness

of the set of solutions of the equation pk - ql =m (m fixed

but arbitrary), and show that, in point of fact, ol(y) = 2-N_1
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Appendix
Calculus of factorials

Following [6]3, we give estimates for the.p—adic valuation

n-1
vp((a)n) of the rational number (a)n = T [(a+1i), for
i=0

a € Q- (- IN). We first introduce general notations:

let p be a fixed prime, and let a € @ N Zé , 1i.e. the

denominator of a 1is prime to p.
We define R, Q, and £ by the formulae:
a =- R(a,pk) + ka(a,pk)

with.’ R(a,pk) EN , R(a,pk) < pk

14

k k
£(a,p",n) = [n+p —1k Rizop ‘)]
P

For instance, when a = 1 , we have R(1,pk) = pk-1 and
f(1,pk,n) = [n/pk] . Let us remark that f(a,pk,n)— f(1,pk,n) P

is periodic, with period pk in n ; this leads to the equality

(1) £(a,p5.n) - £01,p5,0) = y(<n/pX> - R(a,p5) /p5)

0 if x £ 0
where y(x) =
1 if x> 0
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x- [x] ; we shall also use the notation

ot}
o
fo N}
A
b
v
1]

iy

~

ot
n

-x - [-x]
We extract from [6][14] a formula for R(a,pk):

(2) R(a,pk)/pk = {aAk}--a/pk where the integer A satisfies

the condition:

for some N € N* , such that N|a|] < p and Na € Z ,
. . k .

Ap = 1 mod N (in fact N|a] < p~ is enough)

At last we recall the generalization for (a)n (see [6]) of the

classical equality v_((1)_) = ¥ [n/pk]
p n k=1

£(a,p5,n) .

(3) v ((a) ) =
1

13 X

He~—18

Putting together (1), (2), (3), we find:

LEMMA, The following equality holds:

(@) v @) =

He--18

[n/pk]+ #{ k such that {Aka}&(a/pk+ < n/pk>-n .

k=1

REMARK: For pk > (a+n)N , we have {Aka} 2 1/N 2 a/pk-»<n/pk> ,

so that the second term of the right-hand side of (4) is bounded

b log Max ((a+ n)N,0)
Y log p
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