Max-Planck-Institut für Mathematik Bonn

On I-adic iterated integrals V, linear independence, properties of I-adic polylogarithms, I-adic sheaves

by

Zdzisław Wojtkowiak

Max-Planck-Institut für Mathematik Preprint Series 2010 (81)

On I-adic iterated integrals V, linear independence, properties of I-adic polylogarithms, I-adic sheaves

Zdzisław Wojtkowiak

Max-Planck-Institut für Mathematik Vivatsgasse 7 53111 Bonn Germany Université de Nice-Sophia Antipolis Département de Mathématiques Laboratoire Jean Alexandre Dieudonné U.R.A. au C.N.R.S., N° 168 Parc Valrose - B.P. N° 71 06108 Nice Cedex France

UFR de Mathématiques Laboratoire Paul Painlevé UMR AGAT CNRS Université des Sciences et Technologies de Lille 59655 Villeneuve d'Asqc Cedex France

On l-adic iterated integrals V, linear independence, properties of l-adic polylogarithms, l-adic sheaves

Zdzislaw Wojtkowiak

Abstract In series of papers we have introduced and studied *l*-adic polylogarithms and *l*-adic iterated integrals which are analogues of the classical complex polylogarithms and iterated integrals in *l*-adic Galois realizations. In this note we shall show that in the generic case *l*-adic iterated integrals are linearly independent ver Q_l . In particular they are non trivial. This result can be view as analoguous of the statement that classical iterated integrals from 0 to *z* of sequences of one forms $\frac{dz}{z}$ and $\frac{dz}{z-1}$ are linearly independent over *Q*. We also study ramification properties of *l*-adic polylogarithms and the minimal quotient subgroup of G_K on which *l*-adic polylogarithms are defined. In the final sections of the paper we study *l*-adic sheaves and their relations with *l*-adic polylogarithms. We show that if an *l*-adic sheaf has the same monodromy representation as the classical complex polylogarithms then the action of G_K in stalks is given by *l*-adic polylogarithms.

Key words: Galois group, polylogarithms, fundamental group

1 Introduction

In this paper we study properties of *l*-adic iterated integrals and *l*-adic polylogarithms introduced in [W1] and [W2]. We describe briefly main results of the paper, though in the introduction we do not present them in full generality.

Let *K* be a number field, let $z \in K \setminus \{0,1\}$ or let *z* be a tangential point of $P_{\overline{K}}^1 \setminus \{0,1,\infty\}$ defined over *K* and let γ be an *l*-adic path from $\overrightarrow{01}$ to *z* on $P_{\overline{K}}^1 \setminus \{0,1,\infty\}$. For any $\sigma \in G_K$ we set

Zdzislaw Wojtkowiak

Université de Nice-Sophia Antipolis, Département de Mathématiques, Laboratoire Jean Alexandre Dieudonné, U.R.A. au C.N.R.S., No 168, Parc Valrose - B.P.N° 71, 06108 Nice Cedex 2, France, e-mail: wojtkow@unice.fr

$$f_{\gamma}(\boldsymbol{\sigma}) := \gamma^{-1} \cdot \boldsymbol{\sigma}(\gamma) \in \pi_1^{\text{et}}(P_{\bar{K}}^1 \setminus \{0, 1, \infty\}; \overline{01})_{\text{pro}-l}.$$

Then we define *l*-adic iterated integrals from $\overrightarrow{01}$ to *z*. They are functions

$$l_b(z): G_K \to Q_l$$

(they are coefficients of $f_{\gamma}()$) and indices are taking values in a Hall base \mathscr{B} of the free Lie algebra Lie(X, Y) on two generators X and Y. Let \mathscr{B}_n be the set of elements of degree n in \mathscr{B} . Let $H_n \subset G_{K(\mu_l^{\infty})}$ be a subgroup of $G_{K(\mu_l^{\infty})}$ defined by the condition that all $l_b(z)$ and $l_b(\overrightarrow{10})$ vanish on H_n for all $b \in \bigcup_{i < n} \mathscr{B}_i$.

Our first result concerns linear independence of *l*-adic iterated integrals.

Theorem 1. Let $z \in K \setminus \{0, 1\}$. Assume that z is not a root of any equation of the form $z^p \cdot (1-z)^q = 1$, where p and q are integers such that $p^2 + q^2 > 0$. Then the functions $l_b(z) : H_n \to Q_l$ for $b \in \mathscr{B}_n$ are linearly independent over Q_l .

Our second result concerns the minimal quotient of G_K , on which *l*-adic polylogarithms $l_n(z)$ are defined and ramification properties of *l*-adic polylogarithms.

Let $z \in K \setminus \{0, 1\}$. Consider the fields $K(\mu_{l^{\infty}})$ and $K(\mu_{l^{\infty}}, z^{\frac{1}{l^{\infty}}})$. Let $M(K(\mu_{l^{\infty}}, z^{\frac{1}{l^{\infty}}}))_{l, 1-z}^{ab}$

be a maximal, abelian, pro-*l*, unramified outside *l* and 1-z extension of $K(\mu_{l^{\infty}}, z^{\frac{1}{l^{\infty}}})$.

Theorem 2. Let $z \in K \setminus \{0,1\}$. Assume that z is not a root of any equation of the form $z^p \cdot (1-z)^q = 1$, where p and q are integers such that $p^2 + q^2 > 0$. Then we have:

- 1. The l-adic polylogarithm $l_n(z) : G_K \to Q_l$ factors through the group $Gal(M(K(\mu_{l^{\infty}}, z^{\frac{1}{l^{\infty}}}))^{ab}_{l,1-z}/K).$
- 2. The *l*-adic polylogarithm $l_n(z)$ ramifies only at prime divisors of the product $l \cdot z \cdot (1-z)$.
- *3. The l-adic polylogarithm* $l_n(z)$ *determines a non-trivial element in the group*

$$\operatorname{Hom}\left(\operatorname{Gal}(M(K(\mu_{l^{\infty}}, z^{\frac{1}{l^{\infty}}}))_{l,1-z}^{ab}/K(\mu_{l^{\infty}}, z^{\frac{1}{l^{\infty}}})); Q_{l}\right).$$

Our third result concerns connections with a non-abelian Iwasawa theory though we are not sure if our terminology non-abelian Iwasawa theory is not exaggerated as a result is quite elementary.

Let us set $\mathscr{G} := Gal(M(K(\mu_{l^{\infty}}, z^{\frac{1}{l^{\infty}}}))_{l,1-z}^{ab}/K(\mu_{l^{\infty}}, z^{\frac{1}{l^{\infty}}}))$ and $\Phi := Gal(K(\mu_{l^{\infty}}, z^{\frac{1}{l^{\infty}}})/K)$. The Galois group \mathscr{G} is a Φ -module, hence it is also a $Z_l[[\Phi]]$ -module. Therefore $Hom(\mathscr{G}, Z_l)$ is also a $Z_l[[\Phi]]$ -module.

Theorem 3. Let $\mu \in Z_l[[\Phi]]$. Under the same assumptions as in Theorems 1 and 2 we have

$$\mu(l_m(z)) = \left(\int_{\Phi} \chi^m(x) d\mu\right) l_m(z) + \sum_{k=1}^{m-1} \left(\int_{\Phi} \frac{(-l(z)(x))^k}{k!} \chi^{m-k}(x) d\mu\right) l_{m-k}(z).$$
(1)

In the final sections of the paper we study *l*-adic sheaves. We shall show that if an *l*-adic sheaf has the same monodromy representation as the classical complex polylogarithms then the Galois action in stalks is given by *l*-adic polylogarithms.

2
$$P^1_{Q(\mu_n)} \setminus (\{0,\infty\} \cup \mu_n)$$

In this section we recall some elementary results concerning Galois actions on fundamental groups in the special case of $P^1_{Q(\mu_n)} \setminus (\{0,\infty\} \cup \mu_n)$ (see [W3] and [DW]). Let us fix a rational prime *l*. Let *K* be a number field containing the group μ_n of

Let us fix a rational prime *l*. Let *K* be a number field containing the group μ_n of *n*-th roots of unity. Let $V := P_K^1 \setminus (\{0, \infty\} \cup \mu_n)$. We denote by $\pi_1(V_{\bar{K}}; \overline{01})$ the pro-*l* completion of the étale fundamental group of $V_{\bar{K}}$ based at $\overline{01}$. First we describe how to choose generators of $\pi_1(V_{\bar{K}}; \overline{01})$. Let $\xi := \exp(\frac{2\pi i}{n})$. Let π_0 be the standard path from $\overline{01}$ to $\overline{10}$. Let *x* be a loop around 0 based at $\overline{01}$ in an infinitesimal neibourhood of 0. Let y'_0 be a loop around 1 based at $\overline{10}$ and s_k a path from $\overline{01}$ to $\overline{0\xi^k}$ in infinitesimal neibourhoods of 1 and 0 respectively.

Let $r_k : V \to V$ be given by $r_k(z) = \xi^k \cdot z$. We set $y_0 := \pi_0^{-1} \cdot y'_0 \cdot \pi_0$ and $y_k := s_k^{-1} \cdot ((r_k)_*(y_0)) \cdot s_k$ for 0 < k < n. Then $x, y_0, y_1, \dots, y_{n-1}$ are free generators of $\pi_1(V_{\bar{K}}; \overrightarrow{01})$. Observe that $s_j^{-1} \cdot ((r_j)_*(y_k)) \cdot s_j = y_{k+j}$ if k+j < n and $s_j^{-1} \cdot ((r_j)_*(y_k)) \cdot s_j = x^{-1} \cdot y_{k+j} \cdot x$ if $k+j \ge n$

Let $z \in V(K)$ or let z be a tangential point defined over K. Let γ be an l-adic path from $\overrightarrow{01}$ to z. We recall that for any $\sigma \in G_K$,

$$f_{\gamma}(\boldsymbol{\sigma})(x, y_0, \dots, y_{n-1}) := \gamma^{-1} \cdot \boldsymbol{\sigma}(\gamma).$$
⁽²⁾

Observe that $(r_k)_*(\gamma) \cdot s_k$ is a path from $\overrightarrow{01}$ to $\xi^k z$ and

$$f_{((r_k)_*(\gamma))\cdot s_k}(\sigma) = f_{\gamma}(\sigma)(x, y_k, y_{k+1}, \dots, y_{n-1}, x^{-1} \cdot y_0 \cdot x, \dots, x^{-1} \cdot y_{k-1} \cdot x) \cdot x^{\frac{k(\chi(\sigma)-1)}{n}}.$$
(3)

Let

$$k: \pi_1(V_{\bar{K}}; \overline{01}) \to Q_l\{\{X, Y_0, \dots, Y_{n-1}\}\}$$

be a continuous multiplicative embedding of $\pi_1(V_{\bar{K}}; \overline{01})$ into the Q_l -algebra of noncommutative formal power series $Q_l\{\{X, Y_0, \dots, Y_{n-1}\}\}$ given by $k(x) = \exp(X)$ and $k(y_j) = \exp(Y_j)$ for $0 \le j < n$.

Let $\pi(V_{\bar{K}}; z, \overrightarrow{01})$ be the $\pi_1(V_{\bar{K}}; \overrightarrow{01})$ -torsor of *l*-adic paths from $\overrightarrow{01}$ to *z*. The map $\delta \to \gamma^{-1} \cdot \delta$ defines the bijection $t_{\gamma} : \pi(V_{\bar{K}}; z, \overrightarrow{01}) \to \pi_1(V_{\bar{K}}; \overrightarrow{01})$. Composing t_{γ} with the embedding *k* we get an embedding

$$k_{\gamma}: \pi(V_{\overline{K}}; z, \overline{01}) \to Q_l\{\{X, Y_0, \ldots, Y_{n-1}\}\}.$$

The Galois group G_K acts on $\pi_1(V_{\bar{K}}; \overrightarrow{01})$ and on $\pi(V_{\bar{K}}; z, \overrightarrow{01})$. Hence we get two Galois representations

$$\varphi_{\overrightarrow{01}}: G_K \to \operatorname{Aut}(Q_l\{\{X, Y_0, \dots, Y_{n-1}\}\})$$

and

$$\psi_{\gamma}: G_K \to \mathrm{GL}(Q_l\{\{X, Y_0, \ldots, Y_{n-1}\}\})$$

deduced from the action of G_K on $\pi_1(V_{\bar{K}}; \overrightarrow{01})$ and on $\pi(V_{\bar{K}}; z, \overrightarrow{01})$ respectively.

Before going farther we fix the notation.

The set of Lie polynomials in $Q_l\{\{X, Y_0, \dots, Y_{n-1}\}\}$ we denote by Lie (X, Y_0, \dots, Y_{n-1}) . It is a free Lie algebra on n + 1 generators X, Y_0, \dots, Y_{n-1} . The set of formal Lie power series in $Q_l\{\{X, Y_0, \dots, Y_{n-1}\}\}$ we denote by L (X, Y_0, \dots, Y_{n-1}) .

We denote by I_2 the closed Lie ideal of $L(X, Y_0, ..., Y_{n-1})$ generated by Lie brackets with two or more *Y*'s. We shall use the following notation

$$[Y_k, X^{(1)}] := [Y_k, X]$$
 and $[Y_k, X^{(m)}] := [[Y_k, X^{(m-1)}], X]$ for $m > 1$.

In an algebra the operator of the left (resp. right) multiplication by a we denote by L_a (resp. R_a).

We recall the definition of *l*-adic iterated integrals from [W1]. Let \mathscr{B} be a Hall base of the free Lie algebra $\text{Lie}(X, Y_0, \ldots, Y_{n-1})$ on n + 1 free generators X, Y_0, \ldots, Y_{n-1} and let \mathscr{B}_m be the set of elements of degree *m* in \mathscr{B} . For $b \in \mathscr{B}$ we define *l*-adic iterated integrals

$$l_b(z)_{\gamma}: G_{K(\mu_{l^{\infty}})} \to Q_l$$

as follows. Let $\sigma \in G_{K(\mu_{l^{\infty}})}$. Then $(\log \psi_{\gamma}(\sigma))(1)$ is a Lie element, hence

$$(\log \psi_{\gamma}(\sigma))(1) = \sum_{b \in \mathscr{B}} l_b(z)_{\gamma}(\sigma) \cdot b.$$

More naively, for $\sigma \in G_K$ we define functions $li_b(z)_{\gamma} : G_K \to Q_l$ by the equality

$$\log \Lambda_{\gamma}(\sigma) = \sum_{b \in \mathscr{B}} li_b(z)_{\gamma}(\sigma) \cdot b, \tag{4}$$

where $\Lambda_{\gamma}(\sigma) := k(f_{\gamma}(\sigma)).$

With the representations $\varphi_{\overrightarrow{01}}$ and ψ_{γ} there are associated the filtrations $\{G_m = G_m(V, \overrightarrow{01})\}_{m \in N}$ and $\{H_m = H_m(V, z, \overrightarrow{01})\}_{m \in N}$ of G_K (see [W1], section 3, pp. 122-124).

We recall that

$$H_m = \{ \sigma \in G_{K(\mu_{l^{\infty}})} \mid l_b(z)(\sigma) = 0 \text{ and } l_b(\xi^k)(\sigma) = 0 \text{ for } 0 \le k < n \text{ and for all } b \in \bigcup_{i < m} \mathscr{B}_i \}$$

If $b \in \mathscr{B}_m$ and $\sigma \in H_m$ then $l_b(z)_{\gamma}(\sigma) = li_b(z)_{\gamma}(\sigma)$.

Proposition 1. Let $\sigma \in H_m(V, z, \overrightarrow{01})$. Then

$$(\log \psi_{\gamma}(\sigma))(1) \equiv \log \Lambda_{\gamma}(\sigma) \equiv \Lambda_{\gamma}(\sigma) - 1 \mod \Gamma^{m+1} L(X, Y_0, \dots, Y_{n-1}).$$
(5)

Proof. The first congruence follows from the formula $\Psi_{\gamma} = L_{\Lambda_{\gamma}(\sigma)} \circ \varphi_{\overrightarrow{01}}$ (see [W1], Lemma 1.0.2) after taking logarithm and applying the Baker-Campbell-Hausdorff formula. The second congruence is clear. \Box

Let us set

$$\gamma_k := ((r_k)_*(\gamma)) \cdot s_k. \tag{6}$$

Our next result is a consequence of the formula (3).

Proposition 2. Let $\sigma \in H_m(V, z, \overrightarrow{01})$. Then

$$\log(\Lambda_{\gamma_k}(\sigma)(X,Y_0,\ldots,Y_{n-1})) \equiv \log(\Lambda_{\gamma}(\sigma)(X,Y_k,\ldots,Y_{n-1},Y_0,\ldots,Y_{k-1})) \mod \Gamma^{m+1} L(X,Y_0,\ldots,Y_{n-1}).$$

Proof. The proof is the same as the proof of Lemma 15.2.1 in [W3]. \Box

Corollary 1. Let m > 1 and let $\sigma \in H_m(V, z, \overrightarrow{01})$. Then we have

$$\log(\Lambda_{\gamma}(\sigma)(X,Y_{0},\ldots,Y_{n-1})) \equiv \sum_{k=0}^{n-1} l_{m}(\xi^{-k}z)(\sigma)[Y_{k},X^{(m-1)}] \mod \Gamma^{m+1}L(X,Y_{0},\ldots,Y_{n-1}) + I_{2}$$

for m > 1. Let $\sigma \in G_{K(\mu_{l^{\infty}})}$. Then we have

$$\log(\Lambda_{\gamma}(\sigma)(X, Y_0, \dots, Y_{n-1})) \equiv \sum_{k=0}^{n-1} l(1 - \xi^{-k} z) Y_k \mod \Gamma^2 L(X, Y_0, \dots, Y_{n-1}).$$

Proof. The corollary follows from the very definition of *l*-adic polylogarithms (see [W2], Definition 11.0.1) and from Proposition 2. \Box

Now we shall define polylogarithmic quotients of the representations $\varphi_{\overrightarrow{01}}$ and ψ_{γ} .

Let \mathscr{I} be a closed ideal of $Q_l\{\{X, Y_0, \dots, Y_{n-1}\}\}$ generated by monomials with any two *Y*'s and by monomials $Y_k X$ for $0 \le k \le n-1$. We set

$$Pol(X, Y_0, \dots, Y_{n-1}) := Q_l\{\{X, Y_0, \dots, Y_{n-1}\}\}/\mathscr{I}$$

Observe that the classes of $1, X, ..., X^m, ..., Y_k, XY_k, ..., X^{m-1}Y_k, ...$ for m = 1, 2, ... and $0 \le k \le n-1$ form a topological base of $Pol(X, Y_0, ..., Y_{n-1})$.

The image of the power series $\Lambda_{\gamma}(\sigma) \in Q_l\{\{X, Y_0, \dots, Y_{n-1}\}\}$ in $Pol(X, Y_0, \dots, Y_{n-1})$ we denote by $\Omega_{\gamma}(\sigma)$.

Proposition 3. *i)* The representation $\varphi_{\overrightarrow{01}}$ (resp. ψ_{γ}) induces the representation

$$\bar{\varphi}_{\overrightarrow{01}}: G_K \to \operatorname{Aut}(\operatorname{Pol}(X, Y_0, \dots, Y_{n-1}))$$

$$(\operatorname{resp.} \overline{\psi}_{\gamma} : G_K \to \operatorname{GL}(\operatorname{Pol}(X, Y_0, \ldots, Y_{n-1})))).$$

Zdzislaw Wojtkowiak

ii) The representation $\bar{\varphi}_{\overrightarrow{\Omega1}}$ is given by

$$\bar{\varphi}_{\overrightarrow{01}}(\sigma)(X) = \chi(\sigma)X$$

and

$$\bar{\varphi}_{\overrightarrow{01}}(\sigma)(Y_k) = \chi(\sigma)Y_k + \sum_{i=1}^{\infty} \frac{(-1)^i}{i!} \chi(\sigma) \left(\frac{k}{n} (\chi(\sigma) - 1)\right)^i X^i Y_k$$

for k = 0, 1, ..., n - 1.

iii) The representation $\bar{\psi}_{\gamma}$ is given by the formula

$$\bar{\psi}_{\gamma}(\sigma) = L_{\Omega_{\gamma}(\sigma)} \circ \bar{\varphi}_{\overrightarrow{01}}(\sigma)$$

iv) If n = 1 then

$$\log \Omega_{\gamma}(\sigma) = l(z)_{\gamma}(\sigma)X + \sum_{i=1}^{\infty} (-1)^{i-1} l_i(z)_{\gamma}(\sigma)X^{i-1}Y_0.$$

Proof. It follows from [W3], Proposition 15.1.7 that $\varphi_{\overrightarrow{01}}(\mathscr{I}) \subset \mathscr{I}$. Hence $\varphi_{\overrightarrow{01}}$ induces a representation on the quotient space. The point ii) follows from [W3], Proposition 15.1.7 too.

We recall that $\psi_{\gamma}(\sigma) = L_{\Lambda_{\gamma}(\sigma)} \circ \varphi_{\overrightarrow{01}}(\sigma)$ (see [W1], section 4). Hence we get the point i) for ψ_{γ} and the point iii). The point iv) follows from the definition of *l*-adic polylogarithms given in [W2]. \Box

Let $\alpha \in Q_l^{\times}$. We denote by $\tau(\alpha)$ the automorphism of the Q_l -algebra Pol(X,Y) such that $\tau(\alpha)(X) = \alpha \cdot X$ and $\tau(\alpha)(Y) = \alpha \cdot Y$ and continuous with respect to the topology defined by the powers of the augmentation ideal.

For n = 1 we have a very simple description of $\varphi_{\overrightarrow{01}}$.

Corollary 2. *If* n = 1 *then*

$$\bar{\varphi}_{\overrightarrow{01}}(\sigma) = \tau(\chi(\sigma)).$$

3 Linear independence over Q_l of *l*-adic iterated integrals

In this section we shall prove linear independence of *l*-adic polylogarithms in generic situation. We use the notation of section 2.

If a_1, \ldots, a_k belong to K^{\times} we denote by $\langle a_1, \ldots, a_k \rangle$ or $\langle a_i \mid 1 \leq i \leq n \rangle$ the subgroup of K^{\times} generated by a_1, \ldots, a_k .

Theorem 4. Let $z \in K$. Suppose that z is not a root of any equation of the form $z^p \cdot \prod_{k=0}^{n-1} (z - \xi^k)^{q_k} = 1$, where p and q_k are integers not all equal zero. Suppose that $\langle z, 1 - \xi^{-k}z \mid 0 \le k \le n - 1 \rangle \cap \langle 1 - \xi^{-k} \mid 1 \le k \le n - 1 \rangle \subset \mu_n$. Then the homomorphisms

$$l_b(z): H_m(V, z, \overrightarrow{01})/H_{m+1}(V, z, \overrightarrow{01}) \to Q_l$$

for $b \in \mathscr{B}_m$ are linearly independent over Q_l .

Proof. The morphism

$$\psi_{\gamma}: G_K \to \mathrm{GL}(Q_l\{\{X, Y_0, \dots, Y_{n-1}\}\})$$

induces the morphism of associated graded Lie algebras

$$\Psi_{z,\overrightarrow{01}}:\bigoplus_{m=1}^{\infty}(H_m(V,z,\overrightarrow{01})/H_{m+1}(V,z,\overrightarrow{01}))\otimes Q \to \operatorname{Lie}(X,Y_0,\ldots,Y_{n-1})\tilde{\times}\operatorname{Lie}(X,Y_0,\ldots,Y_{n-1})_{\{\}}$$

(The Lie algebra Lie $(X, Y_0, ..., Y_{n-1})_{\{\}}$ and the semi-direct product Lie $(X, Y_0, ..., Y_{n-1}) \tilde{\times}$ Lie $(X, Y_0, ..., Y_{n-1})_{\{\}}$ are defined in [W1], section 5.) The morphism $\Psi_z \overrightarrow{01}$ in degree 1 is given by

$$\Psi_{z,\overrightarrow{01}}(\sigma) = \left(l(z)(\sigma)X + \sum_{k=0}^{n-1} l(1-\xi^{-k}z)(\sigma)Y_k, \sum_{k=1}^{n-1} l(1-\xi^{-k})(\sigma)Y_k\right).$$

Numbers *z* and $1 - \xi^{-k}z$, $0 \le k < n$ are linearly independent in $K^{\times} \otimes Q$. The intersection of subgroups $\langle 1 - \xi^{-k} | 1 \le k \le n - 1 \rangle$ and $\langle z, 1 - \xi^{-k}z | 0 \le k \le n - 1 \rangle$ is contained in μ_n . Hence it follows from the Kummer theory that we can find $\tau \in H_1 = K(\mu_{l^{\infty}})$ and $\sigma_k \in H_1$ for $0 \le k < n$ such that $\Psi_{z,\overrightarrow{01}}(\tau) = (X,0)$ and $\Psi_{z,\overrightarrow{01}}(\sigma_k) = (Y_k,0)$ for $0 \le k < n$. The Lie subalgebra of $Image(\Psi_{z,\overrightarrow{01}})$ generated by these elements is the first factor of the semi-direct product Lie $(X, Y_0, \dots, Y_{n-1}) \in X$ Lie $(X, Y_0, \dots, Y_{n-1})_{\{\}}$, hence it is the free Lie algebra Lie (X, Y_0, \dots, Y_{n-1}) . For $\sigma \in H_m(V, z, \overrightarrow{01})$ the morphism $\Psi_{z,\overrightarrow{01}}$ is given by the formulas

$$\Psi_{z,\overrightarrow{01}}(\sigma) = (\log \Lambda_{\gamma}(\sigma), \log \Lambda_{\pi_0}(\sigma)) \mod \Gamma^{m+1} (\operatorname{Lie}(X, Y_0, \dots, Y_{n-1}) \tilde{\times} \operatorname{Lie}(X, Y_0, \dots, Y_{n-1})_{\{\}})$$

and

$$\log \Lambda_{\gamma}(\sigma) \equiv \sum_{b \in \mathscr{B}_m} l_b(z)(\sigma) b \mod \Gamma^{m+1} L(X, Y_0, \dots, Y_{n-1}).$$

Hence it follows that the functions

$$l_b(z): H_m(V_K, z, \overline{01}) \to Q_l$$

are linearly independent over Q_l . \Box

Theorem 1 of Introduction follows immediately from Theorem 4.

Corollary 3. The l-adic polylogarithms

$$l_m(\xi^k z): H_m(V_K, z, \overline{01})/H_{m+1}(V_K, z, \overline{01}) \to Q_l$$

are linearly independent over Q_l .

Proof. The corollary follows immediately from Theorem 4 and Corollary 1 of section 2. \Box

Remark 1. Theorem 4 is an analogue of the statement - as far as we know unproven - that the iterated integrals indexed by elements of \mathscr{B}_m as in [W6] of sequences of length *m* of one forms $\frac{dz}{z}$ and $\frac{dz}{z-\xi^k}$ for $0 \le k \le n-1$ from $\overrightarrow{01}$ to *z* satisfying the assumption of Theorem 4, are linearly independent over *Q*.

4 Ramification properties of *l*-adic polylogarithms

Let *K* be a number field. Let $z \in K \setminus \{0, 1\}$ or let *z* be a tangential point of $P_{\overline{K}}^1 \setminus \{0, 1, \infty\}$ defined over *K*. Let γ be an *l*-adic path from $\overrightarrow{01}$ to *z*.

If *L* is an algebraic extension of *K* and $z \in K$, we denote by $M(L)_{l,z}$ (resp. $M(L)_{l,z}^{ab}$) a maximal, pro-*l*, unramified outside *l* and *z* (resp. and abelian) extension of *L*.

The triple $(P_K^1 \setminus \{0, 1, \infty\}, z, \overline{01})$ has good reduction outside the prime ideals dividing z or 1 - z. Therefore the action of G_K on the torsor of l-adic paths $\pi(P_{\overline{K}}^1 \setminus \{0, 1, \infty\}; z, \overline{01})$ from $\overline{01}$ to z factors through $Gal(M(K(\mu_{l^{\infty}}))_{l, z(1-z)}/K)$. Hence the l-adic polylogarithm

$$l_m(z)_{\gamma}: G_K \to Q_l$$

factors through $Gal(M(K(\mu_{l^{\infty}}))_{l,z(1-z)}/K)$ and we get

$$l_m(z)_{\gamma}: Gal(M(K(\mu_{l^{\infty}}))_{l,z(1-z)}/K) \to Q_l$$

Let us consider a tower of fields

$$K \hookrightarrow K(\mu^{l^{\infty}}) \hookrightarrow K(\mu_{l^{\infty}}, z^{\frac{1}{l^{\infty}}}).$$

Proposition 4. The *l*-adic polylogarithm $l_n(z)_{\gamma}$ factors through $Gal(M(K(\mu_{l^{\infty}}, z^{\frac{1}{l^{\infty}}}))_{l=1-\tau}^{ab}/K)$.

Proof. Let us consider polylogarithmic quotient of the representation $\psi_{\gamma} : G_K \to GL(Q_l\{\{X,Y\}\})$, i.e. the representation $\bar{\psi}_{\gamma} : G_K \to GL(Pol(X,Y))$ given by

$$G_K \ni \sigma \to L_{\Omega_{\gamma}(\sigma)} \circ \overline{\varphi}_{\overrightarrow{01}}(\sigma) \in \mathrm{GL}(Pol(X,Y)),$$

where $\log \Omega_{\gamma}(\sigma) = l(z)_{\gamma}(\sigma)X + \sum_{n=1}^{\infty} (-1)^{n-1} l_n(z)_{\gamma}(\sigma)X^{n-1}Y$ (see Proposition 3). After the restriction to $G_{K(\mu_l^{\infty}, z^{T^{\infty}})}$ we get an abelian representation

$$G_{K(\mu_{l^{\infty}}, z^{\overline{l^{\infty}}})} \ni \sigma \to L_{1 + \sum_{n=1}^{\infty} (-1)^{n-1} l_n(z) \gamma(\sigma) X^{n-1} Y} \in \mathrm{GL}(\operatorname{Pol}(X, Y)).$$

Therefore the *l*-adic polylogarithm $l_n(z)_{\gamma}$ factors through $Gal(M(K(\mu_{l^{\infty}}, z^{\frac{1}{l^{\infty}}}))_{l,z(1-z)}^{ab}/K)$. The functions $l_m(z)_{\gamma}$ are given explicitely by Kummer characters associated to $\prod_{i=0}^{n-1} (1 - \xi_{l^n}^i z^{\frac{1}{l^n}})^{\frac{m-1}{l^m}}$ (see [NW]). Observe that $1 - \xi_{l^n}^i z^{\frac{1}{l^n}} \equiv 1$ modulo any prime ideal lying over prime divisors of the principal ideal (z). Hence $l_n(z)_{\gamma}$ factors through $Gal(M(K(\mu_{l^{\infty}}, z^{\frac{1}{l^{\infty}}}))_{l,1-z}^{ab}/K)$. \Box

Corollary 4. The *l*-adic polylogarithm $l_n(z)_{\gamma}$ restricted to the Galois group $Gal\left(M(K(\mu_{l^{\infty}}, z^{\frac{1}{l^{\infty}}}))_{l,1-z}^{ab}/K(\mu_{l^{\infty}}, z^{\frac{1}{l^{\infty}}})\right)$ is a homomorphism.

Proof. In the proof of Proposition 4 we have already seen that the representation $\bar{\psi}_{\gamma}$ restricted to $G_{K(\mu_{1},\sigma,Z^{loo})}^{-1}$ is abelian. \Box

5 Action of $Z_l[[Gal(K(\mu_{l^{\infty}}, z^{\frac{1}{l^{\infty}}})/K)]]$ on *l*-adic polylogarithms

The notation in this section is the same as in the section 4. Let us consider a tower of fields

 $\begin{array}{c|c} \mathsf{M}(\mathsf{K}(\mu_{l^{\infty}}, z^{\frac{1}{l^{\infty}}}))^{ab}_{l,1-z} \\ \mathscr{G} \mid \\ \mathcal{K}(\mu_{l^{\infty}}, z^{\frac{1}{l^{\infty}}}) \\ Z_{l}(1) \mid \\ \mathcal{K}(\mu_{l^{\infty}}) \\ \Gamma \mid \\ \mathcal{K} \end{array}$

where $\Gamma := Gal(K(\mu_{l^{\infty}})/K)$. Observe that $Gal(K(\mu_{l^{\infty}}, z^{\frac{1}{l^{\infty}}})/K(\mu_{l^{\infty}})) = Z_l(1)$ as a Γ -module.

Let $\Phi := Gal(K(\mu_{l^{\infty}}, z^{\frac{1}{l^{\infty}}})/K)$. We want to understand \mathscr{G} as a Φ -module and as a $Z_l[[\Phi]]$ -module. The *l*-adic polylogarithms $l_n(z)_{\gamma}$, restricted to \mathscr{G} , belong to $\operatorname{Hom}(\mathscr{G}, Q_l)$. As our first step to understand \mathscr{G} we shall study a $Z_l[[\Phi]]$ -module generated by $l_n(z)_{\gamma}$ in $\operatorname{Hom}(\mathscr{G}, Q_l)$.

We recall that Φ acts on \mathscr{G} on the left in the following way. Let $\sigma \in \Phi$ and $\tau \in \mathscr{G}$. Let $\tilde{\sigma} \in Gal(M(K(\mu_{l^{\infty}}, z^{\frac{1}{l^{\infty}}}))_{l,1-z}^{ab}/K)$ be a lifting of σ . Then the formula ${}^{\sigma}\tau := \tilde{\sigma} \cdot \tau \cdot \tilde{\sigma}^{-1}$ defines a left action of Φ on \mathscr{G} . Hence the right action of Φ on Hom (\mathscr{G}, Q_l) is given by

$$(f^{\sigma})(\tau) := f(\tilde{\sigma} \cdot \tau \cdot \tilde{\sigma}^{-1}).$$

To study the action of Φ on $l_n(z)_{\gamma}$ first we need to calculate $\Lambda_{\gamma}(\tilde{\sigma} \cdot \tau \cdot \tilde{\sigma}^{-1})$.

Lemma 1. For any $\alpha, \tau \in G_K$ we have

$$\Lambda_{\gamma}(\alpha \cdot \tau \cdot \alpha^{-1}) = \Lambda_{\gamma}(\alpha) \cdot \varphi_{\overrightarrow{01}}(\alpha)(\Lambda_{\gamma}(\tau)) \cdot \varphi_{\overrightarrow{01}}(\alpha \cdot \tau \cdot \alpha^{-1})(\Lambda_{\gamma}(\alpha)^{-1})$$

in $Q_{l}\{\{X,Y\}\}$.

Proof. The formula of the lemma follows from [W1], Proposition 1.0.7 and Corollary 1.0.8. \Box

We define the product () by the Baker-Campbell-Hausdorff formula

 $X \bigcirc Y := \log(e^X \cdot e^Y).$

Proposition 5. The action of $\sigma \in \Phi$ on $l_m(z)_{\gamma} \in \text{Hom}(\mathscr{G}, Q_l)$ is given by the formula

$$(l_m(z)_{\gamma})^{\sigma} = \chi(\sigma)^m \cdot l_m(z)_{\gamma} + \sum_{k=1}^{m-1} \frac{(-l(z)_{\gamma}(\sigma))^k}{k!} \cdot \chi(\sigma)^{m-k} \cdot l_{m-k}(z)_{\gamma}$$

Proof. Let $\tau \in \mathscr{G}$ and let $\bar{\sigma}$ and $\bar{\tau}$ be liftings of σ and τ to $Gal(\bar{K}/K)$. It follows from Lemma 1 that

$$\log \Lambda_{\gamma}(\bar{\sigma} \cdot \bar{\tau} \cdot \bar{\sigma}^{-1}) = \log \Lambda_{\gamma}(\bar{\sigma}) \bigcirc \varphi_{\overrightarrow{01}}(\bar{\sigma}) (\log \Lambda_{\gamma}(\bar{\tau})) \bigcirc \left(\varphi_{\overrightarrow{01}}(\bar{\sigma} \cdot \bar{\tau} \cdot \bar{\sigma}^{-1}) (-\log \Lambda_{\gamma}(\bar{\sigma}))\right).$$

Hence we get

$$\sum_{n=1}^{\infty} l_n(z)(\sigma\tau)[Y, X^{(n-1)}] \equiv \left(l(z)(\bar{\sigma})X + \sum_{n=1}^{\infty} l_n(z)(\bar{\sigma})[Y, X^{(n-1)}]\right) \bigcirc \left(\chi(\bar{\sigma})l(z)(\tau)X + \sum_{n=1}^{\infty} \chi(\bar{\sigma})^n \cdot l_n(z)(\tau)[Y, X^{(n-1)}]\right) \bigcirc \left(-l(z)(\bar{\sigma})X - \sum_{n=1}^{\infty} l_n(z)(\bar{\sigma})[Y, X^{(n-1)}]\right) \mod I_2.$$

Observe that $l(z)(\bar{\sigma})$ and $\chi(\bar{\sigma})$ depend only on σ . Hence we replace them by $l(z)(\sigma)$ and $\chi(\sigma)$.

We get the formula of the proposition calculating the right hand side of the congruence and comparing coefficients at $[Y, X^{(n-1)}]$. \Box

Generalization to the action of $Z_l[[\Phi]]$ is straightforward.

Corollary 5. Let $\mu \in Z_l[[\Phi]]$. Then

$$(l_m(z)_{\gamma})^{\mu} = \left(\int_{\Phi} \chi(x)^m d\mu(x)\right) l_m(z)_{\gamma} + \sum_{k=1}^{m-1} \left(\int_{\Phi} \frac{(-l(z)_{\gamma}(x))^k}{k!} \cdot \chi(x)^{m-k} d\mu(x)\right) \cdot l_{m-k}(z)_{\gamma}$$

6 *l*-adic sheaves

The *l*-adic polylogarithms and *l*-adic iterated integrals studied in [W1], [W2], [W3] and in [NW] arise from actions of Galois groups on the set of homotopy classes of *l*-adic paths from *v* to *z* on $P_{\bar{Q}}^1$ minus a finite number of points.

On the other side in [BD], [BL] and in various other papers there are studied motivic polylogarithmic sheaves. Their *l*-adic realizations are inverse systems of

10

locally constant sheaves of Z/l^n -modules in étale topology. Each stalk is equipped with a Galois representation. The relation between the parallel transport and the Galois representations in stalks is given by the formula

$$\sigma_t \circ p_* = \sigma(p)_* \circ \sigma_s,\tag{7}$$

where p_* (resp. $\sigma(p)_*$) is the parallel transport along the path p (resp. $\sigma(p)$) from s to t, σ_s (resp. σ_t) is the action of $\sigma \in G_K$ in the stalk over s (resp. over t) and $\sigma(p)$ is the image of p by σ in the torsor of paths from s to t.

The formula (7) is fundamental to relate l-adic polylogarithms introduced in [W2] with polylogarithmic sheaves.

If V is a smooth quasi-projective algebraic variety we denote by $(V)_{et}$ the étale site associated to V.

Example 1. Let $p: X \to S$ be a smooth morphism between smooth quasi-projective algebraic schemes over K. Let $\bar{p}: X_{\bar{K}} \to S_{\bar{K}}$ be obtained from $p: X \to S$ by the extension of scalars to \bar{K} . Let $(Z/l^n)_{(X_{\bar{K}})_{\text{et}}}$ be the constant sheaf on $(X_{\bar{K}})_{\text{et}}$. The sheaves of Z/l^n -modules $R^i(\bar{p})_*((Z/l^n)_{(X_{\bar{K}})_{\text{et}}})$ on $(S_{\bar{K}})_{\text{et}}$ are locally constant in the étale topology. The projective system of sheaves

$${R^{l}(\bar{p})_{*}((Z/l^{n})_{(X_{\bar{K}})_{\mathrm{et}}})}_{n\in N}$$

defines an *l*-adic sheaf on $(S_{\bar{K}})_{\text{et}}$. The stalk over $s \in S(\bar{K})$ is $H^{i}_{\text{et}}((X_{s})_{\bar{K}};Z_{l}) :=$ projlim_n $H^{i}_{\text{et}}((X_{s})_{\bar{K}};Z/l^{n})$. If $s \in S(K)$ then G_{K} acts on $H^{i}_{\text{et}}((X_{s})_{\bar{K}};Z_{l})$. If $s,t \in S(K)$ and γ is an *l*-adic path from *s* to *t* then the parallel transport induces $\gamma_{*} :$ $H^{i}_{\text{et}}((X_{s})_{\bar{K}};Z_{l}) \to H^{i}_{\text{et}}((X_{t})_{\bar{K}};Z_{l})$ satisfying (7).

The example given above motivates the following definition.

Definition 1. Let *S* be a smooth quasi-projective algebraic variety defined over *K*. A profinite sheaf \mathscr{F} on $S_{\overline{K}}$ is an inverse system

$$\{\varphi_{n+1}:\mathscr{F}_{n+1}\to\mathscr{F}_n\}_{n\in\mathbb{N}}$$

of sheaves on $(S_{\bar{K}})_{et}$ such that :

- 1. for each *n*, \mathscr{F}_n is a sheaf of finite sets, locally constant on $(S_{\bar{K}})_{et}$;
- 2. each sheaf \mathscr{F}_n is equipped with a continuous action of G_K on $\bigoplus_{t \in Gal(L/K)s} (\mathscr{F}_n)_t$, if $s \in S(L)$, where *L* is a finite extension of *K* and Gal(L/K)s is the Gal(L/K)-orbit of *s*;
- 3. the structure maps $\varphi_{n+1} : \mathscr{F}_{n+1} \rightarrow \mathscr{F}_n$ are surjective and compatible with the Galois actions in the stalks;
- 4. if *s* and *t* are in *S*(*L*) (*L* is a finite extension of *K*), *p* is a profinite path from *s* to *t* and $\sigma \in G_K$ then

$$\sigma_t \circ p_* = \sigma(p)_* \circ \sigma_s, \tag{8}$$

where $\sigma_s : (\mathscr{F}_n)_s \to (\mathscr{F}_n)_{\sigma(s)}$ and $\sigma_t : (\mathscr{F}_n)_t \to (\mathscr{F}_n)_{\sigma(t)}$ are maps induced by σ and p_* (resp. $\sigma(p)_*$) is a parallel transport along p (resp. $\sigma(p)$). If each sheaf \mathscr{F}_n is a sheaf of finite *l*-groups and the maps φ_n are homomorphisms then the profinite sheaf $\mathscr{F} = \{\varphi_{n+1} : \mathscr{F}_{n+1} \to \mathscr{F}_n\}_{n \in \mathbb{N}}$ we shall call an *l*-adic sheaf.

Let $s \in S(\bar{K})$. We shall call

$$\mathscr{F}_s := \operatorname{projlim}_n(\mathscr{F}_n)_s$$

the stalk of the profinite sheaf \mathscr{F} over *s*. Parallel transports along profinite paths and actions of Galois groups are defined on stalks of a profinite sheaf and they satisfy the equality (8).

We recall that $\pi_1^{\text{et}}(S_{\bar{K}};s)$ is the étale fundamental group of $S_{\bar{K}}$ based at *s*. It is a profinite group. We define the monodromy representatiom

$$\rho_s: \pi_1^{\text{et}}(S_{\bar{K}};s) \to \operatorname{Aut}(\mathscr{F}_s)$$

of the profinite sheaf \mathscr{F} by the formula

$$\rho_s(T)(w) := T_*(w),$$

where $w \in \mathscr{F}_s$.

Let us observe the following elementary facts about profinite sheaves.

Proposition 6. Let S be a smooth quasi-projective algebraic variety defined over K and let $s_0 \in S(K)$. Let \mathscr{F} be a profinite sheaf on $S_{\overline{K}}$. Then the representation of G_K in the stalk \mathscr{F}_{s_0} determines the Galois representation in any other stalk.

Proof. Let p be a path from s_0 to s. Then it follows from the formula (8) that

$$\sigma_s = \sigma(p)_* \circ \sigma_{s_0} \circ (p_*)^{-1}.$$

Hence the Galois action in the stalk over *s* is uniquely determined by the action of G_K in the stalk over s_0 . \Box

Let us define

$$f_{\pi_{1}^{\text{et}}(S_{\bar{K}};s)}(Gal(\bar{K}/K)) := \{T^{-1} \cdot \sigma(T) \in \pi_{1}^{\text{et}}(S_{\bar{K}};s) \mid T \in \pi_{1}^{\text{et}}(S_{\bar{K}};s), \ \sigma \in Gal(\bar{K}/K)\}.$$

Proposition 7. Let \mathscr{F} be a profinite sheaf on $S_{\bar{K}}$. Let us assume that the subset $f_{\pi_1^{\text{et}}(S_{\bar{K}};s)}(\text{Gal}(\bar{K}/K))$ is dense in $\pi_1^{\text{et}}(S_{\bar{K}};s)$. If the monodromy representation ρ_s : $\pi_1^{\text{et}}(S_{\bar{K}};s) \to \text{Aut}(\mathscr{F}_s)$ is non-trivial then the Galois representation in the stalk \mathscr{F}_s

$$G_K \to \operatorname{Aut}(\mathscr{F}_s)$$

is also non-trivial.

Proof. It follows from the formula (8) that

$$T_*^{-1} \circ \sigma_s \circ T_* \circ (\sigma_s)^{-1} = (T^{-1} \cdot \sigma(T))_*$$

for any $T \in \pi_1^{\text{et}}(S_{\bar{K}};s)$ and any $\sigma \in G_K$. The elements of the form $T^{-1} \cdot \sigma(T)$ are dense in $\pi_1^{\text{et}}(S_{\bar{K}};s)$. Hence σ_s cannot be the identity for all $\sigma \in G_K$. \Box

Let π and G be profinite groups and let $\varphi : G \to \operatorname{Aut}(\pi)$ be a continuous homomorphism. We denote by $\operatorname{REP}_{\varphi}(\pi, G)$ the category of pairs of continuous representations $f_V : \pi \to \operatorname{Aut}(V)$ and $\rho_V : G \to \operatorname{Aut}(V)$ in finitely generated Z_l -modules satysfying

$$\rho_V(\sigma) \circ f_V(T) = f_V(\varphi(\sigma)(T)) \circ \rho_V(\sigma)$$

for any $T \in \pi$ and $\sigma \in G$.

Proposition 8. Let *S* be a smooth quasi-projective algebraic variety defined over *K* and let $s \in S(K)$. Let $\varphi_s : G_K \to \operatorname{Aut}(\pi_1^{\operatorname{et}}(S_{\bar{K}};s))$ be the homomorphism of the action of G_K on the étale fundamental group. The category of *l*-adic sheaves on $S_{\bar{K}}$ whose stalks are finitely generated Z_l -modules and the category $\operatorname{REP}_{\varphi_s}(\pi_1^{\operatorname{et}}(S_{\bar{K}};s), G_K)$ are equivalent.

Proof. It is clear that an *l*-adic sheaf \mathscr{F} determines an object of the category $\operatorname{REP}_{\varphi_s}(\pi_1^{\operatorname{et}}(S_{\overline{K}};s), G_K)$ by taking the stalk of \mathscr{F} over *s* equipped with the monodromy representation and the action of G_K .

Let *V* be a finitely generated Z_l -module. Let us assume that we have two continuous representations $f : \pi_1^{\text{et}}(S_{\bar{K}};s) \to \text{Aut}(V)$ and $\rho : G_K \to \text{Aut}(V)$ satisfying $\rho(\sigma) \circ f(T) = f(\varphi_s(\sigma)(T)) \circ \rho(\sigma)$. The continuous representation $f : \pi_1^{\text{et}}(S_{\bar{K}};s) \to \text{Aut}(V)$ determines the compatible family of continuous representations

$$\{f^{(n)}: \pi_1^{\text{et}}(S_{\bar{K}};s) \to \operatorname{Aut}(V/l^n V)\}_{n \in N}$$

For each *n* there exists a locally constant sheaf \mathscr{F}_n on $(S_{\bar{K}})_{\text{et}}$, whose stalk over *s* is $V/l^n V$ and whose monodromy representation is $f^{(n)} : \pi_1^{\text{et}}(S_{\bar{K}};s) \to \text{Aut}(V/l^n V)$. The representation of G_K in the stalk over *s* is the composition of $\rho : G_K \to \text{Aut}(V)$ with the homomorphism $\text{Aut}(V) \to \text{Aut}(V/l^n V)$. The Galois action in any other stalk is then defined by the formula (8). \Box

7 *l*-adic sheaves related to bundles of fundamental groups

In this section we shall study examples of *l*-adic sheaves for which the monodromy representation determines Galois representations in the stalks.

Let *S* be a smooth quasi-projective algebraic variety defined over *K* and let *s* be a *K*-point of *S*. If $\sigma \in G_K$ we denote by σ the automorphisms of $\pi_1^{\text{et}}(S_{\bar{K}};s)$ and of $\pi_1(S_{\bar{K}};s)$ induced by σ . We denote by σ_s the automorphism induced by σ in the stalk over *s* of an *l*-adic sheaf on $S_{\bar{K}}$. If *p* is a path we denote by p_* the parallel transport along *p*. We have the surjective map $\pi_1^{\text{et}}(S_{\bar{K}};s) \to \pi_1(S_{\bar{K}};s)$. If $T \in \pi_1^{\text{et}}(S_{\bar{K}};s)$ we denote also by *T* its image in $\pi_1(S_{\bar{K}};s)$.

Proposition 9. Let S and s be as above. We assume that $\pi_1(S_{\bar{K}};s)$ is a free noncommutative pro-l group. Let Π_1 be an l-adic sheaf on $S_{\bar{K}}$ whose stalk over s is $\pi_1(S_{\bar{K}};s)$. We assume that the monodromy representation

Zdzislaw Wojtkowiak

$$\rho: \pi_1^{\operatorname{et}}(S_{\bar{K}};s) \to \operatorname{Aut}(\pi_1(S_{\bar{K}};s))$$

is given by $\rho(T)(w) = T^{-1} \cdot w \cdot T$. We assume also that for any $\sigma \in G_K$, σ_s acts on $\pi_1(S_{\bar{K}};s)$ by a group homomorphism. Then for any $\sigma \in G_K$ and any $w \in \pi_1(S_{\bar{K}};s)$ we have

$$\sigma_s(w) = \sigma(w).$$

Proof. Let $\sigma \in G_K$, $T \in \pi_1^{\text{et}}(S_{\bar{K}};s)$ and $w \in \pi_1(S_{\bar{K}};s)$. The formula (8) implies

$$\sigma_s(T^{-1} \cdot w \cdot T) = \sigma(T)^{-1} \cdot \sigma_s(w) \cdot \sigma(T).$$

Let us take T such that its image in $\pi_1(S_{\bar{K}};s)$ is w. Then

$$\sigma_s(w) = \sigma(w)^{-1} \cdot \sigma_s(w) \cdot \sigma(w)$$

The assumption that $\pi_1(S_{\bar{K}};s)$ is a free pro-*l* group implies that $\sigma_s(w) = \sigma(w)^{\eta(\sigma,w)}$, where $\eta(\sigma, w) \in Z_l$.

Let $w_1, w_2 \in \pi_1(S_{\bar{K}}; s)$ be two arbitrary noncommuting elements. Then

$$\sigma_s(w_1 \cdot w_2) = \sigma(w_1 \cdot w_2)^{\eta(\sigma, w_1 \cdot w_2)} = (\sigma(w_1) \cdot \sigma(w_2))^{\eta(\sigma, w_1 \cdot w_2)}$$

and

$$\sigma_s(w_1) \cdot \sigma_s(w_2) = \sigma(w_1)^{\eta(\sigma_s)} \cdot \sigma(w_2)^{\eta(\sigma,w_2)}.$$

Hence we get

$$(\boldsymbol{\sigma}(w_1) \cdot \boldsymbol{\sigma}(w_2))^{\boldsymbol{\eta}(\boldsymbol{\sigma}, w_1 \cdot w_2)} = \boldsymbol{\sigma}(w_1)^{\boldsymbol{\eta}(\boldsymbol{\sigma}, w_1)} \cdot \boldsymbol{\sigma}(w_2)^{\boldsymbol{\eta}(\boldsymbol{\sigma}, w_2)}$$

for two noncommuting elements $\sigma(w_1)$, $\sigma(w_2)$ in the free pro-*l* group $\pi_1(S_{\bar{K}};s)$ and for $\eta(\sigma, w_1 \cdot w_2) \neq 0$, $\eta(\sigma, w_1) \neq 0$ and $\eta(\sigma, w_2) \neq 0$. This implies that $\eta(\sigma, w) = 1$ for all σ and w. \Box

Proposition 10. Let *S* and *s* be as above. Let Π be a profinite sheaf on $S_{\bar{K}} \times S_{\bar{K}}$ whose stalk over (s,s) is $\pi_1(S_{\bar{K}};s)$ We assume that the monodromy representation

$$\rho: \pi_1^{\text{et}}(S_{\bar{K}};s) \times \pi_1^{\text{et}}(S_{\bar{K}};s) \to Bijections(\pi_1(S_{\bar{K}};s))$$

is given by $\rho(T_1, T_2)(w) = T_1^{-1} \cdot w \cdot T_2$. We assume also that the centrum of the group $\pi_1(S_{\bar{K}}; s)$ is 1. Then for any $\sigma \in G_K$ and any $w \in \pi_1(S_{\bar{K}}; s)$ we have

$$\sigma_{(s,s)}(w) = \sigma(w).$$

Proof. The formula (8) implies

$$\boldsymbol{\sigma}(T_1)^{-1} \cdot \boldsymbol{\sigma}_{(s,s)}(w) \cdot \boldsymbol{\sigma}(T_2) = \boldsymbol{\sigma}_{(s,s)}(T_1^{-1} \cdot w \cdot T_2). \tag{9}$$

Let us take $T_1 = T_2 = T$ and w = 1. Then we get $\sigma(T)^{-1} \cdot \sigma_{(s,s)}(1) \cdot \sigma(T) = \sigma_{(s,s)}(1)$. Hence $\sigma_{(s,s)}(1)$ commutes with every element of $\pi_1(S_{\bar{K}};s)$. The centrum of $\pi_1(S_{\bar{K}};s)$

is 1. Therefore we get that $\sigma_{(s,s)}(1) = 1$. Let us take $T_1 = w = 1$ in formula (9). Then we get $\sigma(T_2) = \sigma_{(s,s)}(T_2)$ for any $T_2 \in \pi_1(S_{\bar{K}};s)$. \Box

8 Polylogarithmic *l*-adic sheaves and *l*-adic polylogarithms

We shall show that if an *l*-adic sheaf on $P_{\bar{K}}^1 \setminus \{0, 1, \infty\}$ has the same monodromy representation as the classical complex polylogarithms then the Galois representation in the stalk over a *K*-point *z* of $P_{\bar{K}}^1 \setminus \{0, 1, \infty\}$ is given by the *l*-adic polylogarithms evaluated at *z*.

We start by recalling a result about the monodromy of classical complex polylogarithms. We equip the vector bundle

$$P^1(C) \setminus \{0,1,\infty\} \times Pol(X,Y) \to P^1(C) \setminus \{0,1,\infty\}$$

with the connection given by the one-form

$$\frac{1}{2\pi i}\frac{dz}{z}\otimes X+\frac{1}{2\pi i}\frac{dz}{z-1}\otimes Y.$$

(The algebra Pol(X,Y) is the quotient of $C\{\{X,Y\}\}$ by the ideal \mathscr{I} .) Horizontal sections satisfy the equation

$$d\Lambda(z) - \left(\frac{1}{2\pi i}\frac{dz}{z}\otimes X + \frac{1}{2\pi i}\frac{dz}{z-1}\otimes Y\right)\cdot\Lambda(z) = 0.$$

One checks that

$$\Lambda_{\overrightarrow{01}}(z) := e^{\frac{1}{2\pi i}\log z X} + \frac{1}{2\pi i}\log(1-z)Y + \sum_{k=2}^{\infty}\frac{-1}{(2\pi i)^k}Li_k(z)X^{k-1}Y$$

is a horizontal section. The functions $\log z$, $\log(1-z)$ and $Li_k(z)$ are calculated along a path α from $\overrightarrow{01}$ to z. Let x and y be the standard generators of $\pi_1(P^1(C) \setminus \{0,1,\infty\};\overrightarrow{01})$. To calculate the monodromy of $\Lambda_{\overrightarrow{01}}(z)$ we integrate along the paths $\alpha \cdot x$ and $\alpha \cdot y$.

The monodromy transformation of $\Lambda_{\overrightarrow{OI}}(z)$ is given by

$$x:\Lambda_{\overrightarrow{01}}(z)\to\Lambda_{\overrightarrow{01}}(z)\cdot e^X$$

and

$$y: \Lambda_{\overrightarrow{01}}(z) \to \Lambda_{\overrightarrow{01}}(z) \cdot e^{Y}$$

The elements $\alpha \cdot x \cdot \alpha^{-1}$ and $\alpha \cdot y \cdot \alpha^{-1}$ are free generators of $\pi_1(P^1(C) \setminus \{0, 1, \infty\}; z)$. Let $w(\alpha \cdot x \cdot \alpha^{-1}, \alpha \cdot y \cdot \alpha^{-1}) \in \pi_1(P^1(C) \setminus \{0, 1, \infty\}; z)$ be a word in $\alpha \cdot x \cdot \alpha^{-1}$ and $\alpha \cdot y \cdot \alpha^{-1}$. The monodromy representation is given by

Zdzislaw Wojtkowiak

$$\rho_{z}: \pi_{1}(P^{1}(C) \setminus \{0, 1, \infty\}; z) \to \operatorname{GL}(\operatorname{Pol}(X, Y)); \rho_{z}(\alpha \cdot x \cdot \alpha^{-1}) = R_{e^{X}} \text{ and } \rho_{z}(\alpha \cdot x \cdot \alpha^{-1}) = R_{e^{Y}}$$

Hence $\rho_{z}(w(\alpha \cdot x \cdot \alpha^{-1}, \alpha \cdot y \cdot \alpha^{-1})) = R_{w(e^{X}, e^{Y})}.$

Now we shall study *l*-adic situation. Let z_0 be a *K*-point of $P_K^1 \setminus \{0, 1, \infty\}$. We start with the description of the action of G_K on $\pi_1(P_{\bar{K}}^1 \setminus \{0, 1, \infty\}; z_0)$,

Let γ be a path from z_0 to $\overrightarrow{01}$ and let p be the standard path from $\overrightarrow{01}$ to $\overrightarrow{10}$. We recall that x and y are the standard generators of $\pi_1(P_{\overline{K}}^1 \setminus \{0, 1, \infty\}; \overrightarrow{01})$. Then

$$x_{z_0} := \gamma^{-1} \cdot x \cdot \gamma$$
 and $y_{z_0} := \gamma^{-1} \cdot y \cdot \gamma$

are free generators of $\pi_1(P^1_{\bar{K}} \setminus \{0, 1, \infty\}; z_0)$. Let $\sigma \in G_K$. We recall that

$$f_{\gamma}(\sigma) := \gamma^{-1} \cdot \sigma(\gamma).$$

The following lemma is a standard exercice.

Lemma 2. The action of G_K on $\pi_1(P^1_{\bar{K}} \setminus \{0, 1, \infty\}; z_0)$ is given by the formulas

$$\boldsymbol{\sigma}(x_{z_0}) = f_{\boldsymbol{\gamma}}(\boldsymbol{\sigma})^{-1} \cdot x_{z_0}^{\boldsymbol{\chi}(\boldsymbol{\sigma})} \cdot f_{\boldsymbol{\gamma}}(\boldsymbol{\sigma})$$

and

$$\sigma(y_{z_0}) = f_{\gamma}(\sigma)^{-1} \cdot (\gamma^{-1} \cdot f_p(\sigma)^{-1} \cdot \gamma) \cdot y_{z_0}^{\chi(\sigma)} \cdot (\gamma^{-1} \cdot f_p(\sigma) \cdot \gamma) \cdot f_{\gamma}(\sigma)$$

Let *z* be another *K*-point of $P_K^1 \setminus \{0, 1, \infty\}$. Let δ be a path from *z* to z_0 . Let us set

$$\gamma_z := \gamma \cdot \delta.$$

It follows from [W1] that we have the following equalities:

$$f_{\gamma \cdot \delta}(\sigma) = \delta^{-1} \cdot f_{\gamma}(\sigma) \cdot \delta \cdot f_{\delta}(\sigma) \text{ and } f_{\delta^{-1}}(\sigma)^{-1} = \delta \cdot f_{\delta}(\sigma) \cdot \delta^{-1}.$$
(10)

Hence we get

$$\boldsymbol{\delta} \cdot f_{\boldsymbol{\gamma} \cdot \boldsymbol{\delta}}(\boldsymbol{\sigma}) \cdot \boldsymbol{\delta}^{-1} = f_{\boldsymbol{\gamma}}(\boldsymbol{\sigma}) \cdot f_{\boldsymbol{\delta}^{-1}}(\boldsymbol{\sigma})^{-1}.$$
 (11)

The elements $x_z := \gamma_z^{-1} \cdot x \cdot \gamma_z$ and $y_z := \gamma_z^{-1} \cdot x \cdot \gamma_z$ are generators of $\pi_1(P_{\vec{K}}^1 \setminus \{0, 1, \infty\}; z)$. We embed the groups $\pi_1(P_{\vec{K}}^1 \setminus \{0, 1, \infty\}; \overline{01}), \pi_1(P_{\vec{K}}^1 \setminus \{0, 1, \infty\}; z_0)$ and $\pi_1(P_{\vec{K}}^1 \setminus \{0, 1, \infty\}; z)$ into the Q_l -algebra $Q\{\{X, Y\}\}$ by setting

 $\pi_{1}(P_{\bar{K}}^{1} \setminus \{0, 1, \infty\}; z) \text{ into the } Q_{l}\text{-algebra } Q\{\{X, Y\}\} \text{ by setting } k_{\overrightarrow{01}}(x) := e^{X}, k_{\overrightarrow{01}}(y) := e^{Y} \text{ for the first group;} k_{z_{0}}(x_{z_{0}}) := e^{X}, k_{z_{0}}(y_{z_{0}}) := e^{Y} \text{ for the second group;} and$

 $k_z(x_z) := e^X, k_z(y_z) := e^Y$ for the third group.

In other words we have trivialized the bundle of fundamental groups along the path γ_z . The action of G_K on $Q\{\{X,Y\}\}$ considered over a *K*-point *s* is deduced from the action of G_K on $\pi_1(P_{\bar{K}}^1 \setminus \{0, 1, \infty\}; s)$ so it depends over which point we take a stalk.

Using embeddings $k_a, a \in \{\overline{0l}, z_0, z\}$ we can define Λ -series, for example $\Lambda_{\delta}(\sigma) := k_z(f_{\delta}(\sigma))$ and $\Lambda_{\gamma}(\sigma) := k_{z_0}(f_{\gamma}(\sigma))$. Because of the trivialization of the bundle of fundamental groups we can compare various Λ -series. It follows from (10) and (11) that

$$\Lambda_{\gamma \cdot \delta}(\sigma) = \Lambda_{\gamma}(\sigma) \cdot \Lambda_{\delta}(\sigma), \ \left(\Lambda_{\delta^{-1}}(\sigma)\right)^{-1} = \Lambda_{\delta}(\sigma) \tag{12}$$

and

$$\Lambda_{\gamma \cdot \delta}(\sigma) = \Lambda_{\gamma}(\sigma) \cdot \left(\Lambda_{\delta^{-1}}(\sigma)\right)^{-1}.$$
(13)

Theorem 5. Let z_0 be a K-point of $P_K^1 \setminus \{0, 1, \infty\}$. Let \mathscr{P} be an l-adic sheaf of Z_l -algebras over $P_{\overline{K}}^1 \setminus \{0, 1, \infty\}$ such that

i) the stalk \mathscr{P}_{z_0} tensored with Q is Pol(X,Y); *ii)* the monodromy representation after tensoring the stalk over z_0 by Q

$$\rho_{z_0}: \pi_1^{\mathrm{et}}(P^1_{\bar{K}} \setminus \{0, 1, \infty\}; z_0) \to \mathrm{GL}(\operatorname{Pol}(X, Y))$$

is given by the formula $\rho_{z_0}(w(x_{z_0}, y_{z_0}))(F(X, Y)) = F(X, Y) \cdot w(e^X, e^Y)^{-1}$.

Let z be another K-point of $P_K^1 \setminus \{0, 1, \infty\}$. Let δ be a path from z to z_0 and let α be a path from $\overline{01}$ to z. Then

$$\delta_* \circ \sigma_z \circ (\delta_*)^{-1} = L_{B(\sigma)} \circ R_{\Omega_{lpha}(\sigma)^{-1}} \circ au(\chi(\sigma)),$$

where $B: G_K \rightarrow Pol(X, Y)$ is a cocycle and

7

$$\log \Omega_{\alpha}(\sigma) = l(z)_{\alpha}(\sigma)X + \sum_{i=1}^{\infty} (-1)^{i-1} l_i(z)_{\alpha}(\sigma)X^{i-1}Y.$$

Proof. Let us set $\gamma = (\delta \cdot \alpha)^{-1}$. Then γ is a path from z_0 to $\overrightarrow{01}$. It follows from Lemma 2 that for any $\sigma \in G_K$ and any $w(x_{z_0}, y_{z_0}) \in \pi_1(P_{\overline{K}}^1 \setminus \{0, 1, \infty\}; z_0)$ we have

$$\rho_{z_0}\big(\sigma(w(x_{z_0}, y_{z_0}))\big)(1) = (\Omega_{\gamma}(\sigma))^{-1} \cdot w(e^{\chi(\sigma)X}, e^{\chi(\sigma)Y})^{-1} \cdot \Omega_{\gamma}(\sigma).$$
(14)

Let $F(X,Y) \in Pol(X,Y)$ be in the stalk tensored by Q of \mathscr{P} over z_0 . It follows from the formula (8) and the formula (14) that

$$\sigma_{z_0}(F(X,Y)\cdot w(e^X,e^Y)^{-1}) = \sigma_{z_0}(F(X,Y))\cdot \Omega_{\gamma}(\sigma)^{-1}\cdot w(e^{\chi(\sigma)X},e^{\chi(\sigma)Y})^{-1}\cdot \Omega_{\gamma}(\sigma).$$

Setting F(X,Y) = 1 we get

$$\sigma_{z_0}(w(e^X, e^Y)^{-1}) = \sigma_{z_0}(1) \cdot (\Omega_{\gamma}(\sigma))^{-1} \cdot (w(e^{\chi(\sigma)X}, e^{\chi(\sigma)Y}))^{-1} \cdot \Omega_{\gamma}(\sigma).$$
(15)

The action of G_K on the stalk of \mathscr{P} over z_0 is continuous with respect to the topology of Pol(X,Y) defined by the powers of the augmentation ideal. Hence it follows from (15) that for any $W(X,Y) \in Pol(X,Y)$ we have

$$\sigma_{z_0}(W(X,Y)) = \sigma_{z_0}(1) \cdot (\Omega_{\gamma}(\sigma))^{-1} \cdot W(\chi(\sigma)X,\chi(\sigma)Y) \cdot \Omega_{\gamma}(\sigma).$$
(16)

We recall from the assumptions of the theorem that *z* is another *K*-point of $P_K^1 \setminus \{0, 1, \infty\}$, δ is a path from *z* to z_0 and α is a path from $\overrightarrow{01}$ to *z*.

We shall calculate the representation of G_K in the stalk of \mathscr{P} over z. It follows from the fundamental formula (8) that

$$\delta_* \circ \sigma_z \circ \delta_*^{-1} = \delta_* \circ \sigma(\delta)_*^{-1} \circ \sigma_{z_0}$$

Observe that

$$\delta_* \circ \sigma(\delta)_*^{-1} = (\delta \circ \sigma(\delta^{-1}))_* = (f_{\delta^{-1}}(\sigma))_* = \rho_{z_0}(f_{\delta^{-1}}(\sigma)) = R_{(\Omega_{\delta^{-1}}(\sigma))^{-1}}.$$

Hence we get

$$\delta_* \circ \sigma_z \circ \delta_*^{-1} = R_{(\Omega_{\delta^{-1}}(\sigma))^{-1}} \circ \sigma_{z_0}.$$

The formula (16) implies that $R_{(\Omega_{\delta^{-1}}(\sigma))^{-1}} \circ \sigma_{z_0} = R_{(\Omega_{\delta^{-1}}(\sigma))^{-1}} \circ L_{\sigma_{z_0}(1) \cdot (\Omega_{\gamma}(\sigma))^{-1}} \circ R_{\Omega_{\gamma}(\sigma)} \circ \tau(\chi(\sigma)) = L_{\sigma_{z_0}(1) \cdot (\Omega_{\gamma}(\sigma))^{-1}} \circ R_{\Omega_{\gamma}(\sigma) \cdot (\Omega_{\delta^{-1}}(\sigma))^{-1}} \circ \tau(\chi(\sigma)).$

We recall that $\alpha^{-1} = \gamma \cdot \delta$. Hence it follows from (13) that $\Omega_{\gamma}(\sigma) \cdot (\Omega_{\delta^{-1}}(\sigma))^{-1} = \Omega_{\alpha^{-1}}(\sigma) = (\Omega_{\alpha}(\sigma))^{-1}$. Let us set $B(\sigma) = \sigma_{z_0}(1) \cdot (\Omega_{\gamma}(\sigma))^{-1}$. Therefore we finally get

$$\delta_* \circ \sigma_z \circ \delta_*^{-1} = L_{B(\sigma)} \circ R_{(\Omega_{\alpha}(\sigma))^{-1}} \circ \tau(\boldsymbol{\chi}(\sigma))$$

It follows from the equality $(\tau \cdot \sigma)_z = \tau_z \circ \sigma_z$ that $B : G_K \to Pol(X, Y)$ is a cocycle.

The path α is from $\overline{01}$ to *z*. Hence the formula for $\log \Omega_{\alpha}(\sigma)$ follows from the very definition of *l*-adic polylogarithms in [W2]. \Box

9 Cosimplicial spaces and Galois actions

Let *V* be a smooth algebraic variety over *K* and let *v* be a *K*-point of *V*. The étale fundamental group $\pi_1^{\text{et}}(V_{\bar{K}}; v)$ and its maximal pro-*l* quotient $\pi_1(V_{\bar{K}}; v)$ are equipped with the action of G_K .

On the other side, given an algebraic variety *V* and a *K*-point *v* there is a cosimplicial algebraic variety, which we provisionally denote by V^{\bullet} , which is a model in algebraic geometry for the loop space based at *v* (see [W4] and [W5]). Let us assume that $K \subset C$ and let V(C) be the set of *C*-points of *V*. V(C) is a complex variety. The de Rham cohomology group $H_{DR}^0(V^{\bullet}) \otimes_k C$ is the algebra of polynomial complex valued functions on the Malcev *Q*-completion $\pi_1(V(C); v) \otimes Q$.

The étale cohomology group $H^0_{\text{et}}(V^{\bullet}_{\vec{k}};Q_l)$ can be interpreted as the algebra of Q_l -valued functions on $\pi_1(V(C);v) \otimes Q_l$. The Galois group G_K acts on $H^0_{\text{et}}(V^{\bullet}_{\vec{k}};Q_l)$.

In this section we shall compare these two actions of G_K . The first action is the action of G_K on $\pi_1^{\text{et}}(V_{\bar{K}}; v)$, which is defined through étale coverings. The second action is the action of G_K on the 0-th étale cohomology group $H^0_{\text{et}}(V_{\bar{K}}^{\bullet}; Q_l)$ of the cosimplicial algebraic variety $V_{\bar{K}}^{\bullet}$. The cohomology group $H^0_{\text{et}}(V_{\bar{K}}^{\bullet}; Q_l)$ has a natural interpretation as an algebra of Q_l -valued polynomial functions on on $\pi_1(V_{\bar{K}}; v) \otimes Q$.

18

We fix the notation we shall use in this section. X_{et} is the étale site associated to an algebraic variety X; $A_{X_{\text{et}}}$ (resp. $A_{X(C)}$) is the constant sheaf on X_{et} (resp. X(C)) with values in A; $\Delta[1]$ is the standard simplicial model of the one simplex; $\partial \Delta[1]$ is the boundary of $\Delta[1]$. It is a constant simplicial set. $X_{[n]}^{\bullet}$ is the *n*-th truncation of a cosimplicial object X^{\bullet} .

Let *X* be a smooth quasi-projective algebraic variety over an algebraically closed field *k*. The inclusion of simplicial sets

$$\partial \Delta[1] \hookrightarrow \Delta[1]$$

induces the morphism of cosimplicial algebraic varieties

$$p^{\bullet}: X^{\Delta[1]} \to X^{\partial \Delta[1]}.$$

Therefore for each n we get the morphism between their n-th truncations

$$p^{ullet}_{[n]}: X^{\Delta[1]}_{[n]} \longrightarrow X^{\partial \Delta[1]}_{[n]}.$$

For each *k*,

$$p^k: X^{\Delta[1]_k} = X imes X^k imes X o X^{\partial \Delta[1]_k} = X imes X$$

is the projection map on the first and the last factors. Let us set

$$TotR(p_{[n]}^{\bullet})_{*}((Z/l^{m})_{(X_{[n]}^{\Delta[1]})_{\text{et}}}) := \bigoplus_{i=0}^{n} R(p^{i})_{*}((Z/l^{m})_{(X^{\Delta[1]_{i}})_{\text{et}}})$$

where Tot is the total complex of a bicomplex. Let us define

$$R^{i}(p_{[n]}^{\bullet})_{*}((Z/l^{m})_{(X_{[n]}^{\Delta[1]})_{\text{et}}}) := H^{i}(TotR(p_{[n]}^{\bullet})_{*}((Z/l^{m})_{(X_{[n]}^{\Delta[1]})_{\text{et}}})$$

Lemma 3. The cohomology sheaves $R^i(p^{\bullet}_{[n]})_*((Z/l^m)_{(X^{\Delta[1]}_{[n]})_{\text{et}}})$ are sheaves of finitely generated Z/l^m -modules on $(X \times X)_{\text{et}}$.

Proof. The spectral sequence of the bicomplex $\bigoplus_{i=0}^{n} R(p^{i})_{*} \left((Z/l^{m})_{(X^{\Delta[1]_{i}})_{\text{et}}} \right)$ converges to cohomology sheaves $R^{i}(p^{\bullet}_{[n]})_{*} \left((Z/l^{m})_{(X^{\Delta[1]}_{[n]})_{\text{et}}} \right)$. The E_{1} -term $E_{1}^{j,k} =$

 $R^{j}(p^{k})_{*}((Z/l^{m})_{(X^{\Delta[1]}_{k})_{\text{et}}})$ is the constant sheaf on $(X \times X)_{\text{et}}$, whose stalk is a finitely generated Z/l^{m} -module. There are only finitely many E_{1} -terms different from zero. Hence the lemma follows. \Box

We need to know if the sheaves $R^i(p_{[n]}^{\bullet})_*((Z/l^m)_{(X_{[n]}^{\Delta[1]})_{\text{et}}})$ are locally constant and we need to calculate their monodromy representations. Therefore we shall study the Gauss-Manin connection associated to the morphism $p^{\bullet}: X^{\Delta[1]} \to X^{\partial \Delta[1]}$. We review briefly the results from [W4] in the form suitable to study the sheaves $R^i(p_{[n]}^{\bullet})_*((Z/l^m)_{(X_{[n]}^{\Delta[1]})_{\text{et}}}).$

Zdzislaw Wojtkowiak

We apply to the map between the *n*-th truncations

$$p^{ullet}_{[n]}: X^{\Delta[1]}_{[n]} \to X^{\partial \Delta[1]}_{[n]}$$

the standard construction of the Gauss-Manin connection (see [W4]). For each $0 \le i \le n$ the complex of sheaves $\Omega^*_{\mathbf{X}^{\Delta[1]}_i}$ is equipped with a canonical filtration

$$F^{j}\Omega_{X^{\Delta[1]_{i}}}^{*-i} := Image \big(\Omega_{X^{\Delta[1]_{i}}/X^{\partial\Delta[1]_{i}}}^{*-i} \otimes_{\mathscr{O}_{X^{\Delta[1]_{i}}}} (p^{i})^{*}\Omega_{X^{\partial\Delta[1]_{i}}}^{j} \to \Omega_{X^{\Delta[1]_{i}}}^{*} \big).$$

Hence on $X^{\partial \Delta[1]_i} = X \times X$ we have a filtered complex $R(p^i)_*(\Omega^*_{X^{\Delta[1]_i}})$. We form the total complex

$$TotR(p_{[n]}^{\bullet})_{*}(\Omega^{*}_{X_{[n]}^{\Delta[1]}}) := \oplus_{i=0}^{n} R(p^{i})_{*}(\Omega^{*}_{X^{\Delta[1]_{i}}})$$

The filtration on each $R(p^i)_*(\Omega^*_{X^{\Delta[1]_i}})$ induces a filtration on $TotR(p^{\bullet}_{[n]})_*(\Omega^*_{X^{\Delta[1]}_{[n]}})$.

Applying the spectral sequence of a finitely filtered object to the complex $TotR(p_{[n]}^{\bullet})_*(\Omega^*_{X_{[n]}^{[n]}})$, we get a spectral sequence converging to the cohomology sheaves $H^j(TotR(p_{[n]}^{\bullet})_*(\Omega^*_{X_{[n]}^{[n]}}))$ on $X \times X$. The E_1 -terms are equal

$$E_1^{p,q} = \Omega^p_{X \times X} \otimes_{\mathscr{O}_{X \times X}} H^q \big(TotR(p^{\bullet}_{[n]})_* \big(\Omega^*_{X^{\Delta[1]}_{[n]}/X^{\partial\Delta[1]}_{[n]}} \big) \big).$$

Farther we denote the relative de Rham complex $\Omega^*_{X_{[n]}^{\Delta[1]}/X_{[n]}^{\partial\Delta[1]}}$ by Ω^* in the algebraic case, by Ω^*_{hol} in the holomorphic case and by $\Omega^*_{\mathscr{C}^{\infty}}$ in the smooth complex case.

The differential $d_1^{0,q}: E_1^{0,q} \to E_1^{1,q}$ is the integrable connection on the relative de Rham cohomology sheaves $H^q(TotR(p_{[n]}^{\bullet})_*\Omega^*)$. The fiber of $H^q(TotR(p_{[n]}^{\bullet})_*\Omega^*)$ over a point $(x, y) \in X \times X$ is $H^q_{DR}((p_{[n]}^{\bullet})^{-1}(x, y))$. (If x = y then $(p_{[n]}^{\bullet})^{-1}(x, x)$ is the *n*-th truncation of the cosimplicial alebraic variety denoted by X^{\bullet} at the very beginning of the section.)

Let us assume that $k \subset C$. Then we get the morphism of cosimlicial complex varieties

$$p(C)^{\bullet}: X(C)^{\Delta[1]} \longrightarrow X(C)^{\partial \Delta[1]}$$

and the maps between the *n*-th truncations

$$p(C)^{\bullet}_{[n]}: X(C)^{\Delta[1]}_{[n]} \longrightarrow X(C)^{\partial \Delta[1]}_{[n]}.$$

We do the same construction for holomorphic differentials. The holomorphic de Rham sheaf $\Omega^*_{X(C)^{\Delta[1]}_{[n]}}$ is the resolution of the constant sheaf $C_{X(C)^{\Delta[1]}_{[n]}}$ on $X(C)^{\Delta[1]}_{[n]}$. Hence we get that $H^q(TotR(p(C)^{\bullet}_{[n]})_*(C_{X(C)^{\Delta[1]}_{[n]}}))$ is the sheaf of the flat sections of the holomorphic Gauss-Manin connection

20

$$(d_1^{0,q})_{hol}: H^q(TotR(p(C)^{\bullet}_{[n]})_*\Omega^*_{hol}) \to \Omega^1_{X(C) \times X(C)} \otimes_{\mathscr{O}_{X(C) \times X(C)}} H^q(TotR(p(C)^{\bullet}_{[n]})_*\Omega^*_{hol})$$

We shall calculate the monodromy representation of the locally constant sheaf $H^0(TotR(p(C)^{\bullet}_{[n]})_*(C_{X(C)^{A[1]}_{[n]}}))$. The de Rham complexes of smooth differentials are acyclic for direct image functors. Hence the complexes $TotR(p(C)^{\bullet}_{[n]})_*\Omega^*_{hol}$ and $Tot(p(C)^{\bullet}_{[n]})_*\Omega^*_{\mathscr{C}^{\infty}}$ are quasi-isomorphic.

Let $\omega_1, \ldots, \omega_n \in \Omega^1_{\mathscr{C}^{\infty}}(X(C))$ be closed one-forms on X(C). Let us assume that $\omega_i \wedge \omega_{i+1} = 0$ for all *i*. Then $1 \otimes \omega_1 \otimes \ldots \otimes \omega_n \otimes 1$ defines a global section of $H^0(Tot(p(C)^{\bullet}_{[n]})_*\Omega^*_{\mathscr{C}^{\infty}})$. We shall calculate the action of $d^0 := (d_1^{0,0})_{\mathscr{C}^{\infty}}$ on the section $1 \otimes \omega_1 \otimes \ldots \otimes \omega_n \otimes 1$. The connection d^0 is the boundary homomorphism of the long exact sequence associated to the short exact sequence

$$0 \to F^1/F^2 \to F^0/F^2 \to F^0/F^1 \to 0 \; .$$

We recall that the coface maps

$$\delta^i: X \times X^{n-1} \times X \longrightarrow X \times X^n \times X$$

are given by

$$\boldsymbol{\delta}^{\prime}(x_0, x_1, \ldots, x_n) = (x_0, \ldots, x_{i-1}, x_i, x_i, \ldots, x_n)$$

for $0 \le i \le n$. We set $\delta_n := \sum_{i=0}^n (-1)^{n-i} (\delta^i)^*$. The boundary operator of the total complex is given by $D = \delta_n + (-1)^n d$, where *d* is the exterior differential of the de Rham complex.

We denote by $\int_a \omega_1, \ldots, \omega_i$ a function defined on a contractible subset of X(C) containing *a* and sending *z* to the iterared integral $\int_a^z \omega_1, \ldots, \omega_i$ along any path contained in this contractible subset. After calculations we get the following result.

Lemma 4. Let $(a,b) \in X(C) \times X(C)$. We have

$$D\Big(\sum_{0\leq i\leq j\leq n}\int_a\omega_1,\ldots,\omega_i\otimes\omega_{i+1}\otimes\ldots\otimes\omega_j\otimes(-1)^{n-j}\int_b\omega_n,\ldots,\omega_{j+1}\Big)=0.$$

We denote by $\pi(X(C); b, a)$ the $\pi_1(X(C); a)$ -torsor of paths from a to b on X(C)and by $\pi(X(C); b, a) \otimes Q$, the deduced $\pi_1(X(C); a) \otimes Q$ -torsor.

We denote by $Algebra_C(\pi(X(C); b, a) \otimes Q)$ the algebra of complex valued polynomial functions on $\pi(X(C); b, a) \otimes Q$.

The shuffle product defines a multiplication on $H_{DR}^0((p(C)^{\bullet})^{-1}(a,b))$, hence the 0-th cohomology group is a *C*-algebra and if a = b it is a Hopf algebra.

The element $1 \otimes \omega_1 \otimes \ldots \otimes \omega_n \otimes 1$ in the stalk over a point (a,b) determines a polynomial complex valued function on the rational completion of the torsor of paths $\pi(X(C); b, a) \otimes Q$, which to a path γ from *a* to *b* associates the iterated integral $\int_{\gamma} \omega_1 \ldots, \omega_n$. Hence we get an isomorphism of *C*-algebras

$$H^0_{DR}((p(C)^{\bullet})^{-1}(a,b)) \approx Algebra_C(\pi(X(C);b,a) \otimes Q)$$

and if a = b we get an isomorphism of Hopf algebras, which follows from works of Chen.

Observe that $\operatorname{injlim}_{n}H_{DR}^{0}((p(C)_{[n]}^{\bullet})^{-1}(a,b)) = H_{DR}^{0}((p(C)^{\bullet})^{-1}(a,b))$. The same holds also for cohomology sheaves , considered by us, on $X(C) \times X(C)$ and for the connections d^{0} . Hence we shall calculate the monodromy representation in the fiber of $p(C)^{\bullet}$.

Proposition 11. Let X be a smooth affine algebraic curve over a field $k \subset C$. The monodromy representation of the bundle of flat sections of the Gauss-Manin connection d^0 at a point $(a,b) \in X(C) \times X(C)$

$$\rho_{a,b}: \pi_1(X(C);a) \times \pi_1(X(C);b) \to \operatorname{Aut}(Algebra_C(\pi(X(C);b,a) \otimes Q))$$

is given by the formula

$$((\boldsymbol{\rho}_{a,b}(\boldsymbol{\alpha},\boldsymbol{\beta}))(f))(\boldsymbol{\gamma}) = f(\boldsymbol{\beta}^{-1} \cdot \boldsymbol{\gamma} \cdot \boldsymbol{\alpha}), \tag{17}$$

where $(\alpha, \beta) \in \pi_1(X(C); a) \times \pi_1(X(C); b)$, $\gamma \in \pi(X(C); b, a) \otimes Q$ and where $f \in Algebra_C(\pi(X(C); b, a) \otimes Q)$.

Proof. We can find smooth closed one-forms $\eta_1, \ldots, \eta_r \in \Omega^1_{\mathscr{C}^{\infty}}(X(C))$ such that their classes form a base of $H^1_{DR}(X(C))$ and $\eta_i \wedge \eta_j = 0$ for $1 \leq i, j \leq r$. Then all possible tensor products $1 \otimes \eta_{i_1} \otimes \ldots \otimes \eta_{i_k} \otimes 1$ form a base of $H^0_{DR}((p(C)^{\bullet})^{-1}(a,b))$.

Let $1 \otimes \omega_1 \otimes \ldots \otimes \omega_n \otimes 1$ be one of such products. The stalk of the locally constant sheaf $H^0(TotR(p(C)^{\bullet}_{[n]})_*(C_{X(C)^{\Delta[1]}_{[n]}}))$ over the point (a,b) is equal $H^0((p(C)^{\bullet}_{[n]})^{-1}(a,b))$.

To calculate $H^0((p(C)_{[n]}^{\bullet})^{-1}(a,b))$ we use complexes of smooth differential forms. Hence the element $1 \otimes \omega_1 \otimes \ldots \otimes \omega_n \otimes 1$ we consider in the stalk of the sheaf $H^0(TotR(p(C)_{[n]}^{\bullet})_*(C_{X(C)_{[n]}^{\Delta[1]}}))$ over the point (a,b). We prolongate $1 \otimes \omega_1 \otimes \ldots \otimes \omega_n \otimes 1$ to a continuous section *s* of the locally constant sheaf $H^0(TotR(p(C)_{[n]}^{\bullet})_*(C_{X(C)_{[n]}^{\Delta[1]}}))$ along $(\alpha, \beta) \in \pi_1(X(C); a) \times \pi_1(X(C); b)$. We have $s(0) = 1 \otimes \omega_1 \otimes \ldots \otimes \omega_n \otimes 1$. It follows from Lemma 4 that

$$s(1) = \sum_{0 \le i \le j \le n} (\int_{\alpha} \omega_1, \dots, \omega_i) \otimes \omega_{i+1} \otimes \dots \otimes \omega_j \otimes (-1)^{n-j} (\int_{b} \omega_n, \dots, \omega_{j+1})$$

The element $s(1) \in Algebra_C(\pi(X(C); b, a) \otimes Q)$ and for any path γ from *a* to *b* we have

$$s(1)(\gamma) = \sum_{0 \le i \le j \le n} (\int_{\alpha} \omega_1, \dots, \omega_i) \cdot (\int_{\gamma} \omega_{i+1}, \dots, \omega_j) \cdot (-1)^{n-j} (\int_{\beta} \omega_n, \dots, \omega_{j+1}).$$
(18)

It follows from the Chen formulas (see [Ch]) that the right hand side of (18) is equal $\int_{\beta^{-1} \cdot \gamma \cdot \alpha} \omega_1, \ldots, \omega_n$. Hence the monodromy transformation along (α, β) maps the function $f(-) := s(0) \in Algebra_C(\pi(X(C); b, a) \otimes Q)$ into the function $f(\beta^{-1} \cdot - \cdot \alpha) \in Algebra_C(\pi(X(C); b, a) \otimes Q)$. \Box

22

1

Corollary 6. Let X be a smooth quasi-projective algebraic variety over an algebraically closed field $k \,\subset \, C$. Let us assume that there is an affine smooth algebraic curve S over k and a smooth morphism $f: S \to X$ over k such that the induced map $f_*: H_1(S(C); Q) \to H_1(X(C); Q)$ is surjective. Then the monodromy representation of the bundle of flat sections of the Gauss-Manin connection d^0 at a point (a,b) is given by the formula (17).

Proof. The morphism f induces a morphism of locally constant sheaves

$$H^0\big(TotR(p(C)^{\bullet}_{[n]})_*(C_{X(C)^{A[1]}_{[n]}})\big) \longrightarrow H^0\big(TotR(p(C)^{\bullet}_{[n]})_*(C_{S(C)^{A[1]}_{[n]}})\big).$$

Let us assume that $(a,b) \in X(C) \times X(C)$ is the image of a point $(s,t) \in S(C) \times S(C)$. Then $H^0((p(C)_{[n]}^{\bullet})^{-1}(a,b))$ is the subalgebra of $H^0((p(C)_{[n]}^{\bullet})^{-1}(s,t))$. Hence it follows from Proposition 11 that the monodromy representation of the sheaf $H^0(TotR(p(C)_{[n]}^{\bullet})_*(C_{X(C)_{[n]}^{\Delta[1]}}))$ at the point (a,b) is given by the formula (17). But then it is given by the formula (17) at any point of $X(C) \times X(C)$. \Box

Let *Y* be a topological space. We denote by Y_{lh} the site of local homeomorphisms on *Y*. We have the comparison isomorphisms

$$R^{i}(p_{[n]}^{\bullet})_{*}(Z/l^{m})_{(X_{[n]}^{\Delta[1]})_{\text{et}}} \approx R^{i}(p(C)_{[n]}^{\bullet})_{*}(Z/l^{m})_{(X(C)_{[n]}^{\Delta[1]})_{lh}} \approx R^{i}(p(C)_{[n]}^{\bullet})_{*}(Z/l^{m})_{(X(C)_{[n]}^{\Delta[1]})}$$
(19)

We do not know how to show that the sheaves in (19) are locally constant. However

$$\left(\operatorname{projlim}_{m} R^{i}(p(C)_{[n]}^{\bullet})_{*}(Z/l^{m})_{(X(C)_{[n]}^{\Delta[1]})_{lh}}\right) \otimes Q \approx \left(R^{i}(p(C)_{[n]}^{\bullet})_{*}(Z_{(X(C)_{[n]}^{\Delta[1]})_{lh}})\right) \otimes Q_{l}$$

The sheaf $R^i(p(C)_{[n]}^{\bullet})_*(C_{(X(C)_{[n]}^{\Delta[1]})_{lh}})$ is locally constant as the sheaf of flat sections of the integrable connection d^0 . Hence the sheaf $(R^i(p(C)_{[n]}^{\bullet})_*(Z_{(X(C)_{[n]}^{\Delta[1]})_{lh}})) \otimes Q$ is locally constant. Therefore the sheaf $(R^i(p(C)_{[n]}^{\bullet})_*(Z_{(X(C)_{[n]}^{\Delta[1]})_{lh}}))/Torsion$ is also locally constant on $(X(C) \times X(C))_{lh}$. Hence to calculate the stalk of the sheaf

$$\left(\text{projlim}_{m} R^{i}(p(C)_{[n]}^{\bullet})_{*}(Z/l^{m})_{(X(C)_{[n]}^{\Delta[1]})_{lh}}\right) \otimes Q \approx (R^{i}(p(C)_{[n]}^{\bullet})_{*}(Z_{(X(C)_{[n]}^{\Delta[1]})_{lh}})) \otimes Q_{l}$$

over $(a,b) \in X(C) \times X(C)$, it is sufficient to consider only the family of finite covering spaces $\bar{X}(C) \to X(C) \times X(C)$. By the comparison isomorphism (19) the same is true for the projective system of sheaves

$$\{R^{i}(p_{[n]}^{\bullet})_{*}(Z/l^{m})_{(X_{[n]}^{\Delta[1]})_{\text{et}}}\}_{m \in N}.$$
(20)

If $\bar{X}(C) \to X(C) \times X(C)$ is a Galois covering space then the finite quotient of $\pi_1(X(C) \times X(C); (a,b))$ acts on $\bar{X}(C)$, hence we get an action of $\pi_1^{\text{et}}(X \times X; (a,b))$ on the projective limit tensored with Q of stalks over (a,b) of the projective system of sheaves (20). This projective limit tensored with Q is $H^0_{\text{et}}((p_{[n]}^{\bullet})^{-1}(a,b); Q_l)$.

It follows from the works of Chen that

$$H^0_{DR}((p(C)^{\bullet})^{-1}(a,b)) \approx Algebra_C(\pi(X(C);b,a)\otimes Q)$$
.

We shall use Sullivan polynomial differential forms with Q-coefficients (see [Su] page 297). We shall use subscript *SDR* to denote the corresponding cohomology groups. We get the corresponding isomorphism of Q-algebras

$$H^0_{SDR}((p(C)^{\bullet})^{-1}(a,b)) \approx Algebra_O(\pi(X(C);b,a) \otimes Q).$$

If a = b then we get an isomorphism of Hopf algebras.

It follows from the comparison isomorphisms

$$H^0_{\text{et}}((p^{\bullet})^{-1}(a,b);\mathcal{Q}_l) \approx H^0((p(C)^{\bullet})^{-1}(a,b);\mathcal{Q}) \otimes \mathcal{Q}_l \approx H^0_{SDR}((p(C)^{\bullet})^{-1}(a,b)) \otimes \mathcal{Q}_l$$

between étale and singular cohomology and between singular and de Rham cohomology - the last one calculated using Sullivan polynomial differential forms - that

$$H^0_{\text{et}}((p^{\bullet})^{-1}(a,b);Q_l) \approx Algebra_{Q_l}(\pi(X(C);b,a)\otimes Q).$$

On the other side we have an isomorphisms of torsors

$$\pi(X(C);b,a)\otimes Q_l\approx \pi(X;b,a)\otimes Q$$
.

deduced from the fact that the finite completion of $\pi_1(X(C);a)$ is isomorphic to $\pi_1^{\text{et}}(X;a)$.

Therefore we get an isomorphism of Q_l -vector spaces

$$H^0_{\text{et}}((p^{\bullet})^{-1}(a,b);Q_l) \approx Algebra_{Q_l}(\pi(X;b,a) \otimes Q) .$$
(21)

The shuffle product in H_{DR}^0 is defined using codegeneracies hence it can be defined in H_{et}^0 . The Hopf algebra structure on $H_{DR}^0((p(C)^{\bullet})^{-1}(a,a))$ is defined by the maps

$$1 \otimes \boldsymbol{\omega}_1 \otimes \ldots \otimes \boldsymbol{\omega}_n \otimes 1 \to \sum_{i=0}^n (1 \otimes \boldsymbol{\omega}_1 \otimes \ldots \otimes \boldsymbol{\omega}_i \otimes 1) \otimes (1 \otimes \boldsymbol{\omega}_{i+1} \otimes \ldots \otimes \boldsymbol{\omega}_n \otimes 1),$$

hence one can use maps $X^n \to X^i \times X^{n-i}$ to define it. Therefore the isomorphism (21) is an isomorphism of Q_l -algebras and if a = b it is an isomorphism of Hopf algebras.

Hence we get that the monodromy representation associated to the projective system (20) on $(X \times X)_{et}$, in the projective limit of stalks over (a,b) after tensoring by Q and passing to the inductive limit as $n \to \infty$,

$$\rho_{(a,b)}: \pi_1^{\text{et}}(X,a) \times \pi_1^{\text{et}}(X,b) \longrightarrow \text{Aut}(Algebra_{Q_l}(\pi(X;b,a) \otimes Q))$$

is given by the formula

24

$$((\boldsymbol{\rho}_{(a,b)}(\boldsymbol{\alpha},\boldsymbol{\beta}))(f))(\boldsymbol{\gamma}) = f(\boldsymbol{\beta}^{-1} \cdot \boldsymbol{\gamma} \cdot \boldsymbol{\alpha}).$$

If *X* is defined over a number field *K* contained in *k* and if *a* and *b* are two *K*-points of *X* then G_K acts on $H^0_{\text{et}}((p^{\bullet})^{-1}(a,b);Q_l)$. The Galois group G_K acts also on the $\pi_1(X;a) \otimes Q$ -torsor $\pi(X;b,a) \otimes Q$. The next result compares these two actions.

Proposition 12. Let X be an algebraic curve over an algebraically closed field $k \subset C$. Suppose that X is defined over a number field K contained in k. Let a and b be two K-points of X. Then the isomorphism of Q_1 -algebras

$$H^0_{\text{et}}((p^{\bullet})^{-1}(a,b);Q_l) \approx Algebra_{Q_l}(\pi(X;b,a) \otimes Q)$$

is an isomorphism of G_K -modules.

Proof. Let $(\alpha, \beta) \in \pi_1^{\text{et}}(X, a) \times \pi_1^{\text{et}}(X, a)$, let $\sigma \in G_K$ and let $f \in H^0_{\text{et}}((p^{\bullet})^{-1}(a, a); Q_l)$. Then

$$\sigma_{(a,a)}((\alpha,\beta)_*(f)) = (\sigma(\alpha),\sigma(\beta))_*(\sigma_{(a,a)}(f))$$
(22)

by the formula (8). Observe that for any $\gamma \in \pi_1(X, a) \otimes Q$ we have

$$((\boldsymbol{\alpha},\boldsymbol{\beta})_*(f))(\boldsymbol{\gamma}) = f(\boldsymbol{\beta}^{-1}\cdot\boldsymbol{\gamma}\cdot\boldsymbol{\alpha})$$

The function $\gamma \to f(\beta^{-1} \cdot \gamma \cdot \alpha)$ is calculated using the Hopf algebra structure on $H^0_{\text{et}}((p^{\bullet})^{-1}(a,a); Q_l)$. Therefore after applying $\sigma_{(a,a)}$ and setting $\beta = 1$ and $\gamma = 1$ we get that the left hand side of (22) is equal $f(\alpha)$.

Applying $(\sigma(\alpha), \sigma(\beta))_* \circ \sigma_{(a,a)}$ to f we get the function $\gamma \to (\sigma_{(a,a)}(f))(\sigma(\beta)^{-1} \cdot \gamma \cdot \sigma(\alpha))$. Hence for $\beta = 1$ and $\gamma = 1$ we get $(\sigma_{(a,a)}(f))(\sigma(\alpha))$. Hence for any $\sigma \in G_K$ and any $\alpha \in \pi_1(X, a)$ we have

$$(\boldsymbol{\sigma}_{(a,a)}(f))(\boldsymbol{\alpha}) = f(\boldsymbol{\sigma}^{-1}(\boldsymbol{\alpha})).$$

Therefore the G_K -modules $H^0_{\text{et}}((p^{\bullet})^{-1}(a,a);Q_l)$ and $Algebra_{Q_l}(\pi_1(X;a) \otimes Q)$ are isomorphic. Hence for any pair (a,b) the G_K modules $H^0_{\text{et}}((p^{\bullet})^{-1}(a,b);Q_l)$ and $Algebra_{Q_l}(\pi(X;b,a) \otimes Q)$ are isomorphic. \Box

Corollary 7. Let X be a smooth quasi-projective algebraic variety over a number field $K \subset C$. Let us assume that there is an affine smooth algebraic curve S over K and a smooth morphism $f : S \to X$ over K such that the induced map $f_* : H_1(S(C);Q) \to H_1(X(C);Q)$ is surjective. Let us assume that S has a K-point. Let a and b be any two K-points of X. Then the isomorphism of Q_1 -algebras

$$H^0_{\text{et}}((p^{\bullet}_{\bar{K}})^{-1}(a,b);Q_l) \approx Algebra_{Q_l}(\pi(X_{\bar{K}};b,a)\otimes Q),$$

where $p_{\bar{K}}^{\bullet}: X_{\bar{K}}^{\Delta[1]} \to X_{\bar{K}}^{\partial\Delta[1]}$, is an isomorphism of G_K -modules. *Proof.* The corollary follows from Corollary 6 and Proposition 12.

Acknowledgements We would like to thank very much the Max Planck Institute for Mathematics in Bonn for hospitality where during two summer visits this paper was written.

References

- [BD] A.A. Beilinson and P. Deligne. Interprétation motivique de la conjecture de Zagier reliant polylogarithmes et régulateurs. In U. Jannsen, S.L. Kleiman, J.-P. Serre, *Motives, Proc. of Sym. in Pure Math.*, pages 97–121, 55, Part II AMS 1994
- [BL] A.A. Beilinson and A. Lewin. The Elliptic Polylogarithm. In U. Jannsen, S.L. Kleiman,
- J.-P. Serre, *Motives, Proc. of Sym. in Pure Math.*, pages 123–190, 55, Part II AMS 1994
 [Ch] K.T. Chen Iterated integrals, fundamental groups and covering spaces. *Trans. of the Amer. Math. Soc.*, 206:83–98, 1975.
- [DW] J.-C. Douai and Z. Wojtkowiak. On the Galois Actions on the Fundamental Group of $P^1_{O(\mu_n)} \setminus \{0, 1, \infty\}$. *Tokyo Journal of Math.*, 27(1):21–34, 2004.
- [NW] H. Nakamura and Z. Wojtkowiak. On the explicit formulae for l-adic polylogarithms . In Arithmetic Fundamental Groups and Noncommutative Algebra, Proc. Symp. Pure Math., (AMS) 70:285–294, 2002.
- [Su] D. Sullivan. Infinitesimal computations in topology. Publications Mathématiques, Institut des Hautes Études Scientifiques, 47:269–332, 1977.
- [W1] Z. Wojtkowiak. On *l*-adic iterated integrals,I Analog of Zagier Conjecture. Nagoya Math. Journals, 176:113–158, 2004.
- [W2] Z. Wojtkowiak. On *l*-adic iterated integrals,II Functional equations and *l*-adic polylogarithms. *Nagoya Math. Journals*, 177:117–153, 2005.
- [W3] Z. Wojtkowiak. On *l*-adic iterated integrals,III Galois actions on fundamental groups. *Nagoya Math. Journals*, 178:1–36, 2005.
- [W4] Z. Wojtkowiak. Cosimplicial objects in algebraic geometry. In Algebraic K-Theory and Algebraic Topology, Kluwer Academic Publishers, 407:287–327, 1993.
- [W5] Z. Wojtkowiak. Mixed Hodge Structures and Iterated Integrals, I. In F. Bogomolov and L. Katzarkov, Motives, Polylogarithms and Hodge Theory. Part I: Motives and Polylogarithms, International Press Lectures Series, Vol.3:121–208, 2002.
- [W6] Z. Wojtkowiak. The Basic Structure of Polylogarithmic Functional Equations. In L. Lewin, Structural Properties of Polylogarithms, Mathematical Surveys and Monographs, pages 205–231, Vol 37, 1991.