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AND THEIR REPRESENTATIONS.
APPLICATIONS TO CLUSTER ALGEBRAS.

LAURENT DEMONET

ABSTRACT. This article tries to generalize former works of Derksen,
Weyman and Zelevinsky about skew-symmetric cluster algebras to the
skew-symmetrizable case. We introduce the notion of group species with
potentials and their decorated representations. In good cases, we can
define mutations of these objects in such a way that these mutations
mimic the mutations of seeds defined by Fomin and Zelevinsky for a
skew-symmetrizable exchange matrix defined from the group species.
These good cases are called non-degenerate. Thus, when an exchange
matrix can be associated to a non-degenerate group species with poten-
tial, we give an interpretation of the F-polynomials and the g-vectors
of Fomin and Zelevinsky in terms of the mutation of group species with
potentials and their decorated representations. Hence, we can deduce
a proof of a serie of combinatorial conjectures of Fomin and Zelevinsky
in these cases. Moreover, we give, for certain skew-symmetrizable ma-
trices a proof of the existance of a non-degenerate group species with
potential realizing this matrix. On the other hand, we prove that certain
skew-symmetrizable matrices can not be realized in this way.
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2 LAURENT DEMONET

1. INTRODUCTION

The aim of this paper is to extend the results of [DWZ2| and [DWZI]
to the case of skew-symmetrizable exchange matrices. Unfortunately, the
techniques presented here do not work in any situation, but nevertheless in
some important cases.

For this, we introduce group species with potential (GSP), which can be
seen as quivers with potential with more than one idempotent at each vertex.
Thus, we can also define a Jacobian ideal and a Jacobian algebra and study
their representations. More precisely, we define the notion of a group species
with potential with a decorated representation (GSPDR) and the notion of
the mutation of a GSPDR at a vertex k (which is called the direction of
the mutation). In good cases, we can mutate a GSPDR as many times as
we want in any direction. In this case, the underlying GSP is called non-
degenerate. Moreover, we can associate to certain GSPs, called locally free,
a skew-symmetrizable matrix in such a way that the mutation we introduce
projects, when it exists, to the mutation of matrix introduced by Fomin
and Zelevinsky [FZ1]. Any skew-symmetrizable matrix can be reached in
this way using a locally free GSP. The hard problem is to find which skew-
symmetrizable matrix can be reached using a non-degenerate GSP. It is the
case of matrices of the form DS where D is diagonal with positive integer
coeflicients and S is skew-symmetric with integer coefficients. It is also the
case for the skew-symmetrizable matrices which occur in the situation of
[Dem]|, in particular in all acyclic cases. Nevertheless, it is not always true,
as shown by the counterexample at the end of section 12. The techniques
presented in [DWZ2| work here almost in the same way. The only problem
is that it is not always the case that for any 2-cycle, there exists a potential
canceling it (this fact is very easy in the context of [DWZ2]).

We now explain the content of this article in more details. Let K be an
algebraically closed field. Let I be a finite set and E = @,.; K[I';] where, for
each i, I'; is a finite group whose cardinal is not divisible by the characteristic
of K. Let also A be an (E, E)-bimodule. This data is called a group species
and its complete path algebra is

E{Ayy =[] A®"

neN

A potential S on this group species can be seen as a (maybe infinite) lin-
ear combination of cyclic path, up to rotation. It permits to construct
a two sided ideal J(S5), called the Jacobian ideal and a quotient algebra
P(A,S) = E(A))/J(S) called the Jacobian algebra. A decorated representa-
tion of the GSP is a pair consisting of a P(A, §)-module X and an E-module
V. In sections 5 and 8, we define the mutation of a GSP with a decorated
representation (GSPDR). This mutation is well defined if the group species
has no loop and is 2-acyclic (that is, for any i € I, F;(A® A®g A)E; = 0,
where E; = K[I';] © E).

In what follows, we suppose that the I'; are commutative and that the
GSP is locally free, that is, for any 7,5 € I, E;AFE; is a free F;-left module
and a free Ej-right module. In section 6, we define the exchange matrix B
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of a the group species by
bij = dlmEJ Aji - dlIIlE] A:‘]

Thus, the mutation of GSPDRs descends to the mutation of matrices defined
by Fomin and Zelevinsky [FZ1]. In section 7, we discuss a class of matrices,
namely those of the form D.S, for which there is always a non-degenerate
GSP. Moreover, we remark that there exists also non-degenerate GSP in
all cases which are categorified in [Dem| (because the endomorphisms rings
of cluster-tilting objects constructed in [Dem]| are Jacobian algebras). Re-
mark also that there is no chance, with definitions given here, to construct
non-degenerate GSPs for any skew-symmetrizable matrix, as shown by the
counterexample ending section 12.

Following the ideas of [DWZ1], we explain in section 9 how to reinterpret
the F-polynomials and g-vectors defined in [FZ2] in terms of GSPDRs and
their mutations. We deduce in section 11 that, when a skew-symmetrizable
matrix can be obtained from a non-degenerate GSP, then the following con-
jectures are true:

Conjecture ([FZ2, conjecture 5.4]). For any i € I" and k € I, FP, has
constant term 1.

Conjecture (|[FZ2, conjecture 5.5|). For any i€ I"™ and k € I, F,fi has a
mazimum monomaal for divisibility order with coefficient 1.

Conjecture ([FZ2, conjecture 7.12|). For any i € I", k € I, we denote
by ki the concatenation of (k) and i. Let j € I and (gi)ier = gfi and
i (B)

(g))ier = 8iki - Then we have, for any i€ I,
g9 ifi = k;
! gi + max(0, bi)gr — bjr min(gg,0)  if i # k.

Conjecture ([FZ2, conjecture 6.13]). For any i € I", the vectors g5, for
i € I are sign-coherent. In other terms, for i,i',j € I, the j-th components
of gfi and gﬁi have the same sign.

Conjecture ([FZ2, conjecture 7.10(2)]). For any i€ I", the vectors g& for
iel form a Z-basis of 7.
Conjecture ([FZ2, conjecture 7.10(1)]). For any i,i’ € I", if we have
B B

Z aig;i = Z a;gz‘;i’

i€l i€l
for some nonnegative integers (a;)ier and (al)ier, then there is a permutation
o € &1 such that for every i€ I,

ai = Gy and a; # 0=g;;= Bo(iy ond ap # 0= F;= (i)'

In particular, FZB; 1s determined by gfi.

Thus, as stated in [FZ2, remark 7.11|, if B is a full rank skew-symme-
trizable matrix which correspond to a non-degenerate GSP, then the cluster
monomials of a cluster algebra with exchange matrix B are linearly indepen-
dent.
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2. GROUP SPECIES AND PATH ALGEBRAS

Let K be a field.

Definition 2.1. A group species is a triple (I, (I';)ier, (Aij) (i j)er2) where I
is a finite set, for each i € I, I'; is a finite group and for each (i,5) € I?, A;;
is a finite dimensional (K[I';], K[I'j])-bimodule (the first acting on the left
and the second on the right).

Fix now such a group species Q = (I, (I'y)ier, (Aij) (i j)erz)

Definition 2.2. A representation of Q is a pair ((Vi)ier, (%ij) (i j)er2) where
for each ¢ € I, V; is a right finite dimensional K[I';]-module and for each
(i,j) € I,

Tij € Hompj (‘/z ®Fi Aij, ‘/J)

Definition 2.3. Let ((Vi)iela (:Uij)(i,j)eﬂ) and ((Vil)iej, (x;j)(i,j)eﬁ) be two
representations of Q. A morphism from the first one to the second one is a
family (f;)ier € [ |;e; Homr,(V;, V) such that for each (4, j) € I? the following
diagram commute :

Vi®r, Aij ——=V;

fi®lda,; J/ lfj
V/ ®r, Aij — V]

3

Remarks 2.4. e The previous definitions give rise to an abelian cate-
gory.

e If for each 7 € I, I'; is the trivial group, we get back the classical
definition of a quiver (up to the choice of a basis of each A;;) and
of the category of representations of a quiver.

o If for each i € I, K[I';] is replaced by a division algebra, we obtain
the usual definition of a species (see for example [DR]).

Definition 2.5. For each i € I, denote E; = KJ[I';]. Denote also E =
@je; Ei and A = @(i,j)elg A;;. Thus, we put the natural (E, E)-bimodule
structure on A and define the graded algebras

E(A) = @ A®" and E(A) =[] 4%
neN neN
the first one being called the path algebra of the group species and the second
one the complete path algebra of the group species (note that every tensor
product is taken over E).

Remarks 2.6. e As usual for quiver, the category of representations of
a group species is equivalent to the category of finite dimensional
right modules over its path algebra. Moreover, the category of nilpo-
tent representations of a group species is equivalent to the category
of finite dimensional right modules over its complete path algebra.

o If one denotes

m = [ [ A%" < E(A))

n>0
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which is clearly a two-sided ideal, then E{{A)) becomes a topological
algebra for the m-adic topology and E{A) is a dense subalgebra of
it.

As in [DWZ2|, m is the unique maximal two-sided ideal of E{{A)) not
intersecting . Moreover, if we have another group species with the same
vertices whose arrows are encoded in the (E, E)-bimodule A’, then, again as
in [DWZ2], the morphisms ¢ from E{(A)) to E{{A")) such that ¢p = Idg
(later called E-morphisms) are parameterized in an obvious way by a pair
(M), @) where M) : A — A" and ¢® : A - m'? are (F, E)-bimodule
morphisms. Thus, ¢ is an isomorphism if and only if go(l) is an isomorphism.
Introduce now the analogous of [DWZ2, definition 2.5|:

Definition 2.7. An E-automorphism ¢ of E{(A)) will be called a change
of arrows if (2 = 0 and a unitriangular automorphism if o) = Idy.

Finally, introduce the following useful notation:

Notation 2.8. For all 4,5 € I,
B(Ay; = BECAE; and  BUAYy = BE(ANE,
and for n € N|
A%n = A®n N E<A>ZJ = A®n M E<<A>>Zj

so that
= @3 it B[4

neN neN
3. POTENTIAL AND THEIR JACOBIAN IDEALS

Following [DWZ2| define:
Definition 3.1. Define
ELA))

E{A))eye =
CAee = [y, B
whose elements are called potentials (here, [E((A)), E{(A))] is the closure
of the two-sided ideal generated by commutators). As [E{(A)), E{(A))] is

generated by its homogeneous elements, we can decompose E{(A))cyc =
[ Ten A?Y’z where

A®? = ae
T ELA), ELA)] n A

and, if S € E{{A))eyc, we write S its summand which lies in AZ"

cyc*

Definition 3.2. Define the continuous linear map

01 (BECAN) @k ELA)) — E(A))
in the following way. First remark that (E({A)))* ~ @,y (A%™)*. Then,
if ¢ € (A%")* and ay,az,...,a; € A define d¢(ajaz...ar) = 0if £ < n and

L

-1 -1

aé(alag cee ag) = Z Z § (g AjA541 - - aj+n_1h) h AjrnGijtn+l---A5-19
j=1g,heB
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if £ > n where all indices are taken modulo £ and B = | J,;I'i € E. It is easy
to see that ¢ is well defined and moreover that it vanishes on commutators.
Thus, we can descend ¢ to a continuous linear map

0 (BEAY))* @k ELA))eye = ELAY).
Remark 3.3. With the natural structure of (E, E)-bimodule on (E{(A)))*,

one gets, for any S € E((A))cyc, that & = 0¢S is a morphism of (F, E)-
bimodules.

Definition 3.4. For a potential S € E{(A))cyc, define the Jacobian ideal
J(S) to be the closure of the two-sided ideal of E{(A)) generated by the
0¢(S) for £ € A*. The quotient E{(A))/J(S) is called the Jacobian algebra
and is denoted by P (A, S) (we do not keep trace of (I, (I';)) in the notation
because it will be fixed).

Note that every E-morphism ¢ : E{(A)) — E{{(A’)) descends to ¢ :
E{(A))eye = EXCAT) Jeye.
It is now easy to adapt the proof of [DWZ2, proposition 3.7]:

Proposition 3.5. Let S € E{(A))cyc. Every E-isomorphism ¢ : E((A)) —
E{A"YY maps J(S) to J(p(S)) and therefore induces an isomorphism

P(A,S) - P(A, ¢(S)).

4. GROUP SPECIES WITH POTENTIALS

For the rest of this article, the data (I, (I';)) and so E will be fixed.
Following the ideas of [DWZ2], define:

Definition 4.1. As before, A is an (F, E)-bimodule and we take S €
E{{(A))cyc. We say that (A,S) is a group species with potential (GSP
for short) if the species has no loop (for all i € I, E;AE; = {0}) and
Se Hn>1 A?yré

Definition 4.2. Let (A,S) and (A4’,5’) be two GSPs. One says that an

E-isomorphism ¢ : E{{A)) — E{(A")) is a right-equivalence if ¢(S) = 5.
Note that this definition induces a equivalence relation. Moreover, a right

equivalence (A, S) ~ (A4’,5") induces isomorphisms of (E, E)-bimodules A ~

A" J(S) ~ J(S") and P(A,S) ~ P(A’,S) as said before.

Notation 4.3. If (A, S) and (A’, S") are two GSPs, define (A4, S)®(A’,S") =

(A@ A, S+ 5") so that P((A4,S) @ (A’,5")) is the completion of P(A,S) ®

P(A’,S") for the product topology.

Definition 4.4. We say that a GSP (A,S) is trivial if S € A%?C and

{0:(S) | £ € A*} = A, or, equivalently, if P(A,S) = E.

The following easy proposition is an adaptation of [DWZ2, proposition
4.4]:

Proposition 4.5. A GSP (A, S) is trivial if and only if there exist an (E, E)-
bimodule B and an (E, E)-bimodules isomorphism ¢ : A — B@® B* such that

e(S) = > b@b*
beB
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where ¢ is naturally extended to an isomorphism E{(A))cye — E{(B @
B*))eye and the right member does not depend of the choice of a basis B
of B.

One gets also this proposition, similar to [DWZ2, proposition 4.5|:

Proposition 4.6. If (A,S) is a GSP and (B,T) is a trivial GSP, then
the canonical embedding E{((A)Y) — E{{A @ B)) induces an isomorphism
P(A,S) ~P(A®B,S + T).

For a GSP (A,S), we define the trivial and reduced part of A as the
(E, E)-bimodules

Apiv = (08P | € A*} and  Ayeq = A/ Apiy.

Moreover, we say that (A,S) is reduced if 53 = 0, or, equivalently, if
Atriv = {0}
Again, the proof of [DWZ2, theorem 4.6] is easy to adapt:

Theorem 4.7. For any GSP (A, S), there exist Syiv € E{{Atriv)) and Sieq €
E{{Aieqy) such that (A, S) is right equivalent to (Atyiv, Striv) ® (Ared, Sred)-

Moreover, the right equivalence classes of (Airiv, Striv) and (Ared, Sred) are
uniquely determined by the right equivalence class of (A, S).

Definition 4.8. A group species (I, (I';), A) is called 2-acyclic if, for any
iel, B;A®?E; = {0}.

We will see now how to find, as in [DWZ2], algebraic conditions guarantee-
ing the 2-acyclicity of the reduced part of a group species. Let K [E{(A))cyc]
be the ring of polynomial functions on E{{A))y. vanishing on all but a finite
number of the Agg,’é

For each S € E{(A))cyc and i, j € I, define the bilinear form ag;; by:

A;‘j X A;-ki - K
G 3 [0/ ) () + oty (5]

~el;
’Y’GF]'
First, an easy lemma:

Lemma 4.9. Let i,j € I. The followings are equivalent:

(i) there exists S € E{(A))cyc such that ag;j is of mazimal rank;
(i) either Af; is a subbimodule of Aj; or Aj; is a subbimodule of A;j.

Proof. We clearly have ag;; = ag j; for any S and therefore, one can suppose
without loss of generality that dimg A;; < dimg Aj;. Suppose that ag;; is
of maximal rank. In any basis, the matrix of ag;; is the matrix of A;‘j —
Aji € > 3¢(S?) and therefore, Aj; is a subbimodule of Aj;.

ES

Reciprocally, suppose that Aij is a subbimodule of Aj;. Thus, if B is a
basis of A;;, define

SzZa@a*

where a* € A7, is identified with its image in Aj;. Then, it is clear that ag;
is of maximal rank. O
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Again, it is easy to generalize [DWZ2, proposition 4.15]:

Proposition 4.10. The reduced part of a GSP (A,S) is 2-acyclic if and
only if, for any i,j € I, agyj is of maximal rank. This condition is open.
Moreover, if, for any i,j € I, either A¥; is a subbimodule of Aji, either
A;‘i is a subbimodule of A;;, then there is a non empty Zariski open sub-
set U of E{A))eye, @ 2-acyclic (E, E)-bimodule A" and a regular map H :
U — E{A"))eye such that for any S € U, (Ared, Srea) is right equivalent to
(A", H(S)).

Proof. The arguments are the same than in [DWZ2]. For each i, € I?
choose Z;kj c AF; such that Z:j = Aj; or Z:j ~ Aj;. Let U to be the non-
empty open subset of E((A))cy. containing the S such that for all i,j € I,
Sigl 5% o A, is non-degenerate (it corresponds to the non-vanishing of a fixed

maximal minor of ag;;). Define A’ to be the intersection of the kernels of

the elements of the Z;kj Then the construction of H follows the proof of
[DWZ2, theorem 4.6]. O

5. MUTATIONS OF GROUP SPECIES WITH POTENTIAL

Let (A,S) and k € I be a vertex such that EyA®?E), = {0} (we say that
(A, S) is 2-acyclic at k). We suppose also that for any i € I, the characteristic

of K does not divide #T';. As in [DWZ2, §5], one defines Jix(4, S) = (4, 5)
where, if 4,5 € I,
ﬁu — A;kl lfk‘E{’L,]},
Y Ai @ Aik ®p, Ak otherwise.

In other terms,
A =EvAE, ® AELA® (EA)* @ (AEy)*

where By, = @, Ei. Let now [~] : ExE{ANE), — E{(A)) be the mor-
phism of k-algebras generated by [a] = a if a € E AE) and [ab] = ab €
AFELA if a € AE), and b € E A which is well defined because (A, S) has no
loop. Again, because (A, .S) has no loop, every potential S € E{(A))cy. has
a representative in By E{((AY)E) and it is easy to see that [—] descends to a
map
[=1: ECAY)eye = EXCAeye

Moreover, as for any ¢ € I the characteristic of K does not divide #I';, we
have a canonical sequence of isomorphisms

~ (B A)* ®p (AE,)* ®p AELA < E(AY)

and we define A;(A) to be the image of Id g, 4 through this isomorphism.
Thus, define
S = [S] + Ar(A).

The proof of [DWZ2, proposition 5.1] can be easily generalized:
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Proposition 5.1. If (4',S) is another GSP such that Ex A" = A'Ey, = {0},
then
i(A®A', S+ 8) = (A, S) @ (A, S").

Now, the proof of [DWZ2, theorem 5.2] is easy to generalize:

Theorem 5.2. The right-equivalence class of the GSP [ix(A, S) is fully de-
termined by the right-equivalence class of (A, S).

Definition 5.3. Using theorem 5.2 together with theorem 4.7, the right-
equivalence class of the reduced part of ig(A,S) is fully determined by the
right-equivalence class of (A,S). Thus we can define the map py from the
set of right-equivalence classes which are 2-acyclic at k to itself. It is called
the mutation at vertez k.

Again, the proof of [DWZ2, theorem 5.7 is easy to generalize:
Theorem 5.4. uy; is an involution.

Let us also remark that [DWZ2, proposition 6.1], [DWZ2, proposition 6.4]
and [DWZ2, corollary 6.6] can be generalized:
Proposition 5.5. The algebras ExP(A, S)Ey and EiP (fix(A, S)) Ey are
isomorphic.
Proposition 5.6. The Jacobian algebra P(A, S) is finite-dimensional if and
only if P (k. (A, S)) is.
Corollary 5.7. The Jacobian algebras ExP(A, S)Ey, and ExP (u(A, S)) E
are isomorphic and P(A, S) is finite-dimensional if and only if P (ui(A,S)

1S.

k
)
As stated in [DWZ2, remark 6.8], the following definition makes sense:

Definition 5.8. We define the deformation space of (A,S) to be
P(A,S)
E+[P(A,S),P(A,S)]
where [P(A,S),P(A,S)] is the closure of the two-sided ideal of P(A,S)
generated by the commutators.

Def(A,S) =

Thus, let us introduce the following extension of [DWZ2, proposition 6.9]:
Proposition 5.9. We have an isomorphism:
Def(A, S) ~ Def (jix(A, S)) .
Proof. 1t is enough to prove that
EyP(A,S)Ey
Ey + |ExP(A, S)Ey, ExP(A, S)Ey]

is in fact an isomorphism (which is true because A has no loop) and to use
proposition 5.5.

As in [DWZ2],
Definition 5.10. The GSP (A4, S) is called rigid if Def(A, S) = {0}.
Corollary 5.11. The GSP (A, S) is rigid if and only if pp(A,S) is.

— Def(A, S)
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6. EXCHANGE MATRICES

We suppose now that A has neither loop nor 2-cycle (that is A¥L =

cyc

AZ2 = {0}). We suppose also that for any (i,7) € I, A;; is a free left E;-

cyc
module and a free right Ej-module (we will call it a locally free GSP). Define
the matrix B = B(A) = B(A,S) to be the matrix with rows and columns

indexed by I and coefficients
bij = dimEj Aji - dlmEJ AZ*]

(by default, dimension are taken relatively to the left module structure).
This matrix is clearly skew-symmetrizable since

#Fj X bij = dimK Aji — dimK Afj
Definition 6.1. The matrix B is called the exchange matriz of A.
The following proposition justifies this generalization of [DWZ2]:

Proposition 6.2. Every skew-symmetrizable matrix B can be reached in this
way from a GSP.

Proof. Let B be a skew-symmetrizable matrix and D = (d;);e; be a diagonal
matrix with positive integer coefficients such that BD is skew-symmetric.
Let I'; = Z/d,Z and for (i, j) € I? such that b;; > 0,

Aji = K [2/(d;bij)Z] = K [Z/(=dibji)Z]
which is a left and right free (I';, I'; )-bimodule. It is clear that A = @), ;¢; Aij
has exchange matrix B. O
Proposition 6.3. Let ke I.

(i) The GSP [ip(A,S) is locally free.
(11) If uk(A,S) is 2-acyclic then it is locally free.
(111) If uk(A,S) is 2-acyclic then

ni(B(A,8)) = B(uk(A, S))
where the py on the left hand is the one defined in [FZ1]|. Namely:

—bj if k€ {i, j}
b, = bik |bri| + |bik| bri
4 bij + k 1Dk ;— [Bik| Brs otherwise
if B' = ju(B).
Proof. (i) First of all, it is clear that for i € I, E ~ E; as (E;, E;)-

bimodules (as E; is finite dimensional). Thus, for any i, A% and
A7, are left and right free modules. Moreover, as a right module,

dimp (A;kk)
Aik Qp,, Ay = Ay; "

and, as a left module,

dimpg, (Ag;
Ak ®p,, Akj = Ay, = ()

which ends the proof that fix(A,S) is locally free.
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(i) If one denotes (A, S) = Jix(A, S), one has
g = Ered @ A’Ztriv

As ﬁred is 2-acyclic, for any 4,5 € I, ﬁredﬂj =0 or ﬁred,ji = 0.
Suppose that gred,ij = 0. Hence gtriv,ji ~ ggriv,ij ~ ﬁ; is left
and right free (thanks to the previous point). Moreover, Eji =
Kred’ji @ ﬁtrimi and, as the categories of left F;-modules and right
FE;-modules are Krull-Schmidt, gred,ji is left and right free.

(iii) It is enough to remark that

dimp, Ag, ®p, A = dimp, AG5 M = dimp (Ay,) dimp, (Ag;)
and that
dimp, (Ajk ®p, Ar)* = dimp, (Af,) "% 4k = dimp, (Af;) dimp, (A%,)
and to use the definition and the duality Agiyi; ~ A:‘riv’ jir O

Definition 6.4. The group species is said to be globally free if, for any
i,j eI, A is a free (E;, Ej)-bimodule (that is a free E; @k E;p-module).

Remark 6.5. The class of globally free group species is stable under mutation.

Proposition 6.6. If a matriz is of the form DB, where D is diagonal with
positive integer coefficients and B is skew-symmetric, then the group species
constructed in proposition 6.2 is globally free.

7. EXISTANCE OF NONDEGENERATE POTENTIALS

If (I,(I';),A) is a group species without loop nor 2-cycle, a potential
S € E((A))cyc will be said to be non-degenerate if every sequence of mutation
going from (A, S) yields to a 2-acyclic GSP.

We cite the following adapted result, whose proof is the same than the
proof of [DWZ2, corollary 7.4]:

Theorem 7.1. If the group species is globally free then there is a countable
number of non-constant polynomials in K [E{(A))cyc| such that the non-
vanishing of these polynomials on S € E{(A))cyc implies that S is non-
degenerate. In particular if K is uncountable, there exist mon-degenerate
potentials.

Proof. The only thing to change is that, if the group species is globally
free, then for each ¢,j € I, either A;"j is a subbimodule of A;;, or A;i is a
subbimodule of A;; and, therefore, proposition 4.10 can be applied. O

Remark 7.2. It is also easy to prove that for any skew-symmetrizable ma-
trix B coming from the categories with an action of a group I' considered in
[Dem]|, there is a non-degenerate GSP realizing it. More precisely, the endo-
morphism ring of a I'-stable cluster-tilting object in the stable category of a
category constructed in [Dem] can be realized by a non-degenerate GSP (it
is the case because I'-2-cycles do not appear after mutations). In particular,
the only potential for an acyclic group species is non-degenerate.
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Another proposition linking rigid and non-degenerate potentials can be
adapted from [DWZ2, proposition 8.1 and corollary 8.2]:

Proposition 7.3. Every rigid globally free GSP (A, S) is 2-acyclic and, in
this case, S is non-degenerate.

As in [DWZ2, §8], there exist group species without rigid potentials. The
techniques of [DWZ2, §8] work also in the context of this article.

8. DECORATED REPRESENTATIONS AND THEIR MUTATIONS

The aim of this section is to adapt the results of [DWZ2, §10]. We suppose
here that for any ¢ € I, the characteristic of K does not divide the cardinal
of Fi.

Following [DWZ2, definition 10.1],

Definition 8.1. A decorated representation of a GSP (A, S) is a pair (X, V)
where X is a P(A, S)-module and V is a E-module.

In the following, we will look at pairs consisting of a GSP (A4,S) and
a decorated representation of it. We will denote this type of objects by
(A, S, X, V) and call them group species with potential and decorated repre-
sentation (GSPDR).

Following [DWZ2, definition 10.2],

Definition 8.2. A right-equivalence between two GSPDRs (4, S, X, V) and
(A, S, X' V') is a triple (p,1,n) such that:
e p: E{A)) — E{A")) is a right-equivalence from (A, S) to (A’, S")
(see definition 4.2);
e 1) : X — X’ is a linear isomorphism such that the following diagram
commutes:

X—X

l l

(U)X’
for any u € E{(A));

e 1:V — V' is an isomorphism.

Using proposition 4.6, for each GSPDR, (A4, S, X, V), the decorated repre-
sentation (X, V') can be seen as a representation of (Ared, S..). Thus, we can

call (A_,,S.,,X,V) the reduced part of (A, S, X, V). As in [DWZ2, propo-
sition 10.5], the right-equivalence class of the reduced part of a GSPDR is
fully determined by the right-equivalence class of this GSPDR.

Now, we can define the mutation of a GSPDR (A4, S, X,V). Let k € I.
Our aim is to define a GSPRD ux(A,S, X, V) = (4,5, X', V') such that
(A, S") = ui(A, S). Denote:

Xin = XQg AE, and X, = X ®p A*EjL.
Thus, we can define two right Ej-module morphisms. One, «, from Xj, to

X = X Ej which is the application (z ® a) — xa and one from X}, to Xout
which is defined by

B(z) = ab@b*

beB
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which does not depend on the basis B of EFyA. Observe also that we have a
canonical sequence of isomorphisms:

HOHlEk (Xout; Xin) ~ HomE(X ®E A*Ek ®Ek EkA*, X)

It is not hard to see that [zt ®¢& +— x(0¢S)| € Homp(X ®f (AERA)*, X). Let
7 be the corresponding element of Hompg, (Xout, Xin)-
So we get, as in [DWZ2] a commutative diagram of right Ej-modules:

N

X, out

Xin

with ay = v = 0 [DWZ2, lemma 10.6]. For i € I, define:

X; iti#k
'— ¢ k ki
Xi T ®imy® —— @V, ifi=k
mf im~y
and
Vi ifi#k
!
1 ki
Vi erf if i =k

ker 8 nim «

To get the structure of an P(A’, S’)-module on X', we must define the
way A acts on it where (A, 5) = fix(A,S) (as P(A,5") ~ P(A,S)). Recall
from §5, that

A = B AE, @ AELA® (EyA)* @ (AEy)*.

First of all, B, AE, @ AExA ¢ ExE{{A))E}, and for the vertices outside k,
X]. = Xj. Therefore, we can take the same action for this part of A. For

the rest, we have ﬁEk = A*FE, and E*Ek = AF)}, and therefore, we have to
define:

o X!, = X' Qg AE), = X @ A*Ej, = Xou — X},
and
B X, > X =X ®pgA*E, = X ®p AE, = Xin
As in [DWZ2|, we have to choose a splitting data:

o let p: Xout — ker~y be a splitting of kervy — Xyt in the category
mod F}, (it is possible, as the characteristic of K does not divide the
cardinal of I'y);

o let 0 : kera/im~y < kera a splitting of kera — kera/im+ in
mod Ey.

Now, using the direct sum decomposition

ker . ker o
X} = - T @imy @ - @V,
im 3 im -~y
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define
-
o = 0 and B =(0 ¢ w 0)
0

where 7 designs the canonical projection and ¢ the canonical injections.
Again, [DWZ2, proposition 10.7] can be adapted:

Proposition 8.3. The above definition gives rise to a decorated representa-
tion of (A, S) and, therefore, through the isomorphism P(A,S) ~ P(A’,S"),
to a decorated representation of (A’,S’).
Notation 8.4. We denote
(A, 8, X, V) = (4,8, X", V') and (A, S, X, V)= (A, S, X" V).
We can adapt [DWZ2, proposition 10.9]:

Proposition 8.5. The isomorphism class of the GSPDR Jix,(A, S, X, V') does
not depend on the choice of the splitting data.

and |[DWZ2, proposition 10.10 and corollary 10.12]:
Proposition 8.6. The right-equivalence classes of the GSPDRs
k(A S, X, V) and pp(A, S, X,V)
depend only on the right-equivalence class of (A, S, X, V).

Now an important theorem whose proof is the same as the one of [DWZ2,
theorem 10.13]:

Theorem 8.7. On the right-equivalence classes of GSPDRs which are 2-
acyclic at k, pg s an involution.

It is easy to define the notion of a direct sum of two decorated represen-
tations of a GSP and, therefore, the notion of an indecomposable decorated
representation of a GSP. Thus, as uy clearly commutes with this type of di-
rect sums, px acts on GSPs with indecomposable decorated representations.
We call a GSPDR (A4, S, X, V) positive if V' = {0} and negative if X = {0}.
Moreover, it is called simple at i € I if X @V is an indecomposable E;-
module. Then we adapt [DWZ2, proposition 10.15]:

Proposition 8.8. An indecomposable GSPDR is either positive, or negative
simple. The mutation ui exchange a positive simple at k with the corre-
sponding negative simple at k. Moreover, it is the only case where a mutation
interchanges positive and negative indecomposable GSPDRs.

As in [DWZ1, §6], denote, for k € I and X, X' € mod P(A, S),

Homlpl, (X, X') = { f € Hompa (X, X') | flxp, = 0} .
Cite now easy to adapt [DWZ1, proposition 6.1]:
Proposition 8.9. The mutation g induces an isomorphism
Homp(4 5)(X, X")  Homp,, (a,5)) (1 (X), pe(X'))

Homip), o (X, X)) Homp) 4 o (ui(X), j(X7))
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Remark 8.10. As claimed in [DWZ1, §6], the isomorphism of proposition 8.9
can be seen as a functorial isomorphism by introducing adapted quotient
categories.

9. F-POLYNOMIALS AND g-VECTORS OF DECORATED REPRESENTATIONS

The aim of this section is to define the notions of the F-polynomial and
the g-vector of a GSPDR and to give a link with the usual notion (see [FZ2]).
It is an extension of [DWZ1|. As before, (I, (I';)) and therefore E are fixed.
We suppose also that the characteristic of K does not divide any of the
cardinals of the groups I';. We suppose moreover that K is algebraically
closed and that all the I'; are commutative (as seen in section 6, this case is
sufficient to realize skew-symmetrizable exchange matrices).

Notation 9.1. For any i € I, denote irr; = irr(I';) the set of isomorphism
classes of irreducible representations of I';. One defines irr = [ J,c;{i} x irr;
and for i € I, C; = Ko(I';) ~ Z"™. We also denote C = Ko(F) = @®;; Ci ~
Z'". If Ve mod E (resp. V € mod E;), [V] is its class in C (resp. in C;). If
e e C (resp. ee () and (j, p) € irr (resp. p € irr;) then e, (resp. e,) is the
coefficient of (j, p) (resp. p) in e.

If (Y})jeirr (resp. (Yj)jeirr;) is a family of indeterminates or of elements of
a ring, and e € C (resp. e € (), one denotes

e
i
JEirr
(resp. jeirr;)

If (A,S) is a GSP, X a representation of it, [X] is its class, seen as an
E-module, in C. If e € C then Gre(X) is the Grassmanian of the P(A, S)-
submodules X' of X such that [X'] = e.

Let (A,S,X,V) be a GSPDR, we recall the diagram of section 8, by
changing a little the notation:

Xin (k)

Xout(k)

Definition 9.2. One defines the F-polynomial Fx of X to be a polynomial
in Z [(Y:)ieirr] defined by:

Fx(Y) =) x(Gre(X))Y®
ecC

where x is the Euler characteristic. One define also the g-vector gx i =
(9k)ker € C = @pes Ck by

gi = [ker vie] — [X (k)] + [V(K)].
With the same indexing, define hx = (ht),e; by
hy = —[ker B].
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Notation 9.3. If (V) is a family of indeterminates, we denote by Q4 (Y)
the free commutative semifield generated by its elements. If (y) is a family
of elements of a commutative semifield, we denote by Q. (y) the subsemifield
generated by its elements.

Then, it is easy to adapt [DWZ1, proposition 3.1], [DWZ1, proposition
3.2] and [DWZ1, proposition 3.3|:

Proposition 9.4. The polynomial Fx(Y') has constant term 1 and mazimum
term (for divisibility of monomials) YX1,

Proposition 9.5. If X' is another P(A, S)-module then Fxgx: = FxFxr.

Proposition 9.6. If Fx € Q. (Y), then Fx can by evaluated in the semifield
Trop(Y") where (Y')ieirr is a family of indeterminates. Then hx and Fx are
related by the following formula:

Y™ = Fxlmyop(yr) (K;lY{p@EiEiA*]) o
(%,p)€irr
Proof. We follow the proof of [DWZ1]. Remark that for any e € C,
Ye , (Y/—lyl[p®EiEiA*]) — Yl—e+[e®EA*].
(Y) mvopyry (Y7, o

For i € I, the exponent of Y/ = (Y] ,) can be rewritten as

pEirr;
—e; + [e RF A*Ei]
which can be interpreted as
—[X'(0)] + [Xou: ()]
for any submodule X’ of X such that [X'] = e. Thus, the end of the proof
is the same as in [DWZ1]. O
Recall the definition of a Y-seed:

Definition 9.7 ([DWZ1, §2]). A Y -seed is a pair (y, B) where y is a family of
elements of a semifield indexed by I and B is a skew-symmetrizable matrix.
For k € I, we define u(y, B) = (v, ux(B)) where, for i € I,

;) ifi=k
YT gy @b (g e i &

Now, define the notion of an extended Y -seed:

Definition 9.8. A extended Y -seed is a pair (y, (A4, S)) where y is a family
of elements of a semifield indexed by irr and (A4, S) is a non-degenerate GSP.
For k € I, we define u(y, (A,S)) = (v, ux(A, S)) where, for (i, p) € irr,

Y = Yip , iti=k
P yi,py,Ep@Ei zk](l_I_yk)[p@EzA:Z]*[p@ElAlk] le £ k'

Remark 9.9. The mutation of extended Y'-seeds is involutive.

Definition 9.10. A Y-seed or an extended Y-seed will be called free if its
variables y are algebraically independent.
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Remark 9.11. The notion of freeness for a Y-seed (or an extended Y-seed) is
stable under mutations. The semifield Z, (y) and the algebra Z[y] are also
stable under mutation, as the mutation is involutive.

Definition 9.12. Let (y, (A4, S)) be a free extended Y-seed and (z, B(A))
be a Y-seed (for the same A). The following morphism of algebra is called
the specialization map:

q)y—»z Y/ (y) - Z+(Z)
Yi,p 7> Zi-
The analogous for Z[y]| and Z[z] is also denoted by ®.
Proposition 9.13. Let (y, (A, S)) be a free extended Y -seed such that (A, S)

is a locally free GSP, and (z, B(A)) be a Y-seed. Let k € I. Denote y' =
wi(y), and 2’ = pp(z). Then, @y = @,

Proof. As y' generates Z (y') = Zy(y), it is enough to look at this for the
?JLp for (i, p) € irr. By definition,

¢y/7>2, (y’i’p) = Z:
If i = k, then

Oy oa(yl,) = Oy s (yi)) =5t =4
If i # k, then
[p®E; Akl A¥ - A,
Dy~ (yg,p) =0y . (yﬁpykp i (1+ yk)[p®E1Akl] [p®E’Alk])

-Ai o - .
=z 1_[ |:ZIEP®E'L k] (1 +Zk-)[p®ElA;:1]a [p@EiAzk]o]
O'Eck

_ . [Z;limK(P®EiAik)(1 + zk)dimK(P@)EiA;’:i)*dimK(P@EiAik)]

dimpg, A; ; * ; )
2 [Zk E; Sik (1 Zk;)dlmEi Akz dln’lEi Alkil
max(0,by; b
= Z; I:Zk aX( ok )(1 + Zk) bkl:| = Z,Z

(here we use the fact that every considered irreducible representation is of
dimension 1, as the considered groups are commutative and K is algebraically
closed). O

To make the relation with F-polynomials and g-vectors in cluster alge-
bras, we need the following adaptation of [DWZ1, lemma 5.2|:

Proposition 9.14. Let (A, S, X, V) be a GSPDR such that (A, S) is non-
degenerate. Let k € I. Denote (A",S", X", V') = ux(4,S,X,V). Suppose
also that the extended Y -seed (y', (A’,S")) is obtained from (y, (4, S)) by the
mutation at k. Denote gx v = (gi)ier, 8x'v' = (9)ier, hx,v = (hi)ier and
hX’,V’ = (hi)ze[ Then

(i) gxv =hxy —hx y;

(ii) one has

(g + D)™ Fx (y) = (yp + D" Fxo(y)
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where
(e + D™ = [T (e + D"

tEIrT)

(iii) for any j eI,
, —9j ifj=k
g9; =

Proof.

(i)

Win (k)

g; + [gk ®B, Akj] — [hk RF, Akj] + [hk ®B, A;k] if j #k.

(i) By definition, for i € I, g; = [kerv;] — [X(1)] + [V (4)], hi =
—[ker 8;] and h, = —[ker 3] (where ' is the analogous of 8 for
(X', V")). So it is enough to prove that

[ker vi] + [Vi] + [ker 8;] = [X (i)] + [ker B;].

From the definition of ] given in section 8, it is easy to see that
ker 8] ~ ker(v;)/im(B;) @ V;. And, therefore, the searched equality
reduces to
[im B;] + [ker B;] = [ X (7)]

which is obvious.

We follow the proof of [DWZ1, lemma 5.2]. Let e € C' and €’ its
projection in ), Ci. Let Xo = XE}, which is a E,P(A, S)E}-
module. For any E,P(A, S)Ej-submodule W of Xj, one can define

= W®Ek AEk - Xm(k) and Wout(k) = W@Ek A*Ek C Xout(k)

which are well defined because (A,S) has no loop (and therefore
Xjn =X ®Ek AEk and Xout =X ®Ek A*Ek)

For r,s € C, define Zg . s(X) to be the subvariety of Gre (Xo)
consisting of the W satisfying

o [ (Win(k))] =13

® [ﬁk_l (Wout(k))] =8;

o a (Win(k)) < B (Wour (k).
Define also the variety

Zeoys(X) = {W € Gre(X) | WEg € Ze/ v s(X)}

so that, by an easy computation, Ze,r,s(X ) is a fiber bundle over
Ze rs(X) with fiber Gre, _r(s — r) (where, by abuse of notation,
we identify s — r > 0 with any of its representatives in mod Ej,
and Gre, r(s —r) = J if e, —r or s — r are not nonnegative).
Hence, using the easy fact that Gre(X) is the disjoint union of the
Eeyr,s(X ), we obtain, as every considered irreducible representation
is of dimension 1,

VGt = % (27%) x(@orax)).

where, for any ri,re € Cj,

(%)= 11 (&)

pEindy
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Then, substituting this expression in the definition of F'x, we obtain:

Fx(y) = ), [ ) (esk__rr> X(Ze,f,s(X))] ye
eeC Lr,seCy,
= Z X (Ze/,r,s(X)) ye, Z <esk__rr> ka
e’e@#k Ci ekeCk
r,seCy
= D X (Zers(X)) A+ yp)
el€®i;&k Ci
r,seCy

Now, as in [DWZ1], we have easily that
Zet v s5(X) = Zer55(X')
where
T = [e’ ®z, A*Ek] —hp—s and §= [e’ ®z, AEk] — hj, —r.
Using this, one gets
Ly Foy) = D) X (Zoms(X)) Y/ (L4 yp)sT

e’G@i#k Ci
r,5€Cy,

1 —s—h/ T
= D X (Zows(X) ¥y ()T
e,ee_)i#kci
r,seCy

= Z X (Zel,r7s(X)) ye’Jrl‘(l + yk‘)thrsfr
e'€D; .y Ci
I‘,SGCk

= (1+yr)" Fx(y)
(iii) As gr = hx — hy, g, = —gk. If j # k, the equality we want to prove
becomes, using again g = hy — hj,
[ker ;] — [ker B}, g, Awj]| = [ker~;] — [ker B @, Afx]

and, up to a possible exchange of (A, S, X, V) and (A4', 5", X", V'),
we can suppose that Ay; = 0 (because A is 2-acyclic) and therefore,
we have to prove that

[ker 'yé] = [ker~;] — [ker Br ®F, A;‘k] .
Let
(A, S, X,V) =n(A, S, X,V)
in such a way that (A4’,S") is right-equivalent to (A, S)yeq. In this
setting, one will prove that
[ker %;] = [ker~;] — [ker B ®p, Af] -
We can decompose

Xow(j) = X ®p A*Ej = X (k) ®p, A} ® XE} ®z, ELA*E;
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and we get

Kout(j) = Xow (k) ®p, A% ® XEy O, ExA*E,
and
Kin() = X (k) ®p, Arj ® Xin(j) = X' (k) ©p, A%, ® Xin(j).
Along these decompositions, one has:
v = (Vo (B ®p, A%) 1) and ¥ = (a; ®Zk At 2)

where ¢ 1 Xou (k) ®p, A;‘k — Xin(j) and n : XE}, Qz, ELA*E; —
Xin(j) are two Ej-modules morphisms (basically speaking, these
two morphisms encode the part of «; which is not modified by the
mutation at k). Using definitions of section 8, we get easily that
ker o) = im ), and we get an exact sequence of E;-modules:

0 — ker B ®p, Aj, @ {0} — ker ER ker%; — 0
where, along the previous decompositions
F(u,0) = (B @, A%, ).
This short exact sequence implies that
[ker%;] = [ker~;] — [ker B ®p, Af] -
To finish, it remains to prove that [ker ;] = [ker~;]. The proof is
the same than in [DWZ1]. O

Definition 9.15. For any GSPDR (A4, S, X, V), we define in the following
way the reduced g-vectors, h-vectors and F-polynomials:

o forie I, let gx v = (gi)ier defined by §; = dimg g; where (g;)ier =

gX,V;

e forie I, let flxy = (hi)iel defined by iLZ = dimg h; where (hi)ie[ =
hx v;

o I'y = ®y_,z(Fx) where (Y;)ieirr and (Z;);es are families of indeter-
minates.

Corollary 9.16. Let (A,S,X,V) be a GSPDR such that (A,S) is non-
degenerate and locally free. Let k€ I. Denote

(A/7 SI7 XI7 V/) = l’Lk(A7 S? X? V)'
Suppose also that the Y-seed (2', B(A")) is obtained from (z, B(A)) by the

mutation at k. Denote §xv = (Ji)ier, &x',v' = (Ji)ier, hx,v = (hi)ier and
hx/ v = (1))ier. We also denote by (bij)ijer the coefficients of B(A). Then

(i) Vi € 1,g; = hi — Bl
(ii) one has
(2 + D Fx(2) = (2 + 1P Eyr (2);
(iii) for any j eI,
g’:{‘gﬂ' o ifi=k
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(iv) if Fx € Qu(Y), then Fx € Q(Z). Then hx and Fx are related by
the following formula:

h ~ max(0,—bj;
Z8% = Fxltvop(zo) ( % ) :
i€l

J#i

Proof. The points (i) and (iii) are immediate consequences of proposition
9.14. To prove (ii), it is enough to apply ®,_,, to the analogous identity in
proposition 9.14 (for any extended free Y-seed (y, (A4,S))) and then apply
proposition 9.13. For (iv), remark that for any (i, p) € irr,

B A¥] ;
By. oz (Yb 7’/)Yv[P@EZ ) H Zmax (0,—bj;)
J#i
is independent of p and therefore, it is easy to see that

- max{0,—b,;
FX|Trop(Z0) ( H Z (O ! ))
el

J#i

_ [p®EiEiA*]
:(I’Y0_>ZO (FX|Trop(Y()) (}/d,l,p}/() )(i,p)é])

~ By (Y0 ) = 20
using proposition 9.6. O

In [FZ2|, (see also [DWZ1, §2|), Fomin and Zelevinsky defined the notions
of the F-polynomials and the g-vectors associated to a sequence of mutation.
More precisely, for a skew-symmetrizable matrix B (which will play the role
of an initial seed), a sequence of indices i = (i1,42,...,i,) € I" and k € I,
they define a polynomial F,fi € Z[Z;)ier and a vector ggi e 7!

Definition 9.17. Let (A, S) be a non-degenerate GSP and i = (i1,...,5)
be in I™ and V an E-module. We denote

AS QAS AS 1,AS
(AVI 7SV1 7XV1 7V ) = /’Lill’l’lé . MZn (Mln o MZ2:U’11(A7S)7O7V) :
Remark that (Aé‘lg, S{;‘f ) is right-equivalent to (A, S).
Thus, we can adapt theorem [DWZ1, theorem 5.1|:
Theorem 9.18. Let (A, S) be a non-degenerate locally free GSP. Let i =

(i1,09,...,in) €I, k€ I and p € irry. Then
ggi(A) =g 45 VA s and FB(A) FX 5.
’ pii pii
Proof. With corollary 9.16, it is the same proof as in [DWZ1]. O

We get also this following, analogous to [DWZ1, corollary 5.3]:

Corollary 9.19. In the situation of theorem 9.18, suppose that FB(A) # 1,

hence XAS # {0} and VAS = {0} (see proposition 8.8). Let xB( ) be the
correspondmg cluster varzable in the coefficient-free cluster algebm In other

terms
((xfi(A)>ieI ; Bl) = iy - - - Pightiy ((Ti);er » B(A)) .
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Then we have the following cluster character formula:

J;ESA) 1—[1: d; ZX Gre H —rkvi+2 ;e 1 (max(0,b;; )e; +max(0,—bi;)(d;—e;))

i€l eeC i€l

where X = Xﬁls, d; = dimg X (i) and e; = dimg e;.

10. £-INVARIANT

The aim of this part is analogous to [DWZ1, §7, §8]. Let (A,S,X,V)
and (A, S, X', V') be two GSPDRs with the same non-degenerate GSP. We

denote:
<)(7 X’> = dlmK Homp(AS) (X, X’)
Define the three following integer functions:
EM(X,V; X V') = (X, X" + ([X]lgxv)
EVNX, VX V) = EMN(X, VX V) + ENX VX, V)
EVMX, Vi X, V)
2

where [X] € C is the class of X seen as an E-module, and, for e, e’ € C
(resp. e,e' € Cy for ke I),

(e|e’) = Z ee..

i€irr
(resp. i€irry)

Then, we get, with the same proof as [DWZ1, theorem 7.1]:

E(X,V)=EMNX,V;X,V) =

Theorem 10.1. We have, for any k€ I,
EM (X, V) (X7, V1)) = EM (X, V; X', V)
= (b, xv)elhx ) — (hx vy, oovn ) -
In particular, EY™ and £ are stable under mutations.

Proof. The only difference with [DWZ1] is that computations have to be done
in the Grothendieck groups. Moreover, we have to worry about the skew-
symmetrizability: with our convention, informally speaking, all b;; should
be replaced by —by; in the proof of [DWZ1]). For example,

> max(0, by,) dimg X (i)
1€l

in [DWZ1]| will be replaced here by [X ®g A* E}| whose dimension is
Zmax , —bi;) dimg X (7)

iel

if the GSP is locally free and B = B(A). O
We get also the following analogous of [DWZ1, corollary 7.2]:

Corollary 10.2. If (X,V) is obtained by a sequence of mutations from a
negative decorated representation ({0},V) then E(X,V) = 0.
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We denote by A° the (F, E')-bimodule whose underlying vector space is
A and whose bimodule structure is given by g -a®® -h = (h~!-a-g 1)°P
it geI'; and h € T'j for some 4,5 € I and op : A — A° comes from the
identity of A. It is then easy to extend op to an anti-isomorphism of algebras
E{(A))y — E{{A°P)). Thus, (X*,V*) is a decorated representation of the
GSP (A°P, S°P) on the ring E, where for each i € I, X is contragredient to
X, V;* is contragredient to V; and a°? acts on X* as the transpose of a for
every a € A. Thus, one gets the analogous of [DWZ1, proposition 7.3]:

Proposition 10.3. We have E(X*,V*) = E(X,V).

Proof. As for any i € I, the characteristic of K does not divide #I';, we have
an isomorphism of right F-modules

(X@E A)* — X* Rr A*OP ~ X* Rr A°P*
f— Z flz®a)x* ® a*P

.IEBX
aEBA
X la
(m@aHZ 2 pleghtly” o) gir(g )> o YP
i€l gel’;

which does not depend of the bases Bx and B4 of X and A. Thus, we have,

as in [DWZ1],
[V] - [(—DI 1m%]>
=(X, X) + ([X ®@p A]|[X]) + <[X]

[V1-[X]- [@lm%D
=X XD+ ([(X @ ATIIXTD

+<[X*] [VF] = [X*] = El—)im%*>

el

=X XD + ([X7 @p AH[XT])

+<[X*] [V*] = [X*] = | Dim~] )

| i€l

E(X, V) =X, X) + ([X][[X ®& A™]) + <[ ]

=E(X*,VH)
where we used that
(XTIX ®g A*]) = dimg Hompg (X, X ®p A™)
= dimg Hompg(X ®p A, X) = ([X ®r A]|[X]). O

Hence, the following theorem has the same proof as [DWZ1, theorem 8.1]
(note that all [DWZ1, §10] can be easily adapted in this case):

Theorem 10.4. The £-invariant satisfies

E(X,V) > ([@kerﬁi] [@ 1?6”?]) + (X1
el

i€l lmB’
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Then, we obtain the analogous of [DWZ1, corollary 8.3]:

Corollary 10.5. If £(X,V) = 0 then for each (k, p) € irr,
(i) either [My], =0 or [Vi], = 0;
(ii) either [keryi], = 0 or [ker v, = [im fB],.

11. APPLICATIONS TO CLUSTER ALGEBRAS

We conclude here that the following conjectures of [FZ2] are true for skew-
symmetrizable integer matrix which can be obtained from a non-degenerate
GSP with abelian groups. In particular, every matrix of the form DS where
D is diagonal with integer coefficients and S is skew-symmetric with integer
coeflicients can be obtained in view of section 7. Every exchange matrix
corresponding to the situation described in [Dem]| (in particular every acyclic
ones) can also be raised. Let B be such a skew-symmetrizable integer matrix.
We suppose moreover that some (A, .S) is fixed satisfying the hypothesis of
section 9 such that B(A) = B.

Proposition 11.1 ([FZ2, conjecture 5.4|). For any i€ I" and k € I, F5,
has constant term 1.

Proposition 11.2 ([FZ2, conjecture 5.5]). For any i€ I" and k € I, F,fi
has a mazximum monomial for divisibility order with coefficient 1.

These first two are immediate, as in [DWZ1, §9].

Proposition 11.3 ([FZ2, conjecture 7.12|). For any i € I™, k € I, we
denote by ki the concatenation of (k) and i. Let j € I and (gi)ier = gﬁi and

(9)ier = ;‘;’;g(iB). Then we have, for any i€ I,
g = —Gi if i = k;
’ gi + max(0, b )gr — bjr min(gx,0)  if i # k.

Proof. We need here to add some trick to the proof of [DWZ1, §9|. Indeed,
we need to prove, as in [DWZ1], that

mln(07gk) = hy.
But what we obtain by using corollary 10.5 is

min(0, gx.p) = hi,p
for any p € irry. Moreover, we have, as seen before,
gk = Z Gk, and hp = Z hi.p
pEirry pEIrTY
and therefore, what we need is equivalent to the fact that the g , are of

the same sign. We will prove this with an indirect method. Retaining the
notation of definition 9.17, we get

AS AS
XEj;i - Z X 1
pEirT;
and therefore, by linearity of g,
gXA,S. = Z gXAZS.
Ejsi pii

pEirT;
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Hence, we get:

(#T;)gr = dimg [gXA,s_]
Ej;l k
In the same way,

(#Fj)hk = dimK [thj,i]k .

Moreover, by an immediate induction using proposition 9.14, as [E;] is the

class of a free Ej-module, |:gXA,S:| and [hXA,s] are also free and therefore,
Ej;i k Ej;i k

their coefficients in term of the irreducible representations of Ej are of the
same sign. Hence, we obtain, by adding these components

min(0, (#I';)gk) = (#L;)hx
and the rest follows as in [DWZ1]. Note that it implies also that the g , are
of the same sign. O

The three following propositions have the same proof than in [DWZ1, §9]:

Proposition 11.4 (|[FZ2, conjecture 6.13]). For any i€ I™, the vectors gZ,
fori € I are sign-coherent. In other terms, fori,i',j € I, the j-th components
of gfi and gﬁi have the same sign.

Proposition 11.5 (|[FZ2, conjecture 7.10(2)]). For any i € I", the vectors
gfi forie I form a Z-basis of Z".

Proposition 11.6 ([FZ2, conjecture 7.10(1)]). For any i,i’ € I", if we have
B B
Z ;8 = Z a‘;gi;i’
iel iel
for some nonnegative integers (a;)ier and (a})ier, then there is a permutation
o € &y such that for everyie I,
a; = (1;,(1) and a; # 0= gfl = gf(i);i’ and a; + 0= Eﬁ = Fﬁi);i"

In particular, FZB1 1s determined by gfi.

12. AN EXAMPLE AND A COUNTEREXAMPLE

The aim of this part is to show an example where the technique shown
in the previous sections works and a counterexample where there is no non-
degenerate potential.

Suppose here that K = C. We fix I'1 = I's to be the trivial group and
I's = Z/27. We take Ajp = C and Az = C[Z/2Z)], the other A;; vanishing.
Then A is acyclic and therefore S = 0 is a non-degenerate potential, in view
of section 7. Moreover,

0 -1 0
BA) =1 0 -1
0 2 0

which is of type C35. Its exchange graph is given on figure 1 where the small
dots (-) symbolize vertices with trivial group and big dots (e) symbolize
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FIGURE 1. Exchange graph of type B3

vertices with group Z/2Z. Simple arrows symbolize C and double arrows
symbolize C[Z/2Z]. Thus, (A, S) will be symbolized by

/oo

L d
Finally, wave lines (~) symbolize mutations composed with the exchange of

vertices 1 and 2.
Now, we will compute explicitly F3€213 and g£213. We will follow the

construction of section 9. According to the exchange graph,

M3M1M2(A70) = (/ \. 70> = (Alvs,)'
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Let p be one the two irreducible modules over Z/2Z. Then

0
ps(A,S",0,p) = | /N 0, ,0
3( ) SN0

, C
MIMS(AI75,7O7P): /i\k AR ] \ 70
= 0 p
. /C
l"L,"[//’L AI7S/7O?p = / PR | 70
2401 13 ) e e p

(the arrows are obvious) and therefore,

C

X/§213: /
’ C—p

which induces that:

FXB

;213

=1+ Yp + YQYP + Y1Y2Y7p

and therefore
FXB =14+Y3+YoY; + YV1YoYs.

p;213
Moreover,
0
gX,fzm o 0
—p
and therefore
0
gX;EQlB - _01

It is easy to check by hand that these coincide with F£213 and g3€213 obtained
for example by formulas of [DWZ1, §2].
Let now B be the matrix defined by

0 O 1 1 -1 -2

0O 0 -1 -1 1 2
-1 1 0 0 0 O
B= -1 1 0 0 0 O
1 -1 0 0 0 O
1 -1 0 0 0 O

We will show that there is no non-degenerate locally free GSP with mu-
tation matrix B. Suppose that (I, (I';), 4, S) is a non-degenerate GSP with
mutation matrix B. Then, I'y, ..., I's have the same cardinal which is two
times the one of I's. Applying ps followed by us create 2-cycles and implies,
in view of proposition 4.10, that

A3 ®p, Az ~ (A15 Qps As2)™ .
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In the same way, applying 4 followed by ps implies that
A2y ®p, Agr ~ (A5 ®p; As52)™ .
With the same type of argument, applying ps3, pg and pg implies that

(Ag3 @p, A31)®? ~ Aoy ®p, Ay ® Az ®p, Azl ~ (A1 O, As2)* .

As all considered groups are semisimple, it is easy to see that the (Eq, Eg)-
bimodule A4 can be decomposed as a direct sum of the form

m
Aig = P ri @k si
i=1
where the r; are irreducible left Fi-modules and the s; are irreducible right
FEg-modules. Moreover, the r; ®g s; are irreducible bimodule and satisfy,
because of B,

Vr € irrq, 2 dimg s; = dimg r and Vs € irrg, 2 dimg r; = 2dimg s.
i]ri~r i|si~s
Thus, there are exactly two indices which can be supposed to be 1 and 2
such that si, s9 are trivial and r; and ro are of dimension 1 and appear only
one time in the sequence (r;). In the same way,

n
Agz = Pti Ok ui
i=1
with

Vt € irrg, Z dimg u; = 2dimg ¢t and Vu € irrs, Z dimg t; = dimg u.
i|ti~t i|ui~u
Thus, there are exactly two indices which can be supposed to be 1 and 2
such that tq, to are trivial and the u; and us are of dimension 1 and appear
only one time in the sequence (u;). Hence,

m n
(A1 ® A2)" = P P (v} ®x T;‘)dlmK %
i=1j=1
sizt;‘
contains uf @ri Qui ®@r; Pus @ri Aus®r; as the only summands containing
u¥, ud, r¥ and ri. Finally, (A1 ® Ag2)™ can not be decomposed as a direct
sum of two times the same bimodule, which is a contradiction.
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