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Calculating p—adic orbital integrals on groups of
symplectic similitudes in four variables

Michael Schroder

In this paper we address the problem of calculating orbital integrals on groups of symplectic
similitudes over a local field. Orbital integrals usually appear when one wants to count the
number of elements of arithmetic objects by analytic means. For instance, as a consequence
of recent work of Kottwitz [KoS], the number of points mod p of certain moduli spaces
of Abelian varieties over the field of rational numbers can be counted using adelic orbital
mtegrals on the groups of symplectic similitudes. This fits into a bigger picture. To certain
linear groups over number fields, in particular to the groups of symplectic similitudes,
there are associated Shimura varieties which are algebraic varieties of both analytical and
arithmetic nature. Since these varieties are analytical objects, there is an automorphic L—
function in the sense of Langlands associated to them. On the other hand, being arithmetic
objects they have a Hasse—Weil zeta function. Langlands conjectured essentially that these
two functions should be equal, and he initiated the approach to prove this conjecture via
the trace formula. Suitably modified, the conjecture was recently verified by this method
for the groups of unitary similitudes in three variables {[M]. The most intriguing difficulties
encountered in the approach via the trace formula are caused by the local orbital integrals.
It is in fact the orbital integrals over semisimple conjugacy classes which appear here and
are to be dealt with.

A typical local orbital integral is defined as the integral of a Hecke operator over a conjugacy
class in a reductive group. Recall that a Hecke operator is a smooth, compactly supported
function on the group, bi-invariant under a particular maximal compact subgroup. In
Langlands theory one furthermore seeks to replace systematically plain orbital integrals
by certain stable orbital integrals. While orbital integrals are usually very hard to handle,
stable orbital integrals are determined by invariant data and are easier to deal with.

In the first part of the paper we classify the stable conjugacy classes of maximal tori in
the groups of symplectic similitudes GSp(2n) and describe a set of representatives for
them. We have to embed these tori into GSp(2n). This we approach from a more general
perspective. Taken up to conjugacy these embeddings are parametrized by the conjugacy
classes within the corresponding stable conjugacy class. A problem is that the stable
conjugacy class C of such a torus consists in general of several conjugacy classes. We
construct for C' a group which contains any of the conjugacy classes in C'. On these groups
we base a two-step method to calculate explicitly local orbital integrals in sections three
and two. In section four we calculate an orbital integral using this method for one class
of anisotropic tori in GSp(4). We also find evidence for the qualitative description of the
properties of orbital versus stable orbital integrals given above.

0. Notation: With the exeption of the first section, F' will denote a non—archimedean
local field with uniformizing element m, ring of integers Op and residue field k(F). We
write U(F) for the set of units in Op. The order on F is normalized such that ord 7 = 1,
and |r| = 1/#k(F) = q7t.

Let I be the involution on M (2n, F), the 2n by 2n matrices with coefficients in F, defined
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by

o . (0 -E,
Hg)=J g-J with J = (En 0 ‘

The group GSp(2n, F) of symplectic similitudes is the set of all g in M(2n, F') such that
tg-J g =u(g)-J or equivalently such that I{g) - ¢ = plg) - Ean.

1. The tori 7¢ and the groups H¢: In this section we show how to classify sta-
ble conjugacy classes C' of maximal F-tori in GSp(2n). We further construct a special
representative 7¢ of the tori in C. Then we identify a group He into which 7¢ embeds
naturally. The group H¢ is unique up to conjugacy. One of the key properties of H¢ is
that any conjugacy class in C' contains a conjugate in He of 7¢.

For this section only, we let F be any perfect field. We fix furthermore a stable conjugacy
class C of maximal F-tori in GSp(2n).

(1.1) We classify now the stable conjugacy classes C of maximal F-tori in GSp(2n) in
terms of algebras with involution. For this, let T' be a torus in C and let s in T(F) be a
regular element in GSp(2n). Note that s is regular in GL(2n), too. The centralizer C(s) of
s in M(2n, F) is isomorphic to the algebra F([s], since F[s] is a semisimple, commutative
subalgebra of maximal dimension in M(2n,F). Now F([s] is isomorphic to the ring of
polynomials F[T] modulo the ideal generated by the minimal polynomial of s. Let & =
Ec denote the set consisting of the extension fields E of F defined by and indexed by
all irreducible factors (taken with their multiplicities) of the minimal (=characteristic)
polynomial of s. Then F([s] is isomorphic to the direct product A¢ of &, so that we get

_ . ~ minimal polynomial
(1) Ac = H {E Ee 5‘} - F[T]/ ( of s in F[T] ’
We define the F-torus r¢ by taking the image of T(F') in A¢ as its F-rational points. So

c{F) consists of all elements in A which satisfy the symplecticity condition imposed by
I

(2) TC(F)={;L'€AC:I(:c)-:.'::,ueF"}.

One is thus led to study the action of I on the elements of £ separately. We remark that
this is done in [S, Kapitel 5] for a general semisimple element in GSp(2n, F).
In the present situation, with s regular, there are clearly two possible cases for each E n

£

(GL) E belongs to a pair of fields (E, E') with E, E’ in £ which I interchanges. Note
that I(E) = E’. Necessarily then, E = E’, and I restricts to an involution
on E x E. One checks that there is an automorphism og of E such that
I(z,y) = (07 (y),05(e)) on E x E.

(U) I restricts to a non—trivial involution og on E.

Therefore, let G denote the set consisting of all pairs (E, E') as in (GL) and let &/ denote
the set consisting of all E as in (U). Then

E=ulJg
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as disjoint union. We will identify below 7¢ as a subtorus of the product of tori associated
to the elements in G and U. These are constructed by solving I(z)z = p separately on
each of the corresponding factors of A¢c. We describe them now in a more precise way.

(1.2) The tori Tgxp associated to data in G: We will show that the tori in each
factor of A¢ indexed by elements of G are in a natural way tori of general linear groups.
So fix (E,E) in G. Solving (yt,u) = I(z,y) - (v,y) = (65" (¥)z,08(z)y) on E x E shows
that the F—torus 7gx g associated to this pair is isomorphic to Rg/r (Gi)E X (Gw)r,
a typical anisotropic modulo center torus of GLp(E) x F*. We will show that in fact
GLp(E) x F* itself embeds naturally into GSp(2n). More precisely, we claim that after
fixing a suitable basis on E x E the following diagram
(:EH"'L) — (ﬂ:,,u-O'E(:‘U—I))

~

E*x F* —— TE’xE‘(F)

3) N

GLp(E)x F* —— Lexg(F) C GLp(E)x GLp(E)
(20) — (@ )

commutes, where the vertical maps are the canonical inclusions. This means in particular
that og has order two if [E : F] > 2. Note further that there is up to conjugacy at most
one embedding of Tgx g into both Ly g and GSp(2n), since the first Galois cohomology of
TEx E vanishes by Hilbert 90. To construct such a map, and thereby prove the claim, recall
that there is a standard way of embedding GLp(E) into GSp(2n). We fix a symplectic
form Bpx g on E x E such that there is a basis (e;,0),..., (e, 0),(0, f1),...,(0, fe) of EXE
symplectic with respect to this form. On the factor B of A¢ complementary to E x F fix
the symplectic form fp induced by the symplectic involution I. Extend the symplectic
basis on E X E to a basis of Ac symplectic with respect to fg X Bgxg. Then GLp(E)
embeds into a Levi factor of GSp(2n) as described in (3). This completes the proof.

(1.3) The basic tori 73(E, o) associated to data in Y: We will show that the tori
in each factor of A¢ indexed by elements of U come from tori in unitary groups. So let E
in ¢ and let og be the restriction of I to E. Solving p = I(z) - = og(z) - & on E we get
the basic torus 7,(E,og) associated to (E, o) which is defined by

(4) (B, 05)(F) = Njlp, (F*) = {q; €E": Nppi(a) € F}

where E* is the fixed field of o in E and Np,g+(z) = op(z) - z. In particular, each
basic torus is contained in a typical torus of a group of unitary similitudes over E*. This
inclusion will be strict in general due to the conditions on the similarity character of
Tb(E: UE)'
From a more functorial point of view, 7,( E, og) is defined by making the following pullback
diagram

el

n(B,08) —— Rg/r(Gm)s

(5) ne Rg+,p(Ngip+)

A

(Gm)r —— Rp+/p(Gn)p+

commute in which A is the diagonal embedding of (G,,)r and pg denotes the similarity
character.

——

——



In contrast to the general linear case considered in (1.2}, it is a problem to construct
embeddings of a basic torus into GSp(2n), and a further problem to get all embeddings
up to conjugacy. The second of these problems is is due to the easy fact that the first
Galois cohomology group of such a torus is (E*)*/F* . Ng,g+(E*), and so is not trivial
in general. To address the first problem, we will describe a systematic way to construct
embeddings via well-known modified trace forms.

For any non-zero element a in the (—1)-eigenspace E~ of o on E, define the bilinear
form Bg(a) on E by

(6) Bg(a)(z,y) = tI'E/p(:L' a- ag(y)).

This form is in fact symplectic: since « is non—zero it is non-degenerate, since a is in
E~ it is alternating. It has the crucial property that (E,og)(F) = NE/IE_,_(F’) is the
set of elements in E symplectic with respect to Bg(a): for ¢ in E* and g in F* we have
Bg(a)(tz,ty) = p- Bp(a)(z,y) on E x E if and only if Ng,g+(t) is in F*. In this case
©w= aNE/E+ (t).

The argument of (1.2) now shows mutatis mutandis that fixing a basis on F symplectic
with respect to Bg(a) defines a map to GSp(2n), which embeds specifically the basic torus
7(E,0F) as a torus in GSp(2n). In (1.7) we will address this embedding problem in full
generality.

(1.4) The torus 7¢ associated to C: We put together the tori associated to the single
factors of A¢ to obtain a better description of 7¢ in terms of data from C only. From
the description in (2) it is clear that 7¢ is a subtorus of the product of all the tori Tpxg
indexed by G and all the basic tori indexed by &. More precisely, T¢ consists of all elements
in this product having the same similarity factors. From a functorial point of view, 7¢ is
therefore defined by making the following pullback diagram

el
TC:TgXTgL i‘r HuTb(E,G'E)XHgTExE
) [ [t g

(Gm)F i’ (Gm)Fu X (Gm)Fg

commute, where A is the diagonal embedding of (G,:)r and p, denote the various sim-
ilarity characters. Thereby we get a natural decomposition of 7¢ into a unitary part
7 and a part TGL of general linear type. We would like to think that the similarity
factor of an element in ¢ is determined by the similarity factors of its unitary part. If &
is empty we set formally 77 = (G, )r to exclude pathologies.

(1.5) General aspects of the group H¢ associated to C:  Qur motivation for defining
the groups H¢ comes from the unitary part of 7¢. This part of 7¢ has a very special
structure in that it is determined by tori of GL(2). Namely, a basic torus is given by
the subgroup NE/IE_,_(F*) of a typical torus E* of GLo(E™). But whereas E* has up to
conjugacy a unique embedding into GL2(Et), an embedding of a basic torus into GLy(EY)
will not be unique up to conjugacy in general. So it seems plausible that the conjugacy
classes within the stable conjugacy class of embeddings of ¥ into GSp(2n) already can be
seen in the product of the respective GLy(E*). The group H¢ is our attempt to make this
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notion rigorous. Again it naturally decomposes into a unitary part and a part of general
linear type

(8) He = HY x HEE.

In analogy to the construction of Tg L there is a natural candidate for H&L. Essentially
this is the Levi factor of the symplectic group which contains &%, More formally, H&
is the group of all elements in the product [[¢g Lgx g having the same similarity factors.
The crucial step is now the construction of the unitary part, which will be given in the
next section.

(1.6) Construction of the unitary part of Hg: Assume for simplicity £ = U. First
we have to put together the data used to define basic tori in (1.3). For any E in &, let B+
and E~ be the (+1)- and (—1)-eigenspaces of o g, respectively. This gives a decomnposition
Ac = AL ® AZ in the (+1)- and (—1)-cigenspace of the symplectic involution I 2 [ og.
For any invertible ¢« = (ag) in A define the symplectic form B¢(a) on the F-space Ac
as the sum of the forms Bg(ag) in (6), so that B¢(a) is given by

(9) BC((‘)(("EE)’ (yE)) = ZE bre) i (-'UE Cag - O’E(yE)) = ZE BE(GE)($anE)~

The torus ¢ which we want to embed into GSp(2n) (or better its F-rational points) sits in
the product [[ GLg+(E) which in turn embeds into the diagonal [[ GLp(E) of GLp(Ac).
We take care of this product structure and first claim that for each E in £ the following
diagram

Hg(F) = GLo(E*)GSp(Be(ap)) —— GSp(Br(ax))
(10) ldeu,ﬁ lu
F = F*

commutes. In particular, Hg is then independent of the choice of the symplectic form

Bg(ag) and
(11) Hy(F) = {g € GLp+(E) : detg € F*}.

This is most easily seen by fixing a basis e, e of E over E™ with e in ET and e_ in E~.
Since trg p+(e~) = 0 and €2 is an element of E¥, we get Bg(ag)(z,y) = —trg plag -
det(z,y) - eye_) = —trg/p(ag -z Ay) for all z, y in E, and by abuse of notation in the
last equality. Cleatly then, ¢ in GLy(E™) satisfies Bg(ag)(gz,gy) = 1+ Bp(ag)(z,y) on
E x E for an element ¢ in F' if and only if det ¢ is already in F. In this case u = det g.
This proves what we claimed in (10) and (11).

Remembering the hypothesis £ = U, the group H¥ is now defined by making the pullback
diagram

Hg 5 HEeu Hg
(12) J';LH J’nRE""/F(deLE'{")
Jay
(Gm)F E— (Gm)FU

commute where A is the diagonal embedding of (G, )r. By construction, HY is a subgroup
of GSp(Bc(a)) for any a and contains 7 in a natural way. This completes our construction
of the unitary part of H¢.



(1.7) Proposition: Fach GSp(2n, F)-conjugacy class of the stable GSp(2n)-conjugacy
class C contamns a torus obtained by conjugating ro within He.

(1.8) Corollary: There ts a bijection from the stable Ho-conjugacy class of ¢ modulo
conjugation m Ho(F) to the quotient C modulo conjugation in GSp(2n, F).

The corollary is an obvious consequence of the proposition. For the proof of the proposition,
recall that H'(F,r¢c) = ker(H' (F,7¢)— H'(F,GSp(2n))) parametrizes the GSp(2n, F)-
conjugacy classes of C' and ker(H' (F,r¢)— H'(F, H¢)) parametrizes the H¢(F)-conju-
gacy classes in the stable Ho—conjugacy class of 7. We are therefore reduced to show
that H'(F, He) is trivial, :
This 1s a problem on the unitary part of He only. So we are reduced to the unitary
case £ = U. But by (10) and (11), the kernel H(Cl) of the similarity character ppy of
Hc is in this case a product of special linear groups. The long exact sequence associated
to 1—HE) —He —23 (G, ) p—1 now shows that H'(F, Hc) is in fact trivial. This
completes the proof.

(1.9) There is actually in the unitary case £ = U, too, a natural way to construct a
set of representatives of tori as in the proposition. This is based on the embeddings of
T¢ given by the symplectic forms B¢ (a) of (1.6)(9), and was first observed by Weissauer.
We first describe the tori. Adopting the notation of (1.6), recall that Bg(ag)(z,y) =
—trg;p(ag-zAy) forall z, y in E. Changing the basis ey, e_ of E over EY by diag(1,bg) in
GLy(E™) thus transforms Bg(ag) into Bi(agbg). Moreover, it clearly means conjugating
GSp(Bg(ag)) by diag(1,bg). Switching from the single factors of the product A¢ to Ac

itself, we consider the tori
10
Tec(b) = (Int (0 b)) T

where b = (...,bg,...) is any unit of A}, and T is the image of the torus r¢ under
the embedding into GSp(B¢c(e)) afforded by Be(a). Note that T (d) i1s contained in
GSp(Bc(ab)).

We claim that the tori T¢(b), with b running through a set of representatives of H'!(F, 7¢),
form a set of representatives of C' modulo conjugacy as described in (1.8).

Recall for the proof that the conjugacy classes of tori within C correspond to the elements
of Hl(F, T¢). The long exact sequence associated to 1——)78)——)7'0—#——}((}”1)1:—)1
shows that H'(F,r¢) is a quotient of [[.(E¥)*. Any element 8 of H!(F,7¢) is thus

represented by an invertible element b = (..., bg,...) in AL. There exists £ = (...,¢g,...)
in [ (G )p(F) such that b is the norm of €. Then h = diag(1,b) - €1 is in Hg). For all

o in the absolute Galois group over ET we have fp, = hy' - o(hg) = €g-o(£p)™". Thus

Bs) gives a l-cocycle in 1 which represents To(b) and maps to 8 in H'(F,7¢). This
g o)

completes the proof.

2. The results for GSp(4):  In this section we first specialize the results of section
1 to the case of GSp(4). More precisely, we want to describe the situation for stable
conjugacy classes C in GSp(4) which have a unitary part in the sense of section 1, and
which are not contained in a proper Levi factor of GSp(4). For these classes C' we analyze
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in addition the space Ho(F)\GSp(4, F)/GSp(4,OF). It is remarkable that these quotients
become very simple.

Checking now the possibilities in the classification explained in section 1, we find that
there are exactly two types of stable conjugacy classes C' as above: either the minimal
polynomial of the class splits in two irreducible factors over F' or the minimal polynomial
of C is irreducible. In the first case we get tori of type Tsa, in the second case basic tori.
Their construction is reviewed below.

(2.1) Description of the group H and the tori 7z ; of type T3a: We cover now
the first of the two possibilities listed above. So let the minimal polynomial of C split in
two irreducible factors. We obtain in this way a pair £ = (E, L) of quadratic extensions of
F. By (1.4)(7) the maximal F-torus associated to C is the F-subtorus determined by

(1) TE,L(F) = {(ﬂi,‘y) € E*x L*: Ngp(z) = NL/F(y)}

of the F-torus Rg/r (Gn)e X RL/F(G,,,)L in GLF(E) x GLp(L). By (1.6)(11),(12) we
get

(2) H(F) = He(F) = {(h,, h') € GLp(E) x GLp(L) : deth = det h'}.

We now construct a specific embedding of H in GSp(4). Fix normalized primitive elements
VA of E and VB of L over F, so that A and B are representatives in F of F*/(F*)? which

both have orders 0 or 1. We take 1g, 11, VA, VB as symplectic orthonormal basis. Then
H(F) consists of all matrices of the form

a 0b0

n_|0ad 0V ) _fab ,fd Y

(3) [h,h'] = c 0 do with h.—(c d),h— ¢ d
0c 0d

in GLp(E) x GLp(L) satisfying the symplecticity condition det h = det h’. We will prove
i section 5 the following

(2.2) Theorem: FEach double coset of H(F)\GSp(4, F)/GSp(4,OF) contains a unique

element of the form
(B AW s (0 1

with either v =0 or v = 7% and € > 0 any natural number.

(2.3) Description of the groups H, and the basic tori 75(£): In this section we cover
the second type of stable conjugacy classes of maximal F—tori in GSp(4) described above.
Recall that any of these is associated to a pair £ = (E,op) consisting of an extension F
over F of degree four which has a non—trivial involution og. By (1.6)(11) we now have

(4) He(F) = {g € GL(2,E*) : detg € F*}.

We construct again a specific embedding of this group into GSp(4). Write E = E+ (VD).
Let VA be a normalized primitive element over F of the fixed field E* of og. Choosing a
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basis symplectic with respect to a form Bg(a) for that trE/p(a\/ﬁ) # 0 as in (S, A.19.8],
the group H¢(F) embeds as the subgroup of GSp(4, F) of all matrices of the form

aq ('LQA_“I bl bz
az a4 by b A
(5) C1 CQA_I dl dg ’
CQA_I C]A_l dgA—l dl

We remark that the torus associated to £ is the basic torus m(€) = {z € E* : Ng/p+(z) €
F*}, as defined in (1.3)(4). We will prove in section 6 the following

(2.4) Theorem: Let He = H(FW\GSp(4,F)/GSp(4,0F) and for all £ > 1 let

g(e)z(EO? SE(S)) with 5(3):(“; 8)

If E* is unramified over F, a set of representatives for He is given by Ey and g(€) with
¢ > 1. If E* is ramified over F, each double coset of H¢ contains a unigue element of the
form g(€) with £ > 1.

3. A technique for calculating orbital integrals: In this section we indicate briefly
which role the groups H¢ constructed in (1.5) and (1.6) may play in calculating orbital
integrals. So let 7¢ be the image under any fixed embedding into GSp(2n) of the torus con-
structed in (1.4), and let s be a regular, F-rational element of 7¢. Let I = GSp(2n, OF).
For any Hecke operator f on GSp(2n, F) one has by [Wa I, p.477, A 1.2] and [KoGL,
p.361f]

OGS (! / flo~"s9)dg
(1) rc\GSp(2n)

_ Z VOIGSP(Q,,)(I()
s€Hc\GSp(2n) /K voly. (He NaRz—1)

/ (f o Adz™")(h™'sh) dh
re\He

where we identify the groups with their F-rational points, and measures are suitably
normalized.

In some sense, this is a series expansion of an orbital integral on GSp(2n, F) by a family
of orbital integrals on the group He(F'). The group He is smaller and in addition embeds
into a product of Weil restrictions of GL(2). On the other hand, the functions in the
orbital integrals on Ho(F) may become considerably more complicated. The support of
foAdz"tissupp(foAdz™!) = HeN(Adz)(supp(f)) = HeNa-supp(f)-z~!. Furthermore,
f o Adz™1 is bi-invariant under He Nz - K - 27!, a group in general different from the
maximal compact subgroup of He(F').

4. Calculating the GSp(4)-orbital integral O,(T(r)) for s in a torus of type Tjx:
We want to show next that the abstract technique introduced in section 3 is a tool for
calculating orbital integrals for the groups of symplectic similitudes. For this it is crucial
to have a set of concrete representatives of the space Hg(F)\GSp(2n, F)/GSp(2n, OF).
Given the results of (2.2) and (2.4), we therefore consider the group of symplectic simil-
itudes in four variables G = GSp(4). We choose the Hecke operator T'(x) defined as
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characteristic function of the double coset I - diag(E2,7E2) - I with k' = GSp(4,0OF).
We will furthermore assume that the local field F' has odd residue characteristic.

(4.1) Embeddings of tori of type T3a: We want to choose the semisimple element s
in tori 7g, of type T3a which we introduced in (2.1). But there is a problem since 7 1,
may have two different non-conjugate embeddings into GSp(4). For this, recall that the
number of embeddings of 7g 1, into GSp(4) up to conjugacy equals the number of conjugacy
classes within the stable conjugacy class of 7g . Recall furthermore, that this last set is
parametrized by the kernel of the natural map from H!(F,rg,) into H'(F,G). Since
H'(F,GSp(4)) is trivial this kernel is H* (F, 7,1 ) itself. But in the local case, H!(F, 75 1)
is by class field theory trivial for E # L and cyclic of order two for E = L.

A set of representatives of the conjugacy classes of F—embeddings of 7g ;, into GSp(4) was
determined explicitly in [S, §11B]. They take their values in H, in accordance with (1.7).
We fix the F-rational, semisimple element s in the image T of 7 1 under any of these, so
that

o s [ 7.6 ) o [ ) ()

where D = 1 in the stable case E # L and where D € {1,0} = F*/Ng,p(E*) in the
unstable case £ = L. With this notation we have

(4.2) Theorem: Let the residue characteristic of the local field F' be odd and let s as in
(1) be regular in GSp(4).

Necessary conditions for the GSp(4)-orbital integral O,(T(7)) to be nonzero are: the sim-
ilarity factor u(s) has order 1 in F, the fields E and L are equal, and are both ramified
over F.

If these conditions are satisfied, we have
lef - Has .
0t [ Tgsga( 2 ) g
T\GSp(4) HT

_ volg (GSp(4,0F)) 1+ 2-6p(s) €r(1)
volr (T(OF)) (A1) = (V)] Er()

where we put §p(s) = 1 of —bD/V is a quadratic residue modulo nOp and dp(s) = 0
otherwise, where N = ord p((A + p) — (N + ), and €p(8) = 1/(1 — ¢7°) 1is the zeta
function of F evaluated at €.

Remarks: Taking for granted the validity of the “fundamental lemma”, Kottwitz [KoS]
was able to express the cardinality of the Fy-rational points of the moduli space of prin-
cipally polarized Abelian varieties of dimension ¢ with level N structure as an adelic
GSp(2g)-orbital integral. The Hecke operator in this integral is of the form f® . T(p)
with f(®) the characteristic function outside p of a certain congruence subgroup. Our
calculation identifies now the following terms in the elliptic part of the trace formula:
the (unstabilized) contribution from the local orbital integrals over T'(7) at the regular
elements in tori of type Tj3a.



The s-orbital integral to s on GSp(4) is up to a sign the difference of the orbital integrals
to the two conjugates of s. In analogy to the conjectural “fundamental lemma” we thus
get

A(s) - O3(T(m)) = SO (T(0,))

with transfer factor A(s) = £[ |2 [(A/N = 1) - (M/A=1) - (/XN = 1) - (M /= 1)|1/2.
Er(N)/Er(1) = £l(A+p) — (M + )| - €r(N)/ER(1), and with T(0, ) as in (4.3)(4) below.

The proof of (4.2) will fill up the rest of this section. We will apply the techniques described
in section 3 emphasizing the structure of our calculations.

(4.3) The operators T({, ) and the groups H({): We first give names to the concepts
introduced in section 3 and then analyze their structure. Define for all integers £ > 0

(2a) 2(0) = By,

(2b) (€)= (EOZ ’“"SEZ) g~ = (52 ’;Zﬁj) with W = (‘1] (1)) (> 1,
(3) H(e) = H(F)[2(0)- K - ()™,

(4) T(e,m) =T(r) o (Ad2(0)7")| ) € H(H(F), H(2)).

The family of all z(£) is again a set of representatives for H(F)\GSp(4, F)/IX. We modified
the elements g(-y) since in this way we get a clearer picture of the groups H(F)Na2~! - K -z
and the supports of the pullbacks of T(7). We discuss their structure in the next block of
three results

(4.3.1) Proposition: For any € > 0, the support of T({,7) is
10 0
supp(76m)) = 11| (5 2) . (5 1)] - #00
and supp(T'(€, 7)) C supp(T(L*, 7)) C supp(T(0, 7)) for all £ > £*.

(4.3.2) Lemma: Let pr be the projection of H(F) onto its first GL(2)~factor. Then for
all £ > 0, the sequence

1——{E;} xT(0) y H(6) 25 GL(2,0p) —— 1

is ezact, where T'(£) 1s the principal congruence subgroup of SL(2,OF) of level nt. Fur-
thermore

H() = {[X,Y] € H(Op): X = ¥ (modr'Op)},

where WY = (AdW)(Y) =W - Y - W1 with W is as in (2b).
(4.3.3) Symmetrization by the automorphism 1 x & of H: Define
(5) (1 x ®)([h,R']) = (Ad([Ez, W])) ([h,R']) = [k, (AdW)(R)] = [h, ®(R")].

Then Ho(€) = (1 x ®)(H(0)) = {[X,Y] € HOF): X = Y(mod#tOr)} and the support
of the pullback of T({,7) by 1 x ® is He(¢) - [diag(1, ), diag(l, )] - He (£).
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For the proofs we note that a straightforward calculation gives (4.3.2). To prove (4.3.1)
we first indicate a general strategy to determine the H(€)-double cosets £ in the support
of the pull-back f o (Ad 2(¢)™!) to H(F) of a Hecke operator f.

Choose a representative of £ whose first GL(2)-component is a diagonal matrix diag(a;, dy)
with pure m—powers a1, d; and orda; < ordd;. We have to decide when Y s = 2(€)! -
[diag(ay,d1), diag(dy, a1)-S]-2(€) is in the support of f, where S is chosen in SL(2, F)/T'(¢).
Using the filtration I'(€4- 1) € I'(¢) € I'(0) one deals with this problem iteratively, starting
with € = 0. For ( fixed, the first step is to decide for which parameters Y7 ¢ has entries in
OF. For these, as the second step, one then determines the elementary divisors.

Let f =T(w). Then ay =1, di = = imply that Y, ¢ has entries in O only if S is in I'(£).

(4.4) Necessary conditions on s: A necessary condition for each of the orbital in-
tegrals considered to be nonzero is that the similarity factor u(s) has the same order 1 as
w(T(x)). Recall that u(s) = a® — b*A = («’)? — (V')?B. By Hensel’s lemma p(s) there-
fore has order 1 only if the following conditions are satisfied: ord A = ord B = 1, orda,
orda’ > 1, and b, ¥ are both units. We assume from now on that these conditions are
fulfilled. Note that in this case, E and L are ramified over F.

Finally we show that F and L are in fact equal, an observation due to Weselmann. To
see this, recall that the quadratic extensions of F' are parametrized by the three cosets in
F*/(F*)? different from the identity. Under this correspondence, the ramified quadratic
extensions of F' are associated to the two cosets represented by m and £ - m respectively
where £ is a non—square in k(F'). Assume that F and L are different, and that A = 7 and
B = ¢ - 7. The two equations for u(s) imply that a? — (a’)? = (% — (b')% - £) - =. Since b
and b’ are both units, reduction mod 7Op shows that b2 — ()% - £ is also a unit. Since the
order of a® — (a')? is at least two, we conclude that 4 = B.

In order to calculate the orbital integrals Oy(T(¢, 7)) we will use an iterative proceclure.
This is based on the support filtration (4.3.1). The key step is establishing (4.5).

(4.5) Proposition: The support {h € H(F) : T(0,7)(h~'sh) # 0} of OH(T(0,7)) s

T(Or\H(OF) = {T(OF) -h:h€H(OR)}.

Our proof of this proposition is based on the fact that g, = diag(1,#") for n > 0 form a
set of representatives of 7(F)\GL(2,F)/GL(2,0F), when 7 is the torus Rg;r (Gn)p in
GL(2).

Fix [h,h'] in the support set. By (4.3.1), (4.3.2) each factor of [h™'sgh, (h') " s h'] is in
€ = GL(2,0r)diag(l,7)GL(2,0F). Writing h = tg,k with ¢t in E* and k in GL(2,OF)
it follows that g;'spg, is in €. Since b is a unit, an explicit calculation shows that this
implies n = 0.

By construction, y = t7'R’k7! is in SL(2, F) and we have T(0,7)([h,h']7? - s - [, h']) =
T(0,m)([sg,y 'sLy]). As above, y = t'k’ with t' in L* = E* and ¥’ in GL(2,0r). Then
' is a unit, so that its entries are in Op. Hence y is in SL(2,Of). The reverse inclusion
can be checked.

(4.6) The numbers R(¢,s): For £ > 1, let
(6) R(¢,s) = #{y € SL(2,0p/7°OF) : [sz,y'sLy] € SUPP(T(""’W))}
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so that R((,s) is the number of y in SL(2,Op/n‘OF) such that [sg,y 'sLy] is in the
support of T'(¢, 7).

Note that we identify SL(2,Op/7‘Op) with SL(2,0p)/T(¢). We further choose the k(F)-
space {1, 7,..., 7!} generated by 1, 7,..., 7t as section for Op/xtOp in OF.

In this interpretation, each coset of H(Or)/H({) contains a unique element of the form
[1,y] with y in SL(2,0p/7'OF). So we get by (4.5) and §3(1) with the notations intro-
duced above

(4.7) Proposition: The orbital integrals O,(T(¢, 7)) on H and O,(T(x)) on GSp(4)
have the following ezpressions

_ voly (H((f))
Os(T(G, ﬂ')) - VOlfr(T(OF)) R(Ea‘s)a
volg (GS])(4, OF))

Og(T(?T)) =

volr (T(OF)) ([EL HEl+ Zc>o R(ﬁ’s)) '

(4.8) Characterizing R({,s) by congruence conditions: The formulas in (4.7) re-
duce the calculation of the orbital integrals O,(T(7,¢)), and so of O4(T' (7)), to calculating
the numbers R({,s). Analyzing (6), it seems natural to look for congruence conditions
which characterize the elements y counted by R(¢, s). For this, let P = diag(1, ), so that
sg=hgP for hg in GL(2,0F). Let y be in SL(2,0p/7OF), taken as set of representa-
tives for SL(2, Op)/T(¢) as described above. Then [sg,y s y] is in the support of T'(¢, 7)
if and only if

1 o 7Op =U(F)
(7) 2 (v~ s1y) €T(0) 55 T() ( Son TR,
The order conditions hold only for the elements

- . wf —1
(8a) Y(w,,6) = (‘:; g) with  y= ﬁé

whose entries satisfy the order conditions
(8b) we(m.., a7, Be(,m ..., 7Y, Sek(F)Y @ (x,..., 7).

They are defined by the intersection of three quadrics in the affine space of dimension four
over Op /mtOF: multiply Y, with entries named as in (8), by w — 6§v/A on the left and let
A(Y) = w? —§%4, 2(Y) = wy — §8A. We obtain

. a + zb b'A
(9) o(yau¥) = va== -

Their entries have orders as in (7) only if ord A = 1 and ordz > 1. These conditions
characterize the elements Y (w, 3, 4).

We break our calculation of R(¢, s) into two steps. First we count by congruence relations
the quadrics described above, then we count the points in the “fibres”, i.e. count the points
on any of these quadrics.
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(4.8.1) Counting the number of quadrics: By construction ®(Y ~'s,Y)P~! has
entries in Op for all Y = Y(w, 3,6). Thus the following criterion applies to determine for
which (A, z) the I'(¢)-double cosets of ®(Y ~1s,Y) and sg = hpP are equal.

Lemma: Let ¢, ¢g" be in GL(2,0F). ThenT'(€)-¢'P-T'(¢) = T(8) - ¢" P-T'(£) if and only
if there is B in w8~ 1k(F) such that

g =g ((1] }’f) (mod I(£)).

We leave the proof to the reader. The congruences of the lemma in the present situation
are equivalent to ¢ = «’(mod O F), 0 = z(mod O F) and

A

s

Ap =

2 L2
%;(modnfofr), (%) % Aﬂ-z (mod 7t Q).

In this case, the values mod 7¢O of Ag, z are completely determined. Since ord z > £ we

obtain (b/4')? = 1(mod r¢).

Note that a = a/(mod 7¢O F) implies b2 = (¥')?(mod 7¢O F) and thus b = b’ (mod 7¢O F)
because of (4.4). Thus we get congruence conditions in ¢ = (A4 p)/2 and @’ = (M + /) /2
only.

(4.8.2) Counting the number of points in the fibres: We count, as a second step,
the number of points on each of the quadrics above. It is well known, that for a smooth
affine variety V over Op, the fibres of the natural maps V(Op /71 Op)— V(O /7' OF)
have cardinality #&k(F)¥™ Y, for all 1 > 1. The following result, proved by showing that
the Jacobian has full rank, now gives the “fibre terms” of our counting argument and thus
completes the proof of (4.2).

Lemma: For z in nOp, T in wU(F) and Ag in U(F), let Qv be the zero set of Ag =
7 w? — 62T, z = wy — 887, 1 = wf — & in the four-dimensional affine space. Then
@~ 13 a smooth variety over Op and

= (s T 2
# {(w,ﬁ,ém) € Qr(Or/r'Or): j;g(&zgigi)),} - {2 (HR(F)) —z00 € U(F)

0 otherwise.

5. Proof of Theorem (2.2): For the proof fix the Borel group of GSp(4) which con-
sists of all matrices such that for each of them the two by two matrix in its lower left hand
corner is zero, and the two by two matrix in its upper left hand corner is upper triangular.
Using the Iwasawa decomposition of GSp(4, F') one now starts with representatives in this
Borel subgroup of GSp(4, F). Multiplying on the left by suitable upper triangular matrices
in H(F) they can be modified to representatives of the form h(e,b,0) in the Heisenberg
subgroup of GSp(4, F') consisting of all matrices

a [

h(a,b,c) =

o O O
c‘
—= OO

1
0 1
0



with «, b, ¢ in F. Since h(0,0,c) is in H(F') for all ¢ in F, the relations
h(a,b,0) - h(c',b',0) = h(a +a',b+ b, abl — a'b),
h(0,0,—c) - h(a,b,c) = h(a,b,0)

show that one may in fact choose representatives g(a,b) = h(a,b,0) with a, b in the k(F)-
space {..., 72, #7!). Here we follow a suggestion of Weissauer for simplifying our original
proof.

We reduce to pure m—powers a and b: Let o = ue and 8 = wb for units v und w in U(F).
Then the following matrix is in GSp(4,OF)

) [(0 ) (4 0)} gla,b) = diag(uw, w, 1,u).
So g(a, ) and g(a,b) are in the same coset of H(F)\GSp(4, F)/GSp(4,0F).

By the same reasoning we reduce further to representatives ¢(v) = ¢(0,7): In the case
ordb < orda

0 -1 0 0
- 0 b a b -1 0 00
g 1(Oab) {(b—l 0) > (b—l O)j| g(a,b) = b1 ab=! 0 1
0 %! 10
is an element of GSp(4,0F). For orda < ordb
0 0 0 -1
-1 0 —a a b _{ -1 0 0 0
g (07 (t) [((L_l 0 ) 3 (0 —(L_] g(a:b) - a—l 1 0 a—lb
0 0 -1 —a!

is in GSp(4,0F). To prove independence, assume that g(a) and g(3) are in the same
coset. This is equivalent to the existence of h in H(F) such that hg(«) - GSp(4,0F) =
g(B) - GSp(4,OF). Taking images of this GSp(4, Op)-coset under each element of a dual
basis one obtains four equalities of ideals in Op. They translate into four conditions on
the orders of the entries of hg(«) and g(3). Distinguishing of = 0 and of # 0 one checks
that o and § have the same orders and thus are in fact equal.

6. Proof of Theorem (2.4): One starts again with representatives in the Borel sub-
group of GSp(4,F) which was described in the preceding section. Their components
in the Levi factor {diag(4,A'4) : A € GL(2,F), A € F*} can be reduced to matri-
ces diag(ge,g; '), where g = diag(1,7%) with ¢ > 0 form a set of representatives of

(ET)*'\GL(2, F')/GL(2,0F). Because of

1 0 b b 1 0 =z Y 1 0 a+b 7 by +7%)

0 1 b, bHhA 0 =t 7ty ntz 0 7t by+rly wlz+nthA

0 ¢ 1 O 0 0 1 0 10 0 1 0

00 0 1 00 0 =°¢ 0 0 0 m=t
we can choose representatives with y = 2z = 0. After multiplying from the right by a
suitable unipotent matrix in GSp(4,Op) we can assume  in (...,7~ 2,771} and obtain

the matrices g(¢, z).
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We now show that we can achieve £=0: For { > 1

=t 0 0 0 0 0 -10
~¢

—ty—1 0 m 0 O 160 1 0 O

g(O,w ) 1 0 ,KE 0 g(E,O) = 1 0 ﬂ.f 0

0 A1 0 «xf 0 Azt 0 1

is in GSp(4,0F). Forz #01let z = —(1 + n%)z~'. Then

¢ 0 0 0 -1 0 0 0
—ty—1 0 ¢ 0 0 _ 0 1 0 0
Q(O, —Im ) > 0 ﬂ.f 0 g(eam) - z 0 —-1 0
0 =zA"' 0 =f 0 zA™' 0 1

is in GSp(4, Of). We reduce to pure m—powers by the calculation

— . 0
L {E, 0 B, YT
9(0,2)™" ( )g(O,y) = ( 0 0].
0 uk, 0 wE,

-y 0 0 0
(E2 0 —yA) 9(0,y) = (E2 0 —yA)
0 E2 0 EZ

eventually shows that representatives of H¢ are of the form E; = ¢(0,0) and g(¢) =
g(0,77¢) with € > 1 for ord 4 = 0, i.c., for E* unramified over F, and g(¢) with ¢ > 1 for
ord4 =1.

To check their independence is tedious, but straightforward given the method indicated in

§5.
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