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Introduction

Let X be a connected topological space, and let H(X) be the
monoid of homotopy equivalences of X . The group of self-equivalen-
ces of X , E(X) , is defined to be noH(X) . A homomorphism
a : G = E(X) 1is called a homotopy action of G on X . Equivalently,
the assignment of a self-homotopy equivalence af(g) : X -+ X to each
g € G such that u(g1g2)'~ 0(91)0(92) and a(1) »~ 1% is also
called a homotopy action. Since it is easler to construct self-homo-
topy equivalences rather than homeomorphisms of X , it is natural to
consider the questions of existence of actions first on the homotopy
level, (i.e. homotopy actions) and then try to find an equivalent
topological action. A topological G-action ¢ on Y is said to be
equivalent to a homotopy action « on X , if there exists a homo-
topy equivalence f : Y + X which commutes with ¢ and a up to
homotopy, i.e. f 1is homotopy equivariant (for short, £ is an
h-G-map). This is the point of view taken in [16] and- the motivation
for G . Cooke's study of the question:
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Question 1. Given a homotopy action a on X , when is (X,a) equi-
valent to a topological action? —

The problem is quickly and efficiently turned into a lifting
problem: A homomorphism a : G - E(X) yields a map Ba : BG = BE(X)
On the other hand the exact sequence of monoids H,(X) - H(X) = E(X)
yields a fibration BH1(X) - BH(X) -~ BE(X) .

Theorem (G. Coocke) [16]1. (X,a) is equivalent to a topological action
if and only if Ba : BG -+ BE(X) 1lifts to BH(X) 4in the fibration
BH(X) - BE(X) .

Note that if X does not have a "homotopically simple structure”,
e.g. if X is not a K(w,n) and dim X<= , then ni(BH1(x)) is
exceedingly difficult to calculate, and the above lifting problem will
have infinitely many a priori non-zero obstrucfionsfmﬂowever, if G
is a finite group (and we will assume this throughout) and X is lo-
calized away from the prime divisors of |G|, e.g. if n1(x) = 1 and
X is rational, then all the obstructions vanish, and any such (X,a)
is equivalent to a topological action. Algebraically, this can be in-
terpreted by the fact that all the relevant RG-modules (where R 1is a
ring of characteristic prime to |G| ) are semi-simple and consequently
cohomolegically triwvial. Thus the interest'lies in the "modular case”,
(L.e. when a prime divisor of |G| divides the characteristic of R )
and the inetgral case R =X .

In comparison with topological actions, homotopy actlons have
very little atructufe in general. For instance, there are no analogues
of ‘"fixed point sets",'"orbit spaces" or "isotropy groups". This makes
a general study of homotopy actions a difficult task. Notwithstanding,
there has been some applications to problems in homoteopy theory and
geometric (differential) tobology (e.g. [5] [6) (18] [22] [34] (35]
for a sample). :

Given a homotopy functor h and a homotopy action of G , say
(X,a} , we obtain a "representation of G" . E.g. if X a K{(r,n) and
h = LI then nn(x) ¥ » becomes a ZG-module. In thig case, any IZG-
module 1w also gives rise to a homotopy G-action on X o« K{r,n) ,
and in fact a' topological G-action. ‘



.For spaces which-are not homotopically easy to understand (such
as most manifolds and finite dimensional spaces) homology and cohomo-
logy provide a more useful representation module. From this point of
. view, spaces with a single non-vanishing homology, known as Moore
spaces, are the simplest to study. For simplicify,'suppose‘we are
given a ZG-module M which 1s Z-free. Then it is easy to_see that
there exists a homotopy action « of G on a bouguet of spheres X
such that H, (X) ¥ M as ZG-modules. We say that "(X,a) realizes
M" , or that M 1is realizable by (X,a) . An obstruction theory argu-
ment shows that the question of realizability of ZG-modules by homo-
.topy G-actions on Moore épaces has a 2-torsion obstruction ([7] [22])
which can be identified with appropriate cohomological invariants of
the ZG-module M ([7] P. Vogel, unpublished). In relation with the
gquestion of how close these homotopy actions are to topological
actions, one should mention the following well-known problem attri-
buted to Steenrod [26]: '

- Question 2. Is an integral representation of G realizable by a G-
action on a Moore space? " T " : .

There has been some partial progress in answering the above
question and we refer the reader to [3] (9] [13] [22] [30] [32] [33]
and their references. In an attempt to understand hbmotopy actions, we
will specialize and apply the methods of this paper to the above prob-
lem. Thus constructions and the study of the counterexamples for
Question 2 in this paper should be regarded as a method of producing
and investigating "invariants of homotopy actions" for more general
spaces. '

As mentioned above, the usual notion of transformation groups
such as fixed points, isotropy groups, and orbit spaées do not carry
ovexr to homotopy actions as such. Therefore, we will try to attach
other invariants, mostly of cochomological nature, to both G-spaces
and homotopy G-actions, and compare them. For topological actions
these invariants are naturally (and expectedly) related to fixed
peint sets and isotropy groups (whenever they are well-defined)}. Thus
we have placed speclal emphasis on topological actions with some
finiteness condition on the underlying space (e.g. finite cohomolo-
gical dimension) as well as G-actions with collapsing spectral



sequence in thelr Borel construction. On the algebraic side, our fee-
ling is that the category of integral (modular) representations of ‘G
which arise as homology (cohomology} of G-spaces is an important part
of the category of all representations, and its algebraic study is
worthwhile in its own right. The projectivity criterion (Thm. 2.1) as
well as the complexity criterions (Sec. 3) and their consequences are
some stéps in this direction.

In comparing homotopy and topological actions, we will study:

Question 3. When 1s a representation of G realizable by the homo-
logy of a G-space? B \

As we will see below, there are integral (and modular) represen-
tations of G which are not realizable via the homology of any
G-space'(we do not restrict ourselves to Moore spaces). On the other
hand, there are representations which are not realizable by G-actions
on Moore spaces but they can still be realized.by G-actions on other
spaces (Sectlion 5). All these representations arise from homotopy
actions. These examples show that, even for homologically simple
spaces, such as bouquet of spheres, the collection of integral re-
presentation of G on H,(X) induced by a homotopy action
a : G = E(X) does not by itself decide whether (X,a) 1is equivalent
to a topological action. It is the interrelationship of. all Hi(x)
as ZG-modules which determines the realizability in this case (Sec-
tion 5 ). In the applications of homotopy actions to differential
topological problems, one often needs to find finite dimensional
G-spaces which realize a given homotopy action. The solution to the
lifting problem mentioned earlier in the introduction, provides an
infinite dimensional free G-space. In this context, the following
problem is often necessary to answer: .

Question 4. Suppose X 1is homotopy equivalent to a finite dimensional
space and ¢ : G x X =+ X 1is an action. When does there exist a finite
dimensional G-space K and a G-map £ : X » K inducing homotopy
equivalence?

We study this problem and the related question Ouestion 3 by
"reduction to p-groups". This is the subject of a .future paper. In
particular, one has satisfactory characterizations for groups with
periodic cohomology and some other classes of groups which includes



nilpotent groups or some of the alternating groups.

'Notatipn and conventions. All rings are commutative with-unii. Fp

is the field with p-element, where p always denoctes a prime number,
and k is a field of characteristic p > 0 (often an algebraic
closure of FP ). For a finite group G , Hg denotes the r}ng
®,u°Y(G;k) if p is odd and Hy = o (G;k) if p = 2 . HY de-
notes Tate cohomology [14] and the terminologies in this context are
in [14] and [28]. zp a Z/p T = integers (mod p) . The localization

of a ring R with respect to the multiplicative subset generated by
an element y € R is denoted by R{Y—1] . For an ideal J in a ring
R , rad(J) 1is the radical of J and if M. is an R-module, Ann(x)
is the annihilating ideal of x € M . The dual of a k-algebra A 1is
denoted by A* . For an RG-module M and a subgroup H , M|RH de-
notes the restriction to H . The terminology and conventions in
topological group actions are taken from [10] and [19] and those
related to homotopy actions are to be found in [16]. For example Eg
is the contractible free G-space and Eg » Gx is the Borel construc-
tion of a G-space X . If a G-space X needs to have a base point in
the context, we replace X by its suspension X and take xexcfﬁ '
unless X 1is already endowed with a base point. Many of the state-
mets which are phrased in terms of cohomology have their counterparts
in homology and we have avoided repeating this fact. The spaces X
are not necessarily CW cpmplexes unless otherwise specified. We may
use sheaf cohomology for more general situations and the proofs are
still valid {(with some mild modification if necessary). The basic
reference is {27] part I in particular its appendix, and we have used
Quillen's terminoclogy and notation when appropriate. E.g. ch(X)
means cohomological dimension of X (med p) . :

The bibliography contains the references which have been available
to us, at least in some written form. Otherwise they have been men-
tioned in the context.

Section 1. Localization and Projectivity

In this section we present a variation on P.A. Smith's theorem
as a consequence of Quillen's version of the localization theorem of
Borel (cf. [19] or [27]). The statements are not as general as they
could be because we will present different proofs when the cohomo-



logical finiteness of the G-spaces are not assumed. These finiteness
assumptions are necessary when applying the 1ocalization theorem.
There is an analogy between the finiteness agsumptions of this section
on the level of orbit spaces and the weaker finiteness assumptions

for cohomology in the following sections. There is also a. localiza-
tion-type argument implicit in the arguments of sections 2 and 3 which
are explicit in the context of this section. The special cases treated
differently in this section will hopefully serve to give motivation
and some insight into the more algebralc arguments of the following
sections. The basic reference for some details of the assertions of
this sections (as well ‘as the terminology and the notation) is [10].
More general forms of the localization theorem are discussed in [19].

1.1 Proposition. Let G be a finite group and let X be a connected
G-space which is either compact, or cdp(x/G) <o - for a fixed prime

P . Assume that for each subgroup C « G in order 'p , Hi(x;Fp} is
a cohomologically trivial FpC-module for all 41 > 0 . Then the
p-singular set of X , SP(X) “B xp , where P ranges over non-tri-
vial p-subgroups of G , satisfies H*(SP(X);?P) =0 .

Proof: Let C< G and |C|l=p , and let y € w2 (ciF ) be the poly-
nominal generator Without loss of generality, we: may assume that

xC # @ , hence x© # P . Choose x € x® < x® . The Serre.spectral
sequence of the Borel construction (X,x) - E (x x) = BC collapse
since Hi(BC;Hj(x,x;FP)i = 0 for i>0 and all j by cohomological
triviality. Thus HE(X,x;Fp) 5 H (BC;H* (X,x; F }} . Localization with

respect to y shows ([27]):

e

HE (X E) Iy~ 11 ¥ H*(BC;H*(X,x)) [y ]

ue

ﬁ*(c;ﬂ*(x,x)J =0,

(by the hypothesis of cohomological triviality) where H* denotes
Tate cohomology. By the localization theorem

C -1 -
HEC,GE ) 1] Y A E ) v =0 .

Since H*lx X F )[Y ] 2 H*(Xc,x;Fp)® 7 H*(C;FP) , i1t follows that
H*(x,xE‘)=0. P

r

For any subgroup K < G , such that |[K| = p~ and K2 C , it



follows that XK# ¢ and ﬁ*(xK;Fp) = 0 by an_ induction. Since this
holds for every cyclic p-subgroup C € G , one has H*(x F ) = 0

for all subgroups k G, K# 1 . An inductive argument using Mayer-
Vietoris sequences yields the desired conclusion. =

We will be particularly interested in the class of G-spaces for
which the Serre spectral sequence of thelr Borel construction collap-

ses. This is formulated as condition (DSBC) {degenerate spectral se-
quence of Borel construction) below.

CONDITION (DSBC)}: Let X be a G-epacetand let A < G be a subgroup.
We say that X satisfies the condition (DSBC) for A if the Serre
spectral sequence of the fibration X - E x X - BA (in the Borel

A A
construction of the A-space X ) collapses.

1.2 Proposition. Let p be a prime divisor of order of G , and
suppose that X 1s a connected G-space such that either X 1is com-
pact or that cdp(x/G) <@ ., Assume that:

o

(1) X satisfies condition (DSBC) for each maximal elementary abelian
subgroup A € G .

(2) The p-singular set S (X) satisfies: SP(X)'# ¢ and ﬁ*(S(X):Fp)=0-
Then H*(X,P } is cohomologically trivial as an EpG-module.

Proof: Let A be any p-elementary abelian rank t subgroup, and let
e € Hzt(A;Fp) be the product of the t 2-dimensional polynomial
generators in HZ(A;F ) , (c£. [27] Part I). Since S (X)A A and (2)
implies that ﬁ*(xA,x?F ) = 0 (where X € x £ @ 1s the base point},
it follows that H*(x,x,r ){e ] , by the localization theorem
([27] Part I). Since the Serre spectral sequence of (X,x) - Ep *a
(X,x) » BA collapses by (1), we may localize the Ezfterm with respect
to e, and conclude that H*(BA;H*(X, x,F ))[e ] =0 ., But H*{BA;H*
(X, x,F ))[e ] 2 H*(A H* (X, x,F )y . Since this is true for all p-ele-
mentary abelian groups A < G , [A|=p® , it follows that H*QX,x;Ep)
is cohomologically trivial over all p-elementary abelian subgroups of
G . By Chouinard's theorem {(cf. [15] and [20]) ;H*(x,x;rp) is cohomo~
logically trivial over G (See the introduction to section 2). =

We obtain a special case of Theorem 2.1 as a corollary:
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1.1 Corollary. Suppose that X 1is a connected G-space yiﬁh the follo~-
wing properties: ‘

(1) Either X 1is compact or cdp(x/Gl <o for each p dividing order
G . ) ‘

(2) X satisfies condition (DSBC) for each p-elementéry abelian sub-
group A .G . Then H*(X) is ZG-projective if and only if H*(X)|®C
is ZC-projective for each subgroup C © G of prime order. In parti-
cular, this conclusion holds if X 1is a Moore space which satisfies
(1} .

Proof: By 1.1 and 1.2, the cohomological triviality of H*(X) over G
is equivalent to the cohomological triviality of ﬁ*(x;rp) for all
cyclic subgroups of order p . But a EG-module is ZG-projective if and
only if it is Z-free and cohomologically trivial (cf. [28]). =

-e

Section 2. The Projectivity Criteria

Let G be a finite group. Sylow(G) denotes the set of Sylow sub-
- groups, and Gp € Sylow(G) denotes a p-Sylow subgroup. Let R be a
ring and RG be the group algebra over R . In studying the cohomo-
logical properties of RG-modules, it is necessary to have a good under-
standing of projective modules. The following two theorems have played
important roles in the "local-to~global" arguments.

(1) Rim [28]): A ZG-module is ZG-projective if and only if MlZGP is
ZGp-projective for all Gp € Sylow(G) .

(2) Chouinard [15] (See also Jackowski [20]): A ZG-module M is ZG-
projective if and only if M|ZE is ZE-projective for all p-elementary

abelian groups.

Chouinard's theorem is particularly useful in the problems related to
cohomological properties of M , since the cohomology of elementary
abelian groups are well-understood, whereas the cohomology ring of a
general p-group is far more complicated and has remained mysterious as
yet.

Thus, the projectivity of a ZG-module M 1s detected by its re-
strictions to the elementary abelian subgroups. Now suppose that M is
a kE-mecdule, where E 1is p-elementary of rank n (i.e. of order pn),
and where k 1is a field of characteristic p .(For simplicity, assume



that k is algebraically closed, although for the most part this

assumption is not used.)

It is tempting to look for a projectivity criterion for M in terms
of a family of. proper subgroups of E . In general there is no such
criterion if we consider only subgroups of E . However, there is such
a characterization if we include a certain family of well-behaved sub-
groups of KkE . Thié is basically the content of a result duve to Dade
[17]. To describe this, let I be the augmentation ideal: ¢ -» I - KkE
% k » 0 and choose an rp-bas;s for E , say {el,....,en}cE . Let
A= (aij) be a non-singular n x n matrix over k and define the
homomorphism ¥at kE =+ kE by:

n

wA(ei) = 1 +ji1aji(ej-” .

Then vy, is an automorphism since A is nbn-singul@r. In [11] J.
Carlson called subgroups of order pm in kE , m $ n , generated by
{wA(e1),....,wA(em)} . "shifted subgroups" of KkE . Such subgroups are
p~elementary abelian and for m = n , {wA(e1),...,%A(en)} generate

kE as a k-algebra. A cyclic subgroup S of the shifted subgroup
<wA(e1)....,wA(en)> is called a "shifted cyclic subgroup" and any ge-
nerator of S5 1is called a "shifted unit". From now on we assume that

all kE~-modules are finite dimensional over k .

(3) Dade [17]: A kE-module M is kE-projective if and only if M|ksS
is kS-projective for every shifted cyclic subgroup 6f kE .

(Since kE 1is a local ring, projective, injective, cohomologically
trivial, and free modules coincide [28]). In fact, one can show that
M|kS 1is kS-projective if and only if M|kS® ‘is kS'-projective provi-
ded that the shifted units generating S and S' are congruent mo-
dulo I2 . This leads to the following more intrinsic definition of
shifted subgroups and units [11] (8]. Let L be an n-dimensional

k-subspace of I such that I =L ® I2 . Then every element £ € L

satisfies £P = 0 , and a k-basis of L generates kE as a k-algebra.
.Consequently, for any £ € L , 1 + £ is a shifted unit and for any
k-basis of L , say {11,...,£n} , the p-elementary subgroup generated
by {1+£1,....1+£n} is a shifted subgroup. J. Carlson attachgd a glo-
bal invariant to a kE-module M , by taking the set VE{M) consisting
of all nonzero £ € L for which M{k<1+£> is not k<1+f>-free (where
<1+£> 1is the group generated by 1+£ ) together with zero. He showed
that this is an affine algebraic variety and exhibited many beautiful



properties of Vr(M) + called "the rank variety of M " (cf [(11).
Carlson conjectured that VL(M) is isomorphic to the cchomology-
variety of M , V (M) (called the Quillen variety and inspired by
Quillen's ideas in [27]), and he showed that V {M). injects into
VE(M) . The Quillen variety V (M) 1is the affine variety in k"  de-
fined by the ideal of elements in the commutative graded ring HEami

i(E;k) which annihilate the HE-module H* (E; M) (HE=$iH (E;k) when
E 1is a 2-group. The conjecture of Carlson is proved by Avrunin-Scott
[8), and as a corcllary Vr(M) is independent of L up-to isomor-
phism. Thus the projectivity criterion of Dade which can be detected
""locally" by shifted units, has the following "global formulation".
From now on we drop the subscript L in VE(M) .

(4) Carlson [11): M 1s kE-free if and only if vEM) = 0

This motivates the search for a projectivity criterion for ZG-
modules which appear as (reduced) homology of G-spaces. It turns out
that the family of cyclic subgroups of order p o©of G detects the
projectivity (and cohomological triviality). Thus_"the geometry of
M " is determined by a restricted class of subgroubs of G in this
case, and gives an idea of how restricted the category of realizable
ZG-modules is. This is not true for homology of all G~spaces, rather
a special class which includes Moore spaces. The projectivity crite-
rion for the homology of more general G-spaces shculd be described in
terms of "global invariants” attached to a G-space. The specific na-

ture of a G-action on a space X determines a certain interrealation-

ship between H {X) and Hj(x) as ZG-modules, and this fact is not -

detectable by simply considering the graded mcdule & (x) . The
examples of the following sections will elaborate more on this point.

2.1 Theorem. Suppose X 1is a connected G-space which satisfies the

condition (DSBC) for each p-elementary abelian subgroup A < G . Let
M be the ZG-module determined by the G-action on the total homology
of X in positive dimensions. Then M 1is ZG-projective if and only
if M|ZC is ZC-projective for each subgroup C < G of prime order.
(Similarly for cchomological triviality).

2.2 Corollary. Suppose the ZG-module M appears as the homology of
a Moore G-space. Then M 1is ZG-projective if and only if M is
ZC-projective for each cyclic subgroup of G . '

We will give two proofs of the above theorem. The first is in the
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spirit of transformation group theory and while it iﬁ'quipe.elementary
it reveals the topological nature of this criterion. The .second proof
is in a more'generai setting and hopefully will provide some motiva-
tion for introducing and emphasis on the global invariants of a G-
space.

2.3 Corollary. Suppose x1 and X, are connected G;spaces, both of
which satisfy (DSBC) as in (2.1) and suppose £ : X, + X, is a G-map.
Let M, and M, denote the total reduced homology of x1 and X,y

as EG-modules and let ¢ : M1 - M, be the ZG-homomorphism induced by
f . Then there are ZGfprojective modulgs P, and‘ P, such that

M, ® P, 3 M, ® P, if and only if w*:Hi(C;M1)"*'Hi(C;M2) are isomor-
phisms for i = 0,1 , and all cyclic subgroups C c G of prime order.

Section 3. Varieties associated to a G-space

Let k be an algebraically closed field of characteristic p>0 ,
and let G be a p-elementary abelian group of rank n . For a connec-
ted G-space X , we will assume xG # @ (when needed) and x € XG is
the base point. As far as homological invariants of X are concerned
at this point, this will be no restriction, since we acn always sus-
pend the action. For a kG-module M , the rank variety vE (M) reveals
much about its cohomological invariants. Thus, we are tempted to con~
sider the rank variety Vr(eiHi(X,x;k) and investigate its influence
on the topology of the G-space X . However, the more directly related
variety, {when we have sufficient knowledge about the G~action) is the
"support variety" VG(X) .

In [27], Quillen studied cohomological varieties arising from
equivariant cohomology rings HE(X;k) for a G-space X (cohomology
with constant coefficients), and he proved his celebrated stratifica-
tion theorem among other results. According to Quillen's stratifica-
tion theorem, the cohomological variety of a G-space X for a general
finite group G has a plecewise description in terms.of varieties
arising from elementary abelian subgroups of G . Inspired by this
work of Quillen, Avrunin-Scott in [8] defined the cohomological varie-
ty VG(M) for a finitely generated kG-module M and'proved an anlo-
guous stratification theorem for VG(M) in terms of qlementary abelian
subgroups of G . Here, VG(M) is the largest support (in Max Hg ) of
the HG-module H*(G,N8M) where N ranges over all finitely generated

-11-~-



kG-modules. Avrunin-Scott's stratification theorem may be regarded as
generalizing the special case of Quillen's result for the G-space .
X=point to the equivariant cohomology with local coefficients HE
(point;M) (the kG-module M replacing the constant coefficients k

of Quillen).'The stratification of support varieties in the case of
equivariant cohomology with local coeeficients HE(X}M) for a G-space
X (whose orbit space X/G has finite cohomological dimension over

k ) is carried out by Stefan Jackowski in [21] under the extra hypo-
thesis that M 1is. a kG-algebra. Jackowski's theorem yields a topolo-
gical proof of Avrunin-Scott theorem in the spirit of Quillen's ori-
ginal approach. ' '

Such stratification theorems describe the above mentioned cohomo-
logical varieties of a general finite group G in terms of elementary
abelian subgroups of G . When G 1is an elementary abelian group, .
VG(X) is the affine algebraic variety defined by the annihilator ideal
in HG of ‘Ha(x,x;k) . Por the rest of this section, we will assume
that G ;s an elementary abelian group. The corresponding results and
notions for the case of a general finite group is obtained from this
basic case and the appropriate stratification theorem. Elaboration of
these ideas will appear elsewhere,

While one hopes that VG(X) = Vg(eiﬂi(x,x)) , this turns out to
be true only for a restricted, but nevertheless important class of
G-spaces. For a G-space with Hi(x) # 0 for only finitely many 1 ({(and
some mildly more general class), it turns out that one can define a '
different, (but related) rank variety in a natural‘;ay. This is done by
associating to X a ZG-module defined up to a suiltable stable equi-
valence. The Vé(x) is defined to be the rank variety of this module
(tensored with k ). The isomorphism VG(X) = vé(x) will show that
the "cohomological support variety"” is also a "rank 'variety" and as
such, it will enjoy the properties of rank varieties.

Following [5}1, call two G-spaces x1‘ and X, H"freely eguiva-
lent", if there exists a G-space Y such that xi c Y , and Y-xi
are free G-spaces with ch(Y-xi) <o for 1i.= 1,2 . This defines an
equivalence relation between G-spaces. We may also consider the case

when Y/xi is compact if cd(y-xi)=w with appropriate modifications.

3.1 Lemma. Suppose X, and X, ‘are freely equivalent. Then VG(X1)2
VG(x2) '

-12-



Proof: Compare the Leray spectral sequences for 'EGxGxi »‘xi/G with
I Y¥/G where Xy and Y are as above, Y-X; = free G-space [27].
It follows that VG(Xi) 3 VG(Y) . n

3.2 Proposition. Suppose Hi(x;k) # 0 for only finitely many i . Then
V (X) < vr(e H (X, x k)) . If X satisfies the condition (DSBC) for G,
then V (X)—V (aiﬂ (X,x;k)) .

dgfnumber {ilﬁi(x,x;k)‘# 0} . For

v(X} = 1 , X 1s a Mcoore .space and the spectral sequence of (X,x) -
EGxG(x,x) -+ BG degnerates to one line, which shows:that VG(X) 3 VG
(QjHj(x,x-k) (2 its support variety). By Avrunin-Scott's proof of J.
Carlson's conjecture (8], the latter is isomorphic to Vg(ejﬂj(x,x;k)).
Suppose the assertion is true whenever v(X) <m , m > 1 . Given x1
with v(x1) = m , we add free G-cells to Xy to obatin the G-space Y
so that Y¥-X 1i8 free, dim(Y-X) <= , and v(Y} < m . For example, kill
the first non-vanishing homology, say Ht(x,x;k)m,_using Serre's ver-
sion of the Hurewicz theorem, (after suspending X , if needed). Then
VG(X) 3 VG(Y) since X and Y are freely equivalent (Lemma 3.1) and
VG(Y) 3 Vé(ejﬂj(Y,x;k)) by induction. Oon the other hand, V (y) Vr(XL
This follows again because (Y/x) a point and dim(¥Y/X) <= , Alterna-
tively, if we kill Ht(x,x:k)'(the first non-vanishing) to obtain Y ,
we have the exact sequence:

Proof: Proceed by induction on v (X)

L

where F 1is a free kG-module, and
H, (X;k) 3 Hy(Yik)  for 1 > £+1 .

For every shifted cyclic subgroup S of kG for which ut (X,x%;k) |kS
is kS-free, H (Y,x;k) |kS will also be kS-free by Schanuel's lemma.
Hence V (ejuj(y xik)) < V5(0,HL(x,x;k)) as desired.

" If X satisfies the condition (DSBC) for G , then in the Serre spec-

tral sequence of X = E X - BG, Eg’q = Eg'q . Thus rad(Ann HX

G G G
(X,x:k)) 2 rad (Ann H*(G H*(X,x;k})) by a simple calculation and a fil-
tration argument. Since rad(Ann H*(G,H*(X,x;k))) Zn rad {(Ann H*(G;Hi

(X,x;k))) , it follows that 1

v ¥ vgtert(x,xik) Ty vomtxxk) 2o vEmtoxik) B
i i
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vé(eiﬂi(x,x:k))
(where the isomorphism between VG and vé of Hi(x,§;k} is due
Avrunin-Scott's theorem again). = ) ‘

The second assertion of 3.2 is not true in general, The examples
in the following sections illustrate this point.

The above observations lead us to define a kG-module M(X) for
each G-space X with Hi(x;k) # 0 for only finitely many 1 , such
that VG(X) = Vé(M(x))'. Since for Moore spaces X , VG(X) 2 VE(H*
{(X,x;k)) , we embed X in a "mod k " Moore G-space Y freely equi-
valent to it. This is possible since Hi(x;k) = ) for large 1 and
we can add free G-cells inductively using Serre's Hurewicz theorem.
Let M(X) & H_,(Y,x;k) . Although M(X) is not well-defined, H*(G:M
(X)*) and Ha(x,x;k) are isomorphic modulo H.-torsion. Hence V. (X)=
VG(M(X)*) = VE(M(X)*) VI(M(X)) and VG(x) has a description as a
rank variety.

The module M(X) is well-defined only in a "stable sense”, For a
kG-module L , define w°(L) ¥ L , and w'(L) = w(L) by the exact se-
quence 0 -+ w(l) » F > L -+ 0 , where F is kG-free, and mi+1(L) =
w(m1(L)) . These modules are stably well-defined by Schanuel's lemma
(cf. e.g. Swan's’ Springer-Verlag LNM 76). ‘

3.3 Proposition. Suppose X 1s a G-space such that Hi(x;k) # 0 for
finitely many i . Let Y1 and Yz be two mod k Moore G-spaces
freely equivalent to X . Then there are integers s and t 2 0 ,
such that ws(H*(Y1,x;k)) is stably isomorphic to: mt(H*(Yz,x;k)) .
{Call this w-stabllity for short.)

Proof: Choose: a G-space .2 freely equivalent to Y, and Y, and con-
taining Y1 and Y, . and such that Hi(z,x;k) =0 for 1 # 4 , £>>
nonzero dimensicns in H*(Yj-k) for j =1,2 . Then C, (Z/Y :k} are
free kG-modules except for * = 0 , where the base point naturally de-
fines a split augmentation y (Z/Y ,k)———* k=0 .Cu(3/yy; has
homology ({(mod k ) nonzero only in two dimensions above 0 , corres-
ponding to H (Z; k) and H (Yi,x k) - An appropriate application of
‘the Schanuel's lemma shows that o (H, (¥,,%x:k)) ¥ Ht(z k) 2w (m,
(Yz,x;k)) for some¢ integers t,s 2 0 . =

3.4 Corollary.Given a G-space X with HT(X;k) = 0 for sufficiently
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large 1 , there exists a kG-module M(X) which is well-defined up to
w-stability and V. (X) 3 VG(M(X)) . o :

The mgitable class of M(X) is in fact a "composite egtensibn“ of
various (Hi(X:k)) for all 1 > 0 and appropriate- integers sizo.
This means that if 0 < i(1) < i(2) <....< i(m) are.the dimensions
where Hi(x;k) # 0 , then there are integers s(1),...,s(m) and ex-
tensions: ‘

: - s(3) - =
0 - Hi(j+1)(xfk) - Li(j+1) w (Li(j)) 0 for 3 1y¢s.,m , and

. \ = . : vt :
where Li(1) = Hi(1)(x,k) and M(X) w Li(m) for some t 2z 0

Let us refer to this construction as "an w-composite extension”,
We have the following formal corollary:

3.5 Corollary. Suppose ‘that Hi(x;k) = 0 for all sufficiently large

i , and suppose X has a homotopy G-action a : G = E(X) . Then (X,a)
is equivalent to a topological G-action only if some w-composite ex-
tension L of the kG-modules Hi(X;k) {(as given by a ) is realizable
by a mod k Moore G-space. s

while this corollary seems to be a formal consequence of defini-
tions, it does lead to the following theorem which will be proved in
section 5. T

3.6 Theorem. There exist decomposable kG-modules M which are reali-
zable by homotopy G-actions, but they are not realizable by the homo-
logy of any G-space X .

Next, we apply the above results to give a proof of Theorem 2.1,

%0 Hi(x) . Then, if M is ZG-projec-
tive, clearly M is ZC-projective for any subgroup, in particular.
cyclic subgroups of G . Conversely, suppose M 1is ZC-projective for
all such C E.G as in the theorem. Let M' = ,8, H,(X;k) . By Choul-
nard's theorem, it suffices to consider the case where G is p-~ele=- -
mentary abelian, and we will assume this for the sequel. Since X
satisfies the condition (DSBC) for G , one has VG(x) = VE(M') , by
Proposition 3.2. At this point one has several (basically equivalent)
ways- of finishing the proof. The first is somewhat longer, but more
illuminating, and we will refer to it in the applications.

Proof of Theorem 2.1: Let M = ?

-15-



First argument: vG(x) is defined via the radical of the annihilator
of HX(X,x:k) , say J , in Hg ., which is the intersection of asso-
ciated prime ideals AnnH {a) , for a E H&(x,x;k) . Since associated

primes are closed under_tge Steenrod algebra, a theorem-of Landweber
[24] and [25]kgeneralizing a theorem of Serre [29]; see. also [1])

shows that they are generated by two dimensional classes in ie H21
(G,Fp) < H, . Landweber's proof is for Fp—coefficients throughout, but
one can easlly check that his arguments goes through with k-coeffi-
clents and the same conclusion. {The invariance of associated primes
under the Steenrod algebra has been observed by several authors [25]
(311 [18]). Thus J is defined by linear equations with Ep-coeffi-
cients. Consequently V (X) as well as VI(M' are Fp-rational,
(i.e., a union of subvarieties defined by linear equations with E -co~-
efficients). For a shifted cyclic subgroup S < kG , VS(M |k5) Vr(M )
n trS G(Vg(k)) (cf. [8]) where trs'G is the transfer. It follows
that for each shifted cyclic subgroup which is not a subgroup of G ,
SsNnNaGg= {1} and tr, (Vr(k)) n Vr(M ) =0 . (Here we assume to have
chosen a k-vector space L such that I'=L @ I ., I = augmentation
ideal, as described in Section 2.) Hence Vé(M' is detected by the
shifted cyclic subgroups S such that S n {G} # {1} , i.e. cyclic
subgroups of G . By the hypothesis, M'lkS is kS-free for all such
S<G . Thus, Vg(M') = 0 and M' is kG-free. Since H (x,x)  is
ZC-projective, it is Z-free. The long exact sequence of cohomology

associated to 0 - z % - Fp - 0 breaks into short exact sequences:
i X i i
0 -+ H™(X;Z) P, vt (x;z) L (X;FP) -0

But for all A c G, ﬁ*(A;H*(x,x;Ep)) =0 (ﬁ* = Tate cohomology and
kG-projectivity implies FpG—cohomological triviality [14]). Hence
H*(A,H*(X,x)) 1is p-divisible, which means that it vanishes for all

A c G . Therefore H*(X,x) 1s ZG-projective, being Z-free and Z-ccho-
mologically trivial [28]. '

Second argument: An inductive argument using Cartan's formula shows
that the annihilating ideal of HE(X,x;k)  is invariant under the
Steenrod algebra, as in G, Carlsson {13]. A theorem of Serre [29] then
shows that the variety VG(x) is Fp-rational. Hence VE{M') is ratio-
nal using Proposition 3.2. The rest of the proof is as in the first
argument and the details are left to the reader. s
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3.7 Addendum. The examination of the proof shows that in fact the
statement of Theorem 2.1 remains valid, if we replace'Z-cgefficients
by k-coefficients as well as ZG- and ZC-projective by kG- and kC-free
reépectively. Thus one needs that Hi(x;k) = 0 .for all sufficiently
large 1 , instead of the stronger statement with E-coefficients. =

The above proof also suggests that as in J. Carlson [12], one can
determine the complexity of H*(X,x:k) by the dimension of the varie-
ty Vé(aiﬂitx,x;k)) = VG(X) for this particular case. This is the
counterpart of Theorem 2.1 for non-projective modules.

Let p be a fixed prime and let k be a field of characteristic
p . say algebraically closed for convenience sake. We denote by ch(M)
the complexity of the kG-module M (cf. [2] [23] [12]).

3.8 Theorem. Let X be a connected G-space which satisfies the condi-
tion (DSBC) for each maximal elementary abelian p-subgroup A § G and
H*(=-;k) . Let M 51?0 Hi(x;k) with the induced kG-module structure.
Suppose ch(M) = r . Then there exists a p-elementary abelian sub-
group E G of rank r .su?b”that ch(MlkE) =T .

Proof: By Alperin-Evens (2], cx, (M) = mgx{ch(M[kA)IA c G maximal
p-elementary abellan} . Thus we may assume that G 1is elementary abe-
lian., Since VE(M) 2 VG(X) is rational as in the proof of Theorem 2.1
above, dim Vé(M) is the maximum dimension of the rational linear sub-
varieties whose union is VX(M) . Let Vo be one such linear maximum
dimensional subspace of k" 3 Vé(k) , (where we assumed n = rank G )
and let E = G N Vo be the set of rational points of Vy - Then rank
= dim Vo since Vo is rational. On the other hand, trE'G(VE(MIkE))

Vg fef. [8] and [11] for details) and ch(MlkE) = dim V,=rank E. ®

1t

Let G be a p-elementary abelian group of rank n . In [23], Ove
Kroll proves that if ch(M) = t for a kG-module M , then there
. exists a shifted subgroup T < kG of rank n-t such that M|kl 1is
" kr-free. J. Carlson's proof of Kroll's theorem [12] is in essence a
"transversality argument" in the following sense. Since ch(M) =t ,
dim VE(M) = t , and it is always possible to find an (n-t)-dimensional
linear subspace L of k" 3 vé(k) which is in "transverse position”
to Vé(M) + (i.e. it has intersection {0} .) Now restriction to the
shifted subgroup T which is obtained from any k-basis of L yields

dim V" (M]kI) = dim(L 0 VZ(M)) = 0 , which means that M|kl is kr-free.
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When Vé(M) is rational, one would like to find a subéroup reéG
with the above property. But this is not possible in general as it can
be seen from the following simple example: . ’
3.9 Example. Let M = GE(kG ekEk) where E runs err all cyclic sub-
groups of - G . Then ch(M) = 1 and M|kA is not kA-free for any
non-trivial subgroup A < G .

However, the flrst argument of the proof of Theorem 2.1 above
reveals that we can give a counterpart to Kroll's theorem in a parti-
cular case.

Call a G~gspace X ’"k-primary", if the radical of the annihilator
ideal of HE(X,x;k) in HE is prime for all maximal p-elementary
abelian subgroups of G . (Here k is a field of characteristic p
again.) Recall p-rank (G)dgfmax {rank of elementary abelian p-subgroup
E € G} . ' . '
3.10 Theorem. Suppose p-rank (G} = n and X is a connected k-primary
G-space which satisfies the condition (DSBC) for all maximal p-elemen-
tary abelian subgrbups and H*{=-;k)-coefficients. Also, assume that
Hi(x;k) = 0 for all sufficiently large i . Then there exists a p-ele-
mentary abelian subgroup E < G such that rank E = n-mgx {ch(Hi

(X,x;k))} and Hi(x,x;k) is kE-free for all i .

Proof: As in the preceding theorems, it suffices to assume that G
is p-elementary abelian (Alperin-Evens {2]). By Proposition 3.2 vE

G
i n
( QiH (X,x;k)) = VG(X) . Since X is k-primary, the first argument

in the proof of Theorem 2.1 shows that Vé{ eiﬂi{x,x;k) 2 Vé( eiHl

(X,x;k)) consists of one rational linear subvariety of k™ s Vé (k) ,

and its dimension equals to ch( ) Hi(x,x;k)) a Tgx ch(Hi(x:t))

Hence there is a rational linear subspace L transverse to VG(Hi
(X;k}) , and we may choose dim L = n-Tiﬁ ch(Hi(x;k)) . Let E be

the subgroup of G whose Pp-generators gives an Fp-basis for L . This

is the desired subgroup. =

3.11 Remark. One can modify the above argument to weaken the hypothesis
that "X is k-primary" or that "X satisfies (DSBC)", etc. But these
hypotheses cannot be removed altogether by the above example 3.9 and
the example in Sections 4 and 5.
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Section 4. Applications to Steenrod's problem

In this section we consider the special case of G-actions of Moore
spaces. Suppoée M 1is a finitely generated z-free‘ZG-module. Then M
is deterqined by a homomorphism p : G - GL(n,Z) , where n = ran&z(u).
Suppose that X is homotopy equivalent to a bouquet of spheres of
dimension k 2 2 , and H, (X) 22" . Then E(X} = wyH(X) ® GL(n,Z) by
obstruction theory. Thus p induces a homomorphism o« : G - E(X) such
that the homotopy action - (X,a) realizes the ZG-module M . More ge-
nerally, if Tor?(M,zz)’u 0, or if G 4is of odd order, then an ob-
.struction theory argument (cf. [22]) shows that any homomorphism p:G
-+ GL(n,Z) (which induces the ZG-module structure of M } can be lifted
to a homomorphism o : G -+ E{(X) . Thus the homotopy action (X,a) rea-
lizes M .

On the other hand, given M , we have the Z-free ZG-module M'
from the exact sequence 0 -+ M' » F - M+ 0 , where F is'a free ZG-
module, It is not difficult to see that M is realizable by a Moore
G-space, if and only if M' is realizable by a Moore G-space. Thus,
as far as the question of realizability of ZG-modules is concerned,
one can consider Z-free ZG-modules with no loss of generality. There-
fore, the realizability of modules by homotopy actions does not pese a
difficult problem in the contexts where one is primarily interested in
realizability by topological G-actions.

In passing, let us mention that the obstructions for realizability
of a ZG-module by a homotopy action on a Moore space has been studied
by P. Vogel [7] (unpublished). Vogel has shown that for G = Zz x Zy o
there is an FZIGI-module which 1s not realizable by a homotopy action

on a Moore space:

4.1 Example {P. Vogel) {7]. Regard Z, x %, as the 2-Sylow subgroup

of GL(Z,F4) , i.e. as 2 x 2 upper triangular matrices of the form
(8 ?) where x belongs to the field with 4 elements. The natural
action of GL(Z,F4) by left multiplication on the column vectors of
M= (E"4)2 makes M - into a z[z2 x zzl-module. Vogel's obstruction
theory shows that this modules is not realizable by a homotopy action

of X, x 2

2 2 on a Moore space.

4.2 Construction and Examples. Let k be an algebraic closure of Fp .
e, - Let I be the
augmentation ideal and choose the k-vector space L such that I=L$Iz,

and let G = zp x Zp ‘be generated by e, and



with {11,12} a k-basis for Lz, {(as in Section 2)1_Thén for almost
all choices of a = (a1.a2) € k“ , the shifted unit u =-1+u1£1+u2£2
generates a shifted subgroup S = <u > of order P such that S N G
= {1} . (Cf£. Carlson [11] for details on shifted subgroups). More ex-
plicitly, for a (finite) Galois extension K of F ',bchoose Gqray

€ K such that u = 1+a1(e1-1) + a,(ey~1) satisfiles u -1 ¢ 1% and
au #g (mod 12) for any g € G . The condition 1l-u, ¢ 1% ensures
that kG is kS-free, and § = <u > < kG can be treated like an ordi-
nary subgroup as far as induction and restriction is concerned [11].

In particular, Mackey's formula and Shapiro's Lemma are valid.

Recall that for the local ring kG , projective, injective, co-

homologically trivial, and free modules coincide. First we need the
following:

4.3 Lemma. (i) There exists an indecomposable kG-module MO such that
Mo is kC=-projective for all cyclic subgroups C < G , but MO is not
kG-projective.

(i1) There exists a finitely generated Z-free ZG-module M
ZC-projective for all cyclic subgroups C < G , but M
projective,

1 which is

1 is not ZG-~

(iii) There exists an indecomposable ZG-mocdule M with the same pro-
perties as in (ii) above. '

(iv) In above part (iii), one may choocse M such that k & M I M'e Q,
where M' 1is an indecomposable kG-module, and Q is kG-free.-

Proof: (i} The above discussion, for (almost all) u, chosen with S=
<u > , one has 8§ N G = {1} and kG 1is a free kS-module. Let M, =
kG @,k be the;induced module. Then for each C < G , LCI =p,CnNSs
= {1} . Hence H*(C,MO) = 0 by Mackey's formula. But H(G,My) = H*
(S;k) # 0. by Shapiro's Lemma. Since kG i1s local, a cohomologically

trivial kG-module is kG-free (= kG-projective). Thus (1) is proved.

4

(11) One can choose u_ such that u_ = T+a,(e =1) + a,(e,-1) , where
ay and e, lie in a finite Galois extension of Fp , 8ay k
<u > =5 still satisfies the same properties as in (i). Let

10! and
M0=k1G @"k1sk1 be the k.'G-module which is k1C-free for each C # G

but not k1G-free as in (i). Consider the exact sequence 0 - M, - (ZG)t
- My - 0 . The long exact seguence of cohomology . .

1

i

R il H

(C,M,) = alic,ze)®) - ﬁi(c,mo) s
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shows that M, is ZC-projective for all C<c G C # G , .and ﬂ1 is

not ZG-projective. .

(iil) Let. M, ='M: Beeeaed Mf be a decomposition in terms of inde-
composable ZG-modules. Then all M?
one of them 1s not ZG-projective, say M1 . Then M1 " satisfies (1ii)

1 1
and it is also indecomposable. :

are zc-prcjective, but-at least

(iv) Tensor the exact sequence of (i1i) by k :

0+keM + (k) > koM 0.

Note that we can choose My so that k@MO is indecomposable. :(Briefiy:

dimkk OvMO = dithG/kS = [G:S] = p , and since k © Molkc is projec-
tive, the dimension over k of each kC-indecomposable summand, and

hence each kG-indecomposable summand must be divisible by p .) In
the short sequence: '

0 - M P>k @ MO - 0 .
where P 1is the projective cover of k @ My M' -is also indecompo-
sable, since k ® M, is indecomposable. Hence Schanuel's Lemma shows
that k @ M, S M' @ (projective). m

4.4 Theorem. Suppose G is a finite group such that G o Zp x zp .
Then: ’

{(I) there exists a kG-module - M6 which satisfies (i) of Lemma.4.3.

(IT} There exists a ZG-module M' which satisfies (iv) of Lemma 4.3.
Further, it is not possible to find a Moore G-space X such that H,

(X:k) = M) as kG-modules.

Similarly, there does not exist a Moore G-space X such that
H,(X;Z) ¥ M' as ZG-modules.

Proof: .Let M, be the k[mpx Z_)-module of Lemma 4.3(i). Let Mé

kG@k[prZp]MO . Since s n C = {1} , Mackey's formula shows that for

each Ce G, |C| = prime, Mé]kc is kC-cohomeologically trivial, hence

kC~free. But M6 is not kG-free since it is not k[Z_ «x zp]-free, as

1
MOIZP x zp has M,

(II) Let M be as in Lemma 4.3 (iv}, and let M' = zZge

as a direct summand, (or apply Shapiro's lemma) .

Z [szzp]M )
The assertion follows as in part (I). Now the non-existence of the

Moore G-spaces realizing these G-modules is a consequence of the pro-
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jectivity criterion Theorem 2.1, a
(Compare 4.4 with G. Carlsson's theorem [13].)

The case G = Q,n = generalized quaternionic group. of order 2"
is somewhat different, because .the maximal elementary abelian subgroup
of an is the subgroup of order two generated by the central element
T € Qn - Therefore kG-projectivity (or ZG-projectivity) of a module
is completely decided by the restriction to k<t> or Z<t> . There-
fore Theorem 2.1 does not help directly in this situation. In the se-
quel, we present first a proof of non-realizability of a kG-module by
Moore G-space (similarly for a ZG-module)} in the finite dimensional
case, and we will use the geometric intuition of this case to remove
the finite dimensionality restriction with a different proof.

4.5 Proposition. Let G -be the quaternionic group of order 2™, na3.
Then there exists a ZG-module M such that M is nbt ZG-1somorphic
to the (reduced) homology of a finite dimensional Moore G-space X .
Similarly, k @ M is not ZG-isomorphic to ﬁ*(x;k) .

Proof: Let "t € G ‘be the central element of order 2 and let < gene-
rate T = Zz < G . Then G/T H Dzn-1 ; the dihedral group of order

21 | Let M be the module over Z
4.3 (iv) above and let N = Z[Dzn—1]

2 % z, constructed as in Lemma
z(z, ? zz]M . Then M is not
Z[Dzn_1]-isomorphic to H*(XO) for any Moore G-space X5 - In fact,
k, ® M is not k,(D,n-1l-isomorphic to H, (X ik,) for any field k
of characteristic 2. ‘

1

Consider N as a ZQ,n-module, where T acts trivially on N .
(To get a G-module - on which all elements of G act non-trivially take
ZG @ N , or the group of n-cocycles in a minimal projective resolution
of N over ZG .). Suppose there exists a finite dimensional Moore G-
space .Y such that, y© # @8 and H,(Y) N as ZG-module. Then Y@
is a Dzn-1-space of finite dimension, and since the Serre spectral se-
quence of Y - ET x ‘TY - BT collapses, H*(Y k )-H*(T N)® H* (T, 1‘1fk
in the proof of Proposition 1.1. Using this period;city of H*{(T;N) ,
it follows that A*(Y';k,)¥(Nek,) /(1+7) (Nek,)Nek, . But this means
that N @ k1' is realized by the D,p-q-space YT, i.e. ﬁ*(YT;k1)g
N @ k1 . By Proposition 1.2 or Theorem 4.4 this cannot happen. =

as
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Alternatively, the w-stable module M(YT) up to .w-stability is
k1G-isomorphic to N®Q where N is the indecompeosable factor and
Q 1is kG-free. This 1is the case because ﬁ*(YT;k1) has only one .de-
cohposable k1G—module N as a summand which is.not k&G-frge. Thus the
construction M(X) and the definition of w-composite extensions shows
that any m-cqmposite extension of various ﬁi(YT;k1)~ is of the form
N ®Q up to w-stability. Now the Projectivity criterion Theorem 2.1
of Theorem 4.4 shows that N & Q of mj(N) ® Q cannot occur as
H*(L;k1) for any Moore Dzn71-space L . This contradiction shows that
such a Moore G-space cannot exist.

The proof of the above implies the finite dimensional case of the
following corollary. {The details are left to the reader).

4.6 Corollary. If G 2 an + then there are ZG-modules which are not

ZG-isomorphic to the reduced homology of a Moore G-space. o

Now we preoceed teo give a different proof which shows that such
Moore G-spaces cannot exist regardless of their dimensions.

Since every quaternionic 2-group contains the quaternionic group
Qg of order 8, we will prove the thecrem for QB and deduce the re-
sult for Qun +» D2 3 from it. Suppose that X is any Moore G-space,
where G = Qg , such that H*(X,x) M, (xex®#9) .Let M bea
ZQB-module which 1s Z-free, and T =z <1> < Q8 acts trivially on M ,
and let A = QB/T 3 22 x 12 induce a ZA-module structure on M . Con-

sider the Borel construction (w,wo) = B x T(x,x) which carries a

G
free A-action. The Serre spectral sequence (X,x) - (W,Woqu BT collap-
ses and H*(w,wo;k1) z H* (T ,M e-k1) . Denote M ® k1' by M, . Since
4"

T acts trivially on M
H*(W,Wo,k1) .

; + it follows that H*(T,M,) 3 H*(T,k1)’e M2

Now consider the Borel construction E, * A(w,wo) = BA . In the
spectral sequence of this fibration, Eg’0= 0 for all p and E§'1 z
HP(A;H1(W,WO)) = HP(A;M1) . On the other hand, E, x A(W,WOJ = (W/A,
wO/A) since A acts freely, and (W/A,WO/A) = EG x G(x,x) . Hence
e}/1 ¥ El'" ¥ Hl(x,x:k,) ¥ u'(G:M,) . The H,-module structure of Ej
XG(X,x) is also related to the H,-structure by the following commu-

tative diagram:

A

E, x G(x,x) «——3 E x A(W.WOJ

T 1

BG > BA .
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At this point, let M, = kA @ , k. , and note that H*(A;M,) s
H*(S;k,) 2 k1[gu] for g € H1(S;k )1 "Let the corresponding generated

be denoted by vy E'Hj(A;M1) . Then rad(Ann(Y)) in HA is the ideal
J = (a1y+a x) . '

On the other hand, let C be the cyclic group of order 4 in k1
[QB} given by the extension T - C + 5 . If we regard k as a trivial
module over kS on which T acts trivially also, it follows that
s . .
kA ® k1sk1lk C = k;Qq 8" e 1|k C
Thus, H*(Qg;M,) = H*(C;k,) and in the Lyndon-Hochschild Serre

spectral sequence of T - C -5, H (S;k ) E H (C: k } while all other
H (S;k } map to zero in H (C;k |

Since the diagram

T —> C —» S

Cl

T ——> Q8 —> A
commutes, we may identify 9 € H (S; k ) with a generator g €
H (Cik,) 3 ' (QgiM,) .. Under- “this identifiaction, g€ H (X,x k)
HY(E x al#idg)iky) , is identified with y € B! (a;mM ) E B (s; k, )

-

4.7 Assertion: rad(Ann{g)) = J in HA .

Proof: It suffices to show that f = a 1 ¥taX belongs to Ann(g) since
f generates J . But £t .y =0 since £ € Ann(y) = J for some t20 ,
The naturality of all the identifications made above shows that ft.y
=0 om £5.g 5 0 o £°.g = 0 = (£) = rad(Ann(g))

On the other hand, rad{Ann{g)) must be invariant under Steenrod
algebra, being an associated prime for the module Ha (x,x;k1) over
HA . Hence its variety must bhe Fp-rational by Serre's theorem [29],
and J is not rational over Fp by the choice of a . This contra-~
diction establishes the theorem.

4.8 Remark. An alternative proof using a complexity argument is briefly
as follows. In the spectral sequence with Eg'q a HP(A;Hq(W,WO)) which
converges to H*(EG x G(x,x) 3 H*(C;k ) , for p+q = constant, Eg’q

# 0 only for one pair (p,q) . Thus multipllcation by £t shifts the
filtration in E_ . But since there is only one non-zero term, it
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follows that an appropriate power of ft kills the Ew-térm in this
case. This shows that the radical of the annihilator of the module
contains £ . Hence the HA—variety of X 1is the intgrsection of the
line £ given by £ with possible other lines. If this intersection
does not include £ , then it must be zero dimensional, and one argues
that M must be Z, x Z, ~projective accordingly, which is a contra-
diction again.

2 2

The above results show the following theorem, due to Carlsson for
G = zp x Ip [13] and to Vogel for G o Qg (to appear) using calcula-
tions with the Steenrod:algebra. An exposition of Vogel's theorem can
be found in [9]. -

4.9 Theorem, If all ZG-modules are reélizable by Moore G-spaces, then
G 1is "metacyclic", i.e. all Sylow subgroups of G are cyclic.

4,10 Remark. Jackowskil, Vogel and several others ha@é observed that
Carlsson's counterexample for xp x Zp implies that for G > zp x X
the induced module is alsc a counterexample.

Section 5. Some Examples

We have seen how to construct examples of ZG-modules which are not
realizable by Moore G-spaces. These also give examples of homotopy
actions on Moore spaces which are not equivalent to a topological ac-
tion. The question arises whether these lead to criteria for homotopy
actions on more general spaces to be egquivalent to topological actions.
It is helpful to consider the case of spaces which are bouquets of
Moore spaces of different dimensions. We will briefly investigate the
possibility of realizing a given ZG-module M by a topological action
on such a space. This module M arises from a homotopy action (X,a)
and as a consequence our examples reveal some properties of homotopy
actions on such spaces. Note that if a ZG-module M is indecomposable,
then M can be realized only by a Moore G-space. Thus to get new
examples, we will consider decomposable modules.

By means of a simple construction using the modules of Section 4
and the theory of Sections 2 and 3, we will show that for G o zp x Zp
the following hold.

(5.1) There is a ZG-module M = M1 ] M2 , where Mi # 0 are indecompo-



sable, such that neither M nor M, are realizable by “oore G-spa-

ces.

(5.2) There is an (n-1)-connected finite G-CW complex’ X of dimension
n+1 such that eiﬁi(x) = M as ZG-module. Cal; this action ® : G x X
- X . ‘

(5.3) X is homotopy equivalent to a bouquet of spheres of dimension
n and n+1 , but (X,p) 1is not G-homotopy equivalent to a bouquet of
spheres, with a G-action.

{5.4) Let P be the projective cover of M1 and 0O - n(M1) - P~ M,

-+ 0 be an exact sequence of XG-modules. Then an extension of M, and
n(M1} is realizable by a finite dimensional Moore G-space. Similarly

for M . This extension is non-trivial necessarily.

(5.5) We may choose M1 = M, in the above.

(5.6) Since n(M1) is not realizable by a Moore space either, we have
also examples of modules M1 and Mi = n(M1) such that M1 ) H{ is
not realizable by a topological action on a Moore space, but some non-

trivial extension of M1 and M; ls realizable by a Moore G-space.
{(5.7) We may construct examples where M1 = n(M1} in the above.

(5.8) There is a homotopy action of G , say o , on a finite bouquet
of n-spheres L , such that (L,2) and any suépension of this h-action
(EiL,zia) are not equivalent to topological actions. But (LviL,avia)
is equivalent to a topological action.

(5.9) Vg(X) # V;(X) , thus the inclusion V. (X) e Vi (X) of Proposi-
tion 3.2 cannot be improved (even for finite dimensional spaces). Here

the varieties are taken over kG . Here V (X) =0 ‘while ®,H, (X,x;k)
is not kG-free.

(5.10) Radicals of the annihilators in H
H* (G;H*{X,x;k)) are not equal.

* .
G of HG(x,x,k) and

(5.11) We may choose M; such that the projectivity criterion 2.1 does
not apply-.to X . This will follow because we will choose Mi such
that ® Hi(x,xllzc is ZC-projective for all C c G , |C| = prime, but
@iHi(X,x) is not XZG-projective. Thus Theorem 2.1 cannot be extended

to all G-spaces without additional hypotheses (even for finite dimen-
sional G-spaces).

(5.12) For appropriate choices of M1 and My M= M1$ M,

be realizable by any G-space, Mi #0,1=1,2

will not
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5.13 Example., It suffices to consider G = zp x Zp . and the above
assertions (whenever applicable) hold for G > zp x zp or G > Q8
Copsider the ZG-module M1 constructed in Theorem 4.4, For some .of the
assertions such as (5.5), (5.6), and (5.7), let..p = 2 , otherwise p
is any prime. We may'choose 4, to be Z-free and ZG-indecomposable.
From the exact sequence:

(S.14) 0 » M, » (ZG) T - (ZG) 2 » M, =0

2 1

it follows that MZIZC is ZC-projective for all C = G , |C|= prime
while 4, is not ZG-projective, since M, is not EG-projective.
Therefore M, i1s not realizable by a Moore G-space either. Let M =

M; ® M, . The same holds for M .

We may take bouquets of s and r free G-orbits of n-spheres,

r
n
=V (G+AS )

i.e. X, =
3=1 ]

1

<

n
(G, AS )i and X,

i=1

There exlsts a G-map £ : X, = X1 such that £,: Hn(xz) - Hn(x1) can
be identified with the EG-homomorphism ¢ : Zc) T - (IG)s after appro-
priate identifications H_(X,) ¥ (ZzG)° and H_(X,) % (ZG)* . Then the
mapping cone of f is a finite G-space X which satisfies (5.1} and
(5.2) above, in view of the exact sequence (5.14}, (5.1) and (5.2)
imply (5.3). '

The projective cover of M1  namely P , satisfies O -+ P -+ F
- F2 -+ 0 where FT‘ and FZ are ZG-free (not necessarily finitely

generated). Thus P can be realized via the mapping.cone Xg of the

1

G-map g : V (G+A5n_1)i -V (G+ASn—1) corresponding to n (i.e.
i ' 3
g, = n in Hn_1(-;§) ). Xg is also free off the base point. In the
exact sequence:
v
(5.15) 0 - M, »P-+M =0

1 1

the homomorphism y can be realized by a G-map £': Xg = X which in-

duces f; : Hn(xol a,Hn(X) + £, = v , by equivariant obstruction theo-
ry (or see [3]). The mapping cone of f' , say Y , is a Moore G-space
and Hn+1(Y) is the extension in the sequence:

(5.16) 0 » M, ~»

2 Ho (¥) = M) =0

1



Thus an extension of M)} and M, is realizable by the_Mdore G-gpace
Y . This proves (574).'Since M, is a periodic module 'by.constructicn,
by taking G = Z, x E, we can fulfill (5.5) = (5.7). If we wish to
choose M1 g.“z for odd p , just take the exact sequence

1

(5.17) 0 - M, »P, =P

1 1 2 * M0

1

where P, are projective covers, and Kerg=M, since M, is chosen

to be indecomposable. (5.17) exists due to periodicity of M1 . This

is the analogue of (5.14) and we can use Pi instead of Fi e 1=1,2 .

Since all these modules are realizable by homotopy actions (ob-
struction theory), the assertion (5.8) follows easily from the pre-
vious ones.

~ To see (5.9}, note that Vé(k ® M1} is not Fp-rational by the
construction (cf. Section 4). Thus Vé( eiﬁi(x;k))-z Vé(k 8 (M@ M,))=
VE(M1) is not rational over Fp . But VG(X) is rational over I
(see the proof of 2.1). Thus V,(X) # V5! @ H, (X;k)) . Since Vg (M)
is only one line, in this case it follows that VG(X) = 0 in fact.
Except for (5.12) which will be proved below separately, the other
assertions follow from the above discussion and elementary considera-
tions.

Again, in the following G o zp x zp or Qg

5.18 Theorem. There exists a decomposable ZG-module M which cannot
be realized by the total reduced homology of any G-space. There are
homotopy actions (X,a) realizing M , and all such (X,a) are not
equivalent to topological actions.

Proof: As before, we may assume G = Zp x zp and the general case
follows from this case. Choose u, - and ug as in Theorem 4.4, such
that u, F3 ug {mod I2) and the lines in kz given by u, and u

are distinct. Corresponding to these choices we get indecomposable

Z-free ZG-modules Ma and MB whose rank varieties are the lines de-

termined by u, and ug . Neither Mu nor MB is realizable by a

Moore G-space using the projectivity criterion 2.1. For the same rea-

B

son, ut(Ma) ' ms(Mé) or any direct sum of them are not realizable

by Moore G-spaces (see Section 3). Any w-composite of Ma and MB is
of the form:

(5.19) 0 - wt(Ma) > U= W) =+ 0
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and this extension is determined by a class n € Ext;(wt(ﬁa) ' ws(Ma)).
By tensoring with k , we get

(5.20) 0w M k) ~ U@k (MK 0

T e k), w8 X)) . We claim
that this class vanishes, so that (5.20} 1s split and U®k = m(M Q@ k)
] w (Mae k) : But this follows from the fact that Ext;G(m (M 8 k),
(1 ® k)) H (G,m (M @ k)*® w (M ® k)) = 0 , where * means dual with
respect to k . The last‘assertion is a consequence of J. Carlson ten-
sor product formula ([11] Theorem 5.6) as follows. The rank variety of
w (M ® k)* 1s seen to be the same as V (m (M. ® k)) = V (M ® k) by
the definition of V& , and V (w (M ® k)* ® ws(M ® k)) = VE(M ® k)N
VG(Mue k) = 0 by the choice of a and B . Hence o, (M @ k)* 8 u®
(MS @ k) is kG-free by (4) of Section 2, and n' = 0 as a consequence.
Now suppose M = Mce MB "is realizable by a G-space. Then an w=~compo-
site of M ® k and Ma@ k 1is realizable by a Moore G-space by Co-
rollary 3.5. By the above discussion, any such w-composite is split
and it cannot be realized by a Moore G-space since it does not satisfy
the projectivity criterion (Theorem 2.1).

and a corresponding class n'€ Ext

Since M is realizable by a homotopy action, the second assertion
follows. =



{1l

(21

(3]

(4]

(51

{6l

(71

(8l

(9]

(10]

(111

[12]

(131

References

Adams, J.F. - Wilkerson, C.: "Finite H-spaces and algebras
over the Steenrod algebra", 2Znn. Math. 111 (1980) 95-=143.

Alperin, J. - Evens, L.: "Varieties and elementary abelian

'~ groups", (to appear).

Arncld, J.: "On Steenrod's problem for cyclic p-groups", Canad.
J. Math. 29 (1977) 421-428.

Assadi, A.: "Extensions libres des actlons- des groupes finis",
Proc. Aarhus Top. Conf. 1982, Springer LNM 1052 (1984).

Assadi, A.: "Finite group actions on simply-connected CW com-
plexes and manifolds”, Mem. AMS No. 259 (1982).

Assadi, A. - Browder, W.: "Construction of finite group ac-
tions on simply-connected manifolds" (to appear).

Assadi, A. - Vogel, P.: "Seminar on equivariant Moore spaces",
(Informal seminar notes, Université de Genéve, 1981).

Avrunin, G. = Scott, L.: "Quillen stratification for meodules",

. Invent. Math, 66 (1982), 277-286.

Benson, D. - Habegger, N.: "Varieties for modules and a prob-
lem of Steenrod", (Preprint, May 1985).

Bredon, G.: "Introduction to Compact Transformation Groups”,
Academic Preass (1972}).

Carlson, J.: "The varieties and the cohomology ring of a mo-
dule", J. Algebra 85 (1983), 104-143,

Carlson, J.: "Complexity and varieties of modules", in Ober-
wolfach 1980, Springer-Verlag LNM 882, 62-67.

Carlsson, G.: "A counterexample to a conjecture of Steenrcd",
Invent. Math. 64, 171-174 (1981).

-30-



[14]

(151

[16]

(17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

Cartan, H. - Eilenberg, S.: "Homological Algebra", Princeton
Univ. Press, - (1956).

Chouinard, L.: "Projectivity and relative projectivity for
group rings", J. Pure Appl. Aalg. 7 (1976), 287-302,

Cooke, G.: "Replacing homotopy actions by topological actions
Trans. AMS 237 (1978), 391-406.

Dade, E.: "Endo-permutation modules over p-groups II", Ann.
of Math. 108 (1978), 317-346.

Duflot, J.: "The associated primes of Ha(x) ", J. Pure Appl.
Alg. 30 (1983), 131.

Hsiang, W.Y.: "Cohomology Theory of Topologicdl Transformation
Groups", Springer, Berlin (1975}.

Jackowski, S.: "The Euler class and periodicity of group co-
homology", Comment. Math. Helv. 53 (1978), 643-650.

Jackowski, S.: "Quillen decomposition for supports of equiva-
riant cohomology with local coefficients", J. Pure Appl. Alg.
33 (1984), 49-58.

Kahn, P.: "Steenrod's problem and k-inavriants of certain
classifying spaces", Alg. K-theory, Proc. Oberwolfach (1980),
Springer LNM 967 (1982).

Kroll, O.: "Complexity and elementary abelian p-groups", J.
Algebra (1984).

Landweber, P. - Stong, R.: "The depth of rings of invariants
over finite ‘fields", (preprint) 1984. (To appéar in Procee-
dings of Number Theory Conference, Columbia Univ., Springer-
Verlag) .

Landweber, P.: "Dickson invariants and prime ideals invariant
under Steenrod operations", (Talk given at Topology Conference,
University of Virginia, April 1984).



[26] Lashof, R.: "Probelms in topology, Seattle Topology Confe-
rence", Ann. Math. (1961). '

(27] Quillen, D.: "The spectrum of an equivariant cohomology ring
I", and "II" Ann. of Math. 94 (1971), 549-572 and 573-602.

[28] Rim, D.S.: "Modules over finite groups", Ann. Math. 69 (1959),
700-712. '
{29] Serre, J.~P.: "Sur la dimension cohomologique des groupes

profinis", Topology 3 (1965), 413-420.

[30] _Smith, J.: (to appear)
[31] Stong, R.: (Private Communication)
[32] Swan, R.: "Invariant rational functions and a problem of

Steenrod”, Inven. Math. 7 (1969), 148-158.

[33] Vogel, P.: "On Steenrod's problem for non-abelian finite
groups", Proc. Alg. Top. Conf., Aarhus 1982, Springer LNM
1051 (1984}). '

[34] Zabrodsky, A.: "On G. Cooke's theory of homotopy actions”,
Proc. Topology Conf. London, Ontario 1981, in New Trends in
Algebraic Topology.

[35] Zabrodsky, A.: "Homotopy actions of nilpotent groups", Proc.
Topology Conf. Mexico 1981, Contemporary Math. 1984.



