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Introduction

This paper describes new links between cohomology of categories, groupoid enriched categories,
and homotopy theory of fibres and cofibres.

For a category C with sums we introduce in (2.10), (2.15) a natural transformation of coho-
mology groups

s -
H+(C, D) —="— H"(Twist(C), D)

where Twist(C) is the twisted version of the category of pairsin C. The construction of Agym relies
on the normalisation theorem A.9 in the appendix which shows that cochains can be assumed to
respect sums. This is a new kind of normalisation result extending classical normalisation with
respect to identities and generalising that with respect to zero maps [5]. There are dual results
for categories with products, yielding the dual transformation Aproq.

Given a groupoid-enriched category with sums we introduce the category of twisted homotopy
pairs which generalises the category of homotopy pairs studied by Hardie (8, 9]. We show that

Asum

H3(C, D) H*(Twist(C), D)
takes the class represented by a groupoid enriched category to the class represented by its category
of twisted homotopy pairs; see (3.15). Actually this correspondence is the motivation for studying
the transformation Agum .-

If C is the homotopy category of suspensions, resp. loop spaces, then the associated classical
groupoid-enriched category given by maps and homotopies represents an element

Ts € H3(C,Dy), resp. Tq € H3(C,Dq)

termed the universal Toda bracket. This determines all classical triple Toda brackets in C [5].

In homotopy theory a space is often obtained as a homotopy cofibre C(f) of an attaching map
f or dually as a homotopy fibre P(f’) of a classifying map f’. Therefore it is a classical problem
to describe homotopy classes of maps

ct) —LEclg) e p() L (g

and their composites only in terms of the homotopy classes of the attaching maps or classifying
maps repsectively. Studying this problem leads inevitably to the theory of this paper; solutions
are described in (4.7}, (5.7) where we show that maps F or F are equivalent to twisted homotopy
pairs. This improves considerably the classical method of constructing such maps by homotopy
pairs.

It is well known that examples of maps F' and F’ are given by ‘extensions’ and ‘coextensions’
and that these are related to classical Toda brackets. In fact we show how the universal Toda
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bracket determines such homotopy categories of maps between cofibres, resp. fibres; see (4.8), (5.8).
For this we use the transformation Agum, resp. Aprod, and the result that maps between cofibres
or fibres can be constructed by twisted homotopy pairs.

1 - Cohomology of categories

Recall from [1, 4] that the category of factorisations FC on a category C is the category with
objects the morphisms f : A =+ X of C and morphisms («a, ) : f — ¢ the ‘factorisations’ given
by commutative diagrams

A——mX

5 o

B———Y

with the composition (a, 8)(a’, #') = (ad’, #'8). A natural system D on C is then a functor from
FC to the category of abelian groups. We write D; for the abelian group D(f) and a., 8* for
the induced homomorphisms

-

Dy —2 s Dy, Dy — 2 Dy

given by D{e, 1) and D(1, B} respectively.

If D is a natural system on a category C recall that the cohomology of C with coefficients in
D is defined as follows. First let Ner(C) be the simplicial nerve of C, given in dimension n > 1
by the set of all sequences ¢ = (7y,...,04,)

T 24/} ' On
Xo X, Xg — Coe - Xpno] ——X,,

of n composable morphisms in C, and in dimension 0 by Ob{C). The face maps are defined by

do(o) = (o2,...,04)
de(o) = (01,..,0kOkg1,---,0n)
dn(d') = (0'1,...,0‘n_1)

and the degeneracies by insertion of identities. We will write |o| for the composite ¢1 . ..0,. Now
let F* = F*(C, D) be the cochain complex with F'* the abelian group of all functions

[

Ner(C)y J{D, : g € Mor(C)}

with co € Djs. Addition in F™ is defined pointwise, and the coboundary 6 : F*~! — F" is
defined by

(bc)e = (o1)ecldoo) + Y (=1)e(dio) + (=1)"(0n)"c(dno)

i=1

Then the cohomology groups of C with coefficients in D are defined by
H"(C,D) = H™F"(C,D),d)

for n > 0. An equivalence of categories ¢ : K — C induces by [4] an isomorphism of cohomology
groups:

H™K,$"D) = H"(C,D)



A sum (or coproduct) of objects Xi, 1 < &k < r, in a category C is an object X = X, v.. .V X,
of C together with morphisms #x : X — X such that pre-composition by the #; induces natural
bijections of hom-sets

F=(i,...,4): C(X,Z2) = C(X,,Z)x...x C(X,, Z)
Some applications of the cohomology of categories may be found in {7, 10, 11, 12].

Definition 1.1 Suppose D) is a natural system on a category C. Let (X,4) be a sum in C and
f: X — Y amorphism of C. There are homomorphisms

M3

L

Dy Dy,

which define a homomorphism
Dj ———z'—> @ Df.;,.
k=t

by (i"a)x = ig(a). We say D is compatible with sums if i* is an isomorphism of groups for each
such morphism f of C and sum diagram (X, 7).

In the appendix we will show that the cohomology H*(C, D) admits a “normalisation theorem”
in the case that D is compatible with sums.

2 Pairs, twisted pairs and the natural transformation )\

Let C be a category with finite sums, that is, with binary sums A vV B and an initial object *.
Suppose that = is also a terminal object. For objects A, B of C the zero morphism 0 = 04p :
A— Bisgivenby A=+ B. For f:A— X, g: B— X we write (f,9): AV B — X for the
unique morphism with (f,g)ia = f and (f,g)ig = g.

Definition 2.1 A morphism ¢ : 4 = X VY in C is trivial on Y if the composite (0,1} : A —
X VY =Y is the zero morphism.

In particular the composite ix¢(: A —= X — X VY is trivial on Y for every morphism{ : 4 = X
of C.

Definition 2.2 The twisted pair category Twist(C) on C is the category with objects the mor-
phisms f of C and morphisms (£,7) : f — g given by commutative diagrams

A— X VY

f (9:1)

B—Y
where £ is trivial on Y. Composition is defined by

EnE ) = (€ )



.

where £ : AV B — X VY is given by (£,iyn). One readily checks that this is a well-defined
category. In fact an alternative description of the morphisms f — g of Twist(C) is given by pairs
of commutative diagrams

B_._.._?__>y
E 3
AVB———> X VY AVB— X VY
©,1 (0,1) (£, 1) (9. 1)
B————Y B——mmY

with the composition given by horizontal composition of these diagrams.

Definition 2.3 A natural system D on C is said to be strongly compatible with sums if D is
compatible with sums and has the following additional properties:

I. foreach £ : A & X VY in C which is trivial on ¥, the homomorphism (0,1). : D(§) =
D{0ay) is surjective; we write D(£); for the kernel.

D(€)s ¢ D(€) @0, D(0ay)

2. for each sum X VY and each morphism { : A — X in C, the homomorphism (ix). : D({) —
D(ix¢) has image D(ix()2.

Example 2.4 The natural system Dy used in (4.4) is strongly compatible with sums since the
homomorphisms

Ds(f) = [EX, Y] —=— Ds(¢f) = [SX, Z]
are defined simply by a — ge.

A natural system D on C defines a natural system D on the category Twist(C) of twisted
pairs as follows. For morphisms (£,n) : f = g of Twist(C) consider the subgroup

DM + (9. 1).D(€)2 €S D(nf)
and define ﬁ({, 1) to be the quotient
(2.5) D(e,n) = D(nf) /£ D) +(g.1). D(E)2

For a € D(7f) we write [a] € D(€, n) for the corresponding coset. _
Consider morphisms (€,7), (§',7') of Twist(C), with composite (££’, n1').

1
XoVYy e X VY, —— X

(2.6) (fo, 1) (A,1) fa

Yo ¥ Y,



Lemma 2.7 Suppose D is compatible with sums and a € D(n(f1, 1)) satisfies i} (a) = 0. Then
£ (a) € (fo,1). D(EE")2.

Proof: Let b = i}, (a) € D(n) and let &' € D(£) correspond to (0, (iv,).b) € D(£) & D(iy,7).
Then
. (fo,1).t" = a € D((fo,1)€) = D(n(fi,1))

since they agree under ¢} and i}, . Furthermore
(0,1).6' = (0,1)"6 € D((0,1)€) = D(n(0,1))
Thus &7 (a) = (fo, 1).(€'7¥) with (0,1).(€'7b') = & (0,1)"b = 0 since & is trivial on ¥;. O
For morphisms (k,p) : AV B =Y in C we write a; for the monomorphism
a1 : D{x) > D(x) @ D(p) ———> D, )

Proposition 2.8 Suppose D is compatible with sums. Then the groups 5(5, n) and the induced
homomorphisms

(€n.: DE.n) = DE 7). la] = [1.a]
(€,n): D(&n) = DEE,m'), (o] = [€" a1(a)]
form a well-defined natural system on the category Twist(C).

Proof: The only part which is not straight-forward is showing that (£/,%')" takes the subgroup
fi D(n) to zero. Let & € D(7) and let

a = a(fiy—{(/1,1)0 € D(n(fi,1))

Then & (f1,1)*b = f37'"b € f3 D(nn'). Also i% a = 0 and so we have £'"(a) € (fo,1). D(£€’)2 by
lemma 2.7. Thus

€ )V Rb = Ea(fih) = €7(fL,D% + € a

1s zero in the quotient as required. O

If D is strongly compatible with sums then the groups 5(6,1}) have the following alternative
description. Consider the subgroup

(0°® f*) D(n) + ((0,1). ®(g,1).) D(&) € D(0ay) ® D(nf)
Then 5({;‘, n) is given by the quotient

D(04v) ® D(nf)
(0*e /) D(n) + ((0,1). & (g,1).) D(£)

Since 0* = 0 and (0,1}, : D(&) = D(0ay) is onto this agrees with the definition in (2.5). For an
element (b',6) € D(0ay) ® D(nf) we write [¥',b] € D(£, ) for the corresponding element of the
quotient.

We can now state the main theorem of this section.

(2.9) D,n) =

Theorem 2.10 Suppose D is a natural system on C which is strongly compatible with sums.
Then there is a well-defined natural transformation

ASl.ll'l'l

H™(C, D) H"™(Twist(C), D)

given by (2.11) below.



There are homomorphisms

/\SUITI

F*tY(C, D) F™(Twist(C), D)

for'n > 0 defined as follows. For ¢ € Ner(Twist(C)), given by (&, m3): fi = fi-1, fi: Xi = Y;, one
has (n + 1)-simplices A;jo € Ner(C) with |[Aig| = ... 9. fn 1 Xn = Y5 by

((foxl)vg__lv-'-ugn:lnsn) i=0
A,’O’ = (’h!'"lnf:(fi:1)1£i+11-'-a£ﬂ_.1.£n) lSZSﬂ—l
(th-;'?mfn) i=n

Simplices Ajo with |Aje| = 0 : Xy — Yp are defined similarly by replacing the f; by 0: X; = Y;.
Then for ch4y an (n + 1)-cochain on C we define an n-cochain Agym(cn+1) on Twist(C) by

n

(2.11) (Asumens1}(o) = [Z(—l)‘c,,.,.,()‘:-a), Y (—enpr(Nio)
i=0 =0

where we use the definition of D in (2.9).

The pair category Pair(C) on C is the category with objects the morphisms f of C and
morphisms f — g given by pairs of morphisms (¢, 77) such that g{ = nf. There is an inclusion

(2.12) Pair(C) ———— Twist(C)

which is the identity on objects and takes (¢, 7) to {ix(, ). Recall from [3] that a natural system
D on C induces a natural system D# on Pair(C) with

D*(¢,n) = D(nf)/ fD(n) +9.D(C)

and that there is a natural transformation

H™*Y(C, D) H"(Pair(C), D¥)

Proposition 2.13 Suppose D is strongly compatible with sums. Then there is a well defined
natural isomorphism of natural systems

]
Tt D—— D¥

induced by the identity on D.
Proof: For (¢,7n) in Pair(C) we have
(«"D)(¢,m) = Dlix¢,n) = D(nf) / D) + (g, 1). D(ix¢)z
But as D(ix ()2 = (ix).D(¢) we have (g,1), D(ix ()2 = g. D(¢) and the result follows. O

We thus have a natural homomorphism between cohomology groups

-

(2.14) H™ (Twist(C), D) —=—— H™ (Pair(C), D*)

As an addendum to theorem 2.10 we have



Addendum 2.15 If D is strongly compatible with sums then the natural transformation A factors
through Asum, as shown in the following diagram:

A -
H™Y(C, D) —==— H"(Twist(C), D)

L.T

H™(Pair(C), D¥#)

The intricate proof in the appendix of theorem 2.10 and its addendum requires the normalisa-
tion theorem A.9. In the following section we describe various topological interpretations of the
natural transformation Asum.-

3 Homotopy pairs and twisted homotopy pairs

A lrack category
p

T—K C

is a groupoid-enriched category TK together with a functor p : K — C which is the identity on
objects, is full, and satisfies p(f) = p(g) on morphisms if and only if T'(f, g) is non-empty. Here
T(f,g) is the set of 2-morphisms f — ¢ for f,g: A = B in K. The category C is termed the
quotient category of TK, and is also denoted by K/ ~.

Example 3.1 Let [ be the unit interval in the category Top” of pointed topological spaces. For
X a pointed space, let /X = I x X/ x {*} be the reduced cylinder on X. For maps f,g: X =Y
in Top” let

T(f.9) = [X,Y)"9
be the set of homotopy classes rel. X VX of maps H : [X — Y with
(fig) = Hig, 1) : XA VX 21X Y

This defines a track category

T ——% Top" — P . Top~/ =~

with quotient category the homotopy category of pointed topological spaces.

Let TK be a track category with quotient category C. For each morphism f of C we choose a
fixed morphism f in K with p(f) = f. Recall from [8] that the category Hopair(TK) of homotopy
pairs in TK is the category with objects the morphisms f of C and morphisms {¢,n, H}: f = ¢
given by equivalence classes of 3-tuples (¢, n, H) with H € T(qf, g¢). The equivalence relation on
the morphisms is defined by (¢, n, H) ~ (', ', H') if there exist tracks Gy € T(¢,¢’), G2 € T(17', n)
such that A’ is the composite track ¢

S )
¢

A———NX

o~ H ~
fl = |9

7

— }’
Neft A
n

7



Moreover applying the functor p : K — C to a morphism in Hopair(TK) gives a commutative
diagram in C, and we have a functor

-~

(3.2) Hopair(TK) —r Pair(C)

which is the identity on objects and is full.

We now generalise this to twisted pairs, under certain conditions on TK. We assume that
finite sums exist in K and C and are preserved by p, and that * is both initial and terminal in K
and C.

Definition 3.3 The track structure of TK is compatible with sums if for each sum AV B in K
the induced groupoid homomorphism
. (i3, 7B)
TK(AV B, X) —————TK(A, X) x TK(B, X)
is an isomorphism, and if the groupoids TK(*, X} and TK(X, %) are just the trivial group.

For morphisms f, f' : A =5 X, g,¢' : B— X in K and tracks G € T(f, f'), H € T(g,¢') we
write (G, H) € TK(A V B, X) for the corresponding track from (f,g) to (f’, ¢').

Definition 3.4 Let TK be a track category compatible with sums, with C the corresponding
quotient category. The category Hotwist(TK) of twisted homotopy pairs in TK is the category
with objects the morphisms f of C, and morphisms {£, , Hy, H} : f — g the equivalence classes
of 4-tuples (¢, 7n, Ho, H) given by morphisms £, 5 of K and tracks Hy, H as shown in the following
diagrams

A
(3.3) |

The equivalence relation on such 4-tuples is defined by (€, n, Ho, H) ~ (&', 7', H}, H') if there exist
tracks Gy € T(£,&'), G2 € T(n', n) such that Hj, H' are the composite tracks

Y —-i—-b-XVY

__5”
—-————b

v
|01) f £ !
14

Y

fl 6!
A—XVY A——>XVY
é 3
(3.6) UI —_— I(O,l) fl = G 1)
S B2y

respectively.
Since the track structure is compatible with sums we can equivalently define the morphisms
via the diagrams

AVBMXVY AVBM’-XVY
(HDIO) —~ (H70) ~
(0' 1) —_— (0’ 1) (f, 1) —_— (g’ ]_)
B—T sy B 7 Yy




subject to the equivalence relation indicated by

S N SE

AVB—XVY AVB— X

z
\ \Y vY

(Hy,0) - (H,0)
0,1) =—— l(O,l) (f,l)l —— '(5,1)
B Y B Y

—_— . —

where G is a track of the form (G, —(éy).Gz2). Then we can define composition in Hotwist(TK)
by the horizontal composition of such diagrams.

Proposition 3.7 Let TK be a track category with quotient category C and compatible with
sums. Then there is a well defined functor

o~

Hotwist(TK) —r . Twist(C)
which is the identity on objects and is full.

Proof: Given a morphism (£,n, Ho,H) : f — g of Hotwist(TK) we get via p a well defined
morphism (pé, pn) : f — g of Twist(C}; this defines p. Also P is full: given (¢, 7) in Twist(C) we
can choose tracks Hy € T(0ay, (0, 1)€), H € T(7f, (7, 1)) and we have p(€,7, Ho, H) = (£,7). O

This is a generalisation of (3.2); there is an inclusion ¢ of Hopair{TK) into Hotwist(TK) with
¢, n, H} = {iv(,n,0,iy H}, and the following diagram commutes:

-~

Hopair(TK) Pair(C)

(38) L i

—~

Hotwist(TK) — . Twist(C)
We show now that this map ¢ 1s a map of linear extensions of categories.

Definition 3.9 Compare [1, 4, 5]. Suppose D 1s a natural system on a category C.
A linear extension of C by D

D +-—K Pn—C

consists of a category K with the same objects as C, a functor p: K — C which is the identity
on objects and is full, and for each morphism f of C a transitive effective action + of D(f) on
p~1(f) satisfying the linear distributivity law

(go+b0)(fo+a) = gofo+g.a+f7b
A linear track extension of C by D

+ , p
Dr————ZTK-—>»C

consists of a track category TK whose quotient category is C, and for each morphism f of K an

isomorphism of groups

or: D(pf) = T(f, f)



such the natural system respects the compositions in TK:

g-og(a) = ogy((pg)ea)
og(b) - f = ogr{(pf)"h)
H+op(a) = ( J+ H for HeT(f,h)

Any fibration category or cofibration category [1] gives rise to such linear track extensions; com-
pare (4.4).

In [3] it is shown that the category of homotopy pairs associated to a linear track extension
TK yields a linear extension of categories

o~

(3.10) D# —r Hopair(TK) 7 . Pair(C)

This extends to the category Hotwist(TK) as follows.

Proposition 3.11 Let D be a natural system on C which is strongly compatible with sums, and
let C be the quotient category of a track category TK where the track structure is compatible
with sums as in definition 3.3. If TK is part of a linear track extension

+

Do>—T

P

K———C

then (3.8) and (3.10) are part of a map of linear extensions of categories

~

D# —t Hopair(TK) — P Pair C)

l L L
D —t . Hotwist(TK) —p-—-Twist(C}

where D acts by
{&n, Ho Y +[a] = {&n Ho H + o0, ;(a)}
for a € D(p(n)f) as in (2.5), or equivalently by
{&n Ho, HY+[V,8] = {&n Ho+ oo, (), H +0,7(b)}
for (6',0) € D(0ay) & D(p(n)f) as in (2.9).
Proof: We first show the action is well-defined. If [¥/,5] = 0 we have
(6 = ((0,1).y, Tz +(g,1).v)
for z € D(pn), y € D(p€). Then

Ho + 00,y (') = o(0,1e{(0, 1)ey) + Ho = (0,1)-ae(y) + Ho _
Hto,i(8) = oguelle. 1))+ H+0,5(f*2) = (6,1) 0e(y)+ H +oy(z) - f

and so by the definition of the equivalence relation in (3.6) we have
(3.12) {§,n, Ho, H} + [¥,8] = (&, Ho, H}

as required. Conversely the same argument in reverse shows that if (3.12) holds then [¥,6] = 0;
thus the action is effective.

10



For transitivity consider morphisms
{&n, Ho H}, {&, 0, Ho, H'} : f = ¢
in Hotwist(TK) with (p€, pn) = (p€’, pr’). Choose Gy € T(£,£€'), G2 € T(%', ) and then we have
| {60 Ho HY = (&0, H{, H")

where now Hy/, H" are the composite tracks shown in (3.6). Now define (¥, 5) € D(04y )®D(p(n) f)
by
Touy(b) =—Hg + Hy and o, :(b)=~-H"+ H'
so that
{€,n Ho, H} + [V,8] = {€',7, Hg, H"} + [v',8) = {€',0, Hy, H'}

as required. O

Two linear track extensions TK are termed equivalent if they are objects in the same connected
component of the category Track(C, D), where morphisms TK — T'K’ in this category are given
by groupoid-enriched functors which commute with the isomorphisms oy, and the functors p.
Two linear extensions K, K’ are termed equivalent if there is an isomorphism K = K’ which
respects the actions of D and induces the identity on C. Writing M?(C, D) and M3(C, D) for set
of equivalence classes of linear extensions and of linear track extensions respectively, we have

Theorem 3.13 There are natural bijections
M*(C,D) = H™C,D)
forn=23.

Proof: See (4, 5]. The 2-cocycle A corresponding to a linear extension K measures the non-

functoriality of the function C — K, f — f, and takes (f,g) € Ner(C), to Ay 4 € D(fg) given
by

fg = f§+A!.9

in K. The 3-cocycle corresponding to a linear track extension TK measures the non-associativity
of lifting composites from C to TK; it takes (f,g,h) € Ner(C)s to a € D(fgh) where oygn(a) is

Jgh

given by tracks as in the following diagram

(3.14)

in TK. O fgh

We now have the following crucial application of the natural transformation Agum of theo-
rem 2.10. This was our original motivation for the study of this transformation.

Theorem 3.15 The map

A ~
H3(C, D) —="— H?(Twist(C), D)

in (2.11) takes the class of the linear track extension TK to the class of the corresponding linear
extension Hotwist(T'K) of proposition 3.11.

11



Proof: The cocycle A € H?(Twist(C), 13) corresponding to Hotwist{(T'K) is defined as follows.
For morphisms (£, 7), (¢',7) and (€€',7n') of Twist(C) as in (2.6) we choose corresponding lifts

s

(€,7, Ho, H), (€', 7, Hy, H') and (€€, 77, HY, H") in Hotwist(TK). Then A((€,7), (€', 7)) = [t/, b]
where 54, (b) is a composite of tracks given by the sum of the following diagrams.

e
sSR! - =
é, : ;

VA AP L VETR X, XoVVYy—o X,
3 w0 | g | N w |
(fo.1) (f1,1) > | fa (fo)| = |f

Yo = Y] = Ya Yo ————Y,
~— :
';-;?r

and ooy, (b') similarly. However adding the diagonals (nf1,7), 7' f2 and 77/ f before choosing
the tracks we see that o(b) can also be described by diagrams

~

m
Thus b is an element which represents

c((fU’ 1)1-5-15}) - C(q: (flu l):E’) + C(U, U',f2)

for ¢ € H3(C, D) the cohomology class of the linear track extension TK, as described in (3.14).
Together with the corresponding statement for ¥ this shows Ayym(c) = A as required. O

4 Universal Toda brackets and twisted maps
between cofibres

Let Top™ be the track category in example 3.1, with quotient category Top"/ ~. We consider
the cofibre functor

(4.1) Hotwist{Top™) < . Top*/ ~

which carries an object f of Hotwist(Top®) to the mapping cone (or homotopy cofibre) C(f) of f
Here f: A — B € Top” represents the homotopy class f : A — B € Top™/ ~, and the mapping

12



cone of fis the pushout

where CA = [A/i A is the cone on A,
Suppose {&,n, Ho, H} : f = g is a morphism of Hotwist(Top™) and let /; be the homotopy

X Y
Hy .
g —_— l_rj
i_
y ———=Cl9)

to be the map with F'i; = i3n and with F'rj given by the following sum of the homotopies H,
Ho, Hli

0
-H[]ﬂ
A $ XVY ©D %
(42) ; H '(gil)ﬂﬂ_& Iig
B—— sy 5, cly)

Such a map F : C(f) = C(g) is termed a twisted map in [1].

Proposition 4.3 The cofibre functor in (4.1} is well-defined.
Proof: Certainly Frj defines a map CA = C(g) with (Frr/-)i = igr)f: (Fz'!-)f, and so F is a
map from the pushout C(f) to C(g). Now suppose F' = C(&', 7', Hjj, H') and we have G, G2 as
in (3.6) so that
{El’))HD! H} = {EIJU,;HC'):H'}

Then the contributions of G| to H' and —Hg in F'r; cancel, giving

F'ﬂ'f = Fﬂ'f + iﬁ.Ggf
We therefore have a homotopy F' ~ F given by

q F:’rf'VA Ga
[C(f) ———»= CAV,4 IB —————C(y)

where CA V4 IB is the pushout of ilf: A — [Balongi: A 5 CA and ¢ is induced by the
quotient f[CA = CA. O
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Qur main example of a linear track extension is the following. Let Topy, be a full subcategory
of the category Top® of pointed topological spaces such that all objects of Topy, are suspensions.
Let Tops;/ ~ be the homotopy category of Topy and let T be the track structure on Topg given
as in example 3.1 by

T(f,9) = UX, Y]V

for f,g : X = Y. Then there is a natural system Dg on Topy/ ~ such that Topy, is part of a
linear track extension

(4.4) Dyt w7 Topl, ——— - Topl/ =

The natural system Dg on Topg/ ~ is defined by the homotopy groups
Ds(f) = [EX,Y]

for f: X — Y, with the homomorphisms ¢. : D(f) — D(gf) given by a — ga as in example 2.4.
The homomorphisms f* : D{g) = D(gf) are more complicated to define. See section 3 of [3] for
details.

The cohomology class represented by (4.4) via theorem 3.13 is the universal Toda bracket

Tz € H*(Topy/ =, D)

which depends only on the homotopy category Topg/ .

Now let Xy be a class of maps in Topy/ =, and let Twist(Ax) and Hotwist(Xyx) be the full
subcategories of Twist{Tops;/ ~) and Hotwist(Topy) respectively whose objects are in Xs. Then
by proposition 4.4, defimtion 3.4 and proposition 3.11 we have a linear extension of categories

~

(4.5) Dy = Hotwist(Xs) Twist(¥s)

From theorem 3.15 we have the following result which shows that this extension is determined by
the universal Toda bracket.

Theorem 4.6 The universal Toda bracket Ty determines the cohomology class
(Hotwist(Yg)) € H*(Twist(Xs), Dg)

corresponding to the linear extension of categories (4.5). In fact this class is a restriction of
)‘sum(TE)-

The cofibre functor C' in (4.1) is compatible with the linear extension (4.5) above in the
following sense. Let C(Xg) be the full subcategory of Top®/ ~ whose objects arise as mapping
cones C(f) of maps f € Az,

Theorem 4.7 Let a > 3 and suppose Xy is a class of maps h : A — B between suspensions
A = EA, B = £EB' of CW complexes A, B’ such that A is (a — 1)-connected, B is simply-
connected, dim(A) < 2a — | and dim(B) < a — 1. Then there is 2 map of linear extensions of
categories

Pe =t Hotwist(¥x) Twist(Xs)

T C

+

L/l >—" » C(Xg) ———= Twist(Xs)

where C as in (4.1) is full, and 7 is a surjective natural transformation. If dim(A) < 2a —2 for all
h:A—> B¢ Xy then C and 1 are isomorphisms.

14



Note that this is a significant improvement of the corresponding-theorem for homotopy pairs in [3],
which assumes higher connectivity for B.
As in theorem 4.6 we also have:

Corollary 4.8 Suppose A'¢ is given as in theorem 4.7. Then the homotopy category C(Xx) is
determined by the universal Toda bracket Tx. That is, the cohomology class

(C(Xg)) € H*Twist(xw), /1)

15 the image under 7. of the restriction of Asum (T%) to Twist{1g).

Proof of Theorem 4.7: The assumptions on Ay show that C(Ag) = TWIST(.Ys) where the
right-hand side is defined in (1, V.3.14]. Hence the result follows from (V.7.17,18) in [1], where
also an explicit description of I'/T is given when dim(A4) =2a—1. O

As an application of theorem 4.7 we consider the following category of CW-spaces with only
two non-trivial homology groups. Let 2 < b < a and let H(b, a + 1) be the full homotopy category
of all simply-connected CW-spaces with homology groups in degree & and a + 1, that is

Hy(X) =B, Hap(X)=A4A, and Hi(X)=0 fori#a+1,b

It is well known that X is the mapping cone of a map h : M(A,a) = M(B,b) between Moore
spaces and it is an old problem of algebraic topology to determine the category H(b,a + 1) by use
of such attaching maps h; compare [6]. The next result yields such a classification of H(b, a + 1).

Theorem 4.9 Let 2 < b < a~— 1 and let A’g"’ be the class of all homotopy classes

M(A,a) — P+ M(B, b)

where A and B are abelian groups. Then there is a linear extension of categories

De —F . Hotwist(/ §'“) —— Twist(. g'“)
B
c(ra®)
le_f
H(b,a + 1)

where the vertical arrows are equivalences of categories. As in 4.8 the cohomology class of the
extension is determined by the universal Toda bracket T%.

We point out that for b > 3 the category Twist(:t'g'a) in theorem 4.9 coincides with Pair(ﬁc’é’“)
and that in this case the theorem is also treated in [3]. For & = 2 however one has to use twisted
maps to describe H(b,a + 1). Theorem 4.9 implies the following result on the classification of
homotopy types with two homology groups.

Corollary 4.10 Let 2 < b < a— 1. For b > 3 the isomorphism types in Pair(ﬂc'g'“) are in 1-1
correspondence with the homotopy types in H{b,a + 1). For b > 2 the isomorphism types in
Twist(it'g'a) are in 1-1 correspondence with the homotopy types in H(b,a + 1).

The case b > 3 of the corollary is an old result of Brown—-Copeland [6].
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5 Universal Toda brackets and twisted maps
between fibres

This section is dual to section 4. Let C°P be the opposite category of a category C. This construc-
tion is the basis of duality in category theory; for example sums in C°P are just products in C.
This leads to the following dual notion of the category Twist(~) in 2.2.

Let C be a category with finite products, that is, with binary products A x B and a terminal
object *. Suppose that * is also an initial object. We define the category Twist'(C) by the dual
of definition 2.2.

(5.1) Twist’(C) = (Twist(C°P))*P

Thus a morphism (£,7) : f = g of Twist’'(C) is given by commutative diagrams

A————> X A
(1, f) g (1,0) 0
AXB—”—D-Y AXB—’])Y

in C.

Dualising definitions 1.1 and 2.3 we have the notion of a natural system which is strongly com-
patible with products. Such a natural system D on C induces a natural system D’ on Twist'(C)
by the dual of (2.5). Then theorem 2.10 becomes

Theorem 5.2 Suppose D is a natural system on C which is strongly compatible with products.
Then there is a well-defined natural transformation

’\prod

H"tY(C, D) H™(Twist'(C), D')
The dual of addendum 2.15 says also that A factors through Apieq; the proofs require normalisation
with respect to products as in theorem A.l1 in the appendix.

We have the notion of the opposite of a track category, and we say a track category TK is
compatible with products if 7K°P is compatible with sums as in definition 3.3. Then similarly
to 5.1 we define

Hotwist'(TK) = (Hotwist(TK°))°P

for TK compatible with products. For TK a linear track extension of C, Hotwist'(TK) is a
linear extension of Twist’(C) dually to proposition 3.11, and Aprod takes the cohomology class
representing 7K to that representing Hotwist’(TK) by the dual of theorem 3.15.

In this section we consider the track category Top™ and the fibre functor

(5.3) Hotwist'(Top*) Top®/ ~

which carries an object f of Hotwist’(Top™) to the fibre {(or homotopy fibre) P(f) of [ where
again f represents the homotopy class f. For this recall that P(f) is constructed dually to C(f)
in section 4 using the duality of /-categories and P-categories in [1].

We obtain the dual of the linear track extension (4.4) as follows. Let Topg be a full subcategory

of the category Top® of pointed topological spaces such that all objects of Topy, are loop spaces.
Let Topg/ ~ be the homotopy category of Topg, and let T be the track structure on Topg given
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as in example 3.1. Then there is a natural system Dp on Topg/ ~ such that Topy, is part of a
linear track extension

(5.4) Dg >—— T ——— Topg —r . Topp/ ~

The natural system Dg on Topg/ = is defined by the homotopy groups
Da(f) = [X,QY]

for f : X —» Y, with the homomorphisms f* : D(g) — D(gf) given by a — af. The homomor-
phisms g. : D(f) = D(gf) are more complicated to define; see section 3 of [3] for details. We
point out that Dg does not coincide with Dy in (4.4).

The cohomology class represented by (5.4) via theorem 3.13 is the universal Toda bracket

Ta € HTopy/=,Dq)

which depends only on the homotopy category Topg/ ~.

Now let Xq be a class of maps in Topg/ =~, and let Twist'(A) and Hotwist'(Xg) be the
full subcategories of Twist'(Topg/ =) and Hotwist'(Topg) respectively whose objects are in Xq.
Then we have the linear extension

-~

(5.5) Bl = Hotwist/ (XYn) ———— Twist'(n)

which is dual to (4.5). As a dual of theorem 4.6 we get

Theorem 5.6 The universal Toda bracket T determines the cohomology class
(Hotwist'(Xa)) € H?(Twist'(Xn), D)

corresponding to the linear extension of categories (5.5). In fact this class is a restriction of
'\prod(Tﬂ)~

The fibre functor £ in (5.3) is compatible with the linear extension (5.5) above in the following
sense. Let P(An) be the full subcategory of Top®/ ~ whose objects arise as homotopy fibres P(f)
of maps f € Xq.

Theorem 5.7 Let a > 3 and suppose Xq is a class of maps h : B = A between loop spaces
A= QA B = QB of CW complexes A’, B’ such that A is (a — 1)-connected, B is simply-
connected, m;(A) =0 fori > 2a—1 and m;(B) = 0 for ¢ > a— 1. Then there is an isomorphism of
linear extensions of categories

A —t Hotwist' (Xn) ———= Twist'(Xp)

-'
114
R

P

-+

P/] >————— P(Xq) ——— Twist’(Xn)
where P is defined by (5.3).

Proof: This is a consequence of {1, V.10.19] and the exact sequence 3.3 in [2]. Details of the
proof are somewhat sophisticated but are based on the material in section V.10 of [1]. O

Corollary 5.8 Suppose Ap is given as in theorem 5.7. Then the homotopy category P(tq) is
determined by the universal Toda bracket T. That is, the cohomology class

(P(Xa)) € H*(Twist'(¥n), /1)

is the image under 7, of the restriction of Aproa(Th) to Twist' ().
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A Appendix

Sum normalised cohomology of categories

Let C be a (small) category. Since we will always want to have explicit structure maps for sums
in C, we make the following definition.

Definition A.1 The category Sum(C) of finite sum diagrams in C is the category with objects
all pairs (X,i) with { = (4y,...,4,) an r-tuple of morphisms i; : Xx = X which gives X the
structure of a sum in C. Morphisms f : (X,{) — (Y, j) in Sum(C) are just morphisms f: X - Y
in C.

The forgetful functor
¢

Sum(C) ———C

given by (X,i) — X, f — f, is an equivalence of categories; an inverse to ¢ is given by the
functor 3 which carries X to the trivial sum diagram (X, 1x). We therefore have an isomorphism
of cohomology groups

(A.2) H"(Sum(C),¢°D) = H™(C,D)

Dually one can define the category Product(C) of all finite product diagrams (X, p) in C; the
defining property for products is that post-composing with the morphisms pg : X — X induces
natural bijections of hom-sets

p.: C(Z,X) = C(Z,Xy) x...x C(Z,X,)

All the definitions and results for sums in this section will have dual formulations for products,
with dual proofs.

Definition A.3 A cochain ¢ € F*{Sum(C), ¢* D) is said to respect the sum diagrams of C if

(A.4) ixclo) = c(on, ..., Omot, Omimpk, "':(:3-1» o)y fori<k<r
for each 0 < m < n and whenever ¢ = (04, ...,0,) € Ner(Sum(C)), is such that each ¢; is a sum
;i = Vo 0'5") for j > m, or in the case m = n that the source of o, is a sum X, = Vo, Xux.
[f m = 0 then (A.4) is supposed to mean i}, ,c(o) = iulk‘c(agk), o).
(1) (1)
d 0
L ) (X D)
m,1 N
(%) (k)
. .. o o . . m [og
(AB) (Xprig) =L e <2 (X, i) = i (Xmes 1) e T2 (Xh, 1)
\ (”:) (:r)
tm,r g o
(Xmyr, 1) < Gam L (Xn,rs 1)

The collection of cochains on Sum(C) which respect the sum diagrams is written F,,(C, D).

For a simplex o as above we will write i, , and (o, i ) for the simplices

. . k) k
Olm k = (0-11 ey Om—1, Tmim,k o'y(11+l) =t JS‘ ))
. : k k
(Ulim,k) = (0'1)'--y0'tn—lyo'mylm,k,o',(nl_l,...,tf,g ))

of dimension n and n + 1 respectively. We write equations (A.4) as i:"kc(g') = ¢(oimu), oF
i, pc(o) = io,k,c(a(k)) when m =0,
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Lemma A.6 F

sum

(C, D) 1s a sub-cochain complex of F7(Sum(C), ¢* D).

Proof: Given ¢ € F™~! respecting sum diagrams we must show dc respects sum diagrams also.
Suppose ¢ € Ner(Sum(C)), as in (A.5), with m # 0,n. Then i}, ,(dc){c) is given by

(A7) in x01.c(dod) + 00 (=1)'i;, ye(dio) + (—=1)"4; corne(dno)
Now i} ,c(dio) = ¢(di(0imk)) for i < n and
k)"

in woncldno) = o i ie(dao) = ol c(dn(0imi))

Thus (A.7) becomes
n—1
or.e(do(Timp)) + Y (=1 e(dilgims)) + (—1)"0 ) e(dn(0im )
i=1
which is (é¢)(oin ) as required. The proofs for the special cases m = 0 and m = n are similar, D
Thus we can define the cohomology groups of C with respect to the sum diagrams by
(A.8) Ham(C,D) = HY(Fym(C,D),dF;, )
The main result of this section is the following normalisation theorem.
Theorem A.9 If D is compatible with sum diagrams then there is a natural isomorphism
H3 . (C, D) = H"(C,D)
Proof: We show that the inclusion of cochain complexes
Fon(C,D) C F*(Sum(C),¢"D)

induces an isomorphism of cohomology groups

R

H} o (C, D)y = H"(Sum(C),¢"D)
Then applying the isomorphism (A.2) we get the theorem.

We define for each (n + 1)-cochain ¢ on Sum(C) an n-cochain v, such that ¢ + d9. respects
sums if Jc does. Let ¢ € Ner(Sum(C)),. If the source (X,,i) is a trivial sum diagram then we
put v.(o) = 0; otherwise there is a least m such that & has the form of (A.5) and we define (o)
by

n n
inkYelo) = Z(—l)tc(al,..., o, ik, cr,(:}l,...,a,(“"]) = Z(—l)‘c(cr, T k)
t=m t=m

for 1 < k < r. This is well-defined since {}, is an isomorphism. The source of (¢, 7, ;) i8 the trivial
sum diagram on X, &, 50 ¥.(dj{7, 1 x)) =0 unless j =t = n, and hence

(67.:)(0',2';';;) = ( fort<n
n
1) odng) = (=)™ (o) = D (=1 e(o, )
t=m
Putting ¢/ = ¢ + é~, we thus have
n
(4.10) S (=)o ies) = 0
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r
For 0 € Ner(C),+1 and m minimal such that o, = \/ cr,(k) for m < t < n+1 we assume inductively
k=1

inaxl{o) = doiy) form<t<s

which holds trivially for s = m. Assuming also that ¢’ is normalised with respect to identities
we have ¢'{0,4,x) = 0 for m <t < s5in (A.10). Together with diy1(0,isx) = dey1(0, ie41,4) this
implies

n+tl

Yo CV)HEN oviek) = (oik) = inpruc(0)

t=s

But this is zero if dc’ is normalised with respect to sums and identities. O

Dually we can consider the cohomology of the category Product(C) of finite product diagrams
(X,(p1,...,p-)) in C:

H"(Product(C),¢"D) = H"(F"(Product(C),¢"D),d)
The natural system D is compatible with products if the homomorphisms
p r
Dy —— P Dy,;
k=1

are always isomorphisms and a cochain ¢ € F*(Product(C), ¢* D) is compatible with products if
the equations

Pk, (o) = elpmro) (1<h<T)

hold whenever appropriate. Considering only those cochains compatible with products we have a
sub-cochain complex
orod(C, D) € F*(Product(C), ¢* D)

by the dual of lemma A.6. The dual of theorem A.9 is the following.
Theorem A.11 If D is compatible with product diagrams then there is a natural isomorphism

;rod(ch) = Hn(ch)

The natural transformation Asum

Given the normalisation theorem A.9 above we are now able to prove theorem 2.10 and its
addendum 2.15.

Proof of Theorem 2.10: Recall that the homomorphism

F™Y(C, D) dsum F™(Twist(C), D) |
is defined by
Psument1 (@) = | D (=1 enpi(Mio), D (=1)ensa(Nio)
i=0 1=0
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for o € Ner(Twist(C)), given by (&, m): fi = fi-1, fi: Xi = Y, and where

((fO:l)nE;,—u.gn__ufn) i=0
’\10' = (UI,-..,’Ti:(fi,1),f;+1,---,5n_1,5n) IS‘S”—l
(ql)"'ﬂnnafn) i=n

and Ao similarly, replacing the f; by 0: X; = ¥;.
We show that Agum is a degree —1 cochain map and hence induces a well-defined map of
cohomology groups; that is, we prove

(A.12) Fhaum + Asumd = 0
The following relations between the functions A; and the simplicial face maps d; are clear:
didieo = diA_10,
didic = AN_idjo, j<i
didic = Mdj_yo, i+1<j<n

Thus on expanding the left-hand side of {A.12) by the definitions of Ayym and § most terms will
cancel, leaving (ddaym + Asum6)(cn) = [¥, 8] where

n—1

b = (0,1)ecndodyo — 05cadnp1 Ao + 3 _(—1)"FE] (@16aNdna — cadnyiNo)
i=0
n-1 )

b = (fo,1)scndorod = fcndnitdnc + D _(=1)"HE (a1cadidnd — crdny1)io)
i=0

Since doAgo = dpAjo and dp41Aq0 = dny1 A, 0 the first two terms of ¥ and of b together are zero
in the quotient D(|¢|). Consider the elements
ai = aicpAidno = cndpsrdio

= alcn(ql)”-sni)(oy]-)ygi+11"'|gn—2)£ﬂ—l)_Cn(nli'-')Uis(o?l))gi+1!'"rEn—ZlEn—l)
ai = ai1CnAidno — Cndp4iAic

Qlcn(qll"'!niw(fl'a]-):Ei-d-ll--'rgn—ﬁagn—l) —Cn(ql)"‘:T’l'z(fllj1):6:’+1:"'1§ﬂ——2:€n—1)
Assuming c,, respects sums we have % __ (a{) = 0 and so

§a(a}) = &(0,1)75,_ (o) = 0

Also iy _ (a;) = 0 and so &;(a;) € (fo,1).D(€, .. .&,_i&a)2 by lemma 2.7. Thus [¥',8] = 0
and (A.12) holds. O

Proof of Addendum 2.15: Let ¢ = (¢1,...,0n) be an n-simplex of Ner(Pair(C)) with oy =
(Ckymk) : fx = fsw1 for 1 < k < n. Then t.0 € Ner(Twist{C)) is given by

e = (§k,mk) = (Ex0o,Chy k)
and we have g‘, = Vet X VY = Xeo1 V Yieo1. Therefore

Cﬂ+l(/\i"-a) = Cn+1(’?1,-~,'li,(fia1)»Eg+xu---,gn—1"fn)
= i:‘(.cﬂ-l-l(nlx' ")nii(ft'r l)xCi-{-l V Tigl, - --,Cn VT]n)
= Cﬂ+1(r.l‘1|'"1nf!ff|Ci+ly"'1Cn)

since we can assume ¢, .+ respects sums., Assuming also it is normalised with respect to zero maps
we have ¢y 1(Ait.o) = 0. Thus

12}

('\sumcn+l)(‘--a) = 01 Z(_l)icn-f-l('ha---;T?i:fi:Ci+11v--an)
1i=0

and 7"t Agum 18 just A as defined in [3] as required. D
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