AFFINE LINES ON \mathbb{Q}-HOMOLOGY PLANES AND GROUP ACTIONS

MIKHAIL ZAIDENBERG

Abstract

This note is a supplement to the papers [KiKo] and [GMMR]. We show the role of group actions in classification of affine lines on \mathbb{Q}-homology planes.

Introduction

This note is a supplement to the papers [KiKo] and [GMMR]. Our aim is to shed a light on the role of group actions in classification of affine lines on \mathbb{Q}-homology planes with logarithmic Kodaira dimension $-\infty$. This enables us to strengthen certain results in loc. sit. (see Section 1).

Let us fix terminology. It is usual $[\mathrm{Mi}, \mathrm{Ch} .3, \S 4]$ to call a smooth \mathbb{Q}-acyclic (\mathbb{Z}-acyclic, respectively) surface over \mathbb{C} a \mathbb{Q}-homology plane (a homology plane, respectively). By Fujita's Lemma [Fu, 2.5] such a surface is necessarily affine. Likewise we call a homology line an irreducible affine curve Γ with Euler characteristic $e(\Gamma)=1$. So Γ is homeomorphic to \mathbb{R}^{2} and its normalization is isomorphic to $\mathbb{A}^{1}=\mathbb{A}_{\mathbb{C}}^{1}$. A smooth curve isomorphic to \mathbb{A}^{1} will be called an affine line. Following [Mi] we let $\mathbb{A}_{*}^{1}=\mathbb{A}^{1} \backslash\{0\}$. As usual \bar{k} stands for logarithmic Kodaira dimension.

Acknowledgements: This research was done during a visit of the author to the Max Planck Institute of Mathematics in Bonn. He thanks this institution for a generous support and excellent working conditions. Our thanks also to Shulim Kaliman and to a referee of the 'Transformation groups" for useful editorial comments.

1. Main results

Theorem 1. Let X be $a \mathbb{Q}$-homology plane and Γ a homology line on X. Then the following hold.
(a) Suppose that $\bar{k}(X \backslash \Gamma)=-\infty$. Then Γ is either an orbit of an effective \mathbb{C}_{+}-action on X or a connected component of the fixed

1991 Mathematics Subject Classification: 14R05, 14R20, 14J50.
Key words: \mathbb{Q}-acyclic surface, \mathbb{Q}-homology plane.
point set of such an action. Anyhow $\Gamma \simeq \mathbb{A}^{1}$ is a fiber component of the corresponding orbit map (an \mathbb{A}^{1}-ruling) $\pi: X \rightarrow \mathbb{A}^{1}$.
(b) Suppose that $\bar{k}(X \backslash \Gamma) \geq 0$. Suppose further that $\Gamma \simeq \mathbb{A}^{1}$ and $\bar{k}(X)=-\infty$. Then Γ is an orbit closure of an effective hyperbolic \mathbb{C}^{*}-action on X. Moreover X admits an effective action of a semidirect product $G=\mathbb{C}^{*} \ltimes \mathbb{C}_{+}$with an open orbit U. The orbit map $X \rightarrow \mathbb{A}^{1}$ of the induced \mathbb{C}_{+}-action defines an \mathbb{A}^{1}-ruling on X with a unique multiple fiber say $\Gamma^{\prime} \simeq \mathbb{A}^{1}$ such that Γ and Γ^{\prime} meet at one point transversally and $U=X \backslash \Gamma^{\prime} \simeq \mathbb{A}^{1} \times \mathbb{A}_{*}^{1}$. Furthermore this \mathbb{C}_{+}-action moves Γ. Consequently there exists a continuous family of affine lines Γ_{t} on X with the same properties as Γ.
(c) Suppose that Γ is singular. Then $X \simeq \mathbb{A}^{2}$ and $\bar{k}(X \backslash \Gamma)=1$. Moreover ${ }^{1}$ there is an isomorphism $X \simeq \mathbb{A}^{2}$ sending Γ to a curve $V\left(x^{k}-y^{l}\right)$ with coprime $k, l \geq 2$. Consequently Γ is an orbit closure of an elliptic \mathbb{C}^{*}-action on X.
We indicate below a proof of the theorem. The cases (a), (b) and (c) are proven in Sections 2, 3 and 4, respectively. Besides, in cases (a) and (b) we provide in Lemmas 3 and 7 , respectively, a description of the pairs (X, Γ) satisfying their assumptions. The assertion of (b) follows from Theorem 1.1 in [KiKo], cf. also Theorem 3.10 in [GMMR]. In the case of a \mathbb{Z}-homology plane (c) was established in [Za]; the proof for a \mathbb{Q}-homology plane is similar. This gives a strengthening of Theorem 1.3 in [KiKo].

The cases (a)-(c) of Theorem 1 do not exhaust all the possibilities for the pair (X, Γ) as above. To complete the picture let us summarize some known facts, see e.g. [Za, GuPa, Mi, Ch. 3, §4] and the references therein.
Theorem 2. We let as before X be a \mathbb{Q}-homology plane and $\Gamma \subseteq X$ a homology line. If Γ is singular then (X, Γ) is as in Theorem 1(c). Suppose further that Γ is smooth i.e. is an affine line. Then $\bar{k}(X) \leq$ $\bar{k}(X \backslash \Gamma) \leq 1^{2}$ and one of the following cases occurs.
(a) $(\bar{k}(X), \bar{k}(X \backslash \Gamma))=(-\infty,-\infty)$ and (X, Γ) is as in Theorem 1(a) that is, Γ is of fiber type and $X \backslash \Gamma$ carries a family of disjoint affine lines ${ }^{3}$.
(b) $(\bar{k}(X), \bar{k}(X \backslash \Gamma))=(-\infty, 0)$ or $(-\infty, 1)$ and (X, Γ) is as in Theorem $1(b)^{4}$.

[^0](c) $(\bar{k}(X), \bar{k}(X \backslash \Gamma))=(0,0)$ and either X is not $N C$ minimal or X is one of the Fujita's surfaces $H[-k, k](k \geq 1)^{5}$. Anyhow Γ is a unique affine line on X unless $X=H[-1,1]$.
(d) $(\bar{k}(X), \bar{k}(X \backslash \Gamma))=(0,1), X=H[-1,1]$ and there are exactly two affine lines, say, Γ_{0} and $\Gamma_{1}=\Gamma$ on X. These lines meet transversally in two distinct points, moreover $\bar{k}\left(X \backslash \Gamma_{0}\right)=0$ and $\bar{k}\left(X \backslash \Gamma_{1}\right)=1$.
(e) $(\bar{k}(X), \bar{k}(X \backslash \Gamma))=(1,1)$, there is a unique \mathbb{A}_{*}^{1}-fibration on X and Γ is a fiber component of its degenerate fiber ${ }^{6}$. There can be at most one further affine line on X, which is then another component of this same degenerate fiber, and these components meet transversally in one point.
Remark 1. Let X be a \mathbb{Z}-homology plane. By $[\mathrm{Fu}]$ then $\bar{k}(X) \neq 0$. By [Za] (supplement) $\bar{k}(X)=1$ if and only if there exists a unique homology (in fact, affine) line on X.

2. \mathbb{Q}-homology planes with an \mathbb{A}^{1}-RULING

These occur to be smooth affine surfaces with \mathbb{A}^{1}-rulings $X \rightarrow \mathbb{A}^{1}$ which possess only irreducible degenerate fibers. They were studied in details e.g. in $[\mathrm{Fu}, 4.14]$, $[\mathrm{Be}]$, $[\mathrm{Fi}],\left[\mathrm{FlZa}_{1}, \S 4\right]$. See also $[\mathrm{Mi}, \mathrm{Ch} .3$, 4.3.1] for a brief summary ${ }^{7}$. In Lemma 3 below we show that every \mathbb{A}^{1} ruling $\pi: X \rightarrow \mathbb{A}^{1}$ on a \mathbb{Q}-homology plane X can be obtained starting from a standard linear \mathbb{A}^{1}-ruling $\mathbb{A}^{2} \rightarrow \mathbb{A}^{1}$ and replacing several fibers by multiple fibers via a procedure called in $\left[\mathrm{FlZa}_{1}\right]$ a comb attachment. More precisely, this replacement goes as follows.

Attaching combs. On the quadric $\mathbb{P}^{1} \times \mathbb{P}^{1}$ with a \mathbb{P}^{1}-ruling $\pi_{0}=$ $\operatorname{pr}_{1}: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ we fix a finite set of points $\left\{A_{j}\right\}, j=1, \ldots, n$ $(n \geq 0)$ in different fibers $F_{j}=\left\{t_{j}\right\} \times \mathbb{P}^{1}$ of π_{0}. We fix further a sequence $\sigma: V \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ of blowups with centers at the points A_{j} and infinitesimally near points. Letting $\bar{\pi}: V \rightarrow \mathbb{P}^{1}$ be the induced \mathbb{P}^{1}-ruling, we suppose that $\bar{\pi}$ enjoys the following properties:

- the center of every blowup over A_{j} except for the first one belongs to the exceptional (-1)-curve of the previous blowup;
- $D_{\infty} \cdot E_{j}=0 \forall j=1, \ldots, n$, where D_{∞} is the proper transform in V of the section $\mathbb{P}^{1} \times\{\infty\}$ of pr_{1} and E_{j} is the last (-1)-curve in the fiber $\bar{\pi}^{-1}\left(t_{j}\right)$.

[^1]- E_{j} is a tip of the dual graph of the fiber $\bar{\pi}^{-1}\left(t_{j}\right)$.

Under these assumptions the dual graph as above is a comb, with all vertices of degree ≤ 3. Let $F_{\infty}=\bar{\pi}^{-1}\left(t_{\infty}\right) \subset V$ be a fiber over an extra point $t_{\infty} \in \mathbb{P}^{1} \backslash\left\{t_{1}, \ldots, t_{n}\right\}$ and $E \subseteq V$ be the reduced exceptional divisor of $\sigma: V \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$. We consider the open surface $X=V \backslash D$, where $D=F_{\infty}+D_{\infty}+E+\sum_{j=1}^{n}\left(F_{j}^{\prime}-E_{j}\right)$ and F_{j}^{\prime} is the proper transform of F_{j} in V. Then $\bar{\pi}: V \rightarrow \mathbb{P}^{1}$ restricts to an \mathbb{A}^{1}-ruling $\pi: X \rightarrow \mathbb{A}^{1}$ with only irreducible fibers; all fibers of π are reduced except possibly the fibers $\pi^{-1}\left(t_{j}\right)=E_{j} \cap X$.

The following lemma is well known, see e.g. [FlZa ${ }_{1}$, Proposition 4.9].
Lemma 3. Under the notation as above the surface X is a \mathbb{Q}-homology plane. Moreover, every \mathbb{Q}-homology plane X with an \mathbb{A}^{1}-ruling π : $X \rightarrow \mathbb{A}^{1}$ arises in this way.

Proof. Let X be constructed as above. By the Suzuki formula [Suz, Za, $\mathrm{Gu}], e(X)=1$ and so the equality $b_{2}=b_{1}+b_{3}$ for the Betti numbers of X holds. Thus X is \mathbb{Q}-acyclic if and only if $b_{2}=0$ or equivalently, if $\operatorname{Pic}(D) \otimes \mathbb{Q}$ generates $\operatorname{Pic}(V) \otimes \mathbb{Q}$, see $[\mathrm{Mi}, \mathrm{Ch} .3,4.2 .1]$. The latter is easily seen to be the case in our construction. The first assertion follows now by Fujita's Lemma [Fu, 2.5].

As for the second one, given an \mathbb{A}^{1}-ruling $\pi: X \rightarrow \mathbb{A}^{1}$ on a \mathbb{Q} homology plane X it extends to a pseudominimal \mathbb{P}^{1}-ruling $\pi: V \rightarrow \mathbb{P}^{1}$ on a smooth completion V of X with an SNC boundary divisor D. The pseudominimality means that none of the (-1)-curves in $D-D_{\infty}$, where D_{∞} is the horizontal component of D, can be contracted without loosing the SNC property, see $[\mathrm{Za}, 3.4]$. Since $e(X)=1$ all fibers of $\pi: X \rightarrow \mathbb{A}^{1}$ are irreducible. We let $\bar{\pi}^{-1}\left(t_{j}\right), j=1, \ldots, n(n \geq 0)$ be the degenerate fibers of $\bar{\pi}$ and E_{j} be the component of the fiber $\bar{\pi}^{-1}\left(t_{j}\right)$ such that $E_{j} \cap X=\pi^{-1}\left(t_{j}\right) \simeq \mathbb{A}^{1}$. By the pseudominimality assumption, E_{j} is the only (-1)-curve in the fiber $\bar{\pi}^{-1}\left(t_{j}\right)$. Therefore V is obtained from a Hirzebruch surface Σ_{m} by blowing up process which enjoys the properties of a comb attachment. Performing, if necessary, elementary transformations in the fiber F_{∞} we may assume that $\bar{D}_{\infty}^{2}=0$, where \bar{D}_{∞} is the image of D_{∞} in Σ_{m} and so, $\Sigma_{m}=\Sigma_{0}=\mathbb{P}^{1} \times \mathbb{P}^{1}$.

Remark 2. Every surface X as considered above can actually be obtained from affine plane \mathbb{A}^{2} via a suitable affine modification that is [KaZa, §1], by blowing up with center in a zero dimensional subscheme $V(I)$ of \mathbb{A}^{2} located on a principal divisor D and deleting the proper transform of D. Indeed X contains a cylinder $U \times \mathbb{A}^{1}$, where $U \subseteq \mathbb{A}^{1}$ is a Zariski open subset, see [MiSu] or [Mi, Ch. 3, 1.3.2]. The canonical projections of $U \times \mathbb{A}^{1}$ to the factors regarded as rational functions on
X, say, f, h, can be made regular by multiplying h by an appropriate polynomial $q \in \mathbb{C}[t]$. Then $\varphi=(f, g): X \rightarrow \mathbb{A}^{2}$, where $g=q h$, yields a birational morphism. Since every birational morphism between affine varieties is an affine modification [KaZa, Prop. 1.1] the claim follows.

For instance the following example from $[\mathrm{Be}]$ can be treated in terms of affine modifications.

Example 1. ([Be, Ex. 2.6.1], [KaZa, 7.1]) The Bertin surfaces are surfaces in \mathbb{A}^{3} with equations

$$
x^{e} z=x+y^{d} .
$$

Every such surface X appears as affine modification of the plane $\mathbb{A}^{2}=$ Spec $\mathbb{C}[x, y]$ with center $\left(I,\left(x^{e}\right)\right)$, where $I=\left(x^{e}, x+y^{d}\right) \subseteq \mathbb{C}[x, y]$. Actually X is a \mathbb{Q}-homology plane with $\operatorname{Pic}(X) \cong H_{1}(X ; \mathbb{Z}) \cong \mathbb{Z} / d \mathbb{Z}$, and $\pi=x \mid X: X \rightarrow \mathbb{A}^{1}$ gives an \mathbb{A}^{1}-ruling on X with a unique multiple fiber of multiplicity d over $x=0$. Whereas the \mathbb{A}_{*}^{1}-fibration $f=x^{e-1} z$: $X \rightarrow \mathbb{A}^{1}$ appears as the orbit map of a \mathbb{C}^{*}-action on X (cf. Remark 1.1 below).

Proposition 4. Any two disjoint homology lines Γ_{0} and Γ_{1} on a \mathbb{Q} homology plane X appear as two different fibers of an \mathbb{A}^{1}-ruling π : $X \rightarrow \mathbb{A}^{1}$. In particular, X arises as in the above construction. If, moreover, X is a \mathbb{Z}-homology plane then there exists an isomorphism $X \simeq \mathbb{A}^{2}$ sending Γ_{0}, Γ_{1} to two parallel lines.

Proof. The second assertion is proven in $[\mathrm{Za}, \S 9]$. The first one can be deduced by a similar argument. Namely, $\operatorname{Pic}(X)$ being a torsion group, $m \Gamma_{0}$ is a principal divisor and so $m \Gamma_{0}=q^{*}(0)$ for some $m \in$ $\mathbb{N}, q \in \mathcal{O}[X]$. Applying Stein factorisation we may assume that the general fibers of q are irreducible. Since Γ_{0} and Γ_{1} are disjoint, Γ_{1} is a component of a fiber, say, $F_{1}=q^{-1}(1)$. Let the degenerate fibers of q be among the fibers $F_{0}=\Gamma_{0}, F_{1}, \ldots, F_{n}$, and denote F a general fiber of q. By the Suzuki formula loc. cit.

$$
\sum_{j=0}^{n}\left(e\left(F_{j}\right)-e(F)\right)=1-e(F),
$$

where all summands are non-negative by $[\mathrm{Za}, 3.2]$. Since $e\left(F_{0}\right)=$ $e\left(\Gamma_{0}\right)=1$ we have $e\left(F_{j}\right)=e(F) \forall j=1, \ldots, n$. It follows by [Za, 3.2] or [Gu] that either
(i) the fibers F_{j} are general $\forall j=1, \ldots, n$, or
(ii) $F \simeq F_{j} \simeq \mathbb{A}_{*}^{1} \forall j=1, \ldots, n$, or
(iii) $F \simeq F_{j} \simeq \mathbb{A}^{1} \forall j=1, \ldots, n$.

The case (ii) must be excluded since $\Gamma_{1} \subseteq F_{1}$ and $e\left(\Gamma_{1}\right)=1$. If (i) holds then $F_{1} \simeq \pi^{*}(1)$ is a general fiber of q, hence $F \simeq F_{1} \simeq \mathbb{A}^{1}$. Thus in any case all fibers of π are isomorphic to \mathbb{A}^{1} and so, Γ_{0}, Γ_{1} are fibers of the \mathbb{A}^{1}-ruling $\pi=q: X \rightarrow \mathbb{A}^{1}$.

Now one can easily deduce Theorem 1(a).
Proof of Theorem 1(a). $X \backslash \Gamma$ being a smooth affine surface with $\bar{k}(X \backslash \Gamma)=-\infty$, there exists an \mathbb{A}^{1}-ruling on $X \backslash \Gamma[\mathrm{Mi}, 2.1 .1]$. The curve $\Gamma_{0}=\Gamma$ and a general fiber, say, Γ_{1} of this ruling provide two disjoint homology lines on X. By Proposition $4 \Gamma_{0}$ and Γ_{1} are two different fibers of an \mathbb{A}^{1}-ruling $\pi: X \rightarrow \mathbb{A}^{1}$ on X and so, $\Gamma=\Gamma_{0}$ is an affine line stable under an effective \mathbb{C}_{+}-action on X along this ruling, see e.g. [FlZa, 1.6$]$. Now the assertion follows easily.

3. \mathbb{Q}-homology planes with a \mathbb{C}^{*}-ACtion

To deduce Theorem 1(b) we recall first Example 1 in [KiKo], cf. also Examples 3.8, 3.9 in [GMMR].
Construction. The construction begins with a divisor $D_{0}=M_{a}+$ $\bar{M}_{a}+F_{0}+F_{1}+F_{\infty}$ on a Hirzebruch surface Σ_{a}, where F_{0}, F_{1}, F_{∞} are 3 distinct fibers of the standard projection $\pi_{0}: \Sigma_{a} \rightarrow \mathbb{P}^{1}$ and M_{a}, \bar{M}_{a} are two disjoint sections with $M_{a}^{2}=-a$. We may suppose that $F_{j}=\pi_{0}^{-1}(j)$ $\left(j=0,1, \infty \in \mathbb{P}^{1}\right)$. Besides, the construction involves a sequence of inner blowups $\mu: V \rightarrow \Sigma_{a}$ over D_{0} i.e., successive blowups with centers at double points on D_{0} or on its total transforms. This results in a \mathbb{Q} homology plane $X=V \backslash D$, where $D \subseteq \mu^{-1}\left(D_{0}\right)$ is a suitable SNC tree of rational curves on V (see a description below). The induced \mathbb{P}^{1} ruling $\bar{\pi}: V \rightarrow \mathbb{P}^{1}$ restricts to an untwisted \mathbb{A}_{*}^{1}-fibration $\pi: X \rightarrow \mathbb{A}^{1}$.

More precisely μ replaces the fiber $F_{j}(j=0,1)$ by a linear chain of smooth rational curves with a unique (-1)-curve E_{j}, which is a multiple component of the corresponding divisor $\bar{\pi}^{*}(j)$. The dual graph of the chain $\bar{\pi}^{-1}(0)$ has a sequence of weights $[[-n,-1, \underbrace{-2, \ldots,-2}_{n-1}]$,
where for the strict transform F_{0}^{\prime} of F_{0} on V one has $F^{\prime 2}=-n \leq-2$. The boundary divisor D appears as the total transform of D_{0} in V with the components E_{0}, E_{1} and F_{0}^{\prime} being deleted. In the affine part $X=V \backslash D$ these deleted components form the only degenerate fibers of π, namely $\pi^{*}(0)=\Gamma+n\left(E_{0} \cap X\right)$ and $\pi^{*}(1)=m\left(E_{1} \cap X\right)$, where $\Gamma=F_{0}^{\prime} \cap X$ and $m, n \geq 2$. Thus the only reducible affine fiber $\pi^{-1}(0)=$ $\left(F_{0}^{\prime}+E_{0}\right) \cap X$ is isomorphic to the cross $\mathbb{A}^{1} \wedge \mathbb{A}^{1}=\{x y=0\} \subset \mathbb{A}^{2}$. Furthermore $\pi^{-1}(1)=E_{1} \cap X \simeq \mathbb{A}_{*}^{1}$ is an irreducible multiple fiber.

Finally $\bar{\pi}^{-1}\left(F_{\infty}\right)=F_{\infty}^{\prime} \subseteq D$. A computation in [KiKo, Example 1] shows that $\bar{k}(X \backslash \Gamma)=0$ if $m=n=2$ and $\bar{k}(X \backslash \Gamma)=1$ otherwise.

Remark 3. One could consult e.g. [FlZa $]$ for a construction giving all \mathbb{Q}-homology planes X with an \mathbb{A}_{*}^{1}-fibration $\pi: X \rightarrow B$. In the terminology of $\left[\mathrm{FlZa}_{1}\right]$, such a surface with a twisted (untwisted) $\mathbb{A}_{*}^{1}-$ fibration over $B=\mathbb{A}^{1}, B=\mathbb{P}^{1}$, respectively, is said to be of type $A 1$, $A 2(B 1, B 2)$, respectively. Thus the surface X as in the Construction above is of type $B 1$, with a comb attachment applied at F_{0} and with F_{1} replaced by a fiber of a broken chain type in the terminology of [FlZa ${ }_{1}$].

In the following lemma we prove the first assertion of Theorem 1(b). We recall that a \mathbb{C}^{*}-action on X is hyperbolic if its general orbits are closed, elliptic if it possesses an attractive or repelling fixed point in X, and parabolic if its fixed point set is one-dimensional.

Lemma 5. If (X, Γ) satisfies the assumptions of Theorem 1(b) then Γ is an orbit closure of an effective hyperbolic \mathbb{C}^{*}-action on X.

Proof. According to Theorem 1.1 in [KiKo] (cf. Theorem 3.10 in [GMMR]), under our assumptions (X, Γ) is one of the pairs as in the above Construction. There exists an effective \mathbb{C}^{*}-action on Σ_{a} along the fibers of π_{0} with the fixed point set equal to $M_{a} \cup \bar{M}_{a}$. By induction on the number of blowups this \mathbb{C}^{*}-action lifts to V stabilizing the total transform $\mu^{-1}\left(D_{0}\right)$. Indeed the centers of successive inner blowups in μ are fixed under the \mathbb{C}^{*}-action constructed on the previous step, and so Lemma $2.2(\mathrm{~b})$ in [FKZ] applies. It follows that the curve $D \subseteq \mu^{-1}\left(D_{0}\right)$ as in the Construction above is stable under the lifted \mathbb{C}^{*}-action, so this action restricts to a hyperbolic \mathbb{C}^{*}-action on $X=V \backslash D$. In turn, the affine line Γ on X as in the Construction is an orbit closure for this restricted action, as required.

The resulting surface X with a hyperbolic \mathbb{C}^{*}-action admits the following description in terms of the DPD orbifold presentation ${ }^{8}$ as elaborated in $\left[\mathrm{FlZa}_{2}\right]$.
DPD presentation. Let $C=\operatorname{Spec} A_{0}$ be a smooth affine curve and $\left(D_{+}, D_{-}\right)$be a pair of \mathbb{Q}-divisors on C with $D_{+}+D_{-} \leq 0$. Letting $A_{ \pm k}=H^{0}\left(C, \mathcal{O}\left(k D_{ \pm}\right)\right), k \geq 0$ we consider the graded A_{0}-algebra $A=A_{0}\left[D_{+}, D_{-}\right]=\bigoplus_{k \in \mathbb{Z}} A_{k}$ and the associated normal affine surface $X=\operatorname{Spec} A$. The grading determines, in a usual way, a graded semisimple Euler derivation δ on A, where $\delta\left(a_{k}\right)=k a_{k} \forall a_{k} \in A_{k}$, and,

[^2]in turn, an effective hyperbolic \mathbb{C}^{*}-action on X. Vice versa, any effective hyperbolic \mathbb{C}^{*}-action on a normal affine surface with the orbit space C arises in this way $\left[\mathrm{FlZa}_{2}, 4.3\right]$.

Let $\pi: X \rightarrow C$ be the orbit map. Given a point $p \in C$ we let $m_{ \pm}(p)$ denote the minimal positive integer such that $m_{ \pm}(p) D_{ \pm}(p) \in \mathbb{Z}$. In case where $\left(D_{+}+D_{-}\right)(p)=0$ we set $m(p)=m_{ \pm}(p)$. If $\left(D_{+}+D_{-}\right)(p)<0$ then the fiber $\pi^{-1}(p)$ is reducible, isomorphic to the cross $\mathbb{A}^{1} \wedge \mathbb{A}^{1}$ in \mathbb{A}^{2} and consists of two orbit closures $\bar{O}_{p}^{ \pm}$. Its unique double point p^{\prime} is a fixed point; p^{\prime} is smooth on X if and only if $\left(D_{+}+D_{-}\right)(p)=-1 / m_{+} m_{-}$ [FlZa $2,4.15]$. Actually $m_{ \pm}(p)$ are the multiplicities of the curves $\bar{O}_{p}^{ \pm}$, respectively, in the divisor $\pi^{*}(p)$.

In case where $\left(D_{+}+D_{-}\right)(p)=0$ the fiber $O_{p}=\pi^{-1}(p) \simeq \mathbb{A}_{*}^{1}$ is irreducible of multiplicity $m(p)$ in $\pi^{*}(p)$.

The inversion $\lambda \longmapsto \lambda^{-1}$ in \mathbb{C}^{*} results in interchanging D_{+}and D_{-}, respectively, \bar{O}_{p}^{+}and \bar{O}_{p}^{-}. Passing from the pair (D_{+}, D_{-}) to another one $\left(D_{+}^{\prime}, D_{-}^{\prime}\right)=\left(D_{+}+D_{0}, D_{-}-D_{0}\right)$ with a principal divisor D_{0} on C results in passing from A to an isomorphic graded A_{0}-algebra A^{\prime}, so the corresponding \mathbb{C}^{*}-surfaces are equivariantly isomorphic over C.

Lemma 6. Given a normal affine surface $X=\operatorname{Spec} A$ with a hyperbolic \mathbb{C}^{*}-action determined by a pair $\left(D_{+}, D_{-}\right)$of \mathbb{Q}-divisors on the affine curve $C=\operatorname{Spec} A_{0}$ with $D_{+}+D_{-} \leq 0$, we denote by $p_{1}, \ldots, p_{l}, q_{1}, \ldots, q_{k}$ the points of C with $\left(D_{+}+D_{-}\right)\left(p_{j}\right)<0,\left(D_{+}+D_{-}\right)\left(q_{i}\right)=0$ and $m\left(q_{j}\right) \geq 2$, respectively. Letting $\pi: X \rightarrow C$ be the orbit map we assume that $C \simeq \mathbb{A}^{1}$ and that X is smooth that is, $\left(D_{+}+D_{-}\right)\left(p_{j}\right)=$ $-1 / m_{+}\left(p_{j}\right) m_{-}\left(p_{j}\right) \forall j=1, \ldots, l$. Then the following hold.
(a) $e(X)=l$.
(b) $\operatorname{Pic}(X) \otimes \mathbb{Q}=0$ if and only if $l \leq 1$ that is, π has at most one reducible fiber.
(c) Moreover X is \mathbb{Q}-acyclic if and only if $l=1$. In the latter case $\pi: X \rightarrow \mathbb{A}^{1}$ is an untwisted \mathbb{A}_{*}^{1}-fibration ${ }^{9}$.

Proof. (a) holds by the additivity of the Euler characteristic, and (b) follows from the description of the Picard $\operatorname{group} \operatorname{Pic}(X)$ in $\left[\mathrm{FlZa}_{2}, 4.24\right]$. For a smooth rational affine surface X we have $b_{3}=b_{4}=0$ and $b_{1}=$ $\rho(X)$, where $\rho(X)$ is the Picard number of $X[\mathrm{Mi}, \mathrm{Ch} .3,4.2 .1]$. Thus X is \mathbb{Q}-acyclic if and only if $e(X)=1$ and $\operatorname{Pic}(X) \otimes \mathbb{Q}=0$, whence (c) follows.

[^3]Lemma 7. Every \mathbb{Q}-homology plane X as in the above Construction is isomorphic to a \mathbb{C}^{*}-surface Spec $A_{0}\left[D_{+}, D_{-}\right]$, where $A_{0}=\mathbb{C}[t]$ and
$D_{+}=\frac{e}{m}[1], \quad D_{-}=-\frac{1}{n}[0]-\frac{e}{m}[1]$ with $0<e<m, \operatorname{gcd}(e, m)=1, m, n \geq 2$.
Conversely, every \mathbb{C}^{*}-surface with such a DPD-presentation appears via the above Construction.

Proof. By our Construction, the degenerate fibers of the induced \mathbb{A}_{*}^{1-} family $\pi: X \rightarrow \mathbb{A}^{1}$ are $\pi^{*}(0)=n\left(E_{0} \cap X\right)+\Gamma$ and $\pi^{*}(1)=m\left(E_{1} \cap X\right)$, where $\Gamma=F_{0}^{\prime} \cap X, E_{0} \cdot \Gamma=1$ and $E_{j}(\mathrm{j}=0,1)$ is the unique (-1)-curve in the fiber $\bar{\pi}^{-1}(j)$ of the induced \mathbb{P}^{1}-ruling $\bar{\pi}: V \rightarrow \mathbb{P}^{1}$. Clearly, all these curves are orbit closures for the \mathbb{C}^{*}-action on X as in Lemma 5. We may suppose that, in the notation as above, $\Gamma=O_{0}^{+}, E_{0} \cap X=O_{0}^{-}$ and $E_{1} \cap X=O_{1}$ so that

$$
k=l=1, \quad p_{1}=0, \quad q_{1}=1, \quad m_{+}(0)=1, \quad m_{-}(0)=n \text { and } m(1)=m
$$

Since every integral divisor on $C=\mathbb{A}^{1}$ is principal, passing to an equivalent pair of \mathbb{Q}-divisors we may achieve that $\left(D_{+}, D_{-}\right)$is a pair as in the lemma. This proves the first assertion. The converse easily follows by virtue of Lemma 6.

Remarks 1. 1. According to $\left[\mathrm{FlZa}_{3}, 5.5\right]$, for $e=1$ and $m \mid n$ the above surfaces actually coincide with the Bertin surfaces from Example 1.
2. The formula for the canonical divisor in $\left[\mathrm{FlZa}_{2}, 4.25\right]$ gives in our case

$$
K_{X}=-(e(n-1)+1)\left[O_{1}\right], \quad \text { where } \quad m\left[O_{1}\right]=0 .
$$

Therefore $K_{X}=0$ if and only if $e(n-1) \equiv-1 \bmod m$. The question arises whether, among the \mathbb{C}^{*}-surfaces from Lemma 7 satisfying the latter condition, the Bertin surfaces are the only hypersurfaces.
3. For $n>1$ the fractional part $\left\{D_{-}\right\}$in Lemma 7 is supported on 2 points, hence by $\left[\mathrm{FlZa}_{3}, 4.5\right]$ the surface X as in Lemma 7 admits a unique \mathbb{A}^{1}-ruling $X \rightarrow \mathbb{A}^{1}$ (i.e., X is of class ML_{1} in the terminology of [GMMR]).

In contrast, for $n=1$ there is a second \mathbb{A}^{1}-ruling $X \rightarrow \mathbb{A}^{1}$, so X has trivial Makar-Limanov invariant. In particular for $e / m=1 / 2$ and $n=1$ by virtue of $\left[\mathrm{FlZa}_{3}, 5.1\right], X \simeq \mathbb{P}^{2} \backslash \Delta$, where Δ is a smooth conic in \mathbb{P}^{2}.
4. Following $\left[\mathrm{FlZa}_{2}, 4.8\right]$ it is possible to define, by explicit equations, a family of surfaces in \mathbb{A}^{4}, not necessarily complete intersections, whose normalizations are the \mathbb{Q}-homology planes in the above Construction.

Now we are ready to complete the proof of Theorem 1(b).

Proof of Theorem 1(b). Since the fractional part $\left\{D_{+}\right\}$of the divisor D_{+}as in Lemma 7 is supported on one point, there exists a graded locally nilpotent derivation on A of positive degree, see $\left[\mathrm{FlZa}_{3}, 2.2\right.$, 3.23]. This derivation generates an effective \mathbb{C}_{+}-action on X, and also an action of a semidirect product $G=\mathbb{C}^{*} \ltimes \mathbb{C}_{+}$with an open orbit $U \simeq \mathbb{A}^{1} \times \mathbb{A}_{*}^{1}$. Moreover by $\left[\mathrm{FlZa}_{3}, 3.25\right]$, the orbit map $X \rightarrow \mathbb{A}^{1}$ of the associate \mathbb{C}_{+}-action has a unique irreducible multiple fiber $\Gamma^{\prime}=\bar{O}_{0}^{-}$ $\left(=E_{0} \cap X\right)$ of multiplicity $m \geq 2$. General orbits of this \mathbb{C}_{+}-action on X being transversal to Γ, the action moves Γ, as stated.

4. Isotrivial families of curves and \mathbb{C}^{*}-actions

To indicate a proof of Theorem 1(c) let us recall first a necessary result from [LiZa, Za]. For the sake of completeness we sketch the proof.

Lemma 8. ([LiZa, Lemma 5]) Let X^{*} be a smooth affine surface and $\pi: X^{*} \rightarrow \mathbb{A}_{*}^{1}$ be a family of curves without degenerate fibers which is not a twisted \mathbb{A}_{*}^{1}-family. Then π is equivariant with respect to a suitable effective \mathbb{C}^{*}-action on X^{*} and a nontrivial \mathbb{C}^{*}-action on \mathbb{A}_{*}^{1}.

Proof. Let F denote a general fiber of π. In the case where $F \simeq \mathbb{A}^{1}$ the surface X^{*} admits a completion which is a Hirzebruch surface Σ_{a} with the boundary divisor $D=\Sigma_{a} \backslash X^{*}$ consisting of a section and two fibers. It follows that π is a trivial family, which implies the assertion. The same argument applies if $F \simeq \mathbb{A}_{*}^{1}$ since in this case by our assumption π is untwisted.

Suppose further that $e(F)<0$ i.e. that F is a hyperbolic curve. By Bers' Theorem the Teichmuller space corresponding to F, with its natural complex structure, is biholomorphic to a bounded domain in \mathbb{C}^{M} for some $M>0$, hence is as well hyperbolic. Therefore the family π over a non-hyperbolic base \mathbb{A}_{*}^{1} is isotrivial i.e., its fibers are all pairwise isomorphic. Since $\operatorname{Aut}(F)$ is a finite group the monodromy $\mu \in \operatorname{Aut}(F)$ of the family π has finite order, say, N. After a cyclic étale base change $z \longmapsto z^{N}$ we obtain a trivial family $F \times \mathbb{A}_{*}^{1} \rightarrow \mathbb{A}_{*}^{1}$, which is a cyclic étale covering of the given family π. The standard \mathbb{C}^{*}-action on its base lifts to a free \mathbb{C}^{*}-action on $F \times \mathbb{A}_{*}^{1}$ commuting with the monodromy $\mathbb{Z} / N \mathbb{Z}$-action. Therefore the lifted \mathbb{C}^{*}-action descends to X^{*} so that π becomes equivariant with respect to the \mathbb{C}^{*}-action $\lambda . z=\lambda^{N} z$ on \mathbb{A}_{*}^{1}, as needed.

Remark 4. The \mathbb{A}_{*}^{1}-family of orbits of a hyperbolic \mathbb{C}^{*}-action on an affine surface is always untwisted [FKZ]. Hence the conclusion of Lemma 8 does not hold for twisted \mathbb{A}_{*}^{1}-families.

Proof of Theorem 1(c). Let Γ be a non-smooth homology line on a \mathbb{Q}-homology plane X, and let $m \Gamma=f^{*}(0)$ for a suitable $m \in \mathbb{N}$ and a primitive regular function $f \in \mathcal{O}(X)$ with irreducible general fiber F (cf. the proof of Proposition 4). Let $p^{\prime} \in \Gamma$ be a singular point of Γ with Milnor number $\mu>0$. In a suitable small spherical neighborhood B of p^{\prime}, the function $f^{1 / m}$ is holomorphic and its general fiber say R (which is the Milnor fiber of $\left.\left(\Gamma, p^{\prime}\right)\right)$ is a Riemann surface with boundary of positive genus $g=\mu / 2$ [Mil, 10.2]. For a fixed general fiber F of f sufficiently close to Γ, the intersection $F \cap B$ is a disjoint union of m copies of the Milnor fiber R, hence F as well is of positive genus.

Therefore $e(F)<0$. By Lemma 3.2 in [Za], since $e(X \backslash \Gamma)=0$ the family $\pi=f \mid(X \backslash \Gamma): X \backslash \Gamma \rightarrow \mathbb{A}_{*}^{1}$ has no degenerate fiber, and so Lemma 8 applies.

As a matter of fact, the \mathbb{C}^{*}-action on $X \backslash \Gamma$ as in Lemma 8 extends to an elliptic \mathbb{C}^{*}-action on X making f equivariant and p^{\prime} an attractive or repelling fixed point. For a \mathbb{Z}-homology plane X, the existence of such an extension was shown in [LiZa] and in [Za] in two different ways. The both proofs work mutatis mutandis in our more general setting. We choose below to follow the lines of the proof of Lemma 6 in [LiZa].

Let \bar{F} be a smooth projective model of F. The cyclic étale covering $\rho: F \times \mathbb{A}_{*}^{1} \rightarrow X \backslash \Gamma$ as in the proof of Lemma 8 extends to an equivariant rational map which fits into the commutative diagram

where V is a smooth equivariant SNC completion of $X \backslash \Gamma$. If the \mathbb{C}^{*}-action on $X \backslash \Gamma$ possesses an orbit O which is not closed in X then so are all orbits and the action extends to X. Indeed the closure \bar{O} meets Γ in one point say q, and $n \bar{O}=h^{*}(0)$ for some regular function h on X and for some $n \in \mathbb{N}$. Let P be the connected component of the polyhedron $|f| \leq \varepsilon,|h| \leq \varepsilon$ which contains q. Since $\lambda . h=\lambda^{k} \cdot h$ for some $k \in \mathbb{Z}$, for every $\lambda \in \mathbb{C}^{*}$ with $|\lambda|=1$ the complement $P \backslash \Gamma$ is stable under the action of λ. The polyhedron P being compact for a sufficiently small $\varepsilon>0$, such an action on $P \backslash \Gamma$ extends across Γ. Hence it also extends through Γ to an action on the whole X for all $\lambda \in \mathbb{C}^{*}$ with $|\lambda|=1$, and then also for all $\lambda \in \mathbb{C}^{*}$.

The indeterminacy set of ρ being at most 0 -dimensional, ρ restricts to the fiber over $0 \in \mathbb{P}^{1}$ yielding a morphism $\rho: \bar{F} \rightarrow \bar{\pi}^{-1}(0)$. The
following alternative holds: either $\rho(\bar{F})=p \in \Gamma$, or $\rho(\bar{F})=\bar{\Gamma}$, or finally $\rho(\bar{F}) \cap \Gamma=\emptyset$. Let us show that the last two possibilities cannot occur.

Indeed supposing that $\rho(\bar{F})=p \in \Gamma(\rho(\bar{F})=\bar{\Gamma}$, respectively) the general orbits of the \mathbb{C}^{*}-action on $X \backslash \Gamma$ are not closed in X, and the action extends to an elliptic (parabolic, respectively) \mathbb{C}^{*}-action on X. Since the fixed point set of a parabolic \mathbb{C}^{*}-action on a normal affine surface is smooth (see $\left[\mathrm{FlZa}_{2}, \S 3\right]$), the latter case must be excluded.

To exclude the last possibility, suppose on the contrary that $\rho(\bar{F}) \cap$ $\Gamma=\emptyset$. Letting $p_{1}, \ldots, p_{k} \in \bar{F} \times\{0\}$ be the indeterminacy points of ρ on the central fiber, we observe that under our assumption, all \mathbb{C}^{*}-orbits $\rho\left(\{p\} \times \mathbb{A}_{*}^{1}\right)$ are closed in X, because general orbits are. The orbits $\rho\left(\left\{p_{i}\right\} \times \mathbb{A}_{*}^{1}\right), i=1, \ldots, k$, meet any fiber $F_{\xi}=f^{-1}(\xi), \xi \in \mathbb{A}^{1}$, in a finite set, say, T.

Fixing further a general fiber $F=F_{\xi}$ sufficiently close to Γ and a sufficiently small neighborhood ω of the finite set $T \cup(\bar{F} \backslash F)$ in \bar{F}, we let $K=\bar{F} \backslash \omega \subseteq F$. Under our assumptions K is a compact Riemann surface of positive genus with boundary, and $B \cap \lambda . K=\emptyset$ for all sufficiently small $\lambda \in \mathbb{C}^{*}$. Hence $F \cap \lambda^{-1} . B \subseteq \omega$ is a disjoint union of Riemann surfaces of genus 0 . On the other hand

$$
F \cap \lambda^{-1} . B \cong B \cap \lambda . F=B \cap F_{\lambda^{N} \xi}
$$

is a disjoint union of m copies of the Milnor fiber R of the analytic plane curve singularity $\left(\Gamma, p^{\prime}\right)$. This is a contradiction because R is of positive genus.

Thus Γ is stable under the extended elliptic \mathbb{C}^{*}-action on X. So Γ is an orbit closure of this action and the singular point $p^{\prime} \in \Gamma$ is a fixed point of the action. Consider an equivariant embedding $X \hookrightarrow \mathbb{A}^{N}$ which sends p^{\prime} to the origin, where \mathbb{A}^{N} is equipped with a linear \mathbb{C}^{*} action, and fix an equivariant linear projection $\mathbb{A}^{N} \rightarrow T$, where $T \simeq \mathbb{A}^{2}$ is the tangent plane of X at $p^{\prime}=\overline{0}$. This projection restricted to X gives an equivariant isomorphism $X \simeq \mathbb{A}^{2}$, where the \mathbb{C}^{*}-action on \mathbb{A}^{2} is linear (indeed, both actions have the origin as an attractive fixed point). In appropriate linear coordinates the latter linear action is diagonal: $\lambda .(x, y) \longmapsto\left(\lambda^{l} x, \lambda^{k} y\right)$ with $\operatorname{gcd}(k, l)=1$. So either the image of Γ is one of the axes, which contradicts the assumption that Γ is singular, or it is a curve $\alpha x^{k}-\beta y^{l}=0$ for some $\alpha, \beta \in \mathbb{C}^{*}$. This proves (c) of Theorem 1. Now the proof of Theorem 1 is completed.

References

[Be] J. Bertin, Pinceaux de droites et automorphismes des surfaces affines, J. Reine Angew. Math. 341 (1983), 32-53.
[Fi] K.-H. Fieseler, On complex affine surfaces with \mathbb{C}^{+}-action, Comment. Math. Helv. 69 (1994), 5-27.
[FlZa ${ }_{1}$] H. Flenner, M. Zaidenberg, Q-acyclic surfaces and their deformations, Proc. Conf. "Classification of Algebraic Varieties", Mai 22-30, 1992, Univ. of l'Aquila, L'Aquila, Italy /Livorni ed. Contempor. Mathem. Vol. 162, Providence, RI, 1994, 143-208.
[FlZa_{2}] H. Flenner, M. Zaidenberg, Normal affine surfaces with \mathbb{C}^{*}-actions, Osaka J. Math. 40 (2003), 981-1009.
[FlZa ${ }_{3}$] H. Flenner, M. Zaidenberg, Locally nilpotent derivations on affine surfaces with $a \mathbb{C}^{*}$-action, Osaka J. Math. 42 (2005), 44p.
[FKZ] H. Flenner, S. Kaliman, M. Zaidenberg, Completions of \mathbb{C}^{*}-surfaces, math.AG/0511282, 37p.; Preprint, Institut Fourier de Mathématiques, 693, Grenoble 2005, 36p. Affine algebraic geometry. In honor of Prof. M. Miyanishi, World Sci. 2007, 149-200 (to appear).
[Fu] T. Fujita, On the topology of noncomplete algebraic surfaces. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), 503-566.
[Gu] R. V. Gurjar, A new proof of Suzuki's formula, Proc. Indian Acad. Sci. Math. Sci. 107 (1997), 237-242.
[GMMR] R. V. Gurjar, K. Masuda, M. Miyanishi and P. Russell, Affine lines on affine surfaces and the Makar-Limanov invariant, preprint, 2005, 42p.
[GuPa] R. V. Gurjar, A. J. Parameswaran, Affine lines on \mathbb{Q}-homology planes, J. Math. Kyoto Univ. 35 (1995), 63-77.
[KaZa] S. Kaliman, M. Zaidenberg, Affine modifications and affine varieties with a very transitive automorphism group, Transform. Groups 4 (1999), 53-95.
[KiKo] T. Kishimoto and H. Kojima, Affine lines on \mathbb{Q}-homology planes with logarithmic Kodaira dimension $-\infty$ Transform. Groups 11 (2006), no. 4 (to appear).
[LiZa] V. Ya. Lin, M. G. Zaidenberg, An irreducible simply connected algebraic curve in \mathbb{C}^{2} is equivalent to a quasihomogeneous curve, Soviet Math. Dokl. 28 (1983), 200-204.
[MaMi_{1}] K. Masuda, M. Miyanishi, The additive group actions on \mathbb{Q}-homology planes, Ann. Inst. Fourier (Grenoble) 53 (2003), 429-464.
[MaMi_{2}] K. Masuda, M. Miyanishi, Affine pseudo-planes and cancellation problem, Trans. Amer. Math. Soc. 357 (2005), 4867-4883.
[Mil] J. Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61 Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo 1968.
[Mi] M. Miyanishi, Open algebraic surfaces. CRM Monograph Series, 12. Amer. Math. Soc., Providence, RI, 2001.
[MiSu] M. Miyanishi, T. Sugie, Affine surfaces containing cylinderlike open sets, J. Math. Kyoto Univ. 20 (1980), 11-42.
[Suz] M. Suzuki, Sur les opérations holomorphes de \mathbb{C} et de \mathbb{C}^{*} sur un espace de Stein. Fonctions de plusieurs variables complexes, III (Sém. Norguet, 19751977), 394, Lecture Notes in Math., 670, Springer, Berlin, 1978, 80-88.
[Za] M. G. Zaidenberg, Isotrivial families of curves on affine surfaces and characterization of the affine plane, Math. USSR Izvestiya 30 (1988), 503-532. Additions and corrections, ibid., 38 (1992), 435-437.

E-mail address: zaidenbe@ujf-grenoble.fr

Université Grenoble I, Institut Fourier, UMR 5582 CNRS-UJF, BP 74,38402 St. Martin D'Hères cédex, France

[^0]: ${ }^{1}$ This is due to the Lin-Zaidenberg Theorem [LiZa, Mi, Ch. 3, §3].
 ${ }^{2}$ See [Mi, Ch.2, Theorem 6.7.1].
 ${ }^{3}$ See also Lemma 3 below.
 ${ }^{4}$ The both possibilities actually occur, see the Construction in Section 3 and also Lemma 7.

[^1]: ${ }^{5}$ We refer e.g. to $[\mathrm{Fu}, \mathrm{GuPa}, \mathrm{Mi}, \mathrm{Ch} .3,4.4 .1-4.4 .2]$ for definitions.
 ${ }^{6}$ The same conclusions hold also in case (c) if X is not NC-minimal [GuPa].
 ${ }^{7}$ We note [Be] that $\pi_{1}(X)$ is a free product of cyclic groups, namely, $\pi_{1}(X) \cong$ $*_{j} \mathbb{Z} / m_{j} \mathbb{Z}$, where $\left(m_{j}\right)_{j}$ is the sequence of multiplicities of degenerate fibers, and so $H_{1}(X ; \mathbb{Z}) \cong \bigoplus_{j} \mathbb{Z} / m_{j} \mathbb{Z}$.

[^2]: $8_{\text {i.e. the Dolgachev-Pinkham-Demazure presentation. }}$

[^3]: ${ }^{9}$ It is of type B1 in the classification of [FlZa_{1}].

