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We define natural operators of Laplace type for a Weyl manifold which transform
conformally. We use the asymptotics of the heat equation for these operators to
construct global invariants in Weyl geometry.

0. Introduction

Relations between conformal and projective structures are of particular interest
in both mathematics and in mathematical physics. Weyl (1922) attempted a uni-
fication of gravitation and electromagnetism in a model of space-time geometry
combining both structures. His particular approach failed for physical reasons but
his model is still studied in mathematics (see for example Folland (1970), Higa
(1993), Pedersen & Swann {1991)) and in mathematical physics (see for example
Hitchin (1982)).

In this paper, we shall investigate the close relations between a Weyl geometry
and the so called Codazzi structure which is constructed from a conformal and a
projective structure using the Codazzi equations. We shall also study a class of
operators of Laplace type on Weyl manifolds. We shall investigate their properties
under gauge transformations and the asymptotic expansion of the associated heat
equation trace,

Let € be a conformal class of semi Riemannian metrics on a smooth manifold M
of dimension m > 2. A second order partial differential operator D is said to be of
Laplace type if the leading symbol of D is given by h € C. Let C°(M) be the space
of smooth positive functions on M this is a group under pointwise multiplication
and will be our gauge group. This group acts on C; if 3 € CP(M) and if h € C,
then h — gh = hf3. We suppose given some auxiliary geometric structure S on
which C®(M) also acts. For h € C and s € S, we assume given a natural operator
D = D{h,s} on M which is of Laplace type. Let D +— gD := D{gh,gs} and let
M(B) be function multiplication. An operator D is said to transform conformally
if

gD = M(B*oDoM(B fora+b=—1. (0.1)
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2 N. Bokan and others

The conformal Laplacian is an example of such an operator; there is no auxiliary
geometric structure which is required. Let d be the exterior derivative and let &
be the co-derivative; this is the adjoint of d relative to the metric h. Let *A := §,d
on C®(M) be the ordinary Laplacian. Let 7(h) be the scalar curvature of A and
let *0 := "A + (m — 2)7(h)/4(m — 1) be the conformal Laplacian. Then *0
transforms conformally, see for example Branson & Orsted (1986):

0= M(B7'7*) o "Do M(B%) for a = (m ~ 2)/4. (0.2)

Let D be an operator of Laplace type. Suppose that h is positive definite. If
t > 0, the operator et is of trace class in L? and as ¢ | co, there is an asymptotic
expansion of the form

Tr2etP & Than, (D)t—™/2 (0.3)

see for example Gilkey (1994). The invariants a,(D) are locally computable. If
D transforms conformally, the conformal index theorem of Branson & Orsted
(1986) and of Parker & Rosenberg (1987) shows that a,m(D) = am(gD) so this
is a gauge invariant of the geometric structures involved if h is positive definite.
[t is possible to do an analytic continuation and extend these invariants to the
semi Riemannian category as well.

This paper deals with Codazzi and Weyl structures; these are defined in §1. In
82, we will define several natural operators of Laplace type for these structures
which transform conformally. In §3, we will compute the invariants of the heat
equation for m = 2 and for m = 4 to illustrate the global invariants which arise.

It is a pleasant task to thank M. Kriele and V. Perlik for helpful discussions
on Weyl geometries.

1. Weyl and Codazzi Structures

We begin our discussion by introducing some notational conventions.

1l.a Weyl manifolds: Fix a torsion free connection "V, called the Weyl con-
nection, on the tangent bundle of M. Let h be a semi-Riemannian metric on M.

We assume there exists a 1-form 6§ = éh s0 that
WOh =26, @ h. (1.1)

Let C = C{W} be the conformal class defincd by h and let 7 = T{W} be the

corresponding collection of 1-forms ;. We shall identify metrics which differ by
a constant positive factor so there is a bijective correspondence between elements
of C and of 7. We will call the triple W := ("WV,C,T) a Weyl structure on M
and we will call (M, W) a Weyl manifold. Let

h— gh := Bh and 6 — 30 := 6 + dIn /2 for § € CP(M) (1.2)

define an action of the gauge group. We note that equation (1.1) is preserved by
gauge cquivalence and that C°(M) acts transitively on C and on 7.

Let u, v, ... be vector fields on M and let "Vﬁbe the Levi-Civita connection of
h. Let 0 be the vector field dual to the 1-form 6, i.e. h(w,0) = 6(w). Let

alu,v,w) := h((VV, = PV ), w).

Phil. Trans. R. Soc. Lond. A (1996)



Weyl Geometry 3
Since "'V and "V are torsion free, a{u,v,w) = a(v,u,w). Since *Vh = 0 and
since YWV satisfies equation (1.1), we have
(v, v,w) + afu, w,v) + 20(u)h{v, w) = 0
a(u,v,w) = —B(u)h(v,w) — O(v)h(u, w) + 6(w)h(u,v) (1.3)
W ="V - fu)y - B(v)u + h(u,v)d.
Conversely, if equation (1.3) is satisfied, then WV = WV{h,@} is a torsion free

connection and equation (1.1) is satisfied. We generate a Weyl structure from

an arbitrary semi-Riemannian metric 2 and from an arbitrary 1-form é by using
equation (1.3) to define *Y¥V and using the action of C$°(M) defined in equation
(1.2) to generate the classes C and T; see Weyl (1922) or Folland (1970) for

+ further details.

1.b Curvature: We use the sign convention of Kobayashi & Nomizu (1963). Let
WE .= dfy,
WR(u,v) =WV NV, =WV NV, -V, (1.4)
WK (u,v)w := WR(u,v)w — WF(u,v)w.

By equation (1.2), " F is a gauge invariant. The curvature " R of "'V and the
Weyl directional curvature " K are also gauge invariants. Let A € C(W). Then

h(z," R(u,v)z) = WF(u,v)h(z, 2),

VK (u, v)w, w) = 0,

h(WF(u,v)w, z) = h(VF(u,v)z,w),

R(WK (u,v)w, 2) = ~h("W K (u,v)z,w).
Let HP(M) denote the de Rham cohomology groups of M. If WF = 0, then
[61) € H' (M) is a gauge invariant.

Theorem 1.1. (Higa (1993)). The following assertions are equivalent:

(i) We have WF(W) =0 and [8,] =0 in H'(M).

(ii) There exists h € C{W} such that "YVh = 0; i.e. WV is the Levi-Civita
connection of h.

1.c Projective equivalence: Two torsion free connections V and V are said to
be projectively equivalent if their unparametrized geodesics coincide or equiva-
lently (sce Eisenhart (1964)) if there exists a 1-form © so that

Vot — Vyu = O(u)v + O(v)u. (1.5)
Let Ric(u,v) = Tr(w — R(w,u)v) be the Ricci curvature of V. Let
p(u,v) = (Ric(u,v) + Ric(v,u))/2

be the symmetrized Ricci curvature. A connection V is said to be Ricci symmetric
if, and only if, Ric = p. Note that V is Ricci symmetric if, and only if, V locally
admits a parallel volume form; see Pinkall et al (1994).
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4 N. Bokan and others

1.d Codazzi manifolds: A torsion frec connection *V and a semi-Riemannian
metric h are said to satisfy the Codazzi equation or to be Codazzi compatible if

(V) (v,w) = (*Voh)(uy). (1)
A projective class P of torsion free connections and a conformal class € of semi-
Riemannian metrics are said to be Codazzi compatible if there exists *V € P and
h € C which are Codazzi compatible. We extend the action of the gauge group
to define "V — 5V where 3V is defined by taking © = dInf in cquation (1.5);

5Vuv ="V + dlnf(u)v + dln f(v)u. (1.7)

The Codazzi equations are preserved by gauge equivalence. A Codazzi structure
K on M is a pair (C,P) where the conformal class of semi-Riemannian metrics C
and the projective class P are Codazzi compatible; we shall call (M, K) a Codazzi
manifold.

Suppose that (h,*V) are Codazzi compatible. Let € := *V — *V be a (1.2)
tensor and let C be the associated cubic form. Since *V and "V are torsion free,
C is a symmetric (1.2) tensor and C(u,v,w) = C(v, v, w). The Codazzi equation
(1.6) and this symmetry then shows C"(u,v,w) = C'(w,v,u). Thus € is totally
syminetric.

Conversely, let 2 be a semi-Riemannian metric and let € be a totally symmetric
cubic form. Let *V := #V 4+ C where C is the associated symmetric (1.2) tensor
field. Since C is symmetric, *V is torsion free and the Codazzi equations (1.6)
are satisfied. Let V := #V — C. Note that (*V, h, V) form a conjugate triple, i.e.

wh{v,w) = h(Vyv,w) + h(v,"V,w).

l.e Relating Codazzi and Weyl structures: Let W be a Weyl structure.
We use the gauge group C°(M) to generate a Codazzi structure as follows. Let

C = C{h,8} and ¢ = C{h,0} := h(C(u,v),w) be the symmetric (1.2) tensor
field and associated totally symmetric cubic form:

Clu,v) := O(w)v + 6(v)u + hiu,v)8,

Clu,v,w) := O(u)h(v, w) + G(v)h{w,w) + H(w)h(u,v). (1.8)
We note that we can recover 8 from equation (1.8);
B(u) = (m + 2)" ' Tr(v = Clu,v)). (1.9)

If B € CP(M), let 4C = C{gh, g6} and 5C = C{gh, 6}.

Lemma 1.2. Let h be a semi-Ricmannian metric on M and let 0 be a1 form.
Let WV = WV{h,8} and C = C{h,8} be the associated Weyl connection and
symmetric (1.2) tensor field. We use h and 6 to generate connections V = V{h, 6}
and *V = *V{h, é} with the following properties:

(i) The connections *V := "V 4+ C and V := V — C are torsion free, and
(V,h,*V) forms a conjugate triple.

(ii) We have "WV and *V are projectively equivalent.

(iii) We have h and *V are Codazzi compatible.

(iv) We have *V{gh, 38} = 3(*V{h,8}).

Phil. Trans. £, Soc. Lond. A (1996)



Weyl Geometry 5

Proof. The first assertion follows from the total symmetry of the tensor C.
Equations (1.3) and (1.8) imply

WY 0 — *Vyv = —20(u)v — 20(v)u . (1.10)

o WV, and *V are projectively equivalent. Since (*Vyh)(v,w) = —2C (1, v, w),
the Codazzi equation (1.6) now follows from the total symmetry of C. We usc
equations (1.2) and (1.10) to complete the proof by checking equation (1.7) holds:

*V{gh, g0}uv — *V{h,0},v = 2(56 — 8)(w)v + 2(50 — 8)(v)u
=dInf(u)v +dlnfv)u. -

If W is a Weyl structure, we can use Lemmna 1.2 to define an associated Codazzi
structure X{W}. Conversely let K be a Codazzi structure. Let

C:=*V ="V and §(u) := (m + 2)"Tr(v » C(u,v)).
Let W = W{h, 8} be the associated Weyl structure defined by equation (1.3). If
B € CL(M), let gh = Bh and let 3(*V) be defined by equation (1.7). Let v; be a
local orthogonal frame; h(v;,v;) = 0 for i # j. Let & =dln B. Then
8(u) = Sih((*Vy — "V )vi, vi) /h(vs, vi)
= Lih(* Vi, v:) [h(vi, v:) — Biw(h(vi, vi))/2h(vi, vi).
p0(w) — 0(w) = Bih(5Vu — *Va)vi, v;) /2h(vi, v;)
= Ei(u(Bh(vi, v:))/ Bh(vi, v:) — w(h(vi, v:)) /2h(vi, v:))
= %;6(u)h(v, vi)/2h(vi, vi)
+O(vi)h(u, v;) /2h(vi,v;) — mO(u)/2 = O(u)/2.
This is the transformation law given in equation (1.2} and thus the Weyl structure
is invariantly defined. Since 8{h,C{h,0}} = 6, W{K{W}} = W so we may
recover the Weyl structure from the associated Codazzi structure. However, if

we start with a Codazzi structure K, then C{h,8{h,C}} # C in general so
K{W{K}} # K. For a given Codazzi structure K, let

O(h)(x) := (m + 2) "' Tr(v — C(u,v)) where C :=*V —*V.

Use equation (1.3) to generate a Weyl structure W from {h, 8}, let C, := Ci(h, 6)

be the symmetric (1.2) tensor defined by equation (1.8), and let ¥ := C) — C.
Then Tr(v — y(x,v)) = 0i.e. v is apolar. The set of all Codazzi structures (C, P)
giving rise to a given Weyl structure is parametrized by the apolar (1.2) tensors.

2. Second order differential operators on Weyl manifolds

2.a Relating curvatures: Let V be a torsion free connection and let h be a

semi-Riemannian metric on M. Let 7(h, V) := Tr,Vp be the contraction of the

Ricci tensor of V. We let 7(h) = 7(h,”V). Let §;, be the co-derivative defined by

h; 61,0 = —("V.6)". Let ||0]]? be the norm? of §. We omit the proof of the following

Lemma as it is a straightforward application of formulas from Eisenhart (1964).
Lemma 2.1.

Phil. Trans. R. Soc. Lond. A (1996)



6 N. Bokan and others

(i) Let h be a semi-Riemannian metric on M and let § be a 1 form. Let
WG = WY{h,§} be the associated Weyl connection, let C = C{h,0} be the
associated symmetric (1.2) tensor field, and let *V = "V + C be the associated
connection which is projectively equivalent to "WV. Then

(a) T(h,"YV) = 7(h) — 2(m — 1)8,8 — (m — 1)(m — 2)||0|}?
(b) 7(h,*V) = 7(R) + (m — 1)(m + 2){|8]]3.
(ii) Let V and V be projectively equivalent. Let é;vu = u(6(v)) — O(V,v)
denote the components of the covariant derivative VO. Then
(a) R(u,v)w = R(u,v)w + 6.,v — 6.yt + dO(u, v)w + B(v)O(w)u
—O(u)O(w)v. . ) .
(b) plu,w) = plu,w) — (m — 1)(Onw + Ouu)/2 + (m — I)C:)(u)@(w).
2.b The normalized Hessian: Let V be a torsion free connection on the tangent
bundle of M. Let S?(T* M) denote the space of symmetric (0.2) tensors. We define

the Hessian H = H{V}, the normalized Hessian H = H(V}, and the trace of the
normalized Hessian D = D{h, V} by

H(f)(u,v) == u(v(f)) — df (Vyv) : CP°(M) - S*(T*M),
H(f) = H(f) + (m = 1) fp: C®(M) — SHT* M), (2.1)
Df v= ~Try(H) : C°(M) - C®(M).

There is another wa.;.: to think of the operator D which is useful. If ¥ is a 1
form, then §pp = —AY"Vrh; = —Trp V4. We generalize this operator to define

6nv = —Trp"V and the associated Laplacian A?le = dy,vd. Then
Vdf (u,v) = u(df (v)) — df (Vuv) = H(f Hu,v),

D= A?L,V - 7(h,V)/(m - 1).
Thus D generalizes the conformal Laplacian to Weyl and Codazzi geometry.

Lemma 2.2. Let (R,p, H,H,D) and (gR, gp, pH, g'H, 3D) be defined by (h, V)
and (gh, gV), where V is torsion free.

(i) pR(u,v)w = R(u,v)w + BH(B71) (v, w)u — BH(B7")(u, w)v.
(i) pp=p+ (m—-1)BH(B).
(iii) B~ s H(Bf) = H(f) - fBH(B71).
(iv) B~ gH(Bf) = H(f).
(v) sD(f) =D(B'f).
Proof. Let ¢ = Inp, let ¢y = u(), let dyy = (uv)(¢), and let © = dIn 8. Then
(G0 — B(W)O(W))v = (buw — Pvew — OW)O(w))v
= —BH(B™) (v, wv
Since d® = 0 and (:);uw = é;wu, (i) and (ii) follow from Lemma 2.1. We compute:

ﬁ_lﬂH(ﬂf)(“:'”) = ﬁ_l(ﬁf)(uv) - ﬁ_l(ﬁvuv)(ﬁf)
= fuv + ufv + Gufu + Gunf + dudbuf — ¢(Vuu)f = f(Vuv)
_2¢u¢vf - Qbufu - ¢ufu

Phil. Trans. R. Soc. Lond. A (1996)



Weyl Geometry 7

= H(f)(w,v) = FBB™ Vuw) + FB(Vuv)B™
= H(f)(u)v) - fﬁH(ﬁ—l)(EL,U).

This proves (iii); (iv) follows from (iii). We complete the proof by computing

sD(BF) = —Trpn(gH(BS)) = =B~ Trn(gM(BS)) = —Tra(H(S)) = D(f). -

2.c Natural operators: Let K be a Codazzi structure, let (h,*V) € K, and
let "WV be the Weyl connection defined by K. We recall the definition of the
normalized Hessian from §2.b and define:

(i) Let *D :=D{h,*V} be the trace of the normalized Hessian of *V.

(ii) Let WD := D{h,"YV} be the trace of the normalized Hessian of V'V.

(iii) Let WA := —Tr,"WVd be the scalar Laplacian of "VV.

(iv) Let P0:= —~Trpdpd + (m — 2)7(h)/4(m — 1) be the conformal Laplacian.
The following Lernma is now immediate:

Lemma 2.3. The y%perators *D, WD, WA, and " transformn conformally:
(i) D= M(BYD.

(i) 3D =*DM(F).

(iii) A = M(B~YVA.

(iv) B0 = M(B~1")"OM(8°) for a = (m —2)/4.

2.d Heat equation asymptotics: Suppose that h is positive definite. We let

z = (z!,...,2™) be local coordinates on a closed manifold M of dimension m. Let

0; = 0/87". Let
D = ~(h"8;0; + A*9, + B) (2.2)

be an operator of Laplace type on C®(M) where A*¥ and B are smooth functions
on M. The invariants a,(D) defined in equation (0.3) are locally computable;
they vanish for n odd, see Gilkey (1994) for details. Let dvy be the measure
determined by h. For n even, there exist smooth local invariants a,(z, D) so that

an(D) = [y, an(z, D)dyvy(z). (2.3)

We refer to Gilkey (1975, 1994) for the proof of the following assertion giving
combinatorial formulas for these invariants. Let T(h), ||*p!|2, and || R||2 be the

scalar curvature, the norm? of the Ricci curvature, and norm? of the full curvature
tensor for the Levi-Civita connection defined by h.

Lemma 2.4. Let h be a Riemannian metric. Let D be an operator of Laplace
type as given in equation (2.2). Let #T';;* be the Christofel symbols of the Levi-
Civita connection "V. There exists a unique connection V = V{D} on C®(M)
and a unique function E = E{D} € C®(M) so that D = —(Ty(V?) 4+ E). Let
w=w{D} and Q@ = Q{D} be the connection 1-form and curvature of V. Then

(i) wi = hij(AT + Tk /2.

(ii) E=B— h"i(é),-wj + wiw; + h[‘,’jkwk).

(iii) ag(z, D) = (4m)~™/2.

(iv) ag(x, D) = 6~ H{dxw)~"/2(7(h) + 6E).

(v) as(z, D) = 360~ (47)~"™/2{607(h) 4k + 607(h)E 4 180E?

+3099%;%; + 127(h) e + 57(R)% — 2]|"p]|2 + 2|*R||2}.

Phil. Trans. R. Soc. Lond. A (1996)
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We compute the endomorphism £ and the curvature €2 for the four natural
operators discussed in Lemma 2.3.

Lemma 2.5. We have
(i) E{*D} = {(m + 2)7(h,"YV) = (m -~ 2)7(h)}/4(m — 1).
(i) Q{*D} = (m+2)WF/2
(iii) E{’"D} = —(m — 2)6h9/2 — (m —2)? ||9||h/4 + (m — 1) (h, V).
(iv) Q{"D} = —(m - WF/2
(v) E{WA} = —(m—2)6,0/2—(m—2)? |i6||h/4 and U{WAY} = —(m-2)WF/2.
(vi) E{"O} = —( —2)7(h)/4(m — 1), and Q{"0} = 0.
Proof. Let 9; be a local coordinate frame for the tangent bundle. We compute
H(f)(85,05) = 8:05f — T 0 f
Trp(*H + (. — 1)""p) = —hY(8,0; - *rijkak + (m = 1) py5).
Consequently A*{*D} = ~h"*T;*¥ and B{*D} = (m — 1)"!7(h,*V). Therefore
w{*D}; = hy ¥ (*Ty? —*T?) /2 = —h,-jh“c*kﬁ/z = —(m + 2)6;/2.
We compute Q{*D} using equation (1.4). We compute E{*D}:
E{*D}=B - W (s + wiw;)
= 7(h,"V)/(m = 1) = (m + 280/2 ~ (m + 2?|10l7 /4
= 7(h)/(m = 1)+ (m + 2|0} = (m -+ 2)8u0/2 — (m + 2)%(|][7/4
= {47(h) + (m + 2)(m — 1)(—26,8 — (m — 2)||0][2)} /4(m ~ 1)
= {47(h) + (m + 2)(7(h, Y V) = 7(h))}/4(n — 1).
We use equation (1.3} and argue as above to see
w{D}i = w{W A} = hihH (" = W) /2
= —hihF a2 = —(m - 2)8;/2.
The computation of £ and © for WD and " A is now immediate. The connection

defined by éxd is flat and the en(lomorplnsm (leﬁned by dpd is zero. Thus we have
that Q{*0} = 0 and E{"0} = —(m — 2)7(h)/4(m — 1). [ ]

3. Invariants of Codazzi and Weyl structures

3.a The conformal index theorem: We refer to Branson & Orsted (1986) and
to Parker & Rosenberg (1987) for the proof of the first assertion in the following
Lemma. The second assertion follows from the first assertion and from Lemma

2.3.

Lemma 3.1.
(i) Let D be an operator of Laplace type. Let gD = M(%) o D o M(87172).
Then an(pD) = am (D) and ampm_2(z, gD) = B/ 2a,,_4(z, D).

(ii) We have that a.,(*D), am (YD), an (Y A), and a,,(*0) are gauge invariants
of a Codazzi structure K.

Phil. Trans. R. Soc. Lond. A (1996)



Weyl Geometry 9

3.b Heat invariants: We apply Lemma 2.4 in dimensions m = 2 and m = 4; we
refer the reader to Gilkey (1975) for the formulas which would permit a similar
calculation in dimension m = 6. Let x(M) be the Euler-Poincare characteristic
of M. The Chern Gauss Bonnet theorem yields

xX(M?) = (am)~" [y 7(h)(z)dvn(z)
x(M*) = (327T )7 Sy AP RIE = All*pll; + 7(R))}()dun(2)
Theorem 3.2. Let dim(M) = 2. Then
(i) a2(*D) = x(M)/6 + (4m) ™2 [y, 7(h; WV (x)dwy, (z).
(i) az("WD) = x(M)/6 + (4m)~™/2 [, 7(h, W V) (z)dup(x).
(iii) az("WA) = x(M)/6.
(iv) a2("D) = x(M)/6.
Proof. If m = 2, then E{*D} = 7(h,"WV). Thus

ax(*D) = (47)71/6 [y {7(h) + 67(h,WV)}(z)dv(z).
This proves the first assertion, the others follow similarly. |

Theorem 3.3. Let dim(M) = 4. Let *W be the Weyl conformal curvature.
Then

(i) aa("D) = —x(M)/180 + (4m)~2(360)~" [, (3I1*W [} + 270" F||}
+457(h,"WV)?}duy(z).

(i) as(D) = ~x(M)/180 + (4m)2(360) 7" [, {3|I"WII; + 30J|" F |}
+457(h, WV 2} dup ().

(iii) aa(*WA) = —x(M)/180 + (4m)~2(360) " [, {3[/"W I} + 301" Flj
+57(h, WV)2}dup(z).

(iv) as(*0D) = —x(M)/180 + (4m)~2(360)~" [y, {31"W||2}dvs(z)

Proof. We use Lemmas 2.4 and 2.5. Let £ == ||*R||2 — 4|{*p||2 + T(h)2 be the

normalized integrand of the Chern Gauss Bonnet theorem in dimension 4. We
complete the proof by computing:

IFWIIE = [IPRIE — 211Ppll} + ()2 /3, 21 RII; - 2I"ll} = 3*W — €,

E{*D} = (37(h,"WV) —~ 7(h))/6, E{’YD} = (37(h,WV) — 7(h))/6,

E{"A} = (r(h,VV) — 7(h))/6, E{"D} = —7(R)/6,

57(h)? + 607(R)E{*D} + 180E{*D}? = 457(h,WV)?,

57(h)% + 60T(R)E{*YD} + 180E{*"D}? = 457(h, W V)2,

57(h)2 4+ 607(R)E{W A} + 180BE{" A}? = 57(h,WV)?,

57(h)? + 607 (h)E{*0} + 180E{*0}? = 07(h, "V V)?,

301{* DY} = 2701V F I, 30112 D[} = 30| F|I3,

30[[{* A = 301" FII}, 30[12{"0}[7 = 0. u
Remark 3.4. We can illustrate Lemma 3.1 by computing

az(z,*D{ph, g0}) = B~ az(z,* D), as(z, W D{gh, s6}) = B~ az(z,"" D),

ag(z, "W A) = 0, and az(z,"0) = 0.
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3.c Global invariants: If f is a scalar invariant, let f{M] := [,, f(z)dvy(z).
The Euler characteristic is a topological invariant of M which does not depend
on the Codazzi structure. The following Corollary is now immediate:

Corollary 3.5.

(i) The invariants 7(h,"WV)2[M], |V F||2[M], and ||*W||2[M] of a Weyl struc-
ture on M are determined by x(M) and by the spectrum of the operators *D,
WD, and WA.

(ii) We have 32m2x(M*) > 457(h, "W V)2[M]+270||"V F||2 [ M)~ (47)?360a4(* D)
with equality if, and only if, the class C is conformally flat.

(iii) We have 32rn%x(M*) > 457(h, W V)2 [M] + 3||*W||2[M] — (47)?360a4(*D)
with equality if, and only if, the length curvature WF = 0.

Remark 3.6. We can use the formulas of Theorems 3.2 and 3.3 to extend the
invariants a,, from the Riemannian to the semi-Riemannian category; this can
be done for any m.

Research of N. Bokan partially supported by the DFG project “Affine differential geornetry”
at the TU Berlin (Germany) and by the Science Foundation of Serbia, Project #042.

Research of P. Gilkey partially supported by the DFG project “Affine differential geometry”
at the TU Berlin (Germany), by MPIM (Germany), and by the NSF (USA).

Research of U. Simon partially supported by the DFG project “Affine differential geometry”
at the TU Berlin (Germany).

References

Bokan, N., Gilkey, P. & Simon U. 1994 Applications of Spectral Geometry to Affine and Pro-
jective Geometry. Contribution to Algebre and Geometry 35, 283-314.

Branson, T. & Gilkey, P. 1990 The asymptotics of the Laplacian on a manifold with boundary.
Comm. in PDE 15, 245-272.

Branson, T. & Orsted, B. 1986 Conformal indices of Riemannian manifolds. Comp. Math. 60,
261-293.

Eisenhart, L. 1964 Non-Riemannian geometry AMS Colloguium Publications, 8, 5th printing.
Providence RI: American Mathematical Society.

Folland, G. B. 1970 Weyl manifolds. J. Diff. Geom. 4, 145-153.
Gilkey, P. 1975 The spectral geometry of a Riemannian manifold. J. Diff. Geo. 10, 601-618.

Gilkey, P. 1994 Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem,
2nd edn. Boca Raton Florida: CRC Press (ISBN 0-8493-7874-4).

Higa, T. 1993 Weyl manifolds and Einstein-Weyl manifolds. Comm. Math. Univ. Sancti Pauli
42, 143-160.

Hitchin, N. J. 1982 Complex manifolds and Einstein’s equation Springer Lecture notes 970,
73-99.

Kobayashi, S. & Nomizu, K. 1963 Foundations of Differential Geomeiry vol. I. New York: Intersc.
Publ.

Parker, T. & Roscnberg, S. 1987 Invariants of conformal Laplacians. J. Diff. Geo. 25, 199-222.

Pedersen, H. & Swann, A. 1991 Riemannian submersions, four manifolds, and Einstein-Weyl
geometry. Proc. London Math. Soc. 66, 381-399.

Pinkall, U., Schwenk-Schellschinidt, A. & Simon, U. 1994 Geometric methods for solving Codazzi
and Monge-Ampere equations. Math. Annalen 298, 83-100.

Simon, U. 1995 Transformation techniques for PDE’s on projectively flat manifolds. Result Math.
27, 160-187.

Weyl, W. 1922 Space-time matter. Dover Publ.

Phil, Trans. R. Soc. Lond. A (1996)



