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MUTATIONS OF GROUP SPECIES WITH POTENTIALS
AND THEIR REPRESENTATIONS.

APPLICATIONS TO CLUSTER ALGEBRAS.

LAURENT DEMONET

Abstract. This article tries to generalize former works of Derksen,
Weyman and Zelevinsky about skew-symmetric cluster algebras to the
skew-symmetrizable case. We introduce the notion of group species with
potentials and their decorated representations. In good cases, we can
define mutations of these objects in such a way that these mutations
mimic the mutations of seeds defined by Fomin and Zelevinsky for a
skew-symmetrizable exchange matrix defined from the group species.
These good cases are called non-degenerate. Thus, when an exchange
matrix can be associated to a non-degenerate group species with poten-
tial, we give an interpretation of the F -polynomials and the g-vectors
of Fomin and Zelevinsky in terms of the mutation of group species with
potentials and their decorated representations. Hence, we can deduce
a proof of a serie of combinatorial conjectures of Fomin and Zelevinsky
in these cases. Moreover, we give, for certain skew-symmetrizable ma-
trices a proof of the existance of a non-degenerate group species with
potential realizing this matrix. On the other hand, we prove that certain
skew-symmetrizable matrices can not be realized in this way.
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2 LAURENT DEMONET

1. Introduction

The aim of this paper is to extend the results of [DWZ2] and [DWZ1]
to the case of skew-symmetrizable exchange matrices. Unfortunately, the
techniques presented here do not work in any situation, but nevertheless in
some important cases.

For this, we introduce group species with potential (GSP), which can be
seen as quivers with potential with more than one idempotent at each vertex.
Thus, we can also define a Jacobian ideal and a Jacobian algebra and study
their representations. More precisely, we define the notion of a group species
with potential with a decorated representation (GSPDR) and the notion of
the mutation of a GSPDR at a vertex k (which is called the direction of
the mutation). In good cases, we can mutate a GSPDR as many times as
we want in any direction. In this case, the underlying GSP is called non-
degenerate. Moreover, we can associate to certain GSPs, called locally free,
a skew-symmetrizable matrix in such a way that the mutation we introduce
projects, when it exists, to the mutation of matrix introduced by Fomin
and Zelevinsky [FZ1]. Any skew-symmetrizable matrix can be reached in
this way using a locally free GSP. The hard problem is to find which skew-
symmetrizable matrix can be reached using a non-degenerate GSP. It is the
case of matrices of the form DS where D is diagonal with positive integer
coefficients and S is skew-symmetric with integer coefficients. It is also the
case for the skew-symmetrizable matrices which occur in the situation of
[Dem], in particular in all acyclic cases. Nevertheless, it is not always true,
as shown by the counterexample at the end of section 12. The techniques
presented in [DWZ2] work here almost in the same way. The only problem
is that it is not always the case that for any 2-cycle, there exists a potential
canceling it (this fact is very easy in the context of [DWZ2]).

We now explain the content of this article in more details. Let K be an
algebraically closed field. Let I be a finite set and E �

À
iPI KrΓis where, for

each i, Γi is a finite group whose cardinal is not divisible by the characteristic
of K. Let also A be an pE,Eq-bimodule. This data is called a group species
and its complete path algebra is

ExxAyy �
¹
nPN

Abn.

A potential S on this group species can be seen as a (maybe infinite) lin-
ear combination of cyclic path, up to rotation. It permits to construct
a two sided ideal JpSq, called the Jacobian ideal and a quotient algebra
PpA,Sq � ExxAyy{JpSq called the Jacobian algebra. A decorated representa-
tion of the GSP is a pair consisting of a PpA,Sq-module X and an E-module
V . In sections 5 and 8, we define the mutation of a GSP with a decorated
representation (GSPDR). This mutation is well defined if the group species
has no loop and is 2-acyclic (that is, for any i P I, EipA ` A bE AqEi � 0,
where Ei � KrΓis � E).

In what follows, we suppose that the Γi are commutative and that the
GSP is locally free, that is, for any i, j P I, EiAEj is a free Ei-left module
and a free Ej-right module. In section 6, we define the exchange matrix B
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of a the group species by

bij � dimEj Aji � dimEj A
�
ij .

Thus, the mutation of GSPDRs descends to the mutation of matrices defined
by Fomin and Zelevinsky [FZ1]. In section 7, we discuss a class of matrices,
namely those of the form DS, for which there is always a non-degenerate
GSP. Moreover, we remark that there exists also non-degenerate GSP in
all cases which are categorified in [Dem] (because the endomorphisms rings
of cluster-tilting objects constructed in [Dem] are Jacobian algebras). Re-
mark also that there is no chance, with definitions given here, to construct
non-degenerate GSPs for any skew-symmetrizable matrix, as shown by the
counterexample ending section 12.

Following the ideas of [DWZ1], we explain in section 9 how to reinterpret
the F -polynomials and g-vectors defined in [FZ2] in terms of GSPDRs and
their mutations. We deduce in section 11 that, when a skew-symmetrizable
matrix can be obtained from a non-degenerate GSP, then the following con-
jectures are true:

Conjecture ([FZ2, conjecture 5.4]). For any i P In and k P I, FBk;i has
constant term 1.

Conjecture ([FZ2, conjecture 5.5]). For any i P In and k P I, FBk;i has a
maximum monomial for divisibility order with coefficient 1.

Conjecture ([FZ2, conjecture 7.12]). For any i P In, k P I, we denote
by ki the concatenation of pkq and i. Let j P I and pgiqiPI � gBj;i and

pg1iqiPI � g
µkpBq
j;ki . Then we have, for any i P I,

g1i �

"
�gi if i � k;
gi �maxp0, bikqgk � bjk minpgk, 0q if i � k.

Conjecture ([FZ2, conjecture 6.13]). For any i P In, the vectors gBi;i for
i P I are sign-coherent. In other terms, for i, i1, j P I, the j-th components
of gBi;i and gBi1;i have the same sign.

Conjecture ([FZ2, conjecture 7.10(2)]). For any i P In, the vectors gBi;i for
i P I form a Z-basis of ZI .

Conjecture ([FZ2, conjecture 7.10(1)]). For any i, i1 P In, if we have¸
iPI

aig
B
i;i �

¸
iPI

a1ig
B
i;i1

for some nonnegative integers paiqiPI and pa1iqiPI , then there is a permutation
σ P SI such that for every i P I,

ai � a1σpiq and ai � 0 ñ gBi;i � gBσpiq;i1 and ai � 0 ñ FBi;i � FBσpiq;i1 .

In particular, FBi;i is determined by gBi;i.

Thus, as stated in [FZ2, remark 7.11], if B is a full rank skew-symme-
trizable matrix which correspond to a non-degenerate GSP, then the cluster
monomials of a cluster algebra with exchange matrix B are linearly indepen-
dent.
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2. Group species and path algebras

Let K be a field.

Definition 2.1. A group species is a triple pI, pΓiqiPI , pAijqpi,jqPI2q where I
is a finite set, for each i P I, Γi is a finite group and for each pi, jq P I2, Aij
is a finite dimensional pKrΓis,KrΓjsq-bimodule (the first acting on the left
and the second on the right).

Fix now such a group species Q � pI, pΓiqiPI , pAijqpi,jqPI2q

Definition 2.2. A representation of Q is a pair ppViqiPI , pxijqpi,jqPI2q where
for each i P I, Vi is a right finite dimensional KrΓis-module and for each
pi, jq P I2,

xij P HomΓj pVi bΓi Aij , Vjq.

Definition 2.3. Let ppViqiPI , pxijqpi,jqPI2q and ppV 1
i qiPI , px

1
ijqpi,jqPI2q be two

representations of Q. A morphism from the first one to the second one is a
family pfiqiPI P

±
iPI HomΓipVi, V

1
i q such that for each pi, jq P I2 the following

diagram commute :

Vi bΓi Aij

fibIdAij
��

xij // Vj

fj
��

V 1
i bΓi Aij x1ij

// V 1
j

Remarks 2.4. 
 The previous definitions give rise to an abelian cate-
gory.


 If for each i P I, Γi is the trivial group, we get back the classical
definition of a quiver (up to the choice of a basis of each Aij) and
of the category of representations of a quiver.


 If for each i P I, KrΓis is replaced by a division algebra, we obtain
the usual definition of a species (see for example [DR]).

Definition 2.5. For each i P I, denote Ei � KrΓis. Denote also E �À
iPI Ei and A �

À
pi,jqPI2 Aij . Thus, we put the natural pE,Eq-bimodule

structure on A and define the graded algebras

ExAy �
à
nPN

Abn and ExxAyy �
¹
nPN

Abn

the first one being called the path algebra of the group species and the second
one the complete path algebra of the group species (note that every tensor
product is taken over E).

Remarks 2.6. 
 As usual for quiver, the category of representations of
a group species is equivalent to the category of finite dimensional
right modules over its path algebra. Moreover, the category of nilpo-
tent representations of a group species is equivalent to the category
of finite dimensional right modules over its complete path algebra.


 If one denotes

m �
¹
n¡0

Abn � ExxAyy
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which is clearly a two-sided ideal, then ExxAyy becomes a topological
algebra for the m-adic topology and ExAy is a dense subalgebra of
it.

As in [DWZ2], m is the unique maximal two-sided ideal of ExxAyy not
intersecting E. Moreover, if we have another group species with the same
vertices whose arrows are encoded in the pE,Eq-bimodule A1, then, again as
in [DWZ2], the morphisms ϕ from ExxAyy to ExxA1yy such that ϕ|E � IdE
(later called E-morphisms) are parameterized in an obvious way by a pair
pϕp1q, ϕp2qq where ϕp1q : A Ñ A1 and ϕp2q : A Ñ m12 are pE,Eq-bimodule
morphisms. Thus, ϕ is an isomorphism if and only if ϕp1q is an isomorphism.
Introduce now the analogous of [DWZ2, definition 2.5]:

Definition 2.7. An E-automorphism ϕ of ExxAyy will be called a change
of arrows if ϕp2q � 0 and a unitriangular automorphism if ϕp1q � IdA.

Finally, introduce the following useful notation:

Notation 2.8. For all i, j P I,

ExAyij � EiExAyEj and ExxAyyij � EiExxAyyEj

and for n P N,
Abnij � Abn X ExAyij � Abn X ExxAyyij

so that
ExAyij �

à
nPN

Abnij and ExxAyyij �
¹
nPN

Abnij .

3. Potential and their Jacobian ideals

Following [DWZ2] define:

Definition 3.1. Define

ExxAyycyc �
ExxAyy

rExxAyy, ExxAyys

whose elements are called potentials (here, rExxAyy, ExxAyys is the closure
of the two-sided ideal generated by commutators). As rExxAyy, ExxAyys is
generated by its homogeneous elements, we can decompose ExxAyycyc �±
nPNA

bn
cyc where

Abncyc �
Abn

rExxAyy, ExxAyys XAbn

and, if S P ExxAyycyc, we write Spnq its summand which lies in Abncyc.

Definition 3.2. Define the continuous linear map

B : pExxAyyq� bk ExxAyy Ñ ExxAyy

in the following way. First remark that pExxAyyq� �
À

nPN pA
bnq

�. Then,
if ξ P pAbnq� and a1, a2, . . . , a` P A define Bξpa1a2 . . . a`q � 0 if `   n and

Bξpa1a2 . . . a`q �
`̧

j�1

¸
g,hPB

ξ
�
g�1ajaj�1 . . . aj�n�1h

�
h�1aj�naj�n�1 . . . aj�1g
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if ` > n where all indices are taken modulo ` and B �
�
iPI Γi � E. It is easy

to see that B is well defined and moreover that it vanishes on commutators.
Thus, we can descend B to a continuous linear map

B : pExxAyyq� bk ExxAyycyc Ñ ExxAyy.

Remark 3.3. With the natural structure of pE,Eq-bimodule on pExxAyyq�,
one gets, for any S P ExxAyycyc, that ξ ÞÑ BξS is a morphism of pE,Eq-
bimodules.

Definition 3.4. For a potential S P ExxAyycyc, define the Jacobian ideal
JpSq to be the closure of the two-sided ideal of ExxAyy generated by the
BξpSq for ξ P A�. The quotient ExxAyy{JpSq is called the Jacobian algebra
and is denoted by PpA,Sq (we do not keep trace of pI, pΓiqq in the notation
because it will be fixed).

Note that every E-morphism ϕ : ExxAyy Ñ ExxA1yy descends to ϕ :
ExxAyycyc Ñ ExxA1yycyc.

It is now easy to adapt the proof of [DWZ2, proposition 3.7]:

Proposition 3.5. Let S P ExxAyycyc. Every E-isomorphism ϕ : ExxAyy Ñ
ExxA1yy maps JpSq to JpϕpSqq and therefore induces an isomorphism

PpA,Sq Ñ PpA1, ϕpSqq.

4. Group species with potentials

For the rest of this article, the data pI, pΓiqq and so E will be fixed.
Following the ideas of [DWZ2], define:

Definition 4.1. As before, A is an pE,Eq-bimodule and we take S P
ExxAyycyc. We say that pA,Sq is a group species with potential (GSP
for short) if the species has no loop (for all i P I, EiAEi � t0u) and
S P

±
n¡1A

bn
cyc.

Definition 4.2. Let pA,Sq and pA1, S1q be two GSPs. One says that an
E-isomorphism ϕ : ExxAyy Ñ ExxA1yy is a right-equivalence if ϕpSq � S1.

Note that this definition induces a equivalence relation. Moreover, a right
equivalence pA,Sq � pA1, S1q induces isomorphisms of pE,Eq-bimodules A �
A1, JpSq � JpS1q and PpA,Sq � PpA1, S1q as said before.

Notation 4.3. If pA,Sq and pA1, S1q are two GSPs, define pA,Sq`pA1, S1q �
pA`A1, S � S1q so that PppA,Sq ` pA1, S1qq is the completion of PpA,Sq `
PpA1, S1q for the product topology.

Definition 4.4. We say that a GSP pA,Sq is trivial if S P Ab2
cyc and

tBξpSq | ξ P A
�u � A, or, equivalently, if PpA,Sq � E.

The following easy proposition is an adaptation of [DWZ2, proposition
4.4]:

Proposition 4.5. A GSP pA,Sq is trivial if and only if there exist an pE,Eq-
bimodule B and an pE,Eq-bimodules isomorphism ϕ : AÑ B`B� such that

ϕpSq �
¸
bPB

bb b�
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where ϕ is naturally extended to an isomorphism ExxAyycyc Ñ ExxB `
B�yycyc and the right member does not depend of the choice of a basis B
of B.

One gets also this proposition, similar to [DWZ2, proposition 4.5]:

Proposition 4.6. If pA,Sq is a GSP and pB, T q is a trivial GSP, then
the canonical embedding ExxAyy ãÑ ExxA ` Byy induces an isomorphism
PpA,Sq � PpA`B,S � T q.

For a GSP pA,Sq, we define the trivial and reduced part of A as the
pE,Eq-bimodules

Atriv � tBξS
p2q | ξ P A�u and Ared � A{Atriv.

Moreover, we say that pA,Sq is reduced if Sp2q � 0, or, equivalently, if
Atriv � t0u.

Again, the proof of [DWZ2, theorem 4.6] is easy to adapt:

Theorem 4.7. For any GSP pA,Sq, there exist Striv P ExxAtrivyy and Sred P
ExxAredyy such that pA,Sq is right equivalent to pAtriv, Strivq ` pAred, Sredq.

Moreover, the right equivalence classes of pAtriv, Strivq and pAred, Sredq are
uniquely determined by the right equivalence class of pA,Sq.

Definition 4.8. A group species pI, pΓiq, Aq is called 2-acyclic if, for any
i P I, EiAb2Ei � t0u.

We will see now how to find, as in [DWZ2], algebraic conditions guarantee-
ing the 2-acyclicity of the reduced part of a group species. Let K rExxAyycycs
be the ring of polynomial functions on ExxAyycyc vanishing on all but a finite
number of the Abncyc.

For each S P ExxAyycyc and i, j P I, define the bilinear form αS,ij by:

A�ij �A�ji Ñ K

pf, gq ÞÑ
¸
γPΓi
γ1PΓj

�
pγ1fγ�1 b γgγ1�1q

�
Sp2q

	
� pγgγ1�1γ1fγ�1q

�
Sp2q

	�
.

First, an easy lemma:

Lemma 4.9. Let i, j P I. The followings are equivalent:
(i) there exists S P ExxAyycyc such that αS,ij is of maximal rank;
(ii) either A�ij is a subbimodule of Aji or A�ji is a subbimodule of Aij.

Proof. We clearly have αS,ij � αS,ji for any S and therefore, one can suppose
without loss of generality that dimK Aij 6 dimK Aji. Suppose that αS,ij is
of maximal rank. In any basis, the matrix of αS,ij is the matrix of A�ij Ñ
Aji : ξ ÞÑ BξpS

p2qq and therefore, A�ij is a subbimodule of Aji.
Reciprocally, suppose that A�ij is a subbimodule of Aji. Thus, if B is a

basis of Aij , define
S �

¸
aPB

ab a�

where a� P A�ij is identified with its image in Aji. Then, it is clear that αS,ij
is of maximal rank. �
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Again, it is easy to generalize [DWZ2, proposition 4.15]:

Proposition 4.10. The reduced part of a GSP pA,Sq is 2-acyclic if and
only if, for any i, j P I, αS,ij is of maximal rank. This condition is open.
Moreover, if, for any i, j P I, either A�ij is a subbimodule of Aji, either
A�ji is a subbimodule of Aij, then there is a non empty Zariski open sub-
set U of ExxAyycyc, a 2-acyclic pE,Eq-bimodule A1 and a regular map H :
U Ñ ExxA1yycyc such that for any S P U , pAred, Sredq is right equivalent to
pA1, HpSqq.

Proof. The arguments are the same than in [DWZ2]. For each i, j P I2,
choose A�ij � A�ij such that A�ij � A�ij or A�ij � Aji. Let U to be the non-
empty open subset of ExxAyycyc containing the S such that for all i, j P I,
αS,ij|A�ij�A

�

ji
is non-degenerate (it corresponds to the non-vanishing of a fixed

maximal minor of αS,ij). Define A1 to be the intersection of the kernels of
the elements of the A�ij . Then the construction of H follows the proof of
[DWZ2, theorem 4.6]. �

5. Mutations of group species with potential

Let pA,Sq and k P I be a vertex such that EkAb2Ek � t0u (we say that
pA,Sq is 2-acyclic at k). We suppose also that for any i P I, the characteristic
of K does not divide #Γi. As in [DWZ2, §5], one defines rµkpA,Sq � p rA, rSq
where, if i, j P I,

rAij � "
A�ji if k P ti, ju;
Aij `Aik bEk Akj otherwise.

In other terms, rA � EkAEk `AEkA` pEkAq
� ` pAEkq

�

where Ek �
À

i�k Ei. Let now r�s : EkExxAyyEk Ñ Exx rAyy be the mor-
phism of k-algebras generated by ras � a if a P EkAEk and rabs � ab P
AEkA if a P AEk and b P EkA which is well defined because pA,Sq has no
loop. Again, because pA,Sq has no loop, every potential S P ExxAyycyc has
a representative in EkExxAyyEk and it is easy to see that r�s descends to a
map

r�s : ExxAyycyc Ñ Exx rAyycyc.

Moreover, as for any i P I the characteristic of K does not divide #Γi, we
have a canonical sequence of isomorphisms

HomE pAEkA,AEkAq � pAEkAq
� bE AEkA � pAEk bE EkAq

� bE AEkA

� pEkAq
� bE pAEkq

� bE AEkA � Exx rAyy
and we define ∆kpAq to be the image of IdAEkA through this isomorphism.
Thus, define rS � rSs �∆kpAq.

The proof of [DWZ2, proposition 5.1] can be easily generalized:
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Proposition 5.1. If pA1, S1q is another GSP such that EkA1 � A1Ek � t0u,
then rµkpA`A1, S � S1q � µkpA,Sq ` pA1, S1q.

Now, the proof of [DWZ2, theorem 5.2] is easy to generalize:

Theorem 5.2. The right-equivalence class of the GSP rµkpA,Sq is fully de-
termined by the right-equivalence class of pA,Sq.

Definition 5.3. Using theorem 5.2 together with theorem 4.7, the right-
equivalence class of the reduced part of rµkpA,Sq is fully determined by the
right-equivalence class of pA,Sq. Thus we can define the map µk from the
set of right-equivalence classes which are 2-acyclic at k to itself. It is called
the mutation at vertex k.

Again, the proof of [DWZ2, theorem 5.7] is easy to generalize:

Theorem 5.4. µk is an involution.

Let us also remark that [DWZ2, proposition 6.1], [DWZ2, proposition 6.4]
and [DWZ2, corollary 6.6] can be generalized:

Proposition 5.5. The algebras EkPpA,SqEk and EkP prµkpA,SqqEk are
isomorphic.

Proposition 5.6. The Jacobian algebra PpA,Sq is finite-dimensional if and
only if P prµkpA,Sqq is.
Corollary 5.7. The Jacobian algebras EkPpA,SqEk and EkP pµkpA,SqqEk
are isomorphic and PpA,Sq is finite-dimensional if and only if P pµkpA,Sqq
is.

As stated in [DWZ2, remark 6.8], the following definition makes sense:

Definition 5.8. We define the deformation space of pA,Sq to be

DefpA,Sq �
PpA,Sq

E � rPpA,Sq,PpA,Sqs
where rPpA,Sq,PpA,Sqs is the closure of the two-sided ideal of PpA,Sq
generated by the commutators.

Thus, let us introduce the following extension of [DWZ2, proposition 6.9]:

Proposition 5.9. We have an isomorphism:

DefpA,Sq � Def prµkpA,Sqq .
Proof. It is enough to prove that

EkPpA,SqEk
Ek �

�
EkPpA,SqEk, EkPpA,SqEk

� ãÑ DefpA,Sq

is in fact an isomorphism (which is true because A has no loop) and to use
proposition 5.5.

As in [DWZ2],

Definition 5.10. The GSP pA,Sq is called rigid if DefpA,Sq � t0u.

Corollary 5.11. The GSP pA,Sq is rigid if and only if µkpA,Sq is.
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6. Exchange matrices

We suppose now that A has neither loop nor 2-cycle (that is Ab1
cyc �

Ab2
cyc � t0u). We suppose also that for any pi, jq P I2, Aij is a free left Ei-

module and a free right Ej-module (we will call it a locally free GSP). Define
the matrix B � BpAq � BpA,Sq to be the matrix with rows and columns
indexed by I and coefficients

bij � dimEj Aji � dimEj A
�
ij

(by default, dimension are taken relatively to the left module structure).
This matrix is clearly skew-symmetrizable since

#Γj � bij � dimK Aji � dimK A
�
ij .

Definition 6.1. The matrix B is called the exchange matrix of A.

The following proposition justifies this generalization of [DWZ2]:

Proposition 6.2. Every skew-symmetrizable matrix B can be reached in this
way from a GSP.

Proof. Let B be a skew-symmetrizable matrix and D � pdiqiPI be a diagonal
matrix with positive integer coefficients such that BD is skew-symmetric.
Let Γi � Z{diZ and for pi, jq P I2 such that bij ¡ 0,

Aji � K rZ{pdjbijqZs � K rZ{p�dibjiqZs

which is a left and right free pΓj ,Γiq-bimodule. It is clear that A �
À

i,jPI Aij
has exchange matrix B. �

Proposition 6.3. Let k P I.
(i) The GSP rµkpA,Sq is locally free.
(ii) If µkpA,Sq is 2-acyclic then it is locally free.
(iii) If µkpA,Sq is 2-acyclic then

µkpBpA,Sqq � BpµkpA,Sqq

where the µk on the left hand is the one defined in [FZ1]. Namely:

b1ij �

#
�bij if k P ti, ju

bij �
bik |bkj | � |bik| bkj

2
otherwise

if B1 � µkpBq.

Proof. (i) First of all, it is clear that for i P I, E�
i � Ei as pEi, Eiq-

bimodules (as Ei is finite dimensional). Thus, for any i, A�ik and
A�ki are left and right free modules. Moreover, as a right module,

Aik bEk Akj � A
dimEkpA

�

ikq
kj

and, as a left module,

Aik bEk Akj � A
dimEkpAkjq
ik

which ends the proof that rµkpA,Sq is locally free.
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(ii) If one denotes p rA, rSq � rµkpA,Sq, one hasrA � rAred ` rAtriv

As rAred is 2-acyclic, for any i, j P I, rAred,ij � 0 or rAred,ji � 0.
Suppose that rAred,ij � 0. Hence rAtriv,ji � rA�triv,ij � rA�ij is left
and right free (thanks to the previous point). Moreover, rAji �rAred,ji ` rAtriv,ji and, as the categories of left Ej-modules and right
Ei-modules are Krull-Schmidt, rAred,ji is left and right free.

(iii) It is enough to remark that

dimEi Aik bEk Akj � dimEi A
dimEk

Akj
ik � dimEipAikqdimEkpAkjq

and that

dimEipAjk bEk Akiq
� � dimEi pA

�
kiq

dimEk
A�jk � dimEipA

�
kiqdimEkpA

�
jkq

and to use the definition and the duality Atriv,ij � A�triv,ji. �

Definition 6.4. The group species is said to be globally free if, for any
i, j P I, Aij is a free pEi, Ejq-bimodule (that is a free Ei bK Eop

j -module).

Remark 6.5. The class of globally free group species is stable under mutation.

Proposition 6.6. If a matrix is of the form DB, where D is diagonal with
positive integer coefficients and B is skew-symmetric, then the group species
constructed in proposition 6.2 is globally free.

7. Existance of nondegenerate potentials

If pI, pΓiq, Aq is a group species without loop nor 2-cycle, a potential
S P ExxAyycyc will be said to be non-degenerate if every sequence of mutation
going from pA,Sq yields to a 2-acyclic GSP.

We cite the following adapted result, whose proof is the same than the
proof of [DWZ2, corollary 7.4]:

Theorem 7.1. If the group species is globally free then there is a countable
number of non-constant polynomials in K rExxAyycycs such that the non-
vanishing of these polynomials on S P ExxAyycyc implies that S is non-
degenerate. In particular if K is uncountable, there exist non-degenerate
potentials.

Proof. The only thing to change is that, if the group species is globally
free, then for each i, j P I, either A�ij is a subbimodule of Aji, or A�ji is a
subbimodule of Aij and, therefore, proposition 4.10 can be applied. �

Remark 7.2. It is also easy to prove that for any skew-symmetrizable ma-
trix B coming from the categories with an action of a group Γ considered in
[Dem], there is a non-degenerate GSP realizing it. More precisely, the endo-
morphism ring of a Γ-stable cluster-tilting object in the stable category of a
category constructed in [Dem] can be realized by a non-degenerate GSP (it
is the case because Γ-2-cycles do not appear after mutations). In particular,
the only potential for an acyclic group species is non-degenerate.
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Another proposition linking rigid and non-degenerate potentials can be
adapted from [DWZ2, proposition 8.1 and corollary 8.2]:

Proposition 7.3. Every rigid globally free GSP pA,Sq is 2-acyclic and, in
this case, S is non-degenerate.

As in [DWZ2, §8], there exist group species without rigid potentials. The
techniques of [DWZ2, §8] work also in the context of this article.

8. Decorated representations and their mutations

The aim of this section is to adapt the results of [DWZ2, §10]. We suppose
here that for any i P I, the characteristic of K does not divide the cardinal
of Γi.

Following [DWZ2, definition 10.1],

Definition 8.1. A decorated representation of a GSP pA,Sq is a pair pX,V q
where X is a PpA,Sq-module and V is a E-module.

In the following, we will look at pairs consisting of a GSP pA,Sq and
a decorated representation of it. We will denote this type of objects by
pA,S,X, V q and call them group species with potential and decorated repre-
sentation (GSPDR).

Following [DWZ2, definition 10.2],

Definition 8.2. A right-equivalence between two GSPDRs pA,S,X, V q and
pA1, S1, X 1, V 1q is a triple pϕ,ψ, ηq such that:


 ϕ : ExxAyy Ñ ExxA1yy is a right-equivalence from pA,Sq to pA1, S1q
(see definition 4.2);


 ψ : X Ñ X 1 is a linear isomorphism such that the following diagram
commutes:

X
uX //

ψ
��

X

ψ
��

X 1
ϕpuqX1

// X 1

for any u P ExxAyy;

 η : V Ñ V 1 is an isomorphism.

Using proposition 4.6, for each GSPDR pA,S,X, V q, the decorated repre-
sentation pX,V q can be seen as a representation of pA

red
, S

red
q. Thus, we can

call pA
red
, S

red
, X, V q the reduced part of pA,S,X, V q. As in [DWZ2, propo-

sition 10.5], the right-equivalence class of the reduced part of a GSPDR is
fully determined by the right-equivalence class of this GSPDR.

Now, we can define the mutation of a GSPDR pA,S,X, V q. Let k P I.
Our aim is to define a GSPRD µkpA,S,X, V q � pA1, S1, X 1, V 1q such that
pA1, S1q � µkpA,Sq. Denote:

Xin � X bE AEk and Xout � X bE A
�Ek.

Thus, we can define two right Ek-module morphisms. One, α, from Xin to
Xk � XEk which is the application pxb aq ÞÑ xa and one from Xk to Xout

which is defined by
βpxq �

¸
bPB

xbb b�
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which does not depend on the basis B of EkA. Observe also that we have a
canonical sequence of isomorphisms:

HomEkpXout, Xinq � HomEpX bE A
�Ek bEk EkA

�, Xq

� HomEpX bE pAEkAq
�, Xq

It is not hard to see that rxb ξ ÞÑ xpBξSqs P HomEpXbE pAEkAq
�, Xq. Let

γ be the corresponding element of HomEkpXout, Xinq.
So we get, as in [DWZ2] a commutative diagram of right Ek-modules:

Xk

β

""EEEEEEEE

Xin

α
=={{{{{{{{

Xoutγ
oo

with αγ � γβ � 0 [DWZ2, lemma 10.6]. For i P I, define:

X 1
i �

$&% Xi if i � k
ker γ

imβ
` im γ `

kerα

im γ
` Vi if i � k

and

V 1
i �

$&% Vi if i � k
kerβ

kerβ X imα
if i � k

To get the structure of an PpA1, S1q-module on X 1, we must define the
way rA acts on it where p rA, rSq � rµkpA,Sq (as PpA1, S1q � Pp rA, rSq). Recall
from §5, that rA � EkAEk `AEkA` pEkAq

� ` pAEkq
�.

First of all, EkAEk `AEkA � EkExxAyyEk and for the vertices outside k,
X 1
k � Xk. Therefore, we can take the same action for this part of rA. For

the rest, we have rAEk � A�Ek and rA�Ek � AEk and therefore, we have to
define:

α1 : X 1
in � X 1 bE rAEk � X bE A

�Ek � Xout Ñ X 1
k

and
β1 : X 1

k Ñ X 1
out � X 1 bE rA�Ek � X bE AEk � Xin

As in [DWZ2], we have to choose a splitting data:

 let ρ : Xout � ker γ be a splitting of ker γ ãÑ Xout in the category

modEk (it is possible, as the characteristic of K does not divide the
cardinal of Γk);


 let σ : kerα{ im γ ãÑ kerα a splitting of kerα � kerα{ im γ in
modEk.

Now, using the direct sum decomposition

X 1
k �

ker γ

imβ
` im γ `

kerα

im γ
` Vi,
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define

α1 �

����
�πρ
�γ
0
0

���
 and β1 �
�
0 ι ισ 0

�
where π designs the canonical projection and ι the canonical injections.

Again, [DWZ2, proposition 10.7] can be adapted:

Proposition 8.3. The above definition gives rise to a decorated representa-
tion of p rA, rSq and, therefore, through the isomorphism Pp rA, rSq � PpA1, S1q,
to a decorated representation of pA1, S1q.

Notation 8.4. We denoterµkpA,S,X, V q � p rA, rS,X 1, V 1q and µkpA,S,X, V q � pA1, S1, X 1, V 1q.

We can adapt [DWZ2, proposition 10.9]:

Proposition 8.5. The isomorphism class of the GSPDR rµkpA,S,X, V q does
not depend on the choice of the splitting data.

and [DWZ2, proposition 10.10 and corollary 10.12]:

Proposition 8.6. The right-equivalence classes of the GSPDRsrµkpA,S,X, V q and µkpA,S,X, V q

depend only on the right-equivalence class of pA,S,X, V q.

Now an important theorem whose proof is the same as the one of [DWZ2,
theorem 10.13]:

Theorem 8.7. On the right-equivalence classes of GSPDRs which are 2-
acyclic at k, µk is an involution.

It is easy to define the notion of a direct sum of two decorated represen-
tations of a GSP and, therefore, the notion of an indecomposable decorated
representation of a GSP. Thus, as µk clearly commutes with this type of di-
rect sums, µk acts on GSPs with indecomposable decorated representations.
We call a GSPDR pA,S,X, V q positive if V � t0u and negative if X � t0u.
Moreover, it is called simple at i P I if X ` V is an indecomposable Ei-
module. Then we adapt [DWZ2, proposition 10.15]:

Proposition 8.8. An indecomposable GSPDR is either positive, or negative
simple. The mutation µk exchange a positive simple at k with the corre-
sponding negative simple at k. Moreover, it is the only case where a mutation
interchanges positive and negative indecomposable GSPDRs.

As in [DWZ1, §6], denote, for k P I and X,X 1 P modPpA,Sq,

Hom
rks
PpA,SqpX,X

1q �
!
f P HomPpA,SqpX,X

1q | f|XEk � 0
)
.

Cite now easy to adapt [DWZ1, proposition 6.1]:

Proposition 8.9. The mutation µk induces an isomorphism
HomPpA,SqpX,X

1q

Hom
rks
PpA,SqpX,X

1q
�

HomPpµkpA,SqqpµkpXq, µkpX
1qq

Hom
rks
PpµkpA,SqqpµkpXq, µkpX

1qq
.
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Remark 8.10. As claimed in [DWZ1, §6], the isomorphism of proposition 8.9
can be seen as a functorial isomorphism by introducing adapted quotient
categories.

9. F -polynomials and g-vectors of decorated representations

The aim of this section is to define the notions of the F -polynomial and
the g-vector of a GSPDR and to give a link with the usual notion (see [FZ2]).
It is an extension of [DWZ1]. As before, pI, pΓiqq and therefore E are fixed.
We suppose also that the characteristic of K does not divide any of the
cardinals of the groups Γi. We suppose moreover that K is algebraically
closed and that all the Γi are commutative (as seen in section 6, this case is
sufficient to realize skew-symmetrizable exchange matrices).

Notation 9.1. For any i P I, denote irri � irrpΓiq the set of isomorphism
classes of irreducible representations of Γi. One defines irr �

�
iPItiu � irri

and for i P I, Ci � K0pΓiq � Zirri . We also denote C � K0pEq �
À

iPI Ci �
Zirr. If V P modE (resp. V P modEi), rV s is its class in C (resp. in Ci). If
e P C (resp. e P Ci) and pj, ρq P irr (resp. ρ P irri) then ej,ρ (resp. eρ) is the
coefficient of pj, ρq (resp. ρ) in e.

If pYjqjPirr (resp. pYjqjPirri) is a family of indeterminates or of elements of
a ring, and e P C (resp. e P Ci), one denotes

Y e �
¹
jPirr

presp. jPirriq

Y
ej
j .

If pA,Sq is a GSP, X a representation of it, rXs is its class, seen as an
E-module, in C. If e P C then GrepXq is the Grassmanian of the PpA,Sq-
submodules X 1 of X such that rX 1s � e.

Let pA,S,X, V q be a GSPDR, we recall the diagram of section 8, by
changing a little the notation:

Xpkq
βk

$$IIIIIIIII

Xinpkq

αk
::vvvvvvvvv

Xoutpkqγk
oo

Definition 9.2. One defines the F -polynomial FX of X to be a polynomial
in Z rpYiqiPirrs defined by:

FXpY q �
¸
ePC

χ pGrepXqqY
e

where χ is the Euler characteristic. One define also the g-vector gX,V �
pgkqkPI P C �

À
kPI Ck by

gk � rker γks � rXpkqs � rV pkqs.

With the same indexing, define hX,V � phkqkPI by

hk � �rkerβks.
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Notation 9.3. If pY q is a family of indeterminates, we denote by Q�pY q
the free commutative semifield generated by its elements. If pyq is a family
of elements of a commutative semifield, we denote by Q�pyq the subsemifield
generated by its elements.

Then, it is easy to adapt [DWZ1, proposition 3.1], [DWZ1, proposition
3.2] and [DWZ1, proposition 3.3]:

Proposition 9.4. The polynomial FXpY q has constant term 1 and maximum
term (for divisibility of monomials) Y rXs.

Proposition 9.5. If X 1 is another PpA,Sq-module then FX`X 1 � FXFX 1 .

Proposition 9.6. If FX P Q�pY q, then FX can by evaluated in the semifield
TroppY 1q where pY 1qiPirr is a family of indeterminates. Then hX and FX are
related by the following formula:

Y 1hX � FX|TroppY 1q

�
Y 1�1
i,ρ Y 1rρbEiEiA

�s
	
pi,ρqPirr

.

Proof. We follow the proof of [DWZ1]. Remark that for any e P C,

pY eq|TroppY 1q

�
Y 1�1
i,ρ Y 1rρbEiEiA

�s
	
pi,ρqPirr

� Y 1�e�rebEA
�s.

For i P I, the exponent of Y 1
i � pYi,ρqρPirri

can be rewritten as

�ei � rebE A
�Eis

which can be interpreted as

�rX 1piqs � rX 1
outpiqs

for any submodule X 1 of X such that rX 1s � e. Thus, the end of the proof
is the same as in [DWZ1]. �

Recall the definition of a Y -seed:

Definition 9.7 ([DWZ1, §2]). A Y -seed is a pair py,Bq where y is a family of
elements of a semifield indexed by I and B is a skew-symmetrizable matrix.
For k P I, we define µkpy,Bq � py1, µkpBqq where, for i P I,

y1i �

#
y�1
i if i � k

yiy
maxp0,bkiq
k p1� ykq

�bki if i � k.

Now, define the notion of an extended Y -seed:

Definition 9.8. A extended Y -seed is a pair py, pA,Sqq where y is a family
of elements of a semifield indexed by irr and pA,Sq is a non-degenerate GSP.
For k P I, we define µkpy, pA,Sqq � py1, µkpA,Sqq where, for pi, ρq P irr,

y1i,ρ �

#
y�1
i,ρ if i � k

yi,ρy
rρbEiAiks

k p1� ykq
rρbEiA

�

kis�rρbEiAiks if i � k.

Remark 9.9. The mutation of extended Y -seeds is involutive.

Definition 9.10. A Y -seed or an extended Y -seed will be called free if its
variables y are algebraically independent.
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Remark 9.11. The notion of freeness for a Y -seed (or an extended Y -seed) is
stable under mutations. The semifield Z�pyq and the algebra Zrys are also
stable under mutation, as the mutation is involutive.

Definition 9.12. Let py, pA,Sqq be a free extended Y -seed and pz,BpAqq
be a Y -seed (for the same A). The following morphism of algebra is called
the specialization map:

ΦyÑz : Z�pyq Ñ Z�pzq
yi,ρ ÞÑ zi.

The analogous for Zrys and Zrzs is also denoted by Φ.

Proposition 9.13. Let py, pA,Sqq be a free extended Y -seed such that pA,Sq
is a locally free GSP, and pz,BpAqq be a Y -seed. Let k P I. Denote y1 �
µkpyq, and z1 � µkpzq. Then, Φy1Ñz1 � ΦyÑz.

Proof. As y1 generates Z�py1q � Z�pyq, it is enough to look at this for the
y1i,ρ for pi, ρq P irr. By definition,

Φy1�¡z1
�
y1i,ρ

�
� z1i

If i � k, then

Φy�¡z

�
y1i,ρ

�
� Φy�¡z

�
y�1
i,ρ

	
� z�1

i � z1i.

If i � k, then

Φy�¡z

�
y1i,ρ

�
� Φy�¡z

�
yi,ρy

rρbEiAiks

k p1� ykq
rρbEiA

�

kis�rρbEiAiks
	

� zi
¹
σPCk

�
z
rρbEiAiksσ
k p1� zkq

rρbEiA
�

kisσ�rρbEiAiksσ
�

� zi

�
z

dimKpρbEiAikq

k p1� zkq
dimKpρbEiA

�

kiq�dimKpρbEiAikq
�

� zi

�
z

dimEi
Aik

k p1� zkq
dimEi

A�ki�dimEi
Aik

�
� zi

�
z

maxp0,bkiq
k p1� zkq

�bki
�
� z1i

(here we use the fact that every considered irreducible representation is of
dimension 1, as the considered groups are commutative andK is algebraically
closed). �

To make the relation with F -polynomials and g-vectors in cluster alge-
bras, we need the following adaptation of [DWZ1, lemma 5.2]:

Proposition 9.14. Let pA,S,X, V q be a GSPDR such that pA,Sq is non-
degenerate. Let k P I. Denote pA1, S1, X 1, V 1q � µkpA,S,X, V q. Suppose
also that the extended Y -seed py1, pA1, S1qq is obtained from py, pA,Sqq by the
mutation at k. Denote gX,V � pgiqiPI , gX 1,V 1 � pg1iqiPI , hX,V � phiqiPI and
hX 1,V 1 � ph1iqiPI . Then

(i) gX,V � hX,V � hX 1,V 1;
(ii) one has

pyk � 1qhkFXpyq � py1k � 1qh
1
kFX 1py1q
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where
pyk � 1qhk �

¹
iPirrk

pypk,iq � 1qhki ;

(iii) for any j P I,

g1j �

#
�gj if j � k

gj � rgk bEk Akjs � rhk bEk Akjs �
�
hk bEk A

�
jk

�
if j � k.

Proof. (i) By definition, for i P I, gi � rker γis � rXpiqs � rV piqs, hi �
�rkerβis and h1i � �rkerβ1is (where β1 is the analogous of β for
pX 1, V 1q). So it is enough to prove that

rker γis � rVis � rkerβis � rXpiqs � rkerβ1is.

From the definition of β1i given in section 8, it is easy to see that
kerβ1i � kerpγiq{ impβiq ` Vi. And, therefore, the searched equality
reduces to

rimβis � rkerβis � rXpiqs

which is obvious.
(ii) We follow the proof of [DWZ1, lemma 5.2]. Let e P C and e1 its

projection in
À

i�k Ci. Let X0 � XEk which is a EkPpA,SqEk-
module. For any EkPpA,SqEk-submodule W of X0, one can define

Winpkq �W bEk AEk � Xinpkq and Woutpkq �W bEk A
�Ek � Xoutpkq

which are well defined because pA,Sq has no loop (and therefore
Xin � X bEk AEk and Xout � X bEk A

�Ek).
For r, s P Ck, define Ze1,r,spXq to be the subvariety of Gre1pX0q

consisting of the W satisfying

 rαk pWinpkqqs � r;


�
β�1
k pWoutpkqq

�
� s;


 αk pWinpkqq � β�1
k pWoutpkqq.

Define also the varietyrZe,r,spXq �
 
W P GrepXq |WEk P Ze1,r,spXq

(
so that, by an easy computation, rZe,r,spXq is a fiber bundle over
Ze1,r,spXq with fiber Grek�rps � rq (where, by abuse of notation,
we identify s � r > 0 with any of its representatives in modEk,
and Grek�rps � rq � H if ek � r or s � r are not nonnegative).
Hence, using the easy fact that GrepXq is the disjoint union of therZe,r,spXq, we obtain, as every considered irreducible representation
is of dimension 1,

χ pGrepXqq �
¸

r,sPCk

�
s� r
ek � r



χ
�
Ze1,r,spXq

�
.

where, for any r1, r2 P Ck,�
r1

r2



�

¹
ρPindk

�
r1,ρ

r2,ρ
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Then, substituting this expression in the definition of FX , we obtain:

FXpyq �
¸
ePC

� ¸
r,sPCk

�
s� r
ek � r



χ
�
Ze1,r,spXq

��
ye

�
¸

e1P
À
i�k Ci

r,sPCk

χ
�
Ze1,r,spXq

�
ye

1
¸

ekPCk

�
s� r
ek � r



yekk

�
¸

e1P
À
i�k Ci

r,sPCk

χ
�
Ze1,r,spXq

�
ye

1�rp1� ykq
s�r.

Now, as in [DWZ1], we have easily that

Ze1,r,spXq � Ze1,r,spX
1q

where

r �
�
e1 bEk A

�Ek

�
� hk � s and s �

�
e1 bEk AEk

�
� h1k � r.

Using this, one gets

p1� y1kq
h1kFX 1py1q �

¸
e1P
À
i�k Ci

r,sPCk

χ
�
Ze1,r,spX

1q
�
y1e

1�rp1� y1kq
h1k�s�r

�
¸

e1P
À
i�k Ci

r,sPCk

χ
�
Ze1,r,spXq

�
y1e

1

y
�s�h1k
k p1� ykq

h1k�s�r

�
¸

e1P
À
i�k Ci

r,sPCk

χ
�
Ze1,r,spXq

�
ye

1�rp1� ykq
hk�s�r

� p1� ykq
hkFXpyq

(iii) As gk � hk � h1k, g
1
k � �gk. If j � k, the equality we want to prove

becomes, using again gk � hk � h1k,

rker γ1js �
�
kerβ1k bEk Akj

�
� rker γjs �

�
kerβk bEk A

�
jk

�
and, up to a possible exchange of pA,S,X, V q and pA1, S1, X 1, V 1q,
we can suppose that Akj � 0 (because A is 2-acyclic) and therefore,
we have to prove that

rker γ1js � rker γjs �
�
kerβk bEk A

�
jk

�
.

Let
p rA, rS, rX, rV q � rµkpA,S,X, V q

in such a way that pA1, S1q is right-equivalent to p rA, rSqred. In this
setting, one will prove that

rker rγjs � rker γjs �
�
kerβk bEk A

�
jk

�
.

We can decompose

Xoutpjq � X bE A
�Ej � Xpkq bEk A

�
jk `XEk bEk EkA

�Ej
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and we getrXoutpjq � Xoutpkq bEk A
�
jk `XEk bEk EkA

�Ej

andrXinpjq � rXpkq bEk rAkj `Xinpjq � X 1pkq bEk A
�
jk `Xinpjq.

Along these decompositions, one has:

γj �
�
ψ � pβk bEk A

�
jkq η

�
and rγj � �

α1k bEk A
�
jk 0

ψ η



where ψ : Xoutpkq bEk A

�
jk Ñ Xinpjq and η : XEk bEk EkA

�Ej Ñ

Xinpjq are two Ej-modules morphisms (basically speaking, these
two morphisms encode the part of γj which is not modified by the
mutation at k). Using definitions of section 8, we get easily that
kerα1k � imβk and we get an exact sequence of Ej-modules:

0 Ñ kerβk bEk A
�
jk ` t0u Ñ ker γi

f
ÝÑ ker rγi Ñ 0

where, along the previous decompositions

fpu, vq � ppβk bEk A
�
jkqu, vq.

This short exact sequence implies that

rker rγjs � rker γjs �
�
kerβk bEk A

�
jk

�
.

To finish, it remains to prove that rker rγjs � rker γ1js. The proof is
the same than in [DWZ1]. �

Definition 9.15. For any GSPDR pA,S,X, V q, we define in the following
way the reduced g-vectors, h-vectors and F -polynomials:


 for i P I, let ǧX,V � pǧiqiPI defined by ǧi � dimK gi where pgiqiPI �
gX,V ;


 for i P I, let ȟX,V � pȟiqiPI defined by ȟi � dimK hi where phiqiPI �
hX,V ;


 F̌X � ΦYÑZpFXq where pYiqiPirr and pZiqiPI are families of indeter-
minates.

Corollary 9.16. Let pA,S,X, V q be a GSPDR such that pA,Sq is non-
degenerate and locally free. Let k P I. Denote

pA1, S1, X 1, V 1q � µkpA,S,X, V q.

Suppose also that the Y -seed pz1, BpA1qq is obtained from pz,BpAqq by the
mutation at k. Denote ǧX,V � pǧiqiPI , ǧX 1,V 1 � pǧ1iqiPI , ȟX,V � pȟiqiPI and
ȟX 1,V 1 � pȟ1iqiPI . We also denote by pbijqi,jPI the coefficients of BpAq. Then

(i) @i P I, ǧi � ȟi � ȟ1i;
(ii) one has

pzk � 1qȟk F̌Xpzq � pz1k � 1qȟ
1
k F̌X 1pz1q;

(iii) for any j P I,

ǧ1j �

"
�ǧj if j � k
ǧj �maxp0, bjkqǧk � bjkȟk if j � k;
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(iv) if FX P Q�pY q, then F̌X P Q�pZq. Then ȟX and F̌X are related by
the following formula:

ZȟX
0 � F̌X|TroppZ0q

�
Z�1

0,i

¹
j�i

Z
maxp0,�bjiq
0,j

�
iPI

.

Proof. The points (i) and (iii) are immediate consequences of proposition
9.14. To prove (ii), it is enough to apply ΦyÑz to the analogous identity in
proposition 9.14 (for any extended free Y -seed py, pA,Sqq) and then apply
proposition 9.13. For (iv), remark that for any pi, ρq P irr,

ΦY0ÑZ0

�
Y �1

0,i,ρY
rρbEiEiA

�s

0

	
� Z�1

0,i

¹
j�i

Z
maxp0,�bjiq
0,j

is independent of ρ and therefore, it is easy to see that

F̌X|TroppZ0q

�
Z�1

0,i

¹
j�i

Z
maxp0,�bjiq
0,j

�
iPI

�ΦY0ÑZ0

�
FX|TroppY0q

�
Y �1

0,i,ρY
rρbEiEiA

�s

0

	
pi,ρqPI



�ΦY0ÑZ0

�
Y hX

0

	
� ZȟX

0

using proposition 9.6. �

In [FZ2], (see also [DWZ1, §2]), Fomin and Zelevinsky defined the notions
of the F -polynomials and the g-vectors associated to a sequence of mutation.
More precisely, for a skew-symmetrizable matrix B (which will play the role
of an initial seed), a sequence of indices i � pi1, i2, . . . , inq P I

n and k P I,
they define a polynomial FBk;i P ZrZisiPI and a vector gBk;i P ZI .

Definition 9.17. Let pA,Sq be a non-degenerate GSP and i � pi1, . . . , inq
be in In and V an E-module. We denote�

AA,SV ;i , S
A,S
V ;i , X

A,S
V ;i , V

A,S
V ;i

	
� µi1µi2 . . . µin pµin . . . µi2µi1pA,Sq, 0, V q .

Remark that
�
AA,SV ;i , S

A,S
V ;i

	
is right-equivalent to pA,Sq.

Thus, we can adapt theorem [DWZ1, theorem 5.1]:

Theorem 9.18. Let pA,Sq be a non-degenerate locally free GSP. Let i �
pi1, i2, . . . , inq P I

n, k P I and ρ P irrk. Then

g
BpAq
k;i � ǧ

XA,S
ρ;i ,V A,Sρ;i

and F
BpAq
k;i � F̌

XA,S
ρ;i

.

Proof. With corollary 9.16, it is the same proof as in [DWZ1]. �

We get also this following, analogous to [DWZ1, corollary 5.3]:

Corollary 9.19. In the situation of theorem 9.18, suppose that FBpAqk;i � 1,

hence XA,S
ρ;i � t0u and V A,S

ρ;i � t0u (see proposition 8.8). Let xBpAqk;i be the
corresponding cluster variable in the coefficient-free cluster algebra. In other
terms ��

x
BpAq
i;i

	
iPI
, B1

	
� µin . . . µi2µi1 ppxiqiPI , BpAqq .



22 LAURENT DEMONET

Then we have the following cluster character formula:

x
BpAq
k;i �

¹
iPI

x�dii

¸
ePC

χ pGrepXqq
¹
iPI

x
� rk γi�

°
jPIpmaxp0,bijqej�maxp0,�bijqpdj�ejqq

i

where X � XA,S
ρ;i , di � dimK Xpiq and ei � dimK ei.

10. E-invariant

The aim of this part is analogous to [DWZ1, §7, §8]. Let pA,S,X, V q
and pA,S,X 1, V 1q be two GSPDRs with the same non-degenerate GSP. We
denote:

xX,X 1y � dimK HomPpA,SqpX,X
1q.

Define the three following integer functions:

E injpX,V ;X 1, V 1q � xX,X 1y �
�
rXs|gX 1,V 1

�
EsympX,V ;X 1, V 1q � E injpX,V ;X 1, V 1q � E injpX 1, V 1;X,V q

EpX,V q � E injpX,V ;X,V q �
EsympX,V ;X,V q

2
where rXs P C is the class of X seen as an E-module, and, for e, e1 P C
(resp. e, e1 P Ck for k P I),�

e|e1
�
�

¸
iPirr

presp. iPirrkq

eie
1
i.

Then, we get, with the same proof as [DWZ1, theorem 7.1]:

Theorem 10.1. We have, for any k P I,

E inj
�
µkpX,V q;µkpX

1, V 1q
�
� E inj

�
X,V ;X 1, V 1

�
�
�
hµkpX,V q,k|hX 1,V 1,k

�
�
�
hX,V,k|hµkpX 1,V 1q,k

�
.

In particular, Esym and E are stable under mutations.

Proof. The only difference with [DWZ1] is that computations have to be done
in the Grothendieck groups. Moreover, we have to worry about the skew-
symmetrizability: with our convention, informally speaking, all bik should
be replaced by �bki in the proof of [DWZ1]). For example,¸

iPI

maxp0, bikqdimK Xpiq

in [DWZ1] will be replaced here by rX bE A
�Eks whose dimension is¸

iPI

maxp0,�bkiqdimK Xpiq

if the GSP is locally free and B � BpAq. �

We get also the following analogous of [DWZ1, corollary 7.2]:

Corollary 10.2. If pX,V q is obtained by a sequence of mutations from a
negative decorated representation pt0u, V q then EpX,V q � 0.
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We denote by Aop the pE,Eq-bimodule whose underlying vector space is
A and whose bimodule structure is given by g � aop � h � ph�1 � a � g�1qop

if g P Γi and h P Γj for some i, j P I and op : A Ñ Aop comes from the
identity of A. It is then easy to extend op to an anti-isomorphism of algebras
ExxAyy Ñ ExxAopyy. Thus, pX�, V �q is a decorated representation of the
GSP pAop, Sopq on the ring E, where for each i P I, X�

i is contragredient to
Xi, V �

i is contragredient to Vi and aop acts on X� as the transpose of a for
every a P A. Thus, one gets the analogous of [DWZ1, proposition 7.3]:

Proposition 10.3. We have EpX�, V �q � EpX,V q.

Proof. As for any i P I, the characteristic of K does not divide #Γi, we have
an isomorphism of right E-modules

pX bE Aq
� Ñ X� bE A

� op � X� bE A
op�

f ÞÑ
¸
xPBX
aPBA

fpxb aqx� b a� op

�
xb a ÞÑ

¸
iPI

¸
gPΓi

ϕpxgqψpg�1aq

#Γi

�
Ðß ϕb ψop

which does not depend of the bases BX and BA of X and A. Thus, we have,
as in [DWZ1],

EpX,V q �xX,Xy � prXs|rX bE A
�sq �

�
rXs

����� rV s � rXs �

�à
iPI

im γi

��

�xX,Xy � prX bE As|rXsq �

�
rXs

����� rV s � rXs �

�à
iPI

im γi

��
�xX�, X�y � prpX bE Aq

�s|rX�sq

�

�
rX�s

����� rV �s � rX�s �

�à
iPI

im γ�i

��
�xX�, X�y � prX� bE A

op�s|rX�sq

�

�
rX�s

����� rV �s � rX�s �

�à
iPI

im γ�i

��
�EpX�, V �q

where we used that

prXs|rX bE A
�sq � dimK HomEpX,X bE A

�q

� dimK HomEpX bE A,Xq � prX bE As|rXsq . �

Hence, the following theorem has the same proof as [DWZ1, theorem 8.1]
(note that all [DWZ1, §10] can be easily adapted in this case):

Theorem 10.4. The E-invariant satisfies

EpX,V q >

��à
iPI

kerβi

� �����
�à
iPI

ker γi
imβi

��
� prXs|rV sq .
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Then, we obtain the analogous of [DWZ1, corollary 8.3]:

Corollary 10.5. If EpX,V q � 0 then for each pk, ρq P irr,
(i) either rMksρ � 0 or rVksρ � 0;
(ii) either rker γksρ � 0 or rker γksρ � rimβksρ.

11. Applications to cluster algebras

We conclude here that the following conjectures of [FZ2] are true for skew-
symmetrizable integer matrix which can be obtained from a non-degenerate
GSP with abelian groups. In particular, every matrix of the form DS where
D is diagonal with integer coefficients and S is skew-symmetric with integer
coefficients can be obtained in view of section 7. Every exchange matrix
corresponding to the situation described in [Dem] (in particular every acyclic
ones) can also be raised. Let B be such a skew-symmetrizable integer matrix.
We suppose moreover that some pA,Sq is fixed satisfying the hypothesis of
section 9 such that BpAq � B.

Proposition 11.1 ([FZ2, conjecture 5.4]). For any i P In and k P I, FBk;i

has constant term 1.

Proposition 11.2 ([FZ2, conjecture 5.5]). For any i P In and k P I, FBk;i

has a maximum monomial for divisibility order with coefficient 1.

These first two are immediate, as in [DWZ1, §9].

Proposition 11.3 ([FZ2, conjecture 7.12]). For any i P In, k P I, we
denote by ki the concatenation of pkq and i. Let j P I and pgiqiPI � gBj;i and

pg1iqiPI � g
µkpBq
j;ki . Then we have, for any i P I,

g1i �

"
�gi if i � k;
gi �maxp0, bikqgk � bjk minpgk, 0q if i � k.

Proof. We need here to add some trick to the proof of [DWZ1, §9]. Indeed,
we need to prove, as in [DWZ1], that

minp0, gkq � hk.

But what we obtain by using corollary 10.5 is

minp0, gk,ρq � hk,ρ

for any ρ P irrk. Moreover, we have, as seen before,

gk �
¸
ρPirrk

gk,ρ and hk �
¸
ρPirrk

hk,ρ

and therefore, what we need is equivalent to the fact that the gk,ρ are of
the same sign. We will prove this with an indirect method. Retaining the
notation of definition 9.17, we get

XA,S
Ej ;i

�
¸
ρPirrj

XA,S
ρ;i

and therefore, by linearity of g,

g
XA,S
Ej ;i

�
¸
ρPirrj

g
XA,S
ρ;i

.
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Hence, we get:

p#Γjqgk � dimK

�
g
XA,S
Ej ;i

�
k

.

In the same way,

p#Γjqhk � dimK

�
h
XA,S
Ej ;i

�
k

.

Moreover, by an immediate induction using proposition 9.14, as rEjs is the

class of a free Ej-module,
�
g
XA,S
Ej ;i

�
k

and
�
h
XA,S
Ej ;i

�
k

are also free and therefore,

their coefficients in term of the irreducible representations of Ek are of the
same sign. Hence, we obtain, by adding these components

minp0, p#Γjqgkq � p#Γjqhk

and the rest follows as in [DWZ1]. Note that it implies also that the gk,ρ are
of the same sign. �

The three following propositions have the same proof than in [DWZ1, §9]:

Proposition 11.4 ([FZ2, conjecture 6.13]). For any i P In, the vectors gBi;i
for i P I are sign-coherent. In other terms, for i, i1, j P I, the j-th components
of gBi;i and gBi1;i have the same sign.

Proposition 11.5 ([FZ2, conjecture 7.10(2)]). For any i P In, the vectors
gBi;i for i P I form a Z-basis of ZI .

Proposition 11.6 ([FZ2, conjecture 7.10(1)]). For any i, i1 P In, if we have¸
iPI

aig
B
i;i �

¸
iPI

a1ig
B
i;i1

for some nonnegative integers paiqiPI and pa1iqiPI , then there is a permutation
σ P SI such that for every i P I,

ai � a1σpiq and ai � 0 ñ gBi;i � gBσpiq;i1 and ai � 0 ñ FBi;i � FBσpiq;i1 .

In particular, FBi;i is determined by gBi;i.

12. An example and a counterexample

The aim of this part is to show an example where the technique shown
in the previous sections works and a counterexample where there is no non-
degenerate potential.

Suppose here that K � C. We fix Γ1 � Γ2 to be the trivial group and
Γ3 � Z{2Z. We take A12 � C and A23 � CrZ{2Zs, the other Aij vanishing.
Then A is acyclic and therefore S � 0 is a non-degenerate potential, in view
of section 7. Moreover,

BpAq �

��0 �1 0
1 0 �1
0 2 0

�

which is of type C3. Its exchange graph is given on figure 1 where the small
dots (�) symbolize vertices with trivial group and big dots (
) symbolize
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Figure 1. Exchange graph of type B3

vertices with group Z{2Z. Simple arrows symbolize C and double arrows
symbolize CrZ{2Zs. Thus, pA,Sq will be symbolized by

�

� 



�� // // .

Finally, wave lines (�) symbolize mutations composed with the exchange of
vertices 1 and 2.

Now, we will compute explicitly FB3;213 and gB3;213. We will follow the
construction of section 9. According to the exchange graph,

µ3µ1µ2pA, 0q �

�
�

� 



�� 11

�� �� , 0

�
� pA1, S1q.
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Let ρ be one the two irreducible modules over Z{2Z. Then

µ3pA
1, S1, 0, ρq �

��� �

� 



��

11XXXX
, 0,

0

0 ρ
, 0

��


µ1µ3pA
1, S1, 0, ρq �

��� �

� 




FF 11

�� ��oooo , . . . ,

C

0 ρ
1111
�� �� , 0

��


µ2µ1µ3pA
1, S1, 0, ρq �

��� �

� 



�� // // , . . . ,

C

C ρ





��

// //
, 0

��

(the arrows are obvious) and therefore,

XB
ρ;213 �

C

C ρ





��

// //

which induces that:

FXB
ρ;213

� 1� Yρ � Y2Yρ � Y1Y2Yρ

and therefore
F̌XB

ρ;213
� 1� Y3 � Y2Y3 � Y1Y2Y3.

Moreover,

gXB
ρ;213

�

�� 0
0
�ρ

�

and therefore

ǧXB
ρ;213

�

�� 0
0
�1

�
.
It is easy to check by hand that these coincide with FB3;213 and gB3;213 obtained
for example by formulas of [DWZ1, §2].

Let now B be the matrix defined by

B �

��������
0 0 1 1 �1 �2
0 0 �1 �1 1 2
�1 1 0 0 0 0
�1 1 0 0 0 0
1 �1 0 0 0 0
1 �1 0 0 0 0

�������
.
We will show that there is no non-degenerate locally free GSP with mu-

tation matrix B. Suppose that pI, pΓiq, A, Sq is a non-degenerate GSP with
mutation matrix B. Then, Γ1, . . . , Γ5 have the same cardinal which is two
times the one of Γ6. Applying µ3 followed by µ5 create 2-cycles and implies,
in view of proposition 4.10, that

A23 bE3 A31 � pA15 bE5 A52q
� .
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In the same way, applying µ4 followed by µ5 implies that

A24 bE4 A41 � pA15 bE5 A52q
� .

With the same type of argument, applying µ3, µ4 and µ6 implies that

pA23 bE3 A31q
`2 � A24 bE4 A41 `A23 bE3 A31 � pA16 bE6 A62q

� .

As all considered groups are semisimple, it is easy to see that the pE1, E6q-
bimodule A16 can be decomposed as a direct sum of the form

A16 �
mà
i�1

ri bK si

where the ri are irreducible left E1-modules and the si are irreducible right
E6-modules. Moreover, the ri bK si are irreducible bimodule and satisfy,
because of B,

@r P irr1,
¸

i | ri�r

dimK si � dimK r and @s P irr6,
¸

i | si�s

dimK ri � 2 dimK s.

Thus, there are exactly two indices which can be supposed to be 1 and 2
such that s1, s2 are trivial and r1 and r2 are of dimension 1 and appear only
one time in the sequence priq. In the same way,

A62 �
nà
i�1

ti bK ui

with

@t P irr6,
¸

i | ti�t

dimK ui � 2 dimK t and @u P irr2,
¸

i |ui�u

dimK ti � dimK u.

Thus, there are exactly two indices which can be supposed to be 1 and 2
such that t1, t2 are trivial and the u1 and u2 are of dimension 1 and appear
only one time in the sequence pujq. Hence,

pA16 bA62q
� �

mà
i�1

nà
j�1

si�t
�

j

�
u�j bK r�i

�dimK si

contains u�1br�1`u�1br�2`u�2br�1`u�2br�2 as the only summands containing
u�1 , u�2 , r�1 and r�2 . Finally, pA16 bA62q

� can not be decomposed as a direct
sum of two times the same bimodule, which is a contradiction.
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