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Abstract. On locally conformally �at manifolds we describe a construction
which maps generalised conformal Killing tensors to di�erential operators which
may act on any conformally weighted tensor bundle; the operators in the range
have the property that they are symmetries of any natural conformally invariant
di�erential operator between such bundles. These are used to construct all
symmetries of the conformally invariant powers of the Laplacian (often called
the GJMS operators) on manifolds of dimension at least 3. In particular this
yields all symmetries of the powers of the Laplacian ∆k, k ∈ Z > 0, on Euclidean
space En. The algebra formed by the symmetry operators is described explicitly.

1. Introduction

Given a di�erential operator P , say on functions, it is natural to consider smooth
di�erential operators which locally preserve the solution space of P . A re�nement
is to seek di�erential operators S with the property that P ◦ S = S ′ ◦ P , for some
other di�erential operator S ′. In this case we shall say that S is a symmetry of
P . On Euclidean n-space En with n ≥ 3 the space of �rst order symmetries of
the Laplacian ∆ is �nite dimensional with commutator subalgebra isomorphic to
so(n+ 1, 1), the Lie algebra of conformal motions of En. Second order symmetries
have applications in the problem of separation of variables for the Laplacian, see
[43] and references therein; on E3 the second order symmetries were classi�ed by
Boyer et al. [4].
Symmetries are closely related to conformal Killing tensors and their generali-

sations, see Theorem 2.1 below. Such operators also play a role in physics [42, 46].
Partly motivated by these links, Eastwood has recently given a complete algebraic
description of the symmetry algebra for the Laplacian on En≥3 [20]. His treatment
uses conformal geometry and in particular a treatment of the conformal Laplacian
due to Hughston and Hurd [26] based on the classical model of the conformal n-
sphere as the projective image of an inde�nite quadratic variety in Rn+2. There
are close links to the Fe�erman-Graham ambient metric [24, 25], which provides a
curved version of this model, and the ideas of Maldacena's AdS/CFT correspon-
dence [40, 36, 47]. Eastwood's work was extended in [22], via similar techniques,
where the authors found the symmetry algebra for ∆2 on En≥3.
Here the main result of the article is a simultaneous treatment of all powers of

the Laplacian on pseudo-Euclidean space Es,s′ (i.e. Rs+s′ equipped with a constant
signature (s, s′) metric) with s + s′ ≥ 3; we obtain an explicit construction of all
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symmetries and a description of the algebra these generate. See Theorem 2.1, and
Theorem 2.5. (In lower dimensions a corresponding result is not to be expected as,
in that case, the space of conformal Killing vectors is in�nite dimensional). As will
shortly be clear, the problem is fundamentally linked to conformal geometry. Thus
it is natural to also formulate and treat analogous questions for the conformally
invariant generalisations Pk of the powers ∆k (k ∈ Z>0) on conformally �at mani-
folds, and we do this; via Theorem 2.4 and surrounding discussion we see that the
algebra is again described by Theorem 2.5. In dimension 4 the operators Pk were
discussed in [37]. Conformally curved versions in general dimensions (n ≥ 2k if
even) are due to Paneitz (k = 2) [44] and Graham-Jenne-Mason-Sparling [35], and
have been the subject of tremendous recent interest in both the mathematics and
physics community [16, 18, 38]. For convenience we shall refer to these operators
as the GJMS operators.
Although the current work is inspired by [20, 22], we follow a rather di�erent

approach that is designed to be easily adapted to study the symmetries of other
classes of di�erential operators. Indeed with minor adaption our techniques also
apply to the entire class of parabolic geometries. Firstly, rather than work on
a higher dimensional �ambient� manifold, we calculate directly on the n dimen-
sional space and use the tractor calculus of [1, 29, 11]. Using this machinery we
construct a map which takes solutions of certain overdetermined PDE (solutions
called generalised conformal Killing tensors) to di�erential operators which have
the universality property that they are symmetries for any conformally invariant
operator between irreducible bundles. This is Theorem 5.2. These universal sym-
metry operators form an algebra under formal composition; by construction this is
a quotient of the tensor algebra

⊗
so(s+1, s′+1). On the other hand for the case

of GJMS operators, Theorem 2.4 states that, conversely, all symmetries arise from
the operators in this algebra. Determining the algebra of symmetries of a given
order 2k GJMS operator Pk then proceeds in two steps. The order 2k determines
the domain (density) bundle (for Pk and hence) on which the universal symmetry
operators should act. From the latter we obtain an ideal of identities satis�ed by
the universal symmetries; the ideal is speci�c to the domain. This is the subject of
Theorem 7.1. A further ideal is generated by symmetries that are trivial in a sense
to be made precise below, see Theroem 7.2. The result is an explicit description
in Theorem 2.5 of the ideal, the quotient of

⊗
so(s+ 1, s′+ 1) by which yields the

symmetry algebra of Pk.

2. The main theorems

2.1. Symmetries and triviality. Throughout we shall retrict to conformally �at
pseudo-Riemannian manifolds (M, g) of dimension n ≥ 3 and signature (s, s′), or
the conformal structures (M, [g]) that these determine. In the spirit of Penrose's
abstract index notation [45], we shall denote write Ea as an alternative notation for
TM and Ea for the dual bundle T ∗M . Thus for example Eab = ⊗2T ∗M . According
to context we may also use concrete indices from time to time. That is indices
refering to a frame. All manifolds, structures, functions and tensor �elds will be
taken to be smooth (i.e. to in�nite order) and all di�erential operators will be
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linear with smooth coe�cients. Since our later treatment generalises easily, we
de�ne here the notion of symmetry in greater generality than is strictly needed
for our main results. This also serves to indicate the general context for the
devolopments.
Suppose that P : V → W is a smooth di�erential operator between (section

spaces of) irreducible bundles. (In our notation we shall not distinguish bundles
from their smooth section spaces.) We shall say that linear di�erential operators
S : V → V and S ′ :W →W form a (S, S ′) a symmetry (pair) of P if the operator
compositions PS and S ′P satisfy

PS = S ′P.

An example is the pair (TP, PT ), where T is a di�erential operator T : W → V .
However for obvious reasons such symmetries shall be termed trivial.
Following the treatment of ∆ and ∆2 of [20, 22], we note that there is an

algebraic structure on the symmetries modulo trivial symmetries as follows. First
the symmetries of P form a vector space under the obvious operations. Then if
(S1, S

′
1) and (S2, S

′
2) are symmetries then so too is the composition (S1S2, S

′
1S
′
2). So

the symmetries of P form an algbera S̃. Next we say that two symmetries (S1, S
′
1)

and (S2, S
′
2) are equivalent, (S1, S

′
1) ∼ (S2, S

′
2), if and only if (S1 − S2, S

′
1 − S ′2) is

a trivial symmetry. It is easily veri�ed that trivial symmetries form a two-sided
ideal in the algebra S̃ and the quotient by this yields an algebra S. For the case
that P is a GJMS operator it is this algebra that we shall study in detail.
To simplify our discussion we shall often work with just the �rst operator S :
V → V in a symmetry pair. That is an operator S : V → V shall be called a
symmetry if there exists some S ′ : W → W that makes (S, S ′) a symmetry as
above. (In fact for the main class of operators we treat it is easily veri�ed that S ′

is uniquely determined by S.) Note that with this language, and in the class of
cases satisfying V =W , the composition PS is a trivial symmetry if and only if S
is a symmetry.

2.2. Symmetries of ∆k on Es,s′. We shall write Es,s′ to mean Rn, n = s + s′,
equipped with the standard �at diagonal signature (s, s′) metric g; in the s = n,
s′ = 0 case this is n-dimensional Euclidean space. Here and throughout we shall
make the restriction n ≥ 3. In this setting the Levi-Civita connection ∇ is �at
and, with tensors expressed in terms of the standard Rn coordinates xi, the action
of ∇i on these agrees with ∂/∂xi. We shall use the metric gij and its inverse gij

to lower and raise indices in the usual way. For example, and capturing also our
sign convention for the Laplacian, ∆ = gij∇i∇j = ∇i∇i. (We use the summation
convention here and below without further mention.)
Recall that a vector �eld v is a conformal Killing �eld (or in�nitesimal conformal

isometry) if Lvg = ρg for some function ρ. Otherwise written, this equation is

∇ivj +∇jvi = ρgij,

and so, for solutions, ρ = 2div v/n. Suppose now that ϕ is a symmetric trace-free
covariant tensor satisfying

(1) ∇(i · · · ∇lϕm···n) = g(ijρk···n), with |{i, · · · , l}| an odd integer
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for some tensor ρk···n, and where φ(i···n) indicates the symmetric part of the tensor
φi···n. Then, following [20], we shall term ϕ a generalised conformal Killing tensor.
In Sections 5 below we shall construct a canonical 1-1 map

(2) ϕ 7→ (Sϕ, S
′
ϕ)

which takes solutions of (1) to symmetries of ∆k, see De�nition 5.1 and Theorem
5.2 (which, in fact, deal with a far more general setting). Although we defer the
construction of (2), let us already term (Sϕ, S

′
ϕ) the canonical symmetry corre-

sponding to ϕ. Our main classi�cation result is that all symmetries of ∆k arise
this way, and this is established in Theorem 6.4. Putting these results together,
on Es,s′ we have the following.

Theorem 2.1. Let us �x k ∈ Z+. For the Laplacian power ∆k on Es,s′ we have the
following. For each ϕ, a solution of (1), there is canonically associated a symmetry
(Sϕ, S

′
ϕ) for ∆k with Sϕ and S ′ϕ each having leading term

ϕa1...ap(∇a1 · · · ∇ap)∆r.

p ∈ Z≥0, r ∈ {0, 1, · · · , k − 1}.
Modulo trivial symmetries, any symmetry of ∆k is a linear combination of such

pairs (Sϕ, S
′
ϕ), with various solutions ϕ of (1) as above.

2.3. Conformal geometry and the GJMS operators. Although the question
of symmetries of ∆k is not phrased in terms of conformal geometry, it turns out that
there is a deep connection. According to the Theorem 2.1 above, all symmetries
of ∆k arise from the solutions of the equations (1). As we shall explain, these
equations are each conformally covariant, and in fact this class of equations can
only be fully understood via consideration of their conformal properties. First note
that we may alternatively write the equation (1) as

∇(b0 · · · ∇b2rϕa1...ap)0 = 0

where we have lowered the indices for convenience and (· · · )0 indicates the trace-
free part over the enclosed indices. For a given (say symmetric) tensor taking the
trace-free part is a conformally invariant notion. Then for example in the case
of r = 0 this is the well known conformal Killing tensor operator. In that case,
if (on any pseudo-Riemannian manifold (M, g)) we replace the metric g with the
conformally related ĝ := e2Υg, where Υ ∈ C∞(M), and replace ϕ with ϕ̂ := e2pΥϕ
then

∇bg
(b0
ϕ̂a1...ap)0 = e2pΥ∇(b0ϕa1...ap)0 .

One may think of ϕ here as representing a density valued tensor of weight 2p.
Recall that on a smooth manifold the density bundles E [w] are the bundles asso-
ciated to the frame bundle by 1-dimensional (real) representations arising as the
roots (or powers) of the square of the determinant representation. These represen-
tations and the associated bundles are thus naturally parametrised by weights w
from R. These weights are normalised so that E [−2n] ∼= Λ2nT ∗M , and with this
normalisation the weights are often called conformal weights. Note that Λ2nT ∗M
is trivialised by a choice of metric and hence so are all the line bundles E [w]. There
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is a section ϕ̃ of E(a1···ap)0 [2p] = E(a1···ap)0⊗E [2p] which, in the trivialisation of E [2p]
a�orded by g, has the component ϕ, while ϕ̃ has the component ϕ̂ = e2pϕ with
respect to the trivialisation from ĝ. As an associated connection, it is clear the
Levi Civita connection, determined by a metric g, yields a connection on density
weighted tensor bundles. Thus dropping the tilde, for ϕ ∈ E(a1···ap)0 [2p] we have

∇bg
(b0
ϕa1...ap)0 = ∇(b0ϕa1...ap)0 . This means that the operator descends to a well de-

�ned di�erential operator on a conformal manifold (M, c). Here (M, c) means a
manifold equipped with just an an equivalence class of conformally related metrics:
if g, ĝ ∈ c then ĝ = e2Υg for some Υ ∈ C∞(M).
Henceforth, it will be convenient to use the notation and language of conformal

densities, for further details and conventions see e.g. [10] or [32]. In particular
below we shall use the conformal metric gab to raise and lower indices. On a
conformal manifold this is a tautological section of E(ab)[2] = E(ab) ⊗ [2] which
gives an isomorphism Ea = Ea[0] ∼= Eb[2]. In particular, via the conformal metric,
we shall identify E(a1...ap)0 [2p + 2r] and E (a1...ap)0 [2r]. Note also that with these
conventions the Laplacian ∆ is given by ∆ = gab∇a∇b = ∇b∇b and so this carries
a conformal weight of −2.
>From [3] (interpreted using the ideas of [23]) we have the following.

Proposition 2.2. For each pair (p, r), of non-negative integers, there is a confor-
mally invariant operator

E(a1...ap)0 [2p+ 2r]→ E(b0...b2ra1...ap)0 [2p+ 2r]

ϕa1...ap 7→ ∇(b0 · · · ∇b2rϕa1...ap)0 + lot
(3)

where �lot� denotes lower order terms.

In fact there is a larger class of similar operators, but we shall not need the even
order analogues of the operators above for our current discusssion. An algorithm
for generating explicit formulae for these operators is given in [27] (in dimension
four but same formulae hold in all dimensions [28], see also [12, 9]). The lower
order terms are given by Ricci curvature and its derivatives; in particular on Es,s′

we recover the operator of (1). On any manifold we shall term ϕ in the kernel of
(3) a (generalised) conformal (Killing) tensor.
By construction the GJMS operator Pk is conformally invariant [35]. This means

that it is a natural operator on pseudo-Riemannian manifolds M that descends to
a well de�ned di�erential operator on densities

Pk : E [k − n

2
]→ E [−k − n

2
],

on conformal manifolds. Recall that we say (M, g) is locally conformally �at, if
locally there is a metric ĝ, conformally related to g, so that on this neighbour-
hood (M, ĝ) is isometric to Es,s′ . If (M, g) is locally conformally �at then in all
dimensions n ≥ 3 the operators Pk exist for every k ≥ 1.

De�nition 2.3. Let us �x a conformal manifold (M, c). Suppose that (S, S ′) is a
pair of di�erential operators

S : E [k − n

2
]→ E [k − n

2
], and S ′ : E [−k − n

2
]→ E [−k − n

2
]
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on the given conformal manifold (M, c). If locally (i.e. in contractable neighbour-
hoods) on (M, c) we have agreement of the compositions as follows

PkS = S ′Pk,

as operators on E [k − n
2
], then we shall say that (S, S ′) is a conformal symmetry

(pair) of Pk on (M, c).

Note that the de�nition does not require/impose naturality properties of the pair
(S, S ′). They are simply required to be well de�ned di�erential operators on the
given (M, c).
For a given conformal manifold, and suitable natural number k, we may ask for

some description of all conformal conformal symmetries of Pk. From Theorem 2.1

we have the following Theorem. Here and below we use E (p)0
r as shorthand for the

bundle E (a1...ap)0 [2r] (and its section space). We will often write ϕpr to denote some
section of this bundle.

Theorem 2.4. Let (M, c) be a (locally) conformally �at manifold of signature

(s, s′). For each non-zero ϕ ∈ E (p)0
r , p ∈ Z≥0, r ∈ {0, 1, · · · , k − 1}, a solution of

(3), there is canonically associated a non-trivial conformal symmetry (Sϕ, S
′
ϕ) for

Pk, with Sϕ and S ′ϕ each having leading term

ϕa1...ap
r (∇a1 · · · ∇ap)∆r.

Modulo trivial symmetries, locally any conformal symmetry of Pk is a linear
combination of such pairs (Sϕ, S

′
ϕ), for various solutions ϕ of (3), with p and r in

the range assumed here.

The question of conformal symmetries is not a priori the same question as that
addressed in Theorem 2.1. However using that S, S ′ and Pk are well de�ned on
(M, c), we may use any metric g ∈ c to calculate. This is a choice similar to
choosing coordinates in order to calculate; indeed g gives a trivialisation of the
density bundles. Now, by working locally and choosing a �at metric, the result
here follows immediately from Theorem 2.1, since by the de�nition of the canonical
symmetries in De�nition 5.1 and Theorem 5.2, they are well de�ned on locally
conformally �at conformal manifolds.

2.4. Algebraic structure. Let us denote by Ak the algebra of symmetries of ∆k

on Es,s′ modulo trivial symmetries. As usual we write n = s + s′. It follows from
the theorem 2.1 we have the vector space isomorphism

(4) Ak ∼=
∞⊕
j=0

k−1⊕
i=0

Kji

where Kji ⊆ E
(j)0

i is the space of solutions of (3) with r = j and p = i.
Now we turn to the algebra structure of Ak. It is well known [39, 13], and

given explicitly by (23) below, that that the (�nite dimensional) spaces Kji are
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isomorphic to irreducible g := sos+1,s′+1�modules

(5) Kji ∼=

j︷ ︸︸ ︷
· · ·
· · ·

2i︷ ︸︸ ︷
· · · 0

in the notation of Young diagrams. (Using the highest weights, expressed as a
vector of coe�cients over the Dynkin diagram as in [2], Kji corresponds to the
coe�cient 2i over the �rst node, the coe�cient j over the second one and with
remaining coe�cients equal to zero. At least this applies in dimensions at least 5,
but there is an obvious adjustment in lower dimensions.)
We follow [22] in the discussion of the algebraic structure of Ak. Decomposing

the tensor product of two copies of g = we obtain

(6) g⊗ g =
0
⊕ 0 ⊕ R⊕︸ ︷︷ ︸

g� g

⊕
0

⊕︸ ︷︷ ︸
g ∧ g

where � is the symmetric tensor product. All these components occur with mul-
tiplicity one. We shall need notation for the projections of V1⊗V2 ∈ g⊗g to some
of the irreducible components on the right hand side of the previous display. In
particular, we put

(7) V1 � V2 ∈
0
, V1 • V2 ∈ 0, 〈V1, V2〉 ∈ R and [V1, V2] ∈ ,

and we write the same notation for the projections. Here the � denotes the Cartan
product, 〈, 〉 the Killing form on g (normalized as in [22]) and [, ] is the Lie bracket.
These projections are described explicitly in (41) below. There is also the inclusion

�2k = . . .| {z }
2k

0 ↪→ � � · · · �| {z }
2k

⊂ ⊗ ⊗ · · · ⊗| {z }
2k

,

see (44) for the explicit form. That is, there is an (obviously unique) irreducible

component in
⊙2k

g of the type speci�ed on the left hand side.
With this notation, we obtain the following generalization of [22, Theorem 3]:

Theorem 2.5. The algebra Ak is isomorphic to the tensor algebra
⊗

g modulo
the two sided ideal generated by

(8) V1⊗V2−V1�V2−V1 •V2−
1

2
[V1, V2] +

(n− 2k)(n+ 2k)

4n(n+ 1)(n+ 2)
〈V1, V2〉, V1, V2 ∈ g

and the image of �2k in ⊗2kg.

Note that, from Theorem 2.4, Ak is also the algebra of local symmetries of Pk on
any conformally �at conformal manifold of dimension n.

3. Conformal tractor calculus

We �rst recall the basic elements of tractor calculus following [10, 32].
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3.1. Tractor bundles. LetM be a smooth manifold of dimension n ≥ 3 equipped
with a conformal structure (M, c) of signature (s, s′). Since the Levi-Civita con-
nection is torsion-free, the (Riemannian) curvature Rab

c
d is given by [∇a,∇b]v

c =
Rab

c
dv
d where [·, ·] indicates the commutator bracket. The Riemannian curva-

ture can be decomposed into the totally trace-free Weyl curvature Cabcd and a
remaining part described by the symmetric Schouten tensor Pab, according to
Rabcd = Cabcd + 2gc[aPb]d + 2gd[bPa]c, where [· · · ] indicates antisymmetrisation over
the enclosed indices. We shall write J := P a

a. The Cotton tensor is de�ned by

Aabc := 2∇[bPc]a.

The standard tractor bundle over (M, [g]) is a vector bundle of rank n+2 de�ned,
for each g ∈ c, by [EA]g = E [1] ⊕ Ea[1] ⊕ E [−1]. If ĝ = e2Υg (Υ ∈ C∞(M)), we
identify (α, µa, τ) ∈ [EA]g with (α̂, µ̂a, τ̂) ∈ [EA]bg by the transformation

(9)

 α̂
µ̂a
τ̂

 =

 1 0 0
Υa δa

b 0
−1

2
ΥcΥ

c −Υb 1

α
µb
τ

 ,

where Υa := ∇aΥ. These identi�cations are consistent upon changing to a third
metric from the conformal class, and so taking the quotient by this equivalence
relation de�nes the standard tractor bundle T , or EA in an abstract index notation,
over the conformal manifold. The bundle EA admits an invariant metric hAB of
signature (s + 1, s′ + 1) and an invariant connection, which we shall also denote
by ∇a, preserving hAB. In a conformal scale g, these are given by

(10) hAB =

0 0 1
0 gab 0
1 0 0

 and ∇a

α
µb
τ

 =

 ∇aα− µa
∇aµb + gabτ + Pabα
∇aτ − Pabµb

 .

It is readily veri�ed that both of these are conformally well-de�ned, i.e., inde-
pendent of the choice of a metric g ∈ [g]. Note that hAB de�nes a section of
EAB = EA ⊗ EB, where EA is the dual bundle of EA. Hence we may use hAB and
its inverse hAB to raise or lower indices of EA, EA and their tensor products.
In computations, it is often useful to introduce the `projectors' from EA to the

components E [1], Ea[1] and E [−1] which are determined by a choice of scale. They
are respectively denoted by XA ∈ EA[1], ZAa ∈ EAa[1] and YA ∈ EA[−1], where
EAa[w] = EA ⊗ Ea ⊗ E [w], etc. Using the metrics hAB and gab to raise indices, we
de�ne XA, ZAa, Y A. Then we immediately see that

(11) YAX
A = 1, ZAbZ

A
c = gbc,

and that all other quadratic combinations that contract the tractor index vanish.
In (9) note that α̂ = α and hence XA is conformally invariant. Using this notation
the tractor V A given by

[V A]g =

 α
µa
τ


may be written

(12) V A = αY A + µaZA
a + τXA.
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The curvature Ω of the tractor connection is de�ned by

[∇a,∇b]V
C = Ωab

C
EV

E

for V C ∈ EC . Using (10) and the formulae for the Riemannian curvature yields

(13) ΩabCE = ZC
cZE

eCabce − 2X[CZE]
eAeab .

In the following we shall also need 2-form tractors, that is Λ2T , or in abstract
indices E[AB]. To simplify notation we shall set the rule that indices labelled
sequentially by a superscript are implicitly skewed over and then denote skew pairs
with a bold multi-index. Here we shall need this only for valence 2 forms. This
convention does not apply to subscripts. That is, A0A1 means [A0A1] = A but
e.g. the notation A1A2A3 does not assume any implicit projection to a tensor part.
The same convention will be used for tensor indices, i.e. [a0a1] means a0a1 = a.
With Ek[w] denoting the space of k-forms of weight w, the structure of EA =
EA0A1 is [6, 33]

(14) EA = E1[2] +
�� (E2[2]⊕ E [0]

)
+
�� E1[0];

this means that in a choice of scale the semidirect sums +
�� may be replaced by

direct sums and otherwise they indicate the composition series structure arising
from the tensor powers of (9).
In a choice of metric g from the conformal class, the projectors (or splitting

operators) X, Y, Z for EA determine corresponding projectors X,Y,Z,W for EA,
These execute the splitting of this space into four components and are given as
follows.

Y = Y a1

A0A1 = YA0Za1

A1 ∈ Ea
1

A [−2]

Z = Z a1a2

A1A2 = Z a1

A1Z a2

A2 ∈ Ea
A[−2]

W = WA0A1 = XA0YA1 ∈ EA[0]

X = X a1

A0A1 = XA0Z a1

A1 ∈ Ea
1

A [0].

Further they satisfy XA
aY c

A = 1
2
δca, ZA

aZ c
A = δc

1

a1δc
2

a2 and WAWA = −1
2

id, the
remaining contractions are zero. The explicit formula for the tractor connection
is then determined by how it acts on these (cf. [33, 6]):

∇pY a1

A0A1 = Ppa0Z a0a1

A0A1 + P a1

p WA0A1

∇pZ a0a1

A0A1 = −2δa
0

p Y a1

A0A1 − 2P a0

p X a1

A0A1

∇pWA0A1 = −gpa1Y a1

A0A1 + Ppa1X a1

A0A1

∇pXA0A1 = gpa0Z a0a1

A0A1 − δa
1

p WA0A1 ,

(15)

3.2. Key di�erential operators. Given a choice of conformal scale, Thomas'
tractor-D operator [1] DA : EB···E[w]→ EAB···E[w − 1] is de�ned by

(16) DAV := (n+ 2w − 2)wYAV + (n+ 2w − 2)ZAa∇aV −XA(∆V + wJ)V.

This is conformally invariant, as can be checked directly using the formulae above
(or alternatively there are conformally invariant constructions of D, see e.g. [29]).
Acting on sections of weight w 6= 1−n/2 (16) is a di�erential splitting operator since
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there is a bundle homomorphism which inverts D. In this case it is a multiple of
XA : EAB···E[w− 1]→ EB···E[w]; XADA is a multiple of the identity on the domain
space. This splitting operator is particularly important on E [1], the densities of
weight 1: for non-vanishing σ ∈ E [1], g := σ−2g is Einstein if and only if DAσ is
parallel for the tractor connection. The point is that the tractor connection (10)
gives a prolonged system essentially equivalent to the equation∇(a∇b)0σ+P(ab)0σ =
0 which controls whether the metric g ∈ c is Einstein [1].
The GJMS operators on conformally �at manifolds can easily be constructed

using the tractor D-operator. It turns out

(−1)kXA1 . . . XAk
Pk = DA1 . . . DAk

on E•[−n/2 + k],

see [29] for details. Here •, in E•, denotes any system of tractor indices (or so(h)
tensor part thereof).
In addition to the tractor-D operator DA, one has also the conformally invariant

double-D operator DA and its �square� D2
AB = −D(A

PD|P |B) de�ned as

DA = 2(wWA + X a
A∇a) : E•[w] −→ EA ⊗ E•[w], w ∈ R,

D2
AB = −(whAB +X(ADB)) : E•[w] −→ E(AB) ⊗ E•[w], w ∈ R.

(17)

The operator DA (but with the opposite sign) was originally de�ned in [30]. Note
that, 2X[A0DA1] = (n+ 2w− 2)DA on E•[w]. We shall also need the commutation
relation on E•[w]

(18) [DA, XB] = −2DAB + (n+ 2w)hAB

from [29]; alternatively this may be viewed as de�ning D as (one half of) the skew
part of the left hand side.
Finally some points of notation: In the following we shall sometimes write ∇q

to denote the composition of q applications of ∇. By context it will be clear that
q is not to be interpreted as an abstract index. Next if V is a tensor bundle, or a
tensor product of the standard tractor bundle then for F ∈ V we shall write F |�
to denote the projection of the section F to the Cartan component (with respect
to the co(g) structure, or so(h) tensor structure, respectively) of the bundle V . For
example on Es,s′ equipped with the standard �at diagonal signature (s, s′) metric
the equation (3) may be expressed as [∇2r+1ϕ]|� = 0.

4. The double-D and conformally invariant operators

We work on (M, [g]), assumed to be locally conformally �at. We outline a
rather general picture here. The theorem below provides a general technique for
the construction of symmetries of any conformally invariant operator between
irreducibles. Moreover, since the tools used are general in nature, this result
indicates how to deal with symmetries of invariant operators on a bigger class of
structures, the so-called parabolic geometries [14]. This will be taken up elsewhere.

Consider a conformally invariant di�erential operator P : V → W between
irreducible (or completely reducible will su�ce) conformal bundles V andW . More
speci�cally, we restrict only to subbundles of (

⊗
Ea)⊗(

⊗
Eb)⊗E [w] which we shall

term tensor bundles. The case of spinor bundles is however completely analogous.
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Assume for a moment the general (i.e. possibly curved) conformal setting. Fol-
lowing [11], the double-D operator DA can be extended to all irreducible bundles
(see the discussion on the fundamental derivative below for details). This exten-
sion obeys the Leibniz rule, and since (17) describes DA on E•[w], it remains to
understand the action of DA on Ea ∼= Eb[−2]. In this case we obtain

(19) DBfa = −2WBfa + 2Zb
Bgb0afb1 + 2X b

B∇bfa for fa ∈ Ea
where B = B2.
Our use of D is linked to the following proposition. For a tangent vector ϕa ∈ Ea

we denote by Lϕ the Lie derivative on sections of natural bundles. Recall E [w] is
such a natural bundle, cf. the de�nition of E [w] in Section 2, as well as Ea and Eb.

Proposition 4.1. Let M be any conformally �at manifold and assume ϕa ∈ Ea is
a conformal Killing vector (i.e. a solution of (3)). Then there is a unique parallel
tractor IA

ϕ ∈ EA, A = A2 such that ϕa = 2X a
AI

A
ϕ [33], cf. (43). Then

IA
ϕ DA = Lϕ on (

⊗
Eb)⊗ (

⊗
Ec)⊗ E [w].

Proof. It is su�cient to verify the theorem on E [w] and Ea since both operators
Lϕ and IA

ϕ DA obey the Leibniz rule and Eb ∼= Ea[−2]. Using using (17) and (43)

we have IA
ϕ DA = ϕa∇a − 2

n
(∇aϕ

a) on E [2]. Thus using (19) (and (43) below) we
obtain

IB
ϕ DBfa = ϕb∇bfa + (∇[aϕb])f

b − 1

n
(∇bϕ

b)fa

= ϕb∇bfa − f b∇bϕa + f b
[1
2

(∇bϕa +∇aϕb)−
1

n
gab∇cϕc

]
on fa ∈ Ea[2] ∼= Eb. The square bracket in the display is the conformal Killing
operator, and thus vanishes. The equality of Lϕ and I

A
ϕ DA on E [w] is even simpler,

and hence the general case follows. �

Note it obvious from the proof that the proposition does not hold without the
assumption that ϕa ∈ Ea is a conformal Killing vector.
The conformal invariance of the operator P : V → W is given by the property

LϕP = PLϕ for every conformal Killing �eld ϕa ∈ Ea. That is, every conformal
Killing vector ϕa provides a symmetry of the operator P .
As is well known, conformal invariance can equivalently be veri�ed from a for-

mula for the operator P . In particular for each conformally invariant operator,
and a choice of metric from the conformal class, there is a formula in terms of the
Levi-Civita connection ∇, its curvature, and various algebraic projections which
express the operator as a natural (pseudo-)Riemmanian di�erential operator. The
hallmark of conformal invariance is then that this operator is unchanged if we use
the same formula when starting with a di�erent metric form the conformal class.
Now, given such a formula for P : V → W , we have also the (tractor coupled)
operator P∇ : V ⊗ E• → W ⊗ E• given by the same formula where ∇ is now as-
sumed to be coupled Levi-Civita-tractor connection. Then P∇ is also conformally
invariant. We shall often write P instead of P∇ to simplify the notation.
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Theorem 4.2. On a conformally �at manifold, let P : V → W be a conformally
invariant operator between completely reducible tensor bundles V and W. Then

P∇DA1 · · ·DAp = DA1 · · ·DApP : V → EA1...Ap ⊗W .

Proof. It is su�cient to prove the theorem in the (globally) �at case. First assume
p = 1 and consider a conformal Killing �eld ϕa ∈ Ea. Then Iϕ is parallel (see e.g.
[31], but this follows here easily from the fact the standard tractor connection is
�at). Then [P∇, IA

ϕ ] = 0 and using Proposition 4.1 plus the fact that LϕP = PLϕ,

from conformal the invariance of P , means that IA
ϕ [DA, P ] = 0 for every conformal

Killing vector ϕa. The space of conformal Killing �elds on the conformally �at
manifolds has the maximal dimension, i.e. the dimension of the bundle EA. There-
fore [DA, P ] = 0 on V . Now it follows from the de�nition of D that the formulae
for [DA, P ] on V and E• ⊗ V formally coincide. Since [DA, P ] = 0, this formula
yields a zero operator on every bundle E• ⊗ V . Using an obvious induction, the
theorem follows. �

Below we shall identify 2-form tractor �elds FA = FA1A2 with endomorphism
�elds of the standard tractor bundle according to the rule (F]f)B := FB

PfP for
fB ∈ EB. This also de�nes the notation ]. Moreover, we shall de�ne ] to be
trivial on the bundles Ea and E [w], and then extend this action to tensor products
of EA, Ea and E [w] by the Leibniz rule. Note that since F is skew it yields an
(pseudo-)orthogonal action pointwise and hence preserves the SO(p + 1, q + 1)
decompositions of tractor bundles.
Theorem 4.2 above is one of the primarily tools for our subsequent construction

of symmetries. However there are some conceptual gains in linking this to some
related results and so we complete this section with these observations.
The double-D operator discussed above re�ects a more general operator called

fundamental derivative from [11] (where it is called the fundamental-D operator).
The specialisation of this to conformal geometry provides, for any natural bundle
V , a conformally invariant di�erential operator D : V → A⊗V , where A = Λ2T is
often called the adjoint tractor bundle (because it is modelled on g = sos+1,s′+1).
Since there is a natural inclusion A ↪→ End E• via ], we may form ((−1)�times)
the symmetrisation of the contracted composition, to be denoted by

D2 : V → (EndV)⊗ V .
In the abstract index notation we write DAB (or DA, using the identi�cation
A ∼= EA1A2) for the fundamental derivative and so D2

AB = −DC (ADB)C .
We shall use D only on weighted tensor bundles V ⊆ (

⊗
Ea)⊗ (

⊗
Eb)⊗ E•[w].

Recall the fundamental derivative obeys the Leibniz rule and actually DA = DA

on irreducible bundles. (In fact, the double-D was de�ned in such way in [11].)
To show the di�erence between D and D and, more generally, the analogue of (17)
we shall need certain special tractor sections and their corresponding algebraic
actions on tractor bundles as follows:

HAB = hA0B0hA1B1 , HA] = hA0B0hA1B1 ]B

H̃ADBC = h(A|B0|hD)C0hB1C1 , H̃AD]] = h(A|B0|hD)C0hB1C1 ]B ]C
(20)
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where, as usual, we skew over the index pairs A0A1, B0B1 and C0C1. Here the
subscript of ] indicates which skew symmetric component is considered as an endo-
morphism. That is, for example, (HA]f)C = hA0CfA1 for fC ∈ EC , and this extends
to tensor powers of the tractor bundle by the Leibniz rule. It also indicates the

order of applications of these endomorphisms in the case of H̃.
We need D only up to a (nonzero) scalar multiple and our choice will di�er from

[7] by −1. Explicit formulae of D and D2 on weighted tractor bundles E•[w] are
given by

DA = 2(wWA + X a
A∇a + HA])

D2
AD = −(whAD +X(ADD) + 4h(A|B0|DD)B1 ]B − 4H̃AD]])

(21)

where we skew over [B0B1] and ]B indicates the skewed symmetric component
which is considered as an endomorphism. That is, DA = DA + 2HA].

Corollary 4.3. Assume the locally conformally �at setting. Let P : V → W be a
conformally invariant operator between irreducible weighted tensor bundles V and
W. Then

P∇DA1 · · · DAp = DA1 · · · DApP : V → EA1...Ap ⊗W .

Proof. We shall use an induction. The case p = 1 is obvious as DA = DA on V
and W . Assume the corollary holds for a �xed integer p. Then

DA0DA1 · · · DAp = DA0DA1 · · · DAp + 2HA0]DA1 · · · DAp .

The operator P commutes with the �rst term on the right hand side using [P,DA0 ] =
0 and the inductive assumption. Since the second term involves only DA1 · · · DAp

with some additional trace factors, P commutes with the second term (using the
induction) as well. �

Lemma 4.4. Assume the locally conformally �at setting. Then [DA,DB] = 0 on
V ⊗ E• for V irreducible.

Proof. >From (17) and (21) we obtain

[DA,DB] = [DA,DB]− 2DAHB]+ 2HB]DA = [DA,DB] + 4hB0A0DB1A1 .

Thus contracting arbitrary sections IA ∈ EA, ĪB ∈ EB into the previous display
we get

IAĪB[DA,DB] = IAĪB[DA,DB] + 4IA
1P ĪP

B1DA1B1 .

We put [I, Ī]C := 4IC
0P ĪP

C1
. On the one hand, IAĪB[DA,DB] is given [11, Propo-

sition, p. 21]. On the other hand, a direct computation veri�es the statement on
E•[w], cf. (40) below. Therefore by restricting to this case (of E•[w]), it follows
that our notation [I, Ī] coincides precisely with {I, Ī} used in [11]. Thus using [11,
Proposition, p. 21] on V ⊗ E•[w], the lemma follows. �

Remark 4.5. There is also a more conceptual proof of the previous corollary (thus
also of Theorem 4.2). Motivated by [11, Theorem 3.3], we note that, at each point
x ∈M , the section

D(k)
σ := (σ,Dσ,D(2)σ = DDσ, . . . ,D(k)σ) ∈ A(k)

(V) ⊆ V⊕EA⊗V⊕. . .⊕
k⊗
EA⊗V ,
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contains the data of the entire k-jet of σ ∈ V . Note although here we assume

V is irreducible, the operator D(k)
is de�ned also on bundles of the form V ⊗ E•.

From the general theory, the subbundle A(k)
(V) (de�ned in the obvious way by the

display) is an induced bundle of a principleH�bundle whereH ⊆ SO(s+1, s′+1) is
a parabolic subgroup. It is straightforward to argue that any conformally invariant

k-order operator on V is given by D(k)
followed by a suitable H-homomorphism

Φ on this subbundle. We denote this homomorphism by ΦP in the case of the
operator P .

Our aim is to commute P = ΦP ◦ D(k)
and DB. More precisely, we put

P∇ := (id |EB ⊗ ΦP ) ◦ D(k)
: EB ⊗ V → EB ⊗W .

Observe the formulae for D(k)
: V → A(k)

(V) and D(k)
: EB ⊗ V → EB ⊗ A

(k)
(V)

are formally the same. (Note the implicit ∇ is interpreted as the coupled Levi-
Civita-tractor connection in the latter case). That means also the formulae for
P : V → W and P∇ : EB⊗V → EB⊗W are given by the same formal expression.
Hence our de�nition of P∇ coincides with that given before Theorem 4.2.
Now we are ready to show that DBP = P∇DB on V , i.e.

(Φp ⊗ id |EB) ◦ D(k)DB = DB

(
Φp ◦ D(k))

: V → EB ⊗W .

Clearly DBΦP = (ΦP ⊗ id |EB)DB. Since [DB,DA] = 0 from Lemma 4.4 and DB

preserves subbundles (of the space DB acts on), (ΦP ⊗ id |EB)DA1 . . .DB . . .DAi
is

conformally invariant and the previous display follows.
Henceforth we shall write P instead of P∇ for simplicity. Finally note although

we have shown [DB, P ] = 0 only on an irreducible V , the same reasoning shows
[DB, P ] = 0 also on bundles V ⊗ E•. Therefore this remark o�ers an alternative
proof of the previous corollary (thus also of Theorem 4.2).

The previous results provide an obvious way to construct symmetries of confor-
mally invariant operators. Assume the section

IA1...ApB1B
′
1...BrB

′
r ∈ EA1...ApB1B

′
1...BrB

′
r

is parallel. Then from Theorem 4.2 and Corollary 4.3 the di�erential operators

S = IA1...ApB1B
′
1...BrB

′
rDA1

. . .DAp
D2
B1B

′
1
. . .D2

BrB
′
r

and

S = IA1...ApB1B
′
1...BrB

′
rDA1

. . .DAp
D2
B1B

′
1
. . .D2

BrB
′
r

(22)

commute with P . That is S and S are symmetries of the operator P .

Proposition 4.6. Assume the tractor IA1...ApB1B
′
1...BrB

′
r is parallel and irreducible,

I = I|�. Then S = S on E [w].

Proof. Consider the parallel and irreducible tractor IA1...ApB1B
′
1...BrB

′
r and the sym-

metry S from (22). Since DA = DA + 2HA], the di�erence

DA1
DA2

. . .DAp
D2
B1B

′
1
. . .D2

BrB
′
r
− DA1

DA2
. . .DAp

D2
B1B

′
1
. . .D2

BrB
′
r
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lives in the trace part of EA1...ApB1B
′
1...BrB

′
r
[w], cf. (20). Therefore this di�erence

is killed after contraction with I
A1...ApB1B

′
1...BrB

′
r

ϕ . Repeating this argument for
DA2 , . . . ,DAp , we obtain

S = IA1...ApB1B
′
1...BrB

′
rDA1

. . .DAp
D2
B1B

′
1
. . .D2

BrB
′
r

: E [w]→ E [w].

Now we replace D2
B1B

′
1
in the previous display by D2

B1B
′
1
. Note IA1...ApB1B

′
1...BrB

′
r

commutes with DAi
and consider IA1...ApB1B

′
1...BrB

′
r contracted with

D2
B1B

′
1
D2
B2B

′
2
. . .D2

BrB
′
r
− D2

B1B
′
1
D2
B2B

′
2
. . .D2

BrB
′
r

=

= −
(
4h(B1|C0|DB′1)C1]C − 4H̃B1B′1

]]
)
D2
B2B

′
2
. . .D2

BrB
′
r
.

where we have used (21) and (17). The second term in the round brackets on the
right hand side vanishes after the contraction (using trace-freeness of I again) so
it remains to contract IA1...ApB1B

′
1...BrB

′
r with

4hC0(B1
DB′1)C1]CD2

(B2B
′
2
. . .D2

BrB
′
r) =4(r − 1)h(B2B1DB′1

PD2
|P |B′2

. . .D2
BrB

′
r)

− 4(r + 1)D(B′1B2
D2
B1B

′
2
. . .D2

BrB
′
r)

Here we have used the fact that the indices B1B
′
1 . . . BrB

′
r of I are symmetric

(because I is irreducible). Now the second term on the right hand side is zero due
to skew symmetry of indices of DB′1B2

and the �rst term vanishes after contraction
with I which is trace-free. Repeating the same argument for D2

B1B
′
2
, . . . ,D2

BrB
′
r
,

the proposition follows. �

Note an analogous statement to the Proposition above holds where E [w] is re-
placed by any irreducible bundle V . This may be proved along the same lines as
in the treatment above. However since the details are technical and not required
here, this proof is omitted.
Finally note the operators given by (22) are well de�ned also on bundles E•[w].

In this setting, however, they yield generally di�erent operators E•[w]→ E•[w].

5. A Construction of symmetries

We are now ready to construct canonical symmetries. For a section ϕ
a1...ap
r ∈

E (a1...ap)0 [2r] we shall de�ne the operators (Sϕ, S
′
ϕ) where Sϕ and S ′ϕ have leading

term ϕ
a1...ap
r ∇a1 · · · ∇ap∆r. To do this we use the bijective correspondence between

the linear space of solutions of (3) and certain �nite dimensional g�modules, cf. the
discussion around (4). Explicitly, this is given by di�erential prolongation in the
form of a di�erential splitting operator E (a1...ap)0 [2r]→ EA1...ApB1B

′
1...BrB

′
r |�. There

are many ways of constructing this, but for our current purposes the splitting
operator can be conveniently expressed using the fundamental derivative. There
is a certain operator C known as the curved Casimir [15] which is given by hABD2

AB.
This acts on any natural bundle and, in particular, on weighted tractor bundles.
It can thus be iterated. One gets the splitting operator as

(23) ϕa1...ap
r 7→ YA1

a1 · · ·YAp
apY

B1Y B′1 · · ·Y BrY B′rϕa1...ap
r

Q−→ EA1...ApB1B
′
1...BrB

′
r



16 Gover & �ilhan

where Q is an operator polynomial in C, and hence is polynomial in D, see [15, 34].
We shall denote the image by I

A1...ApB1B′1...BrB′r
ϕ ∈ EA1...ApB1B′1...BrB′r |�. The main

point we need is that the tractor Iϕ is parallel if and only if ϕ is a solution of the
operator (3).

De�nition 5.1. Let ϕ = ϕ
(a1...ap)0
r ∈ E (a1...ap)0 [2r], r, p ≥ 0 be a solution of (3).

Given such a solution ϕ we shall associate a di�erential operator Sϕ as follows. Let
Iϕ denote the parallel tractor corresponding to ϕ, in the sense of the discussion
surrounding (23) above. Then via (22),

(24) Sϕ := I
A1...ApB1B

′
1...BrB

′
r

ϕ DA1
. . .DAp

D2
B1B

′
1
. . .D2

BrB
′
r
,

is a well de�ned di�erential operator Sϕ : V → V , for any weighted tensor-tractor
bundle V .
It follows immediately from Theorem 4.2, and the fact that Iϕ is parallel, that

Sϕ is a universal symmetry operator. That is, using also that ϕ 7→ Iϕ is a splitting
operator, we have the following.

Theorem 5.2. On a conformally �at manifold, let P : V → W be a conformally
invariant operator between irreducible tensor bundles V and W, and suppose that

ϕ = ϕ
(a1...ap)0
r ∈ E (a1...ap)0 [2r], r, p ≥ 0 is a solution of (3). Then with Sϕ : V → V

and S ′ϕ : W → W given by (24), the pair (Sϕ, S
′
ϕ) is symmetry of P . For ϕ 6= 0

and r < k this is a non-trivial symmetry.

Note that Sϕ and S ′ϕ are not the same di�erential operators. The point is that
(24) really de�nes a family of di�erential operators parametrised by the space of
domain bundles.
We shall henceforth only pursue the case that P is a GJMS operator. Proposition

6.1 (which we will come to later) shows that, acting on any density bundle, ϕ is
the leading symbol of the operator (24). Also note that in this case the use of D
and D2 instead of D and D2 in (24) yields the same symmetries, cf. Proposition
4.6.
Remark. Consider an operator F : E [w] → E [w], of order p̃ ≥ 0, on a smooth
conformal manifold manifold (M, [g]) and its symbol ϕ̃(a1...ap̃) ∈ E (a1...ap̃). Then, via
the conformal structure [g] we may decompose ϕ̃ into irreducibles. Each irreducible
component ϕ of ϕ̃ can be realised as ϕ(a1...ap)0 ∈ E (a1...ap)0 [2r] where p = p̃ − 2r.
Thus we have also the operator Sϕ, constructed as above except that we here do
not require ϕ to solve (3). We may then take the di�erence F −Sϕ : E [w]→ E [w].
Now the whole procedure can be repeated for the operator F −Sϕ. It is clear that
after a �nite number of steps we obtain the form F =

∑
ϕ∈U Sϕ for a (�nite) index

set U ⊆ N. That is, given an operator F : E [w]→ E [w] on a smooth manifold M ,
any conformal structure on M yields a decomposition of F as a sum of canonical
operators Sϕ.
In the other direction, the operators Sϕ provide the conformally invariant quan-

tization introduced in [19], in particular the special case [19, 3.1]. Also note the
Section 4 shows how to rewrite the general construction [8] using an a�ne connec-
tion.
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6. Classification of leading terms of symmetries

According to the discussion following Theorem 2.4, the problem of confor-
mal symmetries for the GJMS operators (on locally conformally �at manifolds)
is reduced to the setting of Theorem 2.1. So throughout this section we work
on Es,s′ equipped with the standard �at diagonal signature (s, s′) metric g with
s+ s′ =: n ≥ 3.

All linear di�erential operators L : E [w] → E [w] may be expressed as sums of
the form

(25) P =
∑
p,r≥0

ϕa1...ap
r (∇a1 · · · ∇ap)∆r, ϕa1...ap

r ∈ E (a1...ap)0 [2r] = E (p)0
r ;

We shall term such a standard expression for L. For the operator in the previous
display, we shall use the shorthand notation ϕpr(�p∇)∆r instead of ϕ

a1...ap
r (∇a1 · · · ∇ap)∆r.

We use the standard expressions as above to analyze the structure of potential
symmetries and their compositions with ∆k. In particular we shall use the follow-
ing properties/descriptions of a given coe�cient ϕpr. We shall write o(ϕpr) = p+ 2r
and term this the formal order of ϕpr and `(ϕ

p
r) = p+ r which will be termed level

of ϕpr. (These re�ect properties of terms ϕ
a1...ap
r (∇a1 · · · ∇ap)∆r and how they ap-

pear naturally in appropriate tractor formulae. However these quantities are fully
determined by the coe�cients ϕpr, so it is su�cient to consider formal order and
level of coe�cients.) We also say

[
p
r

]
is the type of ϕpr. We shall write o(R) = a

and `(R) = b if all terms of a di�erential operator R : E [w] → E [w] are of the
formal order at most a, respectively level at most b. Finally if L is a symmetry of
∆k, then we shall say L is a normal symmetry (of ∆k) if r < k for all terms in the
standard expression (25). Modulo trivial symmetries, any symmetry ∆k may be
represented by a normal symmetry.
Further we shall need a suitable ordering of the terms in a standard expression.

This will be de�ned via the coe�cients as follows:

(26) ϕpr C ψ
p′

r′ i� `(ϕpr) < `(ψp
′

r′ ) or
(
`(ϕpr) = `(ψp

′

r′ )
)
∧
(
o(ϕpr) < o(ψp

′

r′ )
)
.

Since the coe�cient ϕpr determines a corresponding term in the standard expression
completely, we shall use the ordering C for both coe�cients and terms of an
operator (25).
First we shall study the canonical symmetries. Since these are constructed using

tractor operators we need a further weight type measure as follows. In the tractor
formulae, we use strings of the symbols X, Y , Z and X, Y, Z and W from Section
3.1. We de�ne the homogenity h(ω) of a string ω ∈ {X, Y, Z,X,Y,Z,W} by

h(Y ) = 1, h(Z) = 0, h(X) = −1, h(Y) = 1, h(Z) = h(W) = 0, h(X) = −1(27)

and h(ω1ω2) := h(ω1) + h(ω2)

where ω1ω2 means a concatenation of the strings ω1 and ω2.
Now we are set to describe some properties the canonical symmetries, as follows.
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Proposition 6.1. Consider ϕ = ϕpr ∈ (�pTM)⊗ E [2r] such that [∇2r+1ϕ]|� = 0
and the corresponding canonical symmetry (Sϕ, S

′
ϕ) given by given by (24). Then,

in the standard expressions for Sϕ and S ′ϕ, the following properties hold:
(i) Sϕ and S ′ϕ have the same leading term ϕ.
(ii) `(S ′ϕ) = `(Sϕ) = r + p = `(ϕpr), that is every term ψ of Sϕ or S ′ϕ satis�es

`(ψ) ≤ p+ r. Moreover, the greatest terms of Sϕ and S ′ϕ have the coe�cient ϕ.
(iii) o(S ′ϕ) = o(Sϕ) = p+ 2r = o(ϕpr), that is every term ψ of Sϕ or S ′ϕ satis�es

o(ψ) ≤ p+ 2r. Moreover, the equality happens only for ψ = ϕ.
(iv) Every term ψ of type

[
p̄
r̄

]
of Sϕ or S ′ϕ satis�es r ≥ r̄.

Proof. First note that because Sϕ and S ′ϕ are given by the same operator (24)
acting on di�erent density bundles, it turns out to be su�cient to establish facts
only for Sϕ. >From (24) Sϕ is de�ned as the contraction of the parallel tractor

I
A1...ApB1B

′
1...BrB

′
r

ϕ , corresponding to ϕ, with the operator

D̃A1...ApB1B
′
1...BrB

′
r

:= DA1
. . .DAp

D2
B1B

′
1
. . .D2

BrB
′
r

: E•[w] −→ E•A1...ApB1B
′
1...BrB

′
r
[w].

We need some broad facts about the structure of the tractor formulae for Iϕ and D̃.
When working in a metric scale and using (12), (10), (15), and (17) it follows that
terms of these are built respectively from tensor �elds and tensor valued di�erential
operators contracted into `projectors'

ω ∈ B.

Here B is a set of �elds taking values in the appropriate tractor bundle tensor
product with an irreducible weighted trace-free tensor bundle. Each element ω ∈ B
is an appropriate projection (onto the irreducible part with respect to the tensor
indices) of a p-fold tensor product of elements from {X,Y,Z,W} with a 2r-fold
tensor product of elements from {X, Y, Z}, and we may take B to be all such.
Similarly, the elements of B can be considered as `injectors', i.e. a mapping going
in the opposite direction. For example, since Iϕ is obtained from ϕ by a splitting
operator, it has the form

(28) I
A1...ApB1B

′
1...BrB

′
r

ϕ =
∑
ω∈B

ωA1...ApB1B
′
1...BrB

′
r · Fω(ϕ)

where, for each ω ∈ B, Fω(ϕ) is the result of a (weighted tensor valued) di�er-
ential operator Fω acting on ϕ (a section of (�pTM) ⊗ E [2r]) and `·' indicates a
contraction of tensor indices (which are suppressed); cf. (43) below which shows Iϕ
for ϕa ∈ Ea explicitly. Note also that we sum over all strings in B in the previous
display, so many of the Fω will be zero. Similarly, it follows from the de�nition of

D̃ that

(29) D̃A1...ApB1B
′
1...BrB

′
r

=
∑
ω∈B

ωA1...ApB1B
′
1...BrB

′
r
·Gω

where Gω is a (weighted tensor valued) di�erential operator acting on densities
and, again, `·' denotes contraction of (suppressed) tensor indices. See (17) and (39)
for explicit examples. Contracting the last two displays we obtain the canonical
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symmetry Sϕ as in (24). Thus, using (11) and the surrounding observations, we
have

Sϕ =
∑

ω,ω′∈B,
h(ω)+h(ω′)=0

(Fω(ϕ)) ·Gω′

where `·' indicates the contraction of suppressed tensor indices. Note pairs (ω, ω′)
not satisfying h(ω) + h(ω′) = 0 have dropped out of the sum by properties of
the tractor metric. (Also note that the same property implies that if the tensor
indices of Fω and Gω′ are not compatible for complete contraction then the term
(Fω(ϕ)) ·Gω′ is necessarily zero.)
The di�erential order of Fω (and similarly Gω′) is exactly the maximal number

of ∇'s in the corresponding expression in the splitting operator. (We consider
formulae for splitting operators obtained using the curved Casimir C = hABD2

AB

here.) Denoting such order of Fω and Gω′ (in (28) and (29)) by, respectively, o(Fω)
and o(Gω′), we have

h(ω) + o(Fω) = p+ 2r and h(ω′) + o(Gω′) = 0, ω, ω′ ∈ B.
Here the �rst equality follows from (23) and the properties of splitting operators.

The second follows from the de�nition of D̃ (in particular from the tractor expres-
sions for D and D2 in (17)), (10), and (15). Summing up the equalities in the
previous display we see that

(30) Sϕ =
∑

ω,ω′∈B,
o(Fω)+o(Gω′ )=p+2r

(Fω(ϕ)) ·Gω′ .

Note that all tractor indices have been eliminated, the formula (30) for Sϕ is
expressed using tensor operators and contractions only. Now consider a summand
(Fω(ϕ)) ·Gω′ of Sϕ as in (30). First o(Fω)+o(Gω′) = p+2r implies o(Gω′) ≤ p+2r;
moreover the equality can happen only if Fω = id (up to a non-zero scalar multiple),
since (23) is a di�erential splitting operator. For the same reason this term does
occur. In the previous display the term with Fω = id clearly recovers the highest
order term. Therefore (i) follows.
Now by assumption Fω(ϕ) is irreducible. Since Sϕ : E [w]→ E [w], it follows from

(25) that in the standard expression (Fω(ϕ)) ·Gω′ = γa1...ap̄∇a1 . . .∇ap̄∆r̄, p̄, r̄ ≥ 0

where γ is symmetric and trace�free. In fact, it follows from the form of Iϕ and D̃
that Fω(ϕ) = γa1...ap̄ and Gω′ = ∇a1 . . .∇ap̄∆r̄. We denote the type of Fω(ϕ) by[
p̄
r̄

]
. From this we get o(Gω′) = p̄ + 2r̄ and, since Fω takes ϕ of the type

[
p
r

]
to a

section of the type
[
p̄
r̄

]
, we get o(Fω) ≥ |p− p̄|. (The point is that each application

of the Levi-Civita connection may increase of decrease the rank by 1, and this is
the only way the rank may change.) These properties hold for every (irreducible)
term (Fω(ϕ)) ·Gω′ in (30). Therefore

p+ 2r = o(Fω) + o(Gω′) ≥ |p− p̄|+ p̄+ 2r̄

using (30). We prove (ii), (iii) and (iv) separately in cases p ≥ p̄ and p ≤ p̄. If
p ≥ p̄ then the previous display says p + 2r ≥ p + 2r̄ hence r ≥ r̄. This implies
p + r ≥ p̄ + r̄ and p + 2r ≥ p̄ + 2r̄. If p ≤ p̄ then the previous display means
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2p + 2r ≥ 2p̄ + 2r̄ hence p + r ≥ p̄ + r̄. The latter inequality with p ≤ p̄ yields
r ≥ r̄ and so p+ 2r ≥ p̄+ 2r̄. This show (iv) and the inequalities in (ii) and (iii).
Now when equality holds in (iii) then p + 2r = p̄ + 2r̄. But then p = p̄ from the
previous display thus also r = r̄. This means o(Gω′) = p + 2r and o(Fω) = 0.
Hence Fω = id, up to a multiple, and so if the term is non-trivial we recover the
leading term. It remains to discuss the greatest term of Sϕ. But since we have
already proved the inequality in (ii), according to the ordering of (26) we need to
consider the order of terms of level p+ r. The maximal order is then characterized
by (iii). �

Note the part (iii) of the previous proposition means that the canonical sym-
metry (Sϕ, S

′
ϕ), ϕpr ∈ (⊗pTM)⊗ E [2r] is nontrivial for Pk, k > r. (The statement

(iii) is actually stronger: no term in Sϕ has ∆k, k > r as the right factor.)

Our strategy for classifying the leading terms of symmetries uses the ordering
(26). We shall start with the greatest term and study what the symmetry condition
imposes on its coe�cient. We obtain the following

Claim: Let ϕji ∈ E
(j)0

i is the greatest coe�cient of a symmetry T . Then [∇2i+1ϕji ]� =
0.

The claim forms the basis for an inductive procedure, as if [∇2i+1ϕji ]� = 0

then the greatest term of T − Sϕj
i
is strictly smaller (w.r.t. B) than ϕji , and using

Proposition 6.1, we can replace T by T − Sϕp
0
and apply the previous claim again.

The Claim is proved as Proposition 6.3, and then the detailed inductive pro-
cedure is in the proof of Theorem 6.4. The proof of Proposition 6.3 requires a
detailed analysis of certain terms. To demonstrate the technique, let us discuss an
example �rst. Assume that (T, T ′) is a symmetry of P4 = ∆4 of order p, i.e.

∆4T = T ′∆4, T =
∑

2i+j≤p,i<4

ϕji (�j∇)∆i

where we have displayed the standard expression of T . Note we have not included
terms with i ≥ 4 as they may be eliminated by the addition of trivial symmetries
of ∆4. It is useful to write the terms of T in a table as follows:

order p: ϕp0(�p∇) +ϕp−2
1 (�p−2∇)∆1+ϕp−4

2 (�p−4∇)∆2+ ϕp−6
3 (�p−6∇)∆3 +

order p− 1: ϕp−1
0 (�p−1∇)+ϕp−3

1 (�p−3∇)∆1+ϕp−5
2 (�p−5∇)∆2+ ϕp−7

3 (�p−7∇)∆3 +
order p− 2: ϕp−2

0 (�p−2∇)+ϕp−4
1 (�p−4∇)∆1+ϕp−6

2 (�p−6∇)∆2+ ϕp−8
3 (�p−8∇)∆3 +

order p− 3: ϕp−3
0 (�p−3∇)+ϕp−5

1 (�p−5∇)∆1+ϕp−7
2 (�p−7∇)∆2+ ϕp−9

3 (�p−9∇)∆3 +
order p− 4: ϕp−4

0 (�p−4∇)+ϕp−6
1 (�p−6∇)∆1+ϕp−8

2 (�p−8∇)∆2+ϕp−10
3 (�p−10∇)∆3+

...
... +

... +
... +

... +

Every line shows terms of the same formal order and moreover every antidiagonal
shows terms of the same level. So the ordering (26) in this case means

ϕp0 B ϕ
p−2
1 B ϕp−1

0 B ϕp−4
2 B ϕp−3

1 B ϕp−2
0 B ϕp−6

3 B · · ·
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Observe the level `(R) of an operator R is increased by k under composition with
∆k:

`(∆kR) = `(R) + k.

Moreover, only terms of the highest level in R can contribute to terms of the
highest level in ∆kR.
The greatest coe�cient (w.r.t. B) is ϕp0. Recall o(T ) = p so we can assume

`(T ) = p which means `(∆4T ) = p + 4. Now we consider terms of the level p + 4
of ∆4T . First we commute all covariant derivatives ∇ to the right. In fact, it is
su�cient for our purpose to consider only certain terms. First we restrict to terms
of the level p + 4 without a right factor ∆4 and then take the candidate for the
greatest among these. This is (∇1ϕp0)(�p+1∇)∆3. Since this does not have a right
factor ∆4, it has to vanish since T is a symmetry. Hence (∇1ϕp0)� = 0, which
means that ϕp0 is a conformal Killing tensor. Now we replace the symmetry T by
T −Sϕp

0
; this is also a symmetry. The greatest coe�cient of T −Sϕp

0
is now strictly

smaller (w.r.t. B) than the greatest coe�cient of T . (Here we have adjusted Sϕp
0

so the leading term is precisely ϕp0(�p∇) rather than some non-zero multiple. We
will not comment further when this sort of maneuver is used below.) It is ϕp−2

1

according to (26). So now we may rename T − Sϕp
0
as T and continue with the

argument.
The next step is to assume ϕp0 = 0 and study di�erential conditions imposed

on ϕp−2
1 . Here we skip this and several other steps and we assume the greatest

coe�cient of T is ϕp−6
3 . So suppose that ϕji = 0 for `(ϕji ) > p− 3 = `(ϕp−6

3 ). Then
`(T ) = p−3 and so `(∆4T ) = p+1. We shall examine those terms of the operator
∆4T of the (highest) level p+ 1 and such that they are without a right factor ∆4.
To �nd these it is su�cient to consider

∆4
[
ϕp−6

3 (�p−6∇)∆3 + ϕp−5
2 (�p−5∇)∆2 + ϕp−4

1 (�p−4∇)∆1 + ϕp−3
0 (�p−3∇)

]
.

We use the Leibniz rule to move ∆4 to the right in the previous display. We
need to know the form of (level p + 1) terms of types

[
p−2

3

]
,
[
p−1

2

]
,
[
p
1

]
and

[
p+1

0

]
.

The simplest case is the type
[
p+1

0

]
, we obtain only the term 24(∇4ϕp−3

0 ) �p+1 ∇.
The operator �p+1∇ does not arise in any other way, so the given term must
vanish through ϕp−3

0 satisfying the obvious equation. In the case of the type
[
p
1

]
we similarly get the equation

24(∇4ϕp−4
1 )(�p∇)∆ + 23 · 4(∇3ϕp−3

0 )(�p∇)∆ = 0.

Here 23 · 4 = 23
(

4
1

)
= 23

(
4
3

)
; generally we put Cs(4) = 2s

(
4
s

)
. The types

[
p−2

3

]
and

[
p−1

2

]
yield two more equations which give conditions for the coe�cients ϕp−3

0 ,

ϕp−4
1 , ϕp−5

2 and ϕp−6
3 . Together these four equations yield the following di�erential

equations for the coe�cients ϕji :

type
[
p−2

3

]
: C4(4)∇4ϕp−6

3 +C3(4)∇3ϕp−5
2 +C2(4)∇2ϕp−4

1 +C1(4)∇1ϕp−3
0 =0

type
[
p−1

2

]
: 0 +C4(4)∇4ϕp−5

2 +C3(4)∇3ϕp−4
1 +C2(4)∇2ϕp−3

0 =0
type

[
p
1

]
: 0 + 0 +C4(4)∇4ϕp−4

1 +C3(4)∇3ϕp−3
0 =0

type
[
p+1

0

]
: 0 + 0 + 0 +C4(4)∇4ϕp−3

0 =0
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Here we implicitly consider the symmetric trace�free parts in every equation. Now
applying ∇3 to the �rst equation, ∇2 to the second and ∇ to the third, and then
taking the trace�free symmetric part in all cases, we obtain a linear system in
variables [∇7ϕp−6

3 ]�, [∇6ϕp−5
2 ]�, [∇5ϕp−4

1 ]� and [∇4ϕp−3
0 ]�. The matrix of (inte-

ger) coe�cient is 
C4(4) C3(4) C2(4) C1(4)

0 C4(4) C3(4) C2(4)
0 0 C4(4) C3(4)
0 0 0 C4(4)

 .

This is non-singular. So all the variables must vanish, and in particular [∇7ϕp−6
3 ]� =

0, which is what we wanted to prove.

This was the case with greatest coe�cient ϕp−6
3 . It suggests a route to solving

the remaining cases, as they yield linear systems in the same way. Actually it
turns out that in each of the cases with the greatest terms between ϕp0 and ϕp−6

3

(which were skipped above), the matrix of coe�cients includes a square �upper
right� submatrix of the matrix above, i.e. a matrix obtained by removing the
�rst q columns and the last q rows for some choice of q, that is su�cient if non-
degenerate. That is it su�ces to prove that determinants of these matrices are
nonzero. This necessitates analysing the combinatorial coe�cients Cs(4) in more
detail.

The general case is analogous; in the case of ∆k, k ∈ N we shall need the scalars

Cs(k) := 2s
(
k

s

)
, Cs(k) := 0 for s > k

and matrices
C(k; d) ∈ Matk−d, 0 ≤ d ≤ k − 1 where

C(k; d)s,t = Ck−d+s−t(k), 1 ≤ s, t ≤ k − d.
(31)

The matrices C(k, 0) are upper diagonal with Ck(k) on the diagonal; the matrix
C(4, 0) appeared in the previous example. In fact, C(k, d) is obtained from C(k, 0)
by removing d �rst columns and d last rows. Note also that considering (any)
diagonal of C(k, d), all the coe�cients are the same.
Clearly the C(k, 0) are regular.

Theorem 6.2. The matrices C(k, d), k ∈ N, 0 ≤ d ≤ k − 1 are regular.

By J. Kadourek, Masaryk University. First observe that for d = 0 the matrix C
is upper triangular with nonzero entries on the diagonal. Thus it is regular so
it is su�cient to assume 1 ≤ d ≤ k − 1. Also to simplify the notation we put
kd := k − d. Clearly 1 ≤ kd ≤ k − 1.
It turns out to be useful to consider also the closely related matrix

C̃(k; d) ∈ Matkd
, 0 ≤ d ≤ k − 1 where

C̃(k; d)s,t =

(
k

kd + s− t

)
, 1 ≤ s, t ≤ kd,

(32)
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where the latter is taken to be 0 if s − t > d. That is, the entries of C and C̃
di�er by a power of 2. Now writing the determinant as a sum (over permutations of
{1, . . . , kd})) of products of entries of a matrix, one easily shows that determinants

of C and C̃ di�er by a power of 2. That is, the matrix C is regular if and only if

C̃ is regular. We shall prove regularity for the latter.
First recall the well-know relation

(33)

(
q

m

)
+

(
q

m+ 1

)
=

(
q + 1

m+ 1

)
, q,m ≥ 0.

Henceforth we �x the values k, d from the allowed range. The proof now con-
sists of several series of row or column elementary operations which change the
determinant by a nonzero multiple. During certain stages of this process we shall
obtain matrices D1, D2, D3, D4 ∈ Matkd

whose determinants di�er from each other
only by nonzero multiples. The last of these, D4 is upper triangular with nonzero
entries on the diagonal, and so this concludes the proof.

The construction of D1 from C̃ consists of kd − 1 steps; in each of these we
undertake a series of elementary column operations, as follows. In the �rst step,
we add the second column to the �rst one, then the third column to the second
and so on; �nally we add the last column to the last but one. In the second step,
we add the second column to the �rst one, then the third column to the second
and so on but �nish by adding the (kd − 1)th column to the (kd − 2)th column.
Continuing in this way, in the last step (i.e. the step number kd − 1) we add only

the second column to the �rst one. Note the determinants of D1 and C̃ di�er by
a nonzero multiple.
Overall we obtain the matrix

(34) D1(s, t) =

(
k + kd − t
kd + s− t

)
=

(k + kd − t)!
(kd + s− t)!(k − s)!

;

note 1 ≤ kd + s− t ≤ k + kd − t. The reasoning uses (33) in every addition of two
binomial numbers and goes as follows. Consider how the (s, t)-entry changes during
the procedure described in the previous paragraph. First observe that after the ith
step of elementary column operations, this entry has the form

(
ai

kd+s−t

)
. That is,

the �denominator� of the binomial number on the position (s, t) does not change
during this procedure. This follows from (33). Second, the �numerator� of the
binomial number on the (s, t)-position increases by 1 if we add the (s, t+1)�entry,
see (33). Thus the �numerator� depends on the number of additions of the (t+1)st
column, as stated in (34).
Now we modify the matrix D1 as follows. First we multiple the tth column by

1
(k+kd−t)!

, where we note that k + kd − t ≥ k ≥ 1. Then we multiply the sth row

by (k − s)! where k − s ≥ 1 because s ≤ kd ≤ k − 1. We obtain the matrix D2,
the determinants of D1 and D2 di�er by a nonzero multiple. It follows from the
fractional form of entries of D1 in (35) that

(35) D2(s, t) =
1

(kd + s− t)!
.
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We continue with the following modi�cation of D2. First we multiply the sth
row by (kd + s − 1)! ≥ 1. Then we multiply the tth column by 1

(t−1)!
, t − 1 ≥ 0

(thus (t − 1)! ≥ 1). The result is a matrix D3, the determinants of D3 and D2

di�er by nonzero multiple. It follows from (35) that

(36) D3(s, t) =
(kd + s− 1)!

(kd + s− t)!(k − 1)!
=

(
kd + s− 1

kd + s− t

)
.

In the last stage we apply the following kd− 1 steps of elementary row transfor-
mations to the matrix D3. Observe that the �rst column of D3 has all its entries
equal to 1. In the �rst step, we subtract the (kd − 1)-st row from the kd-th row,
then we subtract (kd − 2)-nd row from the (kd − 1)-st row and so on; �nally we
subtract the �rst row from the second one. Thus the �rst column has now 1 as its
top entry and 0's below this. In the second step, we subtract the (kd − 1)-st row
from the kd-th row, then we subtract (kd − 2).row from the (kd − 1)-st row and
so on, as before except in this step we �nish at the point of subtracting the 2nd
row from the 3rd row. Continuing in this way, in the last step we subtract only
(kd − 1)-st row from the kd-th row. We shall denote the resulting matrix by D4.
It turns out D4 is upper triangular with all entries on the diagonal equal to 1.

To show this note we use (33) at every step of the above procedure. In fact, the
�nal form of D4 can be foreseen already from the �rst step, after which we obtain
a matrix that we shall denote O ∈ Matkd

. We already know the �rst column of O
is (1, 0, . . . , 0)T . From this it follows that in the second step we e�ectively work
only with submatrix of O with entries (s, t), 2 ≤ s, t ≤ kd. Since

O(s, t) =

(
kd + s− 2

kd + s− t

)
= D3(s− 1, t− 1), 2 ≤ s, t ≤ kd

using (33), we see this submatrix of O is exactly the submatrix of D3 without
the last row and the last column. Applying the second step to the displayed
submatrix corresponds to applying the �rst step to the corresponding submatrix
of D3 (the last row and column clearly have no in�uence on the previous ones).
These observations yield an inductive procedure which demonstrates the claimed
form of D4. �

Proposition 6.3. Let (T, T ′) be a normal symmetry of ∆k and suppose that, in
a standard expression for T , ϕpr(�p∇)∆r is the greatest non-zero term of T with
respect to B. Then [∇2r+1ϕpr]|� = 0.

Proof. The ordering C can be equivalently described as ϕji C ϕj
′

i′ if and only if
either i+ j < i′ + j′ or i+ j = i′ + j′ and i < i′. Thus

∆kT = T ′∆k, T = ϕpr(�p∇)∆r +
∑
i<k

i+j<r+p or

(i+j=r+p) ∧ (i<r)

ϕji (�j∇)∆i.

Note ϕpr might not be a leading term of T .
Note, `(T ) = p + r and `(∆kT ) = p + r + k. We shall discuss the terms of the

highest level in ∆kT . For this it is su�cient to apply ∆k only to level p+ r terms
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of T . That is, we need to understand the right hand side of

∆k
[
ϕpr(�p∇)∆r + ϕp+1

r−1(�p+1∇)∆r−1 + . . .+ ϕp+r0 (�p+r∇)
]
− F∆k

= ψp+r+1
k−1 (�p+r+1∇)∆k−1 + ψp+r+2

k−2 (�p+r+2∇)∆k−2 + . . .+ ψp+r+k0 (�p+r+k∇) + llt

where F is a di�erential operator. Here �llt� denotes terms of the level at most
p + r + k − 1 (with powers of ∆ strictly less than k) and ψji is of type

[
j
i

]
. Since

i < k for every ψji on the right had side, imposing the symmetry condition, each
of these terms has to vanish. This yields k di�erential conditions

ψp+r+1
k−1 (�p+r+1∇)∆k−1 = 0, ψp+r+2

k−2 (�p+r+2∇)∆k−2 = 0, . . . , ψp+r+k0 (�p+r+k∇) = 0.

Thus ψp+r+q+1
k−q−1 = 0 for q ∈ {0, . . . , k − 1}. For our purposes it turns out to be

su�cient to take q in the (in general smaller) range {0, . . . , r}. So we have r + 1
di�erential conditions. Now �x such a q; we have more explicitly

ψp+r+q+1
k−q−1 =

[
aq,0∇r+q+1ϕpr + aq,1∇r+qϕp+1

r−1 + . . .+ aq,r∇q+1ϕp+r0

]
|�

for some integer coe�cients aq,q′ , q
′ ∈ {0, . . . , r}. Via the Leibniz rule and a

counting argument, it is straightforward to verify that aq,q′ = Cr+q−q′+1(k). Recall

ψp+r+q+1
k−q−1 = 0 hence the right hand side of the previous display vanishes. Finally,

let us apply ∇r−q to both sides of the previous display. Projecting to the Cartan
component, we obtain[

Cr+q+1(k)(∇2r+1ϕpr) + Cr+q(k)(∇2rϕp+1
r−1) + . . .+ Cq+1(k)(∇r+1ϕp+r0 )

]
|� = 0.

This is a linear equation in the r + 1 variables (∇2r+1ϕpr)|�, (∇2rϕp+1
r−1)|�, . . .,

(∇r+1ϕp+r0 )|�. These variables obviously do not depend on q. That is for every q ∈
{0, . . . , r} we obtain one equation in these variables. Overall we have a system of
r+1 linear equations in r+1 variables (∇2r+1ϕpr)|�, (∇2rϕp+1

r−1)|�, . . ., (∇r+1ϕp+r0 )|�.
The integer coe�cients are aq,q′ = Cr+q−q′+1(k) = C(r+1)+(q+1)−(q′+1)(k), q, q′ ∈
{0, . . . , r} thus the (r+ 1)× (r+ 1) matrix of integer coe�cients is exactly C(k, d)
for d = k − r − 1 from (31). (Note r < k hence d ∈ {0, . . . , k − 1}.) But matrices
C(k, d) are regular according to Theorem 6.2. Therefore this linear system has
only the zero solution, i.e.

(∇2r+1ϕpr = 0)|� = 0,∇2r(ϕp+1
r−1)|� = 0, . . . , (∇r+1ϕp+r0 )|� = 0.

In particular (∇2r+1ϕpr)|� = 0, which is what we wanted to prove. �

Finally we have the key theorem of this section. By an obvious induction this
establishes the second part of Theorem 2.1.

Theorem 6.4. Let (S, S ′) be a normal symmetry of ∆k and suppose that, in a stan-
dard expression for S, ϕpr(�p∇)∆r, r < k is a leading term. Then [∇2r+1ϕpr]|� = 0.

This establishes the second part of Theorem 2.1. Note using the conformal metric,
we can view all p+ 2r + 1 abstract indices of ∇2r+1ϕpr as contravariant. Then the
projection to the Cartan component in [∇2r+1ϕpr]|� = 0 simply means taking the
symmetric trace-free part.
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Proof. Consider the coe�cients of the maximal level `(S) of S; among them, denote
by ψji the term of the highest order. In the other words, ψji is the greatest coe�cient
in S w.r.t. C. Now [∇2i+1ψji ]|� = 0 according to Proposition 6.3 hence ψji yields
the corresponding canonical symmetry (Sψ, S

′
ψ) of ∆k. Therefore (S−Sψ, S ′−S ′ψ)

is also a symmetry of ∆k.
First observe using Proposition 6.1 (iii), the leading terms of S and S − Sψ can

di�er only if ψji (�j∇)∆i is a leading term of S. But in that case we have proved
the theorem for ψji (�j∇)∆i. Therefore, it is su�cient to prove the theorem for
S − Sψ. So we can take S := S − Sψ and continue inductively.
Proposition 6.1 (ii) guarantees that the greatest term of S := S − Sψ is smaller

than the greatest term of S. Hence this is induction w.r.t. C which is �nite. �

7. Algebra of symmetries

Here we shall prove Theorem 2.5. Recall that the �nite dimensional space of
solutions of (3) may be realised as a standard linear �matrix� representation of
g = sos+1,s′+1 via the map from solutions to parallel tractors ϕ 7→ Iϕ. In the
case of conformal Killing vectors (i.e. (3) with p = 1, r = 0) the range space is g,
on which g acts by the adjoint representation. Then the identi�cation of g with
di�erential symmetries is given by the mapping g 3 Iϕ 7→ Sϕ = IA

ϕ DA, as a special

case of (24). The mapping Sϕ = IA
ϕ DA extends to

(37) g⊗ g⊗ · · · g 3 Iϕ1 ⊗ · · · ⊗ Iϕm 7→ Sϕ1 · · ·Sϕm , m ≥ 1 ,

and hence to the full tensor algebra
⊗

g by linearity.
The �rst step in the proof of Theorem 2.5 is to express the composition SϕSϕ̄ for

Iϕ, Iϕ̄ ∈ g in terms of canonical symmetries. This is done [22, Theorem 5.1] and
necessarily our results must agree with those from their construction (as uniqueness
of the low order symmetries involved is easily veri�ed). We present the details
here to keep this text self�contained and also because we derive the formulae for
all conformally �at manifolds.
Putting I := Iϕ, Ī := Iϕ̄ to simplify the notation, one has

(38) SϕSϕ̄ = IADAĪ
BDB = IAĪBDADB.

on E [w], since I is parallel. This gives an explicit and key link between the algebraic
structure of symmetries Ak and operations on the tensor algebra

⊗
g. We shall

consider the displayed operator acting on E [w] for all w ∈ R at this stage.
We need to decompose DADB into irreducible components. Using the de�nition

of DA, a direct computation shows that

DADBf =4w2WAWBf − 4wX a
AY b

Bgabf

+ 4(w − 1)X a
AWB∇af + 4wWAX b

B∇bf + 4X a
AZb

Bgab0∇b1f

+ 4X a
AX b

B(∇a∇b + wPab)f.

(39)
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>From this one easily veri�es that

1

2
(DADB + DBDA) =

1

2
(DADB + DBDA)|� +

4

n
hA0B0D2

(A1B1)0

+
2

(n+ 1)(n+ 2)
hA0B0hA1B1DADA,

1

2
(DADB − DBDA) = 3hA0[A1DB] = −2hA0B0DA1B1 .

(40)

Hence we need the irreducible components
0
, 0, and R of IAĪB, cf. (6).

Explicitly, we put

〈I, Ī〉 := −4nIAĪA ∈ R,

[I, Ī]A := 4IA
0P Īp

A1 ∈ ,

(I • Ī)BB
′
:=

4

n
IP (B ĪP

B′)0 ∈ 0

(41)

and we denote by (I�Ī)AB the trace�free part of the Young projection applied

to IAĪB. Using this notation, the projection and decomposition of IA ⊗ ĪB into

its irreducible components in , R, and 0 is given by

⊗ 3 IA ⊗ ĪB 7→(I � Ī)AB − 1

2n(n+ 1)(n+ 2)
hA

0B0

hA
1B1〈I, Ī〉

+
1

n
hA

0B0

[I, Ī]A
1B1

+ hA
0B0

(I • Ī)A
1B1

.

(42)

Using the computation above, we easily recover [22, Theorem 5.1]:

Theorem 7.1. Let ϕa, ϕ̄a ∈ Ea be conformal Killing �elds corresponding to IA :=
IA
ϕ and ĪA := IA

ϕ̄ in g = sos+1,s′+1. Then

SϕSϕ̄f = (I�Ī)ABDADBf+(I•Ī)BB
′D2

BB′f+
1

2
[I, Ī]ADAf+

w(n+ w)

n(n+ 1)(n+ 2)
〈I, Ī〉f

for f ∈ E [w], cf. (7). The four summands on the right hand side are canonical
symmetries, explicitly

• (I � Ī)ABDADB = SΦ for E (ab)0 3 Φab = ϕ(aϕ̄b)0,
• (I • Ī)BB

′D2
BB′ = SΦ for E [2] 3 Φ = 1

n
ϕaϕ̄a,

• [I, Ī]ADA = SΦ for Ea 3 Φa = ϕb∇bϕ̄
a− ϕ̄b∇bϕ

a (the Lie bracket of vector
�elds),
• R 3 〈I, Ī〉 = −4nIAĪA = −2[ϕa∇a∇bϕ̄

b + ϕ̄a∇a∇bϕ
b] + n(∇aϕ

b)(∇bϕ̄
a)−

n−2
n

(∇aϕ
a)(∇bϕ̄

b)− 4nPabϕ
aϕ̄b.

In all these cases, the section Φ is a solution of the corresponding equation (3).

Proof. The statement puts together the previous computations. Following (38),
we need to decompose IAĪBDADB into canonical symmetries. This is provided
by contracting right hand sides of (42) and (40). Using in addition DADAf =
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−2w(n+w)f for f ∈ E [w] (which easily follows from (39)), the right hand side of
SϕSϕ̄ in the display above follows.
The components I � Ī, I • Ī, [I, Ī] and 〈I, Ī〉 are parallel (and irreducible) thus

their projecting parts Φ are solutions of the corresponding equation from the family
(3). To prove the theorem, it remains to identify how are these solutions are built
from ϕa, ϕ̄a ∈ Ea. Note

(43) IA = YA
aϕ

a +
1

2
ZA

a∇a0

ϕa
1

+
1

n
WA∇aϕ

a + XA
a [

1

n
∇a∇bϕ

b + Pabϕ
b]

and similarly for ĪA [33]. Now the explicit form of such Φ for irreducible com-
ponents of IA ⊗ ĪB is easily obtained from (41) for I • Ī, [I, Ī] and 〈I, Ī〉. Since
1
2
(IAĪB + IBĪA) has the projecting part ϕ(aϕ̄b), the case I � Ī follows by irre-

ducibility. �

To �nish the proof of Theorem 2.5, observe the following. First we have an
associative algebra morphism ⊗

g→ Ak

determined by (37). That this is surjective is an easy consequence of Theorem
2.4 since the canonical symmetries Sφ of (24) clearly arise in the range of (37).
We want to �nd all corresponding relations, that is identify the two sided ideal
annihilated by this map. The ideal certainly contains (8), as follows from Theorem
7.1 with w = −n

2
+ k. That it also contains �2k is due to the following result.

Lemma 7.2. Assume I ∈ �2k is parallel. Then I = Iϕ for ϕ ∈ E [2k] and
Sϕ = ϕPk : E [−n

2
+ k]→ E [−n

2
+ k].

Proof. I ∈ �2k means IA1A′1···AkA
′
k ∈ E (A1A′1···AkA

′
k)0 and I = Iϕ for ϕ ∈ E [2k] is

due to the irreducibility of I and the fact that is parallel. Then

Sϕ = I
A1A

′
1···AkA

′
k

ϕ D2
A1A

′
1
· · · D2

AkA
′
k
.

Now observe D2
(CD)0

= −X(CDD)0 and X(CDD)0 = D(CXD)0 , cf. (18). On the

other hand D(A1 · · ·DAk)0 = (−1)kX(A1 · · ·XAk)0Pk on E [−n
2

+ k] [29, 32]. Thus
D2
A1A

′
1
· · · D2

AkA
′
k

= XA1
XA′1
· · ·XAk

XA′k
Pk on E [−n

2
+ k]. The rest follows from the

relation between ϕ and Iϕ in (23). �

We have found the generators of the ideal in
⊗

g described in Theorem 2.5; it
remains to show that this ideal large enough to have Ak as the resulting quotient.
Essentially we follow [20, 22] where cases k = 1 and k = 2 are studied. We assume
k ≥ 1 here. Since we know Ak, as a vector space, from (4), it is su�cient to
consider the corresponding graded algebra (i.e. the symbol algebra of Ak.) The
corresponding graded ideal contains I1⊗ I2− I1� I2− I1 • I2 for I1, I2 ∈ g, cf. (8),
hence it contains g∧ g. Therefore we can pass to

⊙
g and we write I for the ideal

in
⊙

g which is the image of the ideal of Theorem 2.5. We claim that as a graded
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structure Ak =
⊕
Ak,t where the Ak,t are de�ned as the submodules satisfying

Ak,t =
{
X ∈

t︷ ︸︸ ︷
· · ·
· · · s.t. trace(. . . (trace︸ ︷︷ ︸

k

(X)..)) = 0
}
⊆
⊙

tg.

The traces are taken via the tractor metric and note that the trace condition arises
from Lemma 7.2 above. As a vector space this is the right answer as, by standard
representation theory, Ak,t =

⊕
j+2i=tK

j
i , t ≥ 1. To �nish the proof, we need to

show
⊙t

g = Ak,t⊕It (as vector spaces) where It = I ∩
⊙t

g, t ≥ 1. This is based
on the following

Lemma. Assume t ≥ 3, k ≥ 1. Then(
⊗Ak,t−1

)
∩
(
Ak,t−1 ⊗

)
=

{
Ak,t t 6= 2k

Ak,t ⊕�2k t = 2k.

Proof. The case t < 2k follows from [21, Theorem 2] or can be easily checked
directly. Assume t > 2k. The inclusion �⊇� is obvious. To show �⊆� consider the
tensor FA1...At in the left hand side of the display. Then

FA1...Ai...Aj...At = FA1...Aj...Ai...At

for any 1 ≤ i < j ≤ t. From this it easily follows that the skew symmetrization
over any three indices of F is zero. (This and the last display also follow from
[21, Theorem 2].) Now any composition of k traces applied to F a�ects 2k indices
among 2t indices A0

1, A
1
1, . . . , A

0
t , A

1
t , i.e. at most 2k form indices among A1, . . . ,At.

Thus there is a free form index Ai (as t > 2k) and the inclusion �⊆� follows from
the symmetry given by the previous display.
Assume t = 2k. Following the previous case �⊆�, the di�erence appears only

if a composition of k traces a�ects all 2k form indices of F . After taking of such
composition of traces we obtain a tensor in

⊙t and one easily sees this tensor is
trace free. On the other hand, for any symmetric trace free tensor GA0

1...A
0
2k ∈ �2k

one has

(44) GA0
1...A

0
2khA

1
1···A1

2k ∈
(
⊗Ak,t−1

)
∩
(
Ak,t−1 ⊗

)
which can be easily veri�ed by direct computation. Here hA

1
1···A1

2k = h(A1
1A

1
2 · · ·hA1

2k−1A
1
2k)

and recall we implicitly skew over the couples A0
iA

1
i for 1 ≤ i ≤ 2k. �

The �nal step is to use that for each s, there is (by standard theory) a projection
�sg → Ak,s and that the induced projections Pt :

⊙t
g → g ⊗ Ak,t−1 and Qt :⊙t

g→ Ak,t−1⊗ g have kernel in, respectively g⊗It−1 and It−1⊗ g (and hence in
both cases in It) where for each non-negative integer s, Is = I ∩

⊙s
g. Therefore,

by obvious dimensional considerations,

(45)
⊙

t = (imPt ∩ imQt)⊕ (kerPt + kerQt), t ≥ 3

and the claim above and then Theorem 2.5 follow by induction.
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