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THE THIRD HOMOTOPY GROUP AS A π1–MODULE

HANS-JOACHIM BAUES AND BEATRICE BLEILE

Abstract. It is well–known how to compute the structure of the second homotopy group of a

space, X, as a module over the fundamental group, π1X, using the homology of the universal

cover and the Hurewicz isomorphism. We describe a new method to compute the third homotopy
group, π3X, as a module over π1X. Moreover, we determine π3X as an extension of π1X–

modules derived from Whitehead’s Certain Exact Sequence. Our method is based on the theory

of quadratic modules. Explicit computations are carried out for pseudo–projective 3–spaces
X = S1 ∪ e2 ∪ e3 consisting of exactly one cell in each dimension ≤ 3.

1. Introduction

Given a connected 3–dimensional CW–complex, X, with universal cover, X̂, Whitehead’s Cer-
tain Exact Sequence [W2] yields the short exact sequence

(1.1) Γπ2X // // π3X // // H3X̂

of π1–modules, where π1 = π1(X). As a group, the homology H3X̂ is a subgroup of the free

abelian group of cellular 3–chains of X̂, and thus itself free abelian. Hence the sequence splits
as a sequence of abelian groups. This raises the question whether (1.1) splits as a sequence of
π1–modules – there are no examples known in the literature.

It is well–known how to compute π2(X) ∼= H2X̂ as a π1–module, using the Hurewicz isomor-

phism, and how to compute H3X̂ using the cellular chains of the universal cover. In this paper we
compute π3(X) as π1–module and (1.1) as an extension over π1. We answer the question above
by providing an infinite family of examples where (1.1) does not split over π1, as well as an infinite
family of examples where it does split over π1. As a first surprising example we obtain

Theorem 1.1. There is a connected 3–dimensional CW–complex X with fundamental group π1 =

π1X = Z/2Z, such that π1 acts trivially on both Γπ2X and H3X̂, but non–trivially on π3X. Hence

Γπ2X // // π3X // // H3X̂

does not split as a sequence of π1–modules.

Below we describe examples for all finite cyclic fundamental groups, π1, of even order, where
(1.1) does not split over π1. The examples we consider are CW–complexes,

X = S1 ∪ e2 ∪ e3,

with precisely one cell, ei, in every dimension i = 0, 1, 2, 3. In general, we obtain such a CW–
complex, X, by first attaching the 2–cell e2 to S1 via f ∈ π1S

1 = Z. We assume f > 0.
This yields the 2–skeleton of X, X2 = Pf , which is a pseudo–projective plane, see [O]. Then
π1 = π1X = π1Pf = Z/fZ is a cyclic group of order f . We write R = Z[π1] for the integral group
ring of π1 and K for the kernel of the augmentation ε : R → Z. Then the pseudo–projective
3–space, X = Pf,x, is determined by the pair, (f, x), of attaching maps, where x ∈ π2Pf = K is
the attaching map of the 3–cell e3. In this case

π2(X) = H2(X̂) = K/xR,

and
H3X̂ = ker(dx : R→ R, x 7→ xy),
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where xy is the product of x, y ∈ R.

A splitting function u for the exact sequence (1.1) is a function between sets, u : H3X̂ → π3X,

such that u(0) = 0 and the composite of u and the projection π3X � H3X̂ is the identity. Such
a splitting function determines maps

A = Au : H3X̂ ×H3X̂ → Γ(π2X) and B = Bu : H3X̂ → Γ(π2X),

by the cross–effect formulæ

A(y, z) = u(y + z)− (u(y) + u(z)) and B(y) = (u(y))1 − u(y1).

Here B is determined by the action of the generator 1 in the cyclic group π1, denoted by y 7→ y1.

Remark 1.2. The functions A and B determine π3X as a π1–module. In fact, the bijection

H3X̂ × Γ(π2X) = π3(Pf,x), which assigns to (y, v) the element u(y) + v is an isomorphism of
π1–modules, where the left hand side is an abelian group by

(y, v) + (z, w) = (y + z, v + w +A(y, z))

and a π1–module by

(y, v)1 = (y1, v1 +B(y)).

The cross–effect of B satisfies

B(y + z)− (B(y) +B(z)) = (A(y, z))1 −A(y1, z1),

such that B is a homomorphism of abelian groups if A = 0.

In this paper we describe a method to determine a splitting function u = ux, which, a priori,
is not a homomorphism of abelian groups. We investigate the corresponding functions A and B
and compute them for a family of examples.

Theorem 1.3. Let X = Pf,x be a pseudo–projective 3–space with x = x̃([1]−[0]) ∈ K, x̃ ∈ Z, x̃ 6= 0

and f > 1. Let N =
∑f−1
i=0 [i] be the norm element in R. Then

H3(P̂f,x) = {ỹN | ỹ ∈ Z} ∼= Z

is a π1–module with trivial action of π1, and

π2(Pf,x) = (Z/x̃Z)⊗Z K,

with the action of π1 induced by the π1–module K. There is a splitting function u = ux such that,

for y = ỹN and z ∈ H3(P̂f,x), the functions A and B are given by

A(y, z) = 0

B(y) = −x̃ỹγq([1]− [0]),

where γ : π2(Pf,x)→ Γ(π2(Pf,x)) is the universal quadratic map for the Whitehead functor Γ and
q : K → π2(Pf,x), k 7→ 1⊗ k. As in 1.2, the pair A,B computes π3X as a π1–module.

As H3(X̂) is free abelian, the exact sequence (1.1) always allows a splitting function which is a
homomorphism of abelian groups. This leads, for X = Pf,x, to the injective function

τ : Extπ1
(H3(X̂),Γ(π2X)) � coker(β),

with

β : HomZ(H3(X̂),Γ(π2X))→ HomZ(H3(X̂),Γ(π2X)), t 7→ βt,

given by

βt(`) = −t(`1) + (t(`))1.

The function τ maps the equivalence class of an extension to the element in cokerβ represented by
B = Bu, where u is a Z–homomorphic splitting function for the extension. Hence the equivalence
class, {π3X}, of the extension π3X in (1.1) is determined by the image τ{π3X} ∈ coker(β). For
the family of examples in 1.3 we show
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Theorem 1.4. Let X = Pf,x be a pseudo–projective 3–space with x = x̃([1]−[0]), x̃ ∈ Z, x̃ 6= 0 and
f > 1. Then β : Γ((Z/x̃Z)⊗Z K)→ Γ((Z/x̃Z)⊗Z K) maps ` to −`+ `1 and τ{π3X} ∈ coker(β)
is represented by x̃γq([1] − [0]) ∈ Γ(π2). Hence τ{π3X} = 0 if x̃ is odd, so that, in this case,
π3X in (1.1) is a split extension over π1. If both x̃ and f are even, then τ{π3X} is a non–trivial
element of order 2, and the extension π3X in (1.1) does not split over π1. Moreover, τ{π3X} is
represented by B in 1.3. If x̃ is even and f is odd, then τ{π3X} is trivial and the extension π3X
in (1.1) does split over π1.

This result is a corollary of 1.3, the computations are contained at the end of Section 8.
Given a pseudo–projective 3–space, Pf,x, and an element z ∈ π3(Pf,x), we obtain a pseudo–

projective 4–space, X = Pf,x,z = S1 ∪ e2 ∪ e3 ∪ e4, where z is the attaching map of the 4–cell
e4. For n ≥ 2, the attaching map z of an (n + 1)–cell in a CW–complex, X, is homologically

non–trivial if the image of z under the Hurewicz homomomorphism is non–trivial in HnX̂
n.

Theorem 1.5. Let X = S1 ∪ e2 ∪ e3 ∪ e4 be a pseudo–projective 4–space with π1X = Z/2Z and
homologically non–trivial attaching maps of cells in dimension 3 and 4. Then the action of π1X
on π3X is trivial.

Theorem 1.5 is a corollary to Theorem 9.1.

2. Crossed Modules

We recall the notions of pre-crossed module, Peiffer commutator, crossed module and nil(2)–
module, which are ingredients of algebraic models of 2– and 3–dimensional CW–complexes used
in the proofs of our results, see [B] and [BHS]. In particular, Theorem 2.2 provides an exact
sequence in the algebraic context of a nil(2)–module equivalent to Whitehead’s Certain Exact
Sequence (1.1).

A pre–crossed module is a homomorphism of groups, ∂ : M → N , together with an action of N
on M , such that, for x ∈M and α ∈ N ,

∂(xα) = −α+ ∂x+ α.

Here the action is given by (α, x) 7→ xα and we use additive notation for group operations even
where the group fails to be abelian. The Peiffer commutator of x, y ∈ M in such a pre–crossed
module is given by

〈x, y〉 = −x− y + x+ y∂x.

The subgroup of M generated by all iterated Peiffer commutators 〈x1, . . . , xn〉 of length n is
denoted by Pn(∂) and a nil(n)–module is a pre–crossed module ∂ : M → N with Pn+1(∂) = 0. A
crossed module is a nil(1)–module, that is, a pre–crossed module in which all Peiffer commutators
vanish. We also consider nil(2)–modules, that is, pre–crossed modules for which P3(∂) = 0.

A morphism or map (m,n) : ∂ → ∂′ in the category of pre–crossed modules is given by a
commutative diagram

M
m //

∂

��

M ′

∂′

��
N

n
// N ′

in the category of groups, where m is n–equivariant, that is, m(xα) = m(x)n(α), for x ∈ M
and α ∈ N . The categories of crossed modules and nil(2)–modules are full subcategories of the
category of pre–crossed modules.

Note that Pn+1(∂) ⊆ ker ∂ for any pre–crossed module, ∂ : M → N . Thus we obtain the
associated nil(n)–module rn(∂) : M/Pn+1(∂)→ N , where the action on the quotient is determined
by demanding that the quotient map q : M → M/Pn+1(∂) be equivariant. For n = 1 we write
∂cr = r1(∂) : M cr = M/P2(∂)→ N for the crossed module associated to ∂.

Given a set, Z, let 〈Z〉 denote the free group generated by Z. Now take a group, N , and a
group homomorphism, f : F = 〈Z〉 → N . Then the free N–group generated by Z is the free
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group, 〈Z ×N〉, generated by elements denoted by xα = ((x, α)) with x ∈ Z and α ∈ N . These
are elements in the product Z ×N of sets. The action is determined by

(2.1) ((x, α))β = ((x, α+ β)).

Define the group homomorphism ∂f : 〈Z ×N〉 → N by ((x, α)) 7→ −α+ f(x) + α, for generators
((x, α)) ∈ Z × N , to obtain the pre–crossed module ∂f with associated nil(n)–module rn(∂f ) :
〈Z×N〉/Pn+1(∂f )→ N . Note that rn(∂f )ι = f , where ι = pιF is the composition of the inclusion
ιF : F = 〈Z〉 → 〈Z × N〉 and the projection p : 〈Z × N〉 → M = 〈Z × N〉/Pn+1(∂f ) onto the
quotient.

Remark 2.1. The nil(n)–module, rn(∂f ) : M = 〈Z ×N〉/Pn+1(∂f ) → N , satisfies the following
universal property: For every nil(n)–module, ∂′ : M ′ → N ′, and every pair of group homomor-
phisms, mF : F = 〈Z〉 → M ′, and n : N → N ′ with ∂′mF = nf , there is a unique group
homomorphism, m : M → M ′, such that mι = mF , and (n,m) : rn(∂f ) → ∂′ is a map of
nil(n)–modules.

M
m //

rn(∂f )

��

M ′

∂′

��

F

ι

``

mF

>>

f~~
N

n
// N ′

Thus rn(∂f ) is called the free nil(n)–module with basis f . A free nil(n)–module is totally free if N
is a free group.

Given a path connected space Y and a space X obtained from Y by attaching 2–cells, let Z2

be the set of 2–cells in X − Y , and let f : Z2 → π1(Y ) be the attaching map. J.H.C. Whitehead
[W1] showed that

(2.2) ∂ : π2(X,Y )→ π1(Y )

is a free crossed module with basis f . Then ker ∂ = π2(X), coker ∂ = π1(X) and ∂ is totally free if
Y is a one–point union of 1–spheres. Whitehead also proved that the abelianisation of the group
π2(X,Y ) is the free R–module 〈Z2〉R generated by the set Z2, where R = Z[π1(X)] is the group
ring [W1].

Now take a totally free nil(2)–module ∂ : M → N with associated crossed module ∂cr : M cr →
N . Let

M
q // // M cr h2 // // C = (M cr)ab

be the composition of projections. Put K = h2(ker(∂cr)). Further, let Γ be Whitehead’s quadratic
functor and τ : Γ(K) � K⊗K ⊂ C⊗C the composition of the injective homomorphism induced
by the quadratic map K → K⊗K, k 7→ k⊗k and the inclusion. The Peiffer commutator map, w :
C ⊗C →M , is given by w({x}⊗ {y}) = 〈x, y〉, for x, y ∈M with {x} = h2(q(x)), {y} = h2(q(y)).
Lemma (IV 1.6) and Theorem (IV 1.8) in [B] imply

Theorem 2.2. Let ∂ : M → N be a totally free nil(2)–module. Then the sequence

Γ(K) //
τ // C ⊗ C w // M

q // // M cr

is exact and the image of w is central in M.

3. Pseudo–Projective Spaces in Dimensions 2 and 3

Real projective n–space RPn has a cell structure with precisely one cell in each dimension ≤ n.
More generally, a CW–complex,

X = S1 ∪ e2 ∪ . . . ∪ en,
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with precisely one cell in each dimension ≤ n, is called a pseudo–projective n–space. For n = 2
we obtain pseudo–projective planes, see [O]. In this section we fix notation and consider pseudo–
projective spaces in dimensions 2 and 3. In particular, we determine the totally free crossed module
associated with a pseudo–projective plane and begin to investigate the totally free nil(2)–module
associated with a pseudo–projective 3–space.

The fundamental group of a pseudo–projective plane Pf = S1 ∪ e2, with attaching map f ∈
π1(S1) = Z, is the cyclic group π1 = π1(Pf ) = Z/fZ. We obtain π1 = Z for f = 0, π1 = {0} for
f = 1, and the bijection of sets

{0, 1, 2, . . . , f − 1} → π1 = Z/fZ, k 7→ k = k + fZ,

for 1 < f . Addition in π1 is given by

k + ` =

{
k + ` for k + ` < f ;

k + `− f for k + ` ≥ f.

Denoting the integral group ring of the cyclic group π1 by R = Z[π1], an element x ∈ R is a linear
combination

x =
∑
α∈π1

xα[α] =

f−1∑
k=0

xk[k],

with xα, xk ∈ Z. Note that 1R = [0] is the neutral element with respect to multiplication in R
and, for x =

∑
α∈π1

xα[α], y =
∑
β∈π1

yβ [β],

xy =
∑

α,β∈π1

xαyβ [α+ β] =

f−1∑
`=0

(∑̀
k=0

xk y`−k +

f−1∑
k=`+1

xk yf+`−k
)
[`].

The augmentation ε = εR : R→ Z maps
∑
α∈π1

xα[α] to
∑
α∈π1

xα. The augmentation ideal, K,
is the kernel of ε. For a right R–module, C, we write the action of α ∈ π1 on x ∈ C exponentially
as xα = x[α].

Given a pseudo–projective plane Pf = S1∪e2 with attaching map f ∈ π1(S1) = Z, Whitehead’s
results on the free crossed module (2.2) imply that

(3.1) ∂ : π2(Pf , S
1)→ π1(S1)

is a totally free crossed module with one generator, ei, in dimensions i = 1, 2, and basis f̃ : Z2 =
{e2} → π1(S1) given by f̃(e2) = fe1. Note that ∂ has cokernel π1(Pf ) = Z/fZ = π1 and kernel
π2(Pf ).

Lemma 3.1. The diagram

π2(Pf , S
1)

∂ //

∼=
��

π1(S1)

R
f ·εR

// Z

is an isomorphism of crossed modules, where εR : R→ Z is the augmentation.

Proof. By Whitehead’s results [W1] on the free crossed module (2.2), it is enough to show that

π2(Pf , S
1) is abelian. As ∂ is a totally free crossed module with basis f̃ , π2(Pf , S

1) is generated
by elements en = ((e2, n)), see (2.1). Note that we obtain en by the action of n ∈ Z on ι(e2) =
((e2, 0)) = e0 and ∂(en) = −n+ ∂e+ n = ∂e = f as π1(S1) = Z is abelian. We obtain

〈en, em〉 − 〈em, em〉 = −en − em + en + (em)∂(en) − (−em − em + em + (em)∂(em))

= −en − em + en + (em)f − (em)f + em

= (en, em),

where (a, b) = −a− b+a+ b denotes the commutator of a and b. Thus commutators of generators
are sums of Peiffer commutators which are trivial in a crossed module. �
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With the notation of Theorem 2.2 and M = π2(Pf , S
1), Lemma 3.1 shows that M = M cr =

(M cr)ab = R and that π2(Pf ) = ker ∂ = ker ∂cr = ker(f · ε) = K is the augmentation ideal of R,
for f 6= 0. Thus the homotopy type of a pseudo–projective 3–space,

(3.2) Pf,x = S1 ∪ e2 ∪ e3,

is determined by the pair (f, x) of attaching maps, f ∈ π1(S1) = Z of the 2-cell e2, and x ∈
π2(Pf ) = K ⊆ R of the 3–cell e3. We obtain the totally free nil(2)–module

(3.3) M = π2(Pf,x, S
1)

∂ // N = π1(S1).

In the next section we use Theorem 2.2 to describe the group structure of π2(Pf,x, S
1), as well as

the action of N on π2(Pf,x, S
1). The formulæ we derive are required to compute the homotopy

group π3(Pf,x) as a π1–module.

4. Computations in nil(2)–Modules

In this Section we consider totally free nil(2)–modules, ∂ : M → N , generated by one element,

ei, in dimensions i = 1, 2, with basis f̃ : {e2} → N ∼= Z. Then π1 = coker∂ = Z/fZ and, with
R = Z[π1], we obtain (M cr)ab = C = R. Thus Theorem 2.2 yields the short exact sequence

(4.1) (R⊗R)/Γ(K) //
w // M

q // // R

with the image of (R ⊗ R)/Γ(K) central in M . This allows us to compute the group structure
of M , as well as the action of N = Z on M , by computing the cross–effects of a set–theoretic
splitting s of (4.1) with respect to addition and the action of N , even though here M need not be
commutative.

The element x ⊗ y ∈ R ⊗ R represents an equivalence class in R ⊗ R/Γ(K), also denoted by
x⊗y, so that w(x⊗y) = 〈x̂, ŷ〉 is the Peiffer commutator for x, y ∈ R, with x = q(x̂) and y = q(ŷ).
As a group, M is generated by elements en = ((e2, n)), in particular, e = e0 = ((e2, 0)), see (2.1).
We write

ken =


en + . . .+ en (k summands) for k > 0,

0 for k = 0 and

−en − . . .− en (−k summands) for k < 0,

and define the set-theoretic splitting s of (4.1) by

s : R −→M,

f−1∑
k=0

xk[k] 7−→ x0e
0 + x1e

1 + . . .+ xf−1e
f−1.

Then every m ∈ M can be expressed uniquely as a sum m = s(x) + w(m⊗) with x ∈ R and
m⊗ ∈ (R⊗R)/Γ(K). The following formulæ for the cross–effects of s with respect to addition and
the action provide a complete description of the nil(2)–module M in terms of R and R⊗R/Γ(K).

Given a function, f : G→ H, between groups, G and H, we write

(4.2) f(x|y) = f(x+ y)− (f(x) + f(y)), for x, y ∈ G.

Lemma 4.1. Take x =
∑f−1
m=0 xm, y =

∑f−1
n=0 yn [n] ∈ R. Then

s(x|y) = w(∇(x, y)),

where

∇(x, y) =

f−1∑
m=1

m−1∑
n=0

xm ynw([n]⊗ [m]− [m]⊗ [m]).

Thus ∇(x, y) is linear in x and y, yielding a homomorphism ∇ : R⊗R→ R⊗R.
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Proof. First note that, by definition, ∇(k[m], `[n]) = 0 unless m > n. To deal with the latter case,
recall that commutators are central in M and use induction, first on k, then on `, to show that

(kem, `en) = k`(em, en),

for k, ` > 0. To show equality for negative k or `, replace em or en by −em and −en, respectively.
Furthermore, note that the equality

(4.3) (en, em) = −en − em + en + em = 〈en, em〉 − 〈em, em〉
for commutators of generators of totally free cyclic crossed modules derived in the proof of Lemma
3.1 holds in any totally free nil(n)–module generated by one element in each dimension. Taking

x =
∑f−1
m=0 xm [m] and y =

∑f−1
n=0 yn [n], we obtain

s(x+ y)

= (x0 + y0) e+ . . .+ (xm + ym) em + . . .+ (xf−1 + yf−1) ef−1

= (xi e+ . . .+ xf−1 e
f−1) + (y0 e+ . . .+ yf−1 e

f−1) +

f−1∑
m=1

m−1∑
n=0

xm yn (en, em)

= s(x) + s(y) +

f−1∑
m=1

m−1∑
n=0

xm yn
(
〈en, em〉 − 〈em, em〉

)
= s(x) + s(y) +

f−1∑
m=1

m−1∑
n=0

xm ynw([n]⊗ [m]− [m]⊗ [m]).

�

Corollary 4.2. Take x ∈ R and r ∈ Z. Then

s(rx) = rs(x) +

(
r

2

)
w(∇(x, x)), where

(
r

2

)
=
r(r − 1)

2
.

As N = Z is cyclic, the action of N on M is determined by the action of the generator, 1 ∈ Z.
The formula for general k ∈ Z provided in the next lemma is required for the definition of the
set–theoretic splitting ux of (1.1) and the explicit computation of A and B in Theorem 1.3.

Lemma 4.3. Take x =
∑f−1
n=0 xn[n] ∈ R and k ∈ π1. Write R = Z[0, . . . , f − 1] = Rk× R̂k, where

Rk = Z[0, . . . , f − k − 1] and R̂k = Z[f − k, . . . , f − 1]. Then(
s(x)

)k
= s(xk) + w(∇k(a, b)),

where x = (a, b) and

∇k : Rk × R̂k → R⊗R, (a, b) 7→ Qk(a, b) + Lk(b)

with

Qk(a, b) =

f−`−1∑
p=0

`−1∑
q=0

xp xq+f−` ([p+ `]⊗ [q]− [q]⊗ [q])

Lk(b) =

`−1∑
q=0

xq+f−` [q]⊗ [q].

Thus Qk is linear in a and b and Lk is linear in b.

Proof. For j ∈ π1 and p ∈ Z,

ej+f = (ej)∂(e)

= ej + (ej , e) + 〈e, ej〉
= ej − (〈e, ej〉 − 〈ej , ej〉) + 〈e, ej〉
= ej + 〈ej , ej〉.
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Thus, for n, k ∈ π1, with n+ k = j,(
s([n])

)k
=

{
ej , for 0 ≤ n < f − k,
ej + 〈ej , ej〉, for f − k ≤ n < f

=

{
s([n]k), for 0 ≤ n < f − k,
s([n]k) + w([j]⊗ [j]), for f − k ≤ n < f .

Hence, for x =
∑f−1
p=0 xp [p],(

s(x)
)k

= x0 s([0])k + x1 s([1])k + . . .+ xf−1 s([f − 1])k

= x0 s([0]k) + x1 s([1]k) + . . .+ xf−1 s([f − 1]k) +

f−1∑
n=f−k

xn w([n+ k − f ]⊗ [n+ k − f ])

= xf−k s([f − k]k) + . . .+ xf−1 s([f − 1]k) + x0 s([0]k) + . . .+ xf−k−1 s([f − k − 1]k)

+

f−k−1∑
p=0

f−1∑
n=f−k

(xps([p+ k]), xns([n+ k])) +

k−1∑
q=0

xq+f−k w([q]⊗ [q])

= s(xk) +

f−k−1∑
p=0

k−1∑
q=0

xp xq+f−k w([p+ k]⊗ [q]− [q]⊗ [q]) +

k−1∑
q=0

xq+f−k w([q]⊗ [q]).

�

Remark 4.4. We use the final results of this section to define and establish the properties of
the set–theoretic splitting ux of (1.1). The next result shows how the cross–effects interact with
multiplication in R.

Lemma 4.5. Take x, y ∈ R. Then

f−1∑
i=0

yi
(
s(x)

)i
= s(xy) + w(µ(x, y)),

where µ : R×R→ R⊗R is given by

µ(x, y) = −
∑
i<j

yi yj ∇(xi, xj) +

f−1∑
i=0

(
∇i(yix)−

(
yi
2

)
∇(x, x)i

)
.

Proof. By Lemmata 4.1 and 4.3 and Corollary 4.2, we obtain, for x, y ∈ R,

f−1∑
i=0

yi
(
s(x)

)i
=

f−1∑
i=0

(
yis(x)

)i
=

f−1∑
i=0

(
s(yix)−

(
yi
2

)
w(∇(x, x))

)i
=

f−1∑
i=0

s(yix
i) + w(∇i(yix))−

((yi
2

)
w(∇(x, x))

)i
= s(

f−1∑
i=0

yi x
i)−

∑
i<j

w(∇(yi x
i, yj x

j)) +

f−1∑
i=0

w(∇i(yix))−
(
yi
2

)
w(∇(x, x)i).

�

Finally, the definitions and a simple calculation yield
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Lemma 4.6. For x, y, z ∈ R and with the notation in (4.2),

µ(x, y|z) = −
∑
i<j

(yi zj + zi yj)∇(xi, xj) + 2

f−1∑
i=1

yiziQi(x)−
f−1∑
i=0

yizi∇(x, x)i.

Hence, for fixed x ∈ R,µ(x, ) : R×R→ R⊗R, (y, z) 7→ µ(x, y|z) is bilinear.

5. Quadratic Modules

In dimension 3, quadratic modules assume the role played by crossed modules in dimension
2. We recall the notion of quadratic modules and totally free quadratic modules, see [B], which
we require for the description of the third homotopy group π3(Pf,x) of a 3–dimensional pseudo–
projective space Pf,x, as in (3.2).

A quadratic module (ω, δ, ∂) consists of a commutative diagram of group homomorphisms

C ⊗ C
ω

||
w

��
L

δ // M
∂ // N,

such that

• ∂ : M → N is a nil(2)–module with quotient map M � C = (M cr)ab, x 7→ {x}, and
Peiffer commutator map w given by w({x} ⊗ {y}) = 〈x, y〉;

• the boundary homomorphisms ∂ and δ satisfy ∂δ = 0, and the quadratic map ω is a lift of
w, that is, for x, y ∈M ,

δω({x} ⊗ {y}) = 〈x, y〉;
• N acts on L, all homomorphisms are equivariant with respect to the action of N and, for
a ∈ L and x ∈M ,

(5.1) a∂(x) = a+ ω({δa} ⊗ {x}+ {x} ⊗ {δa});

• finally, for a, b ∈ L,

(5.2) (a, b) = −a− b+ a+ b = ω({δa} ⊗ {δb}).

A map ϕ : (ω, δ, ∂)→ (ω′, δ′, ∂′) of quadratic modules is given by a commutative diagram

C ⊗ C

ϕ∗⊗ϕ∗
��

ω // L

l
��

δ // M

m

��

∂ // N

n

��
C ′ ⊗ C ′ ω

′
// L′

δ′ // M ′
∂′ // N ′

where l is n–equivariant, and (m,n) is a map between pre–crossed modules inducing ϕ∗ : C → C ′.

Given a nil(2)–module ∂ : M → N , a free group F and a homomorphism f̃ : F → M with

∂f̃ = 0, a quadratic module (ω, δ, ∂) is free with basis f̃ , if there is a homomorphism i : F → L

with δi = f̃ , such that the following universal property is satisfied: For every quadratic module
(ω′, δ′, ∂′) and map (m,n) : ∂ → ∂′ of nil(2)–modules and every homomorphism lF : F → L′ with

mf̃ = δ′lF , there is a unique map (l,m, n) of quadratic modules with li = lF .

L
δ //

l

��

M
∂ //

m

��

N

n

��

F

i

``

f̃

==

lF~~
L′

δ′
// M ′

∂′
// N ′
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For F = 〈Z〉, the homomorphism f̃ is determined by its restriction f̃ |Z which is then called a basis
for (ω, δ, ∂). A quadratic module (ω, δ, ∂) is totally free if it is free, if ∂ is a free nil(2)–module and
if N is a free group.

6. The Homotopy Group π3 of a Pseudo–Projective 3–Space and the Associated
Splitting Function ux

In this section we return to pseudo–projective 3–spaces

Pf,x = S1 ∪ e2 ∪ e3,

determined by the pair (f, x) of attaching maps, f ∈ π1(S1) = Z and x ∈ π2(Pf ) = K ⊆ R, as in
(3.2). Using results on totally free quadratic modules in [B], we investigate the structure of the
third homotopy group π3(Pf,x) as a π1–module by defining a set–theoretic splitting ux of J.H.C.

Whitehead’s Certain Exact Sequence of the universal cover, P̂f,x,

(6.1) Γ(π2(Pf,x)) // // π3(Pf,x) // // H3(P̂f,x).
ux

mm

Recall that π1 = π1(Pf ) = Z/fZ with augmentation ideal K = ker fε, and let B be the image
of dx : R→ R, y 7→ xy. Then

(6.2) π2(Pf,x) = H2(P̂f,x) = K/B = (ker fε)/xR.

The functor σ in (IV 6.8) in [B] assigns a totally free quadratic module (ω, δ, ∂) to the pseudo–
projective 3–space Pf,x and we obtain the commutative diagram

Γ(π2(Pf,x)) // //
��

��

R⊗R/∆B
q // //

��

ω

��

R⊗R/Γ(K)
��

w

��
π3(Pf,x) // //

����

L
δ //

����

M
∂ //

����

N

H3(P̂f,x) // //

ux

UU

R
dx //

tx

VV

R
f ·ε //

s

VV

Z

of straight arrows. Here the generators e3 ∈ L, e2 ∈ M and e1 = 1 ∈ N = Z correspond to the
cells of Pf,x and ∂ is the totally free nil(2)–module of Lemma 3.1. The right hand column is the
short exact sequence (4.1) with the set theoretic splitting s defined in Section 4. The short exact
sequence in the middle column is described in (IV 2.13) in [B], where the product [α, β] of α ∈ K
and β ∈ B is given by [α, β] = α⊗ β + β ⊗ α ∈ R⊗R and

∆B = Γ(B) + [K,B].

By Corollary (IV 2.14) in [B], taking kernels yields Whitehead’s short exact sequence (6.1) in

the left hand column of the diagram, that is, ker q = Γ(π2(P̂f,x)), ker δ = π3(Pf,x) and ker dx =

H3(P̂f,x). As (ω, δ, ∂) is a quadratic module associated to Pf,x, we may assume that δ(e3) = s(x).
In Section 4 we determined the structure of M as an N–module by computing the cross–

effects of the set–theoretic splitting s with respect to addition and the action. Analogously to the
definition of s, we now define a set-theoretic splitting of the short exact sequence in the second
column of this diagram by

tx : R −→ L,

f−1∑
k=0

yk [k] 7−→ y0 e
0
3 + . . .+ yf−1 e

f−1
3 .

The cross–effects of tx with respect to addition and the action determine the N–module structure
of L, but we want to determine the module structure of π3(Pf,x). To obtain a set-theoretic splitting

of the first column which will allow us to do so, we must adjust tx, such that the image of H3(P̂f,x)
under the new splitting is contained in ker δ = π3(Pf,x). Recall that δ is a homomorphism which
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is equivariant with respect to the action of N and δ(e3) = s(x). Thus Lemma 4.5 yields, for

y ∈ H3(P̂f,x) = ker dx, that is, for dx(y) = xy = 0,

δ(tx(y)) = δ
( f−1∑
i=0

yie
i
3

)
=

f−1∑
i=0

yiδ(e3)i =

f−1∑
i=0

yi
(
s(x)

)i
= s(xy) + w(µ(x, y))

= δωµ(x, y).

Hence tx(y)− ωµ(x, y) ∈ ker δ = π3(Pf,x), giving rise to the set theoretic splitting

ux : H3(P̂f,x) −→ π3(Pf,x), y 7−→ tx(y)− ωµ(x, y)

of the Hurewicz map π3 � H3. The cross–effects of ux with respect to addition and the action
determine (6.1) as a short exact sequence of π1–modules. In Section 7 we determine the cross–
effects of tx and investigate the properties of the functions A and B describing the cross–effects
of ux.

7. Computations in Free Quadratic Modules

The first two results of this Section describe the cross–effects of tx with respect to addition and
the action, respectively. We then turn to the properties of the cross–effects of ux.

Lemma 7.1. Take z, y ∈ R. Then, with the notation in (4.2),

tx(z|y) = ω(Ψ(z, y)),

where

Ψ(z, y) =

f−1∑
m=1

m−1∑
n=0

zm yn x[n]⊗ x[m].

Thus Ψ(z, y) is linear in z and y, yielding a homomorphism Ψ : R⊗R→ R⊗R.

Proof. As in the proof of Lemma 4.1, we obtain

tx(z|y) =

f−1∑
m=1

m−1∑
n=0

zm yn(en3 , e
m
3 ).

Note that {δ(en3 )} = {δ(tx([n]))} = dx([n]) = x[n]. Thus (5.2) yields

tx(z|y) =

f−1∑
m=1

m−1∑
n=0

zm yn ω({δ(en3 )} ⊗ {δ(em3 )}) =

f−1∑
m=1

m−1∑
n=0

zm yn ω(x[n]⊗ x[m]).

�

As N = Z is cyclic, the action of N on L is determined by the generator 1 ∈ Z.

Lemma 7.2. Take x ∈ R. Then(
tx(y)

)1
= tx(y1) + ω(Ψ1(a, b)),

where

Ψ1 =

f−2∑
p=0

yp yf−1 x[p+ 1]⊗ x[0] + yf−1 (x⊗ [0] + [0]⊗ x).

Proof. With {δ(en3 )} = x[n] from above and (5.1), we obtain

e1+f
3 = (e1

3)f = (e1
3)∂(e) = e1 + ω({δ(e1

3)} ⊗ {e}+ {e} ⊗ {δ(e1
3)})

= tx([n]1) + ω(x[1]⊗ [0] + [0]⊗ x[1]).

Thus, for n ∈ π,(
tx([n])

)1
=

{
ω(tx([n]1) for 0 ≤ n < f − 1,

ω(tx([n]1) + x[1]⊗ [0] + [0]⊗ x[1]) for n = f − `.
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With (5.2), we obtain, for y =
∑f−1
n=0 yn[n],(

tx(y)
)1

= y0 e
1
3 + y1 e

2
3 . . .+ yf−2 e

f−1
3 + yf−1 e

f
3

= y0 tx([0]1) + . . .+ yf−2 tx([f − 1]1) + yf−1 tx([f − 1]1) + yf−1 ω(x⊗ [0] + [0]⊗ x)

= tx(y1) +

f−2∑
p=0

yp yf−1 (ep+1
3 , e3) + yf−1ω(x⊗ [0] + [0]⊗ x)

= tx(y1) +

f−2∑
p=0

yp yf−1 x[p+ 1]⊗ x[0] + yf−1 (x⊗ [0] + [0]⊗ x)

�

The next two results concern the properties of the maps A and B which describe the cross–effects
of ux with respect to addition and the action, respectively.

Lemma 7.3. For x ∈ K the map

A : H3P̂f,x ×H3P̂f,x → Γ(π2Pf,x), (y, z) 7→ ux(y|z)

is bilinear.

Proof. Take x ∈ K and y, z ∈ H3P̂f,x. By definition

A(y, z) = ux(y|z) = tx(y|z)− ωµ(x, y|z) = ω
(
Ψ(y, z)− µ(x, y|z)

)
.

Thus Lemmata 4.6 and 7.1 imply that A is bilinear. �

Lemma 7.4. For x ∈ K define

B : H3P̂f,x → Γ(π2Pf,x), y 7→ (ux(y))1 − ux(y1)

Then

H3P̂f,x ×H3P̂f,x → Γ(π2Pf,x), (y, z) 7→ B(y|z)
is bilinear.

Proof. Take x ∈ K and y, z ∈ H3P̂f,x . Then

(A(y, z))1 = (ux(y + z)− (ux(y) + ux(z))1

= (ux(y + z))1 − (ux(y))1 − (ux(z))1

= B(y + z) + ux((y + z)1)− (B(y) + ux(y1) +B(z) + uz(z
1)).

= B(y|z) +A(y1, z1)

Thus

B(y|z) = (A(y, z))1 −A(y1, z1)(7.1)

and bilinearity follows from that of A and the properties of an action. �

8. Examples of Pseudo–Projective 3–Spaces

In this Section we provide explicit computations for examples of pseudo–projective 3–spaces,
including proofs for Theorem 1.1, Theorem 1.3 and Theorem 1.4.

Note that, as abelian group, the augmentation ideal K of a pseudo–projective 3–space Pf,x, as

in (3.2), is freely generated by {[1]−[0], . . . , [f − 1]−[0]}. We consider pseudo–projective 3–spaces,

Pf,x, with x = x̃([1]− [0]) and x̃ ∈ Z. We compute π2(Pf,x),H3(P̂f,x), as well as the cross–effects
of ux for this special case. For f = 2, the general case coincides with the special case and provides

an example where π1 acts trivially on Γπ2(P2,x̃) and on H3(P̂2,x̃), but non–trivially on π3(P2,x̃).
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Lemma 8.1. For x = x̃([1]− [0]) with x̃ ∈ Z,

H3(P̂f,x) = {ỹN | ỹ ∈ Z} ∼= Z,

is generated by the norm element N =
∑f−1
k=0 [k]. Hence π1 acts trivially on H3(P̂f,x). Furthermore,

π2(Pf,x) = (Z/x̃Z)⊗Z K.

Hence x̃2` = 0 for every ` ∈ Γ(π2(Pf,x)).

Proof. Take x = x̃([1]− [0]) with x̃ ∈ Z and y =
∑f−1
k=0 yk[k] ∈ ker dx. Then

dx(y) = xy = 0 ⇐⇒ x̃

f−1∑
k=0

yk([k + 1]− [k]) = 0

⇐⇒ yf−1 = y0 = y1 = y2 = . . . = yf−2 = ỹ,

for some ỹ ∈ Z. Hence y = ỹN .
By (6.2), π2(Pf,x) = K/xR. As abelian group, K = ker ε is freely generated by {[k] −

[[0]}1≤k≤f−1 and hence also by {[k]− [k − 1]}1≤k≤f−1. For y =
∑f−1
i=0 yi[i] ∈ R we obtain

xy = x̃

f−1∑
i=1

yi([i]− [i− 1]) + x̃yf−1([0]− [f − 1])

= x̃

f−1∑
i=1

yi([i]− [i− 1])− x̃yf−1

f−1∑
i=1

([i]− [i− 1])

= x̃

f−1∑
i=1

(yi − yf−1)([i]− [i− 1]).

As x̃K ⊆ xR, we obtain xR = x̃K and hence

π2(Pf,x) = K/xR = K/x̃K = (Z/x̃Z)⊗Z K.

If x̃ is odd, then every element ` ∈ Γ(π2(Pf,x)) has order x̃. If x̃ is even, an element ` ∈ Γ(π2(Pf,x))
has order 2x̃ or x̃. In either case, x̃2` = 0 for every ` ∈ Γ(π2(Pf,x)). �

Lemma 8.2. Take x = x̃([1]− [0]) and y, z ∈ H3(P̂f,x). Then

A(y, z) = 0.

Proof. By definition,

A(y, z) = ux(y|z) = tx(y|z)− ωµ(x, y|z) = ω(Ψ(y, z)− µ(x, y|z)).

The definition of Ψ and Lemma 4.6 yield

Ψ(y, z)− µ(x, y|z)) = ỹz̃
( f−1∑
p=1

p−1∑
q=0

x[q]⊗ x[p] + 2

f−1∑
q=1

p−1∑
p=0

∇(xp, xq)− 2

f−1∑
p=1

Qp(x) +

f−1∑
p=0

(∇(x, x))p
)
.

Recall that x̃2` = 0 for every ` ∈ Γ(π2(Pf,x)) and note that, by the properties of Q and ∇, each
summand in the above sum has a factor of x̃2. �

Lemma 8.3. Let γ : π2(Pf,x) → Γ(π2(Pf,x)) be the universal quadratic map for the Whitehead
functor Γ. Take q : K → π2(Pf,x), k 7→ 1⊗ k, x = x̃([1]− [0]) and y = ỹN . Then

B(y) = −x̃ỹγq([1]− [0]).
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Proof. Note that yβ = y for β ∈ π1. As x̃2` = 0 for every ` ∈ Γ(π2(Pf,x)), any summand with a
factor x̃2 is equal to 0. By Lemma 7.2,

Ψ1(y) =

f−2∑
p=0

ỹ2
(
x̃([1]− [0])[p+ 1]⊗ (x̃[1]− [0])

)
+ ỹ
(
x̃([1]− [0])⊗ [0] + [0]⊗ x̃([1]− [0])

)
= x̃ỹ(([1]− [0])⊗ [0] + [0]⊗ ([1]− [0])).

Lemma 4.5 yields

µ(x, y) = −
f−1∑
q=0

q−1∑
p=0

x̃2ỹ2∇
(
([p+ 1]− [p]), ([q + 1]− [q])

)
+

f−1∑
p=0

∇p
(
ỹx̃([1]− [0])

)
−x̃2

(
ỹ

2

)(
∇(([1]− [0]), ([1]− [0]))

)p
= ∇f−1

(
x̃ỹ([1]− [0])

)
= − x̃2ỹ2

(
[f − 1]⊗ [0]− [0]⊗ [0]

)
+ x̃ỹ [0]⊗ [0]

= x̃ỹ [0]⊗ [0].

Thus

B(y) = (ux(y))1 − ux(y1) = ω
(
Ψ1(y)− (µ(x, y))1 + µ(x, y)

)
= −x̃ỹγq([1]− [0]).

�

Together Lemmata 8.1, 8.2 and 8.3 provide a proof of Theorem 1.3.
For f = 2 the special case coincides with the general case and we obtain

Theorem 8.4. Let X = P2,x be a pseudo–projective 3–space with x = x̃([1] − [0]), for x̃ ∈ Z
and x̃ 6= 0. Then ux is a homomorphism and the fundamental group π1 = Z/2Z acts trivially on

Γ(π2P2,x) and on H3P̂2,x. The action of π1 on π3P2,x is non–trivial if and only if x̃ is even.

Proof. For f = 2 the augmentation ideal K is generated by k = [1] − [0]. Since k[1] = −k, the
action of π1 = Z/2Z on K and hence on π2P2,x = K/xR = Z/x̃Z is multiplication by −1. As the
Γ–functor maps multiplication by −1 to the identity morphism, the action on π1 on Γ(π2P2,x) is

trivial. The group H3P̂2,x is generated by the norm element N = [0] + [1]. As N [1] = N , π1 acts

trivially on H3P̂2,x. As π2 = Z/x̃Z is cyclic, Γπ2 = π2 if x̃ is odd and Γπ2 = Z/2x̃Z if x̃ is even,
that is,

(8.1) Γπ2 = Z/ gcd(x̃, 2)x̃Z.

By Lemma 8.3 and (8.1), the action of π1 on π3X is non–trivial if and only if x̃ is even. �

Theorem 1.1 is a corollary to Theorem 8.4.

Proof of 1.4. Note that Z/x̃Z⊗Z K is generated by {αk = q([k]− [k − 1])}0<k<f , where q : K →
Z/x̃Z ⊗Z K, k 7→ 1 ⊗ k. Thus Γ(π2(Pf,x)) = Γ(Z/x̃Z ⊗ K) ⊆ (Z/x̃Z ⊗Z K) ⊗ (Z/x̃Z ⊗Z K)
is generated by {γq(αk), [q(αj), q(αk)]}0<j<k,0<k<f . With α1

k = αk+1 for 1 < k < f − 1 and

α1
f−1 = [0] − [f − 1] = −

∑f−1
i=1 αi, we obtain, for ` =

∑f−1
k=1 `kγ(αk) +

∑f−1
k=2

∑k−1
j=1 `j,k[αj , αk] ∈
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Γ(π2(Pf,x̃)),

`1 − ` =

f−1∑
k=1

`kγq(αk)1 +

f−1∑
k=2

k−1∑
j=1

`j,k [q(αj), q(αk)]1 −
f−1∑
k=1

`kγq(αk)−
f−1∑
k=2

k−1∑
j=1

`j,k[q(αj), q(αk)]

=

f−2∑
k=1

`kγq(αk+1) + `f−1γq(−
f−1∑
i=1

αi) +

f−2∑
k=2

k−1∑
j=1

`j,k [q(αj+1), q(αk+1)]

+

f−1∑
j=1

`j,f−1[γq(αj+1), γq(−
f−1∑
i=1

αi)]−
f−1∑
k=1

`kγq(αk)−
f−1∑
k=2

k−1∑
j=1

`j,k[q(αj), q(αk)]

= (`f−1 − `1)γq(α1) +

f−1∑
k=2

(`k−1 − `k + `f−1 − 2`k−1,f−1)γq(αk)

+

f−1∑
k=2

(`f−1 − `1,k − `k−1,f−1)[q(α1, q(αk)]

+

f−1∑
k=3

k−1∑
j=2

(`f−1 + `j−1,k−1 − `j,k − `j−1,f−1 − `k−1,f−1)[q(αj), q(αk)].

Thus the sequence (1.1) splits if and only if there is at least one solution of the system of equations

(A) 0 = `f−1 − `1 mod 2x̃
(Bk) 0 = `k−1 − `k + `f−1 − 2`k−1,f−1 mod 2x̃ for 2 ≤ k ≤ f − 1
(Ck) 0 = `f−1 − `1,k − `k−1,f−1 mod x̃ for 2 ≤ k ≤ f − 1
(Dj,k) 0 = `f−1 + `j−1,k−1 − `j,k − `j−1,f−1 − `k−1,f−1 mod x̃ for 2 ≤ j ≤ k, 2 < k < f − 1.

For odd f , a solution of the system is given by `j,k = 0 for 1 ≤ j ≤ k − 1, 1 < k < f − 1, `k = 0
for k odd, and `k = x̃ for k even. Hence (1.1) splits if f is odd. It remains to show that there are
no solutions for even f > 2.

For 2 ≤ j < 1
2 (f − 2), subtract the equation (Di,f−j+i) from the equation (Di,f−j+i−1) for

2 ≤ i < j. Add (Dj,f−1) and (Cf−j), then subtract (Cf−j+1). Adding the resulting equations
yields

(Ej) 0 = `f−1 − `j,f−1 − `f−j−1,f−1 mod x̃.

Multiplying the equations (Cf−1) and (Ej), 2 ≤ j ≤ 1
2 (f − 2) by 2 and adding them we obtain

0 = (f − 2)`f−1 − 2

f−2∑
j=1

`j,f−1 mod 2x̃.

On the other hand, adding the equations (A) and (Bk), 1 < k < f − 1, the resulting equation is

x̃ = (f − 2)`f−1 − 2

f−2∑
j=1

`j,f−1 mod 2x̃.

Hence there are no solutions for f even. �

9. Pseudo–Projective Spaces in Dimension 4

In the final section we consider 4–dimensional pseudo–projective spaces and provide a proof
of Theorem 1.5. We begin by constructing a 4–dimensional pseudo–projective space associated
to given algebraic data. Namely, take f ∈ Z with f ≥ 0, x, y ∈ R = Z[Z/fZ] with xy = 0 and
fε(x) = 0, where ε is the augmentation of the group ring, R, so that xR ⊆ ker ε. Finally, take
γ ∈ Γ((ker fε)/xR). Given such data, (f, x, y, α), take a 3–dimensional pseudo–projective space
Pf,x as in (3.2). Then the set–theoretic splitting ux of the short exact sequence

Γ(π2(Pf,x)) // // π3(Pf,x) // // H3(P̂f,x)
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implies that every element of π3(Pf,x) may be expressed uniquely as a sum ux(v) + β with v ∈
H3(P̂f,x), that is, xv = 0, and β ∈ Γ(π2(Pf,x)) = Γ((ker fε)/xR), see (6.2). Using ux(y) + α ∈
π3(Pf,x) to attach a 4–cell to Pf,x we obtain the 4–dimensional pseudo–projective space,

P = Pf,x,y,α = S1 ∪ e2 ∪ e3 ∪ e4.

Note that the homotopy type of P = Pf,x,y,α is determined by (f, x, y, α) and that every 4–

dimensional pseudo–projective space is of this form. The cellular chain complex, C∗(P̂ ), of the

universal cover, P̂ = P̂f,x,y,α, is the complex of free R–modules,

〈e4〉R
d4 // 〈e3〉R

d3 // 〈e2〉R
d2 // 〈e1〉R

d1 // 〈e0〉R,

given by d1(e1) = e0([1] − [0]), d2(e2) = e1N , that is, multiplication by the norm element, N =∑f−1
i=0 [i], d3(e3) = e2x, and d4(e4) = e3y. Let b̄ : R→ π3Pf,x be the homomorphism of R–modules

which maps the generator [0] ∈ R to b̄([0]) = ux(y) + α, so that composition with the projection

onto H3P̂f,x yields the homomorphism of R–modules induced by the boundary operator d4. Thus
we obtain the commutative diagram

H4P̂
b //

��

��

Γπ2P

j

##

��

��
R

b̄ //

d̄4 ##

π3Pf,x // //

����

π3P

h����
H3P̂f,x // // H3P̂

in the category of R–modules, where the middle column is the short exact sequence (6.1) and

(9.1) H4P̂
b // Γπ2P

j // π3P
h // // H3P̂

is Whitehead’s Certain Exact Sequence of the universal cover, P̂ = P̂f,x,y,α.
Now we restrict attention to the case f = 2. Then π1 = π1P = Z/2Z and the augmentation

ideal, K is generated by [1]− [0]. Thus

x = x̃([1]− [0]) and y = ỹ([1] + [0]), for some x̃, ỹ ∈ Z.

We assume that x and y are non–trivial, that is, x̃, ỹ 6= 0.

Theorem 9.1. For P = P2,x,y,α, with x and y as above, π1P = Z/2Z acts on π2P = Z/x̃Z
via multiplication by −1, trivially on H3P̂ = Z/ỹZ and via multiplication by −1 on H4P̂ = Z =
〈[1]− [0]〉. The exact sequence (9.1) is given by

(9.2) H4P̂ = Z b // Γπ2P = Γ(Z/x̃Z)
j // π3P

h // // H3P̂ = Z/ỹZ.

Denoting the generator of Γπ2P by ξ, the boundary b is determined by

b([1]− [0]) = x̃ỹξ,

and the action of π1P on π3P is trivial. As abelian group, π3P is the extension of H3P̂ by coker b
given by the image of −α ∈ Γπ2 under the homomorphism

τ : Γπ2
// // coker b // // coker b/ỹcoker b = Ext(Z/ỹZ, coker b).

Hence the extension π3P over Z determines α modulo ker τ .

Theorem 1.5 is a corollary to Theorem 9.1.
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Proof. As the augmentation ideal K ∼= Z is generated by k = [1] − [0], the action of π1 = Z/2Z
on K = π2P2 and hence on π2P = K/xR = Z/x̃Z is multiplication by −1, since k[1] = −k. But
the Γ–functor maps mutliplication by −1 to the identity morphism, so that π1 acts trivially on
Γ(π2P ).

As d3(e3) = e2x, we obtain H3P̂2,x
∼= Z, generated by the norm element N = [1] + [0]. Since

N [1] = N , the action of π1 on H3P̂2,x is trivial.

As d4(e4) = e3y, we obtain H3P̂ ∼= Z/ỹZ and H4P̂ ∼= Z, generated by k = [1]− [0]. Hence the

action of π1 on H4P̂ is multiplication by −1.
Now let ξ = ([1]− [0])⊗ ([1]− [0]) be the generator of Γ(K). Note that v[1] = v and β[1] = β,

for v ∈ H3P̂2,x and β ∈ Γ(π2P ), since π1 acts trivially on both H3P̂2,x and Γ(π2P ). Lemma 8.3
implies

(u(v) + β)[1] = −x̃ỹ ω(ξ) + u(v[1]) + ω(β)[1] = −x̃ỹ ω(ξ) + u(v) + ω(β).

We obtain

b̄(e4([1]− [0])) = (u(y) + ω(α))([1]− [0])

= −x̃ỹ ω(ξ) + u(y) + ω(α)− (u(y) + ω(α))

= −x̃ỹ ω(ξ).

By definition of b̄,
π3P = π3P2,x/im b̄.

Hence π1 acts trivially on π3(P ).
Sequence (9.1) yields the short exact sequence

(9.3) G = coker b // // π3P
h // // H3P̂ ∼= Z/ỹZ,

which represents π3P as an extension of Z/ỹZ by G = coker b. Thus the extension π3P over Z
determines γ modulo the kernel of the map

τ : Γπ2
// // coker b // // coker b/ỹcoker b = Ext(Z/ỹZ, coker b) .

�
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