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Parabolic bundles, elliptic surfaces and SU(2)~representation spaces

of genus zero Fuchsian groups

The concept of parabolic bundles on curves was introduced by Seshadri as a general-
ization of bundles on projective curves. Parabolic bundles share many of the properties of
ordinary bundles. A sensible notion of stability for example, leads to moduli spaces with
nice properties. Similar as in Narasimhan’s theorem for ordinary bundles, these moduli
have an interpretation, due to Mehta and Seshadri [80], as representation spaces of orbifold
fundamental groups. These are groups of orientation preserving discontinuous automor-
phisms of the sphere, Euclidean plane or the complex upper half plane with orbit space
of finite volume. In the hyperbolic case they are called Fuchsian and may be identified as
subgroups of PSI(2, R). In this identification the parabolic structure corresponds to fixing
the weights of the representation for the elliptic, parabolic and hyperbolic elements in the
surface group. :

In the present paper I want to point out another aspect of parabolic bundles: They es-
sentially describe bundles on elliptic surfaces with certain conditions on the Chern classes.
The idea is quite simple. Similar to ordinary bundles one can define a pull back 7¥ of
a parabolic P bundle along the projection 7 : X—C of the elliptic surface X onto the
curve C. In contrast to the usual pull back, the restriction of #®P to a multiple fibre is
not trivial, but depends on the parabolic structure of P. Of course, in order to define 7?,
the weights of P and the multiplicities of the fibres of = have to match.

The definition of a inverse push forward 7, needs some prerequisites. The restric-
tion of a bundle £ to a generic fibre should be trivial. This can be achieved by imposing
conditions on £ and on X. The elliptic surface X is supposed to have singular reduced
fibres; a sufficient condition for £ then is semistability with respect to a suitable Kahler
metric. The main theorem in chapter I asserts that in such a situation there exists an
inverse functor 7, to 7¥. In particular the moduli spaces of semistable parabolic bundles
on curves with vanishing parabolic degree are isomorphic to moduli of semistable bundles
on elliptic surfaces with numerically trivial Chern classes.

A C*°—diffeomorphism of the respective moduli spaces can be obtained easily in a
different way, using the fact that the fundamental groups of the elliptic surfaces considered
are cocompact surface groups. Donaldson’s solution to the Kobayashi~Hitchin conjecture
[85] implies that the moduli space Mx ,(0,0) of stable bundles is diffeomorphic to the
space

R(my (X)) = Hom™* (71 (X),U(r))/ad U(r)

of irreducible representations of the surface group. But the latter space, as already men-
tioned above, is isomorphic to a moduli space of parabolic bundles.

The correspondence between bundles on elliptic surfaces and parabolic bundles is
used in the second part for the computation of the moduli spaces U(a) of parabolic rank-2
bundles on the projective line C = P! with fixed weights a. Any such U(e) is obtained
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by an explicite sequence of blow ups and blow downs, starting from a projective space
P33 = Sym™~3C, where n = }I is the finite cardinality of the subset I of C' where the
parabolic structure is concentrated in. The locus of the monoidal transformations depends
on the parabolic structure, both on weights and on I. Also the singularities of U(a) can
be described completely.

Parts of the results in this chapter had been obtained earlier in works of Kirk-Klassen,
Bauer—Okonek and Furuta-Steer [89).

A final word on the relation of U(a) to representation spaces. Suppose I' C PSI(2,R)
is a Fuchsian group of genus zero. This means that the orbit space H/T" of the fractional
linear action on the upper half plane has a compactification diffeomorphic to P!. The
group I' has a presentation

n
(€T1ye0 o p |2 =1,i51,Ha:,-=1)

=1

with elliptic ( < 1), hyperbolic and parabolic elements. For a representation p : [ — SU(2)
the images
b= 0) b, = exp(2mia), 0 < .

p(z) ~ (0 5;1), : = exp(2mia;), 0< a; < 3
of the generators are diagonalizable with weights a,. Fixing these weights, one gets a
representation space isomorphic to U(«), where o and (a;) can be transformed into one
another as explained in chapter II.
Acknowledgments: Some conversations with Prof. M.S. Narasimmhan were very helpful
to me. Also I am grateful to the Max-Planck Institut fiir Mathematik for its support.

I. Parabolic bundles on curves and bundles on elliptic surfaces

A parabolic structure on a bundle over a projective smooth curve C' fixes some addi-
tional structure — flags and weights — over a finite set I of points on C. In this chapter
it is shown that such parabolic bundles essentially define bundles on those elliptic surfaces
X over C where the multiple fibres are contained in the preimage of I. In case X has
nonnegative arithmetic genus this leads to a natural isomorphism of the associated moduli
spaces of stable and semistable objects.

Let m : X—C denote a relatively minimal elliptic surface of Kodaira dimension 1
with x(X) > 0. The fundamental group of X is known to be a cocompact surface group
(compare Ue [86], prop. 2). In particular the first Betti number is even and, by a result
of Miyaoka [74], X may be equipped with a Kahler metric. X is always assumed to carry
a "good” Kahler metric: If X 1s not projective, any will do. Otherwise one has to specify,
depending mainly on the rank r of the bundles considered, a "good” Kéahler metric. A
multiple of the ample divisor H,, = Hy + rnKx, where Hy is an arbitrary ample divisor
and Kx a canonical one, will determine an embedding into a projective space and thus
induce a metric from the Fubini metric. In order to get a "good” metric, n has to be
sufficiently big; for our purposes (except in lemma 1.2) n > 2(Ky - Ho) will do.
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For a torsion free coherent sheaf S let u(S) denote the slope

u(S) = n;;.(s) jx a(S)Ae,

where ® is the Kahler form on X. In the projective case one may as well set

) = ks

Definition: A holomorphic vector bundle £ over X will be called vertical, if there is a
sequence of subbundles 0 C & C & C ... C &, = £ with subquotients £;/€;_, isomorphic
to Ox(C;) for a vertical divisor C; satisfying C; - C; = 0.

Lemma 1.1: Let £ be a semistable bundle of rank r with ¢2(€) = 0 and det £ = Ox(C)
for a vertical divisor C' with C? = 0. Then £ is vertical.

Proof: After tensoring with a suitable power of the canonical bundle KX x one may
assume pu(Kx) < p(€) < w(K¥?). Fori € {0,...,7 — 1} one can inductively construct
surjective homomorphisms £— @; onto torsion free sheaves @; of rank r — 7 and kernel
E;. The sheaves Q; satisfy:

1)  det(Q;)VY =2 Ox(D;) for a vertical divisor D;

i) HY(X;Q;)=0

i) HO(X; Qi) # 0

iv) p(&)>0.

Note that these conditions are satisfied for £ = Qy: The semistable bundle £ ® X x only
admits the trivial section, since u(€Y @ Kx) < 0. Serre-Poincare duality implies ii) and
iii) follows from the Riemann—Roch theorem. The assumption x(X) > 0 is essential for
this last step.

A nontrivial section of @;_; leads to a short exact sequence

0—Ji(Ci)— Qi—1 — Qi—0,
where J;(C;) is the ideal sheaf of a 0-dimensional complex subspace of X, twisted by a
divisor C; > 0. In case X is not projective, any divisor, and in particular C;, is vertical:
Otherwise an irreducible divisor C' with C - Kx > 0 would yield (C' + IKx)? > 0 for

sufficiently large I, contradicting non—projectivity. So assume X projective. Semistability
of £ gives

(Ho+nrKx) - Ci+ (2 — Dp(&imr) = ip(&;) < 1p(€) < 2i(Hp - Kx) < in

and ampleness of H,
Hy -Ci+(—1u&)20.
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Therefor C; - Kx < 0 and the divisor C; has to be vertical.
Conditions ii) and iv) are easily verified and iii) follows from the Riemann-Roch theorem
using the estimates co(J;) = length(Ox/J;) 2 0, C? < 0 and thus inductively

c2(Qi) = e2(Qi=1) — [e2(T:) = CE] <L 0.
The iterated application of this inequality

r—1
0=cz(Qo) = c2(R1) 2 ... 2 2 @ro1) = length(QYY,/@r-1) — (C — ZQ')z >0

i=1

forces J; = Ox and C? = 0, proving the lemma. )

Let £ be a vertical bundle of rank r with &;/&;—; = Ox(C;). For the following lemma
denote dmin = min{p(Ox(C:))} and dmer = maz{p(Ox(C;))}. (In the projective case
set dmin/maz = min/maz{Hy - C;} and choose H, such that n > dmaz — dmin)

Lemma 1.2: Let F; C F3 C ... C Fr = £ be a sequence of subsheaves with semistable
torsion free subquotients F;/F;_; and suppose dmin < (F;/Fj-1) < dmaz. Then each
F; is a vertical bundle.

Proof: Induction over k.
The filtering (&;) of € induces a filtering (Q;) of @, = £/F,, where each subquotient is
torsion free of rank < 1. If it is nontrivial, @;/Qi—1 & Ji:(C;+ D;) with an effective divisor
D; and the ideal sheaf J; of a 0-dimensional subspace of X. In particular p(Q;) > dmin.
The filtering (F;) induces a filtering of @;. Semistability of the subquotients F;/F;_; and
the estimate p(F;/Fj—1) < dmqz applied to this filtering imply p(Q;) < dmaz. Similarly
to the preceeding lemma the divisor D; is vertical: in the projective case the estimate

nr(D; - Kx) < p(Ox (D)) = p{(Qi/ Qi-1)(—C)) £ rank(Q;)(dmaz — dmin) < nr

shows D; - Kx < 0. With this information one can compute Chern numbers:

ca(€/F1) = Y length(Ox/T) + 3 Di+ Dy =m + %(Z Dy — %(Z D?)

i<j
c2(F1) = —ep(E/F1) + (Z D).

Being semistable, F; has to satisfy an inequality due to Bogomolov (compare Kobayashi
[87], p 114) and in the Kahler case to Libke [82] (s = rank F)):

0 < 2s¢3(F1) = (s — 1)E(F1) = (—25m) + (~s pr) + (Z D;)*

Any summand in the latter expression is less or equal to zero with equality iff for all Z one

has D? = 0 and J; = Ox. This shows that £/F] is vertical. Because of lemma 1 the sheaf
F, is a vertical bundle as well. [



Corollary 1.3: The Harder-Narasimhan decomposition of the bundle £ above is vertical.

Proof: Suppose F; C ... C Fx = £ is the HN-filtration. With j maximal such that
&; C Fy—1 and I minimal such that F; C &, one gets the inequalities:

dmin < ﬂ(OX(C_H-])) < #(fk/fk—l) <...< F‘(}-l) < F(OX(CI)) < dma::
&

Let 2 denote the formal neighborhood of a point z € C with structure sheaf isomorphic
to CJ[t,]]. Similarly let X, be the formal neighborhood X x ¢ 2 of the fiber 7~1(z).

Proposition 1.4: Suppose £ is a semistable bundle of rank r over X satisfying c;(£) =0
and det(£) = Ox(C) for a vertical divisor C with C* = 0. Then the restriction £,
of £ to X, splits as a sum E, > @0« ‘(lz iF;) of line bundles for certain numbers
0 £ 1;; < m,, where m, denotes the multiplicity of the fiber X, and F; = X, ;4. In
particular the natural morphism 7*x,£—¢& is injective with quotient sheaf isomorphic to

@‘x,i >Oo!1,|'Fs (Iz’in)-

Proof: Induction on the rank of £. Since C? = 0 and the fibers of = are connected,
the divisor C is a linear combination of reduced fibers C = C'+ 3, L F, with 0 < [; <m,.
Applying =*m. to the sequence

0—*0)((0')—)0)((0)——-? ®; O r,(I.F;)—0

gives 7*m,Ox(C) = Ox(C'"), since 7.0, F, (1. F,) = 0.

In the general case let £' C £ be a subsheaf of lower rank with u(€') maximal and with
torsion free quotient £ = £/E’. Both £’ and £ are semistable and satisfy the conditions
of 1.2. Hence they are vertical, too.

()  Claim: H(C; ma(Hom(E",£"))) = 0

To verify this claim, consider the natural homomorphism 7*m,(FY)— FVY, where F de-
notes the bundle Hom(€",£")@wY, ;¢ This map is an isomorphism away from the multiple
ﬁbers, since by induction the same is true for F replaced by any of the factors £”,&' or
w¥/c- Moreover the quotient sheaf Q is supported on the divisor M = 3 (m,—1)F;: By
induction @ @ Oy = @,O(k im.+1;)F, (liFz). But r*(Q) injects into the locally free sheaf

Tar (7 T (FY)); a.nd thus is trivial. This forces k; =
Relative duality, compare Barth et al. [85], p. 99 prov1des an isomorphism
m*ru(FV) & m*ra(F @ wx/c).

A nontrivial section of 7., (F Qwx/¢) = 71 (Hom(E",£")) then induces a nontrivial sheaf
homomorphism Ox(—M)—F, or equivalently, a nontrivial homomorphism

P E'—E ®w}"{/c Ox(M)=E&' @n*r.,Ox.
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The assumption x(X) > 0 is equivalent to deg(m.Ox) < 0, compare Barth et al. [85],
p. 162. The inequalities u(&") > u(€') > p(€' ® 7*1,qOx) show that the existence of ¥
contradicts the semistability of £ and £'. This proves the claim.

As an extension, £ is represented by an element of Ezty  (£",€) = H'(X; Hom(E",E")).
Let O, denote the sheaf 7*(O;/t}). The Leray spectral sequence induces a decomposition

0— HY(C; 1a £)— HY(X; £)— H(C; 7141 £)—0

for any sheaf £ on X. Naturality with respect to sheaf homomorphisms and the vanishing
of H'(C;m.(Hom(E",E') ® O,)) force the natural map

rn t HY{X Hom(E",E))— HY(X; Hom(E", £ ® O,)

to factor through H°(C; ma (Hom(E",£')) = 0. As a consequence ry, is zero and the same is
true for the map H!(X;Hom(E",E'))— HY(X,; Hom(E",£")2), compare Grothendieck,
EGA 1114 [61]. The statement on 7#*r,E—¢& follows by a base change argument. &

Corollary 1.5: Let £ be as in 1.5. Then H'(X; End(€)) = H'(C; End(E)).
Proof: Apply the claim (%) in the proof above to the case &' = £". »

The proposition suggests that semistable bundles on the elliptic surface X essentially
are "pull backs” of parabolic bundles on C. This will now be made more precise. For
the basic definitions and properties of parabolic bundles the reader may consult Seshadri’s
asterisque volume [82]. To recapitulate the notation: C is a projective curve and = : X —C
a minimal elliptic surface of Kodaira dimension 1 and x(Ox) > 0, equipped with a ”good”
Kahler metric (i.e. if X is projective, the metric stems from a polarisation by an ample
divisor H,, = Ho + rnKx for n > 2(HoKx)).

Let S(x,a,d) (resp. S'(x,a,d)) denote the set of isomorphism classes of semistable (resp.
stable) parabolic bundles of rank r, parabolic degree d, weights a = (a.;).er;1<i<n, and
multiplicities x = (ks,i)zer;1<i<n,. The functor -

S'(x,a,d) : AN—ENS
associates to each complex space T the equivalence classes of families of elements in

S'(x, a, d) parametrized by T. For this functor there exist a coarse moduli space U,(x, a, d)
with natural compactification U(x, a,d).

Let on the other hand R(r,d) (resp. R'(r,d)) be the set of semistable (resp. stable) bun-
dles & of rank r over X with ¢2(€£) = 0 and det(€£) = Ox(D) for a vertical divisor D
numerically equivalent to d - 7*(z) for a point z € C. The corresponding functor

R'(r,d) : AN—ENS
has a moduli space Mx ,(d,0) with compactification Mx(d,0).
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Theorem 1.6: There exists a natural transformation
7 ]_[ S'(x, ¢, d)—R'(r,d).

Here the sum is over all possible sets of multiplicities x and all sets of weights satisfying
a; € (m,)"'Z, where m, is the multiplicity of the fiber X,. The functor 7% has an inverse
7, and thus induces identifications Mx ,(d,0) 2 [{ U,(x, a,d) and Mx(d,0) = [[U(x, a,d)
of the corresponding moduli spaces.

Remarks 1.7:

i) The theorem asserts the equivalence of moduli spaces as analytic spaces. The
moduli spaces U(x,a,d) are known to be projective. A result of Miyajima [89] shows
Uan(x, ayd) = (Uaig)an{x,a,d). In particular the moduli spaces Mx(d,0) are projective,
even if X is not.

ii) The weights of parabolic structures a priori are real numbers in [0,1[. However,
by a result of Mehta—Seshadri [80], Théoréme 13, for any set a of weights there exist sets
b of rational weights, such that S(x,a,0) and S(x, b,0) are equivalent via the underlying
quasiparabolic structures. In particular U(x, a,0) = U(x, b,0).

iii) The argument of Mehta—Seshadri shows that there exist only finitely many isomor-
phism classes of moduli spaces U(x, a,0) for a fixed rank. Applying suitable logarithmic
transformations over I C C, one can construct an elliptic surface X over C, such that any
U(x, a,0) is isomorphic to an open and closed subspace of Mx(0,0).

iv) Actually 7P is also defined for non-semistable parabolic bundles; one doesn’t
even need the restricting hypothesis x(X) > 0 on the elliptic surface X. Furthermore 7,&
is always defined, as long as the conclusion of 1.4 holds. As a consequence it is possible
to define tensor products of parabolic bundles. In fact, if the weights are all rational,
P1® Pz = mp(1PP1 Qo 79P2). The weights of the tensor product then are sums of
weights of the factors mod 1. To get the underlying quasiparabolic structure for general
weights, one has to replace the weights by suitably chosen nearby rational ones. Anyway,
after taking tensor product with a parabolic line bundle one can assume d = 0.

Proof of the theorem: For £ € R(r,d) the bundle n,£ carries a natural parabolic
structure, denoted by m,&: Proposition 1.4 shows

(7€) & Homo  (Om, F,,Ex,)
and a flag structure
(me&): = Fl(”pg)z D ... Fp (7p€);

is given by Fi(m,€), = Homox(O(m, —i+1)F,, Ex, ). The weight I/m, has the multiplicity
ki = dim(Fiy (7€) /Fi(7,E);). The parabolic degree of 7,€ is d.

Now let P denote a parabolic bundle in [| S(x,a,d). By assumption I, ; = m,a,; is a
nonnegative integer less than m,. The bundle 7¥P is conveniently described using the
dual: Let |P}Y be the dual of the underlying bundle of P. The bundle (#¥P)V then is the
kernel of a surjective map

$p : T (P|V)— Beyi ki - Ou ..
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Let F;(P). denote the i-th stratum of the flag at the point z and ¢.; : P} —(Fy(P).)Y
the map dual to the inclusion. Then ¢ is characterized by commuting squares

ﬂ.#('pV) R.—Wb" W*(F,('P)r) = EBjZikz,j . Om, F,
Ppl . : l
@1,k O, F, 2, Dj>ik. ;- O, F,.

The generalization to families V of parabolic bundles parametrized by T is straightforward
using the subbundles F;(V).x1 C VixT-
Dualising the defining short exact sequence for (7?P)V, one gets the short exact sequence

0—71*"P—a7PP— By, ;>0 k)i - O, ;F, (14,iF;)—0.

One easily verifies w,7¥P = P for any parabolic bundle on C and nP7,£ = £ for any
semistable bundle £ € R(r,d) on X. Lemma 1.1 and corollary 1.3 together show that =¥
and 7, both preserve semistability and stability.

The definition of 7, for families of stable bundles is immediate from the following lemma,
which also concludes the proof of the theorem: L )

Lemma 1.8: Let F be a family of stable vector bundles, parametrized by a complex space
T. Then (7 x idr).F is locally free and the bundles

(7 x tdp)eF)exr = (7 X id)u Hom(Ox, x7, F @ Ox, xT)

have natural subbundles

Fi(F)ext = (r x id)y Hom(Opm, —i+1)F, xT» F @ Ox, x7)-

Proof: The lemma certainly holds, if 7 = n®) for a family of parabolic bundles. Since
the claim is of local nature, it suffices to prove that the moduli spaces are smooth and
that the dimensions of versal deformations of a stable bundle £ over X and of 7€ are the
same. This can be shown using arguments of N. Nitsure [86]: The Zariski tangent space
to m,€ is isomorphic to H'(C, Par&nd(r,£)), where ParEnd(P) is the sheaf of germs of
endomorphisms of P preserving the parabolic structure. Using proposition 1.4 one easily
sees ParEnd(n,E) = 7,End(E) for a stable bundle £. Corollary 1.5 shows that 7, identifies
the Zariski tangent spaces. Finally Nitsure constructs in [86], proposition 1.13 a smooth
versal deformation space for any parabolic bundle P. é



II. Rank—-2 parabolic bundles on P!

Moduli spaces of bundles over curves are known to be quite complicated objects.
Additional parabolic structures tend not to improve the situation. Nevertheless quite a
few results are known by the work of Seshadri [77],[82], Mehta—Seshadri [80] and Nitsure
[86]. The purpose of this chapter is to explicitely describe the moduli spaces in the easiest
case of bundles of rank two over the projective line.

So let P henceforth denote a parabolic rank-2 bundle over C = P!. After tensoring
with a suitable parabolic line bundle (compare 1.7.iv), one may assume: pardeg P = 0
and for each z € I the weights have multiplicity 1 and add up to 1. Identify the set of such
weights (a, ;) with elements o € W = (0,1)! the following way: If the number of elements
n in [ is even, pick an arbitrary element zp. Set

& for z = 2o
az1 =

1_—2"’1 else

and a; 2 =1—a,; > % Let U(a) denote the corresponding moduli space of semistable
parabolic bundles. The following fact is basically due to Mehta—Seshadri [80]:

Theorem 2.1: For any o € W the moduli space U(«a) has the structure of a projective
variety. The open subvariety U,{(a) of stable bundles is a smooth quasiprojective variety
of dimension n — 3. In particular {(«) is normal.

(Note that for some « the variety U,(«) may be empty.)

Proof: Theorem 4.1 in Mehta-Seshadri [80], whereas stated only for curves of genus
g 2> 2, also holdsin this case. Using 1.7.iv) and the fact that elliptic surfaces X over P! with
x(X) = 1 are projective, one could as well apply Maruyama’s theorem [77] to see that U(a)
is projective. Smoothness, already used in the proof of 1.8, follows from proposition 1.13
in Nitsure [86]. The dimension of the moduli space can be computed from the cohomology
exact sequence associated to the inclusion of sheaves Par&nd(P)— End(P):

h1(C;ParEnd(P)) = h%(C; End(P)/ParEnd(P)) — x(End(P)) + h%(C; ParEnd(P)).

The first summand is the sum of dimensions f, of the flag varieties of type determined by
the quasi—parabolic structure at z € I; the last is 1, since the stable bundle P is simple.
Thus one gets with Riemann-Roch the dimension formula of Mehta~Seshadri:

dim L{,(X,a,O) = Zfz +T2(g - 1) +1.
I



For a more detailed study of the parabolic bundles it is necessary to characterize the
parabolic subbundles. To this end let K be the free abelian monoid generated by I with
the relations 2z = 2y for y,z € I and let ¢ : K—Z be the homomorphism defined by
¢(z) =1 for z € I. The monoid K acts on W by involutions

_Jay ify#2

Zay) = {l—a, for y = 2.

The quasi—pa.ré.bolic structure of P consists of distinguished 1-dimensional linear subspaces
V, in the fibres P, of the underlying holomorphic bundle {P|. The parabolic structure on
a 1-dimensional subbundle || of |P| is determined by the subset of I for which the fiber
L, is contained in V,. The weights associated to £L C P are

l. = az1 lf [:z ¢ Vz
5 az'2 if Ez C Vz

and the parabolic degree of £ is deg(|L]) + 3./ lz-

The parabolic bundle P is (semi-) stable, if for any parabolic line bundle £ C P one has
pardeg(L) < 0 (resp. < 0). So by fixing the quasi—-parabolic structure of P, the subbundles
L of P define affine linear forms pardeg{L) on W. The parabolic bundle P then is stable
if and only if its weights arein the negative cone of all these forms.

Denote by £(0) the parabolic bundle with deg|£(0)| = —[3] and with weights

T if nis even and z = 2
z az;y else. )

For k € K construct parabolic bundles O(k) the following way: The underlying holomor-
phic bundle of O(z) for z € I has degree 0 and the parabolic structure with weight o, is
concentrated in z. Set O(2z) = Oc(1) and O(k + y) = O(k) ® O(y), if k = "5 () b2z
The bundle £(k) then is £(0) @ O(k).

Lemma 2.2: Let P be a semistable parabolic bundle for some weight &« € W. Then P is
an extension of parabolic line bundles

0— L(ko)—P—L(kg)V —0

for a uniquely determined ky € K. Any parabolic subbundle different from L(kq) is
isomorphic to (L(ko + k))V for some k € K \ {0}. The parabolic degree of L(k) is given
by the formula

2pardeg(L(k)) = (k) +1— Y (ka),
where 3 (a) is the sum ), ., o, for o = (a:):er-

Proof: A well known theorem of Grothendieck states that |P| is isomorphic to a sum
of line bundles Op1(—m;) ® Opi1(—m2) and one easily verifies m; + mg = n. So there
is a uniquely determined parabolic subbundle £ C P with deg|L| = —m;, and in case
my = my = 2 with £(2) = V;,. One immediately verifies that this implies £ & L£(k,) for
some kg € K. A parabolic subbundle M different from £(k¢) admits a nontrivial parabolic
map to P/L = LY. In particular M @ O(k) = L(ko)V for some k € K \ {0}. &
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Note that there are only a finite number of hyperplanes Hy = {3 (ka)—p(k)—1 = 0}
for k € K contained in W.

Corollary 2.3: Suppose the line connecting two elements «, 8 of the weight space W does
not intersect transversely any of the hyperplanes Hi, k € K, then U{a) = U(p). Moreover
Us(a) = U(a) for a € W \ Uk Hy.

Proof: The isomorphism is induced by identifying the underlying quasi-parabolic
structures. &

Consider P! as the l-fold symmetric product Sym'C of the projective line C and simul-
taneously as the space Proj(S'V) of hyperplanes in H°(C; Oc(1)) = S'H®(C;0c(1)) =
S'V. Then C is naturally embedded in P! via the diagonal map C—Sym/C;z — z'.
The hyperplane corresponding to z is the kernel of the form sy € H*(C; O¢(1))V dual to
a nontrivial section s, of O¢(1) vanishing in z. The kernel of the form (sY)! = (s;:)Y then
is the image of the inclusion H°(C; O¢(l —1))— H®(C; Oc(1)) obtained by multiplication
with 5.

Let V(z) be the point z and V(22) the curve C C Sym!C. Denoting by A * B the join
of two subvarieties A, B C P!, the setting V(k' + y) = V(k') * V(y) for k = 2on\(y} b2
uniquely associates to each k € K a subvariety V(k) C P’ of dimension min(p(k) — 1,1).
Any such variety is the join Sec;(C) * {21} * ... * {2;} of a secant variety of the rational
norm curve C' with a number of points in I C C.

Applying the results of the first part, the following theorem can now be viewed as a
summary of 2.6, 3.4, and 4.1 in Bauer-Okonek [89]:

Theorem 2.4: Let a € W be a weight.

i) The moduli space U(a) is connected. It admits a stratification by locally closed subva-
rieties, each of which is isomorphic to a Zariski open subset of a projective space.

ii) U,(a) = @ if and only if ) (ka) < 1 for some k € K with ¢(k) even.

iii) Sym™ ~3C represents quasi-parabolic bundles on C. A Zariski open subset of Sym"~3C
can be identified with a Zariski open subset of U,(«).

iv) An unstable parabolic bundle [P,] € Sym"~3C is contained in V (k) for some k € K.
On the other hand a subvariety V(k) ¢ Sym"™~3C represents unstable bundles if and only

if 3 (ka) > (k) + 1.

Proof: 1) Let P be semistable, representing an element of ¢{a). Because of 2.2 there
is a short exact sequence

0—L(k)—P—L(k)V—0.

Since ParHom(L(k)Y,L(k)) = 0, P is classified by a 1-dimensional linear subspace of
ParEzt!(L(k)V,L(k)). By choosing a suitable elliptic surface X over C one can iden-
tify the latter with Exty, (wPL(k)Y,n?L(k)), using 1.7.ii). As in the proof of 1.4,
this Ezt-group is isomorphic to H(C;mnPL(k)®?). The easily checked isomorphism
TP (L(k)®2) 2 Oc(—n + ¢(k) + 1) and Serre duality finally achieve

ParEaxt! (L(k)Y, L(k)) = HY(C; Oc(n — o(k) — 3)) .

11



Quasi—parabolic bundles admitting semistable parabolic structures are thus uniquely de-
termined by elements of

[ Proi(H*(C; Oc(n — o(k) - 3))) = [ ] Sym"?-#®c.
keK kEK

Stability being an open condition and the fact that there is only one component of maximal
dimension n — 3 imply i) and iii).

2) In what follows, keep in mind that computations with parabolic bundles can always be
executed using vertical bundles (in the sense of the preceeding chapter) on an auxiliary
elliptic surface. Let P be represented by an element of Sym™~3C. The proof of 2.2.
showed the only possible parabolic subbundles to be of the form £(k)V. The parabolic
homomorphism L(k)¥ —P-—L(0)V gives a parabolic morphism ¢ : Oc— L(k) ® L{0)V.
In the commuting diagram of parabolic bundles:

0 — £(0)®? — PRLO) — Oc¢ — 0

! ! lg
0 — LO®LKk) — PRLEk) — LOVOLK) — 0

obtained by tensoring with g, the map g lifts. So [P] is in the kernel of the map
H(7,wPg) : HY(C;maw® L(0)®?)— HY(C; 7P (L(0) ® L(K))).

Serre duality identifies the kernel of H!(7.7m¥g) with the osculating linear subspace in
Proj(H°(C;Oc(n — 3)) & Sym™~3C determined by the zero divisor of m,7%g on C C
Sym™3C. The variety V (k) is the union over all the possible osculating linear subspaces.
This far we have seen that P admits a subbundle £(k)V if and only if [P] € V(k) C
Sym™3C. Such a subbundle destabilizes P iff p(L(k)¥) > 0. With 2.2 this translates
into the claim of iv).

To prove ii) one finally has to examine whether there exists an element [P] € Sym"~3C
representing a stable bundle. This fails to be true only in two cases: Either pu(£(0)) > 0
(equivalently > (a) < 1), or u(L(k')V) > 0 for some k' € K with dim V(k') = (k') -1 =
n — 3. In the latter case consider an element k € K with k + % = 37,2z mod 2K. The
condition p(L(k')V) > 0 is equivalent to ) (ka) < 1. This follows from the identities

Y (k'a)+ 3 (ka) =n and
{ke K |k+k =3 ;2 for some k' € K with p(k') =n -2} = {k € K | (k) =0 mod 2}.
: &

An easy computation shows that for @ = (a;) with a, = ﬁ the moduli space is
isomorphic to P"73 & Sym"=3(C.
To analyze the general situation, assume o, 8 € W \ (Urer Hy) are separated by exactly
one hyperplane Hy, and choose a weight v € Hy, \ (Ux\x, Hx) on this hyperplane.

Theorem 2.5: There exists a smooth complex manifold (e, ) and a commuting diagram

U(a,f) — U(B)
) !
Ula) — Uly),
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where the morphisms are birational equivalences. The exceptional loci form a diagram

Pwelko)—1 o pn—w(ko)-3 P2, pn—wp(k)-3

pril i

P?(ko)—] —— PO.

Moreover the exceptional loci are smoothly embedded, except perhaps in U,.

Remark 2.6: As an immediate consequence for any weight « € W the moduli space
U(a) can be constructed from Sym™ 3C by a sequence of blow ups and blow downs the
following way: After the i-th step the strict transforms of the i-dimensional subvarieties
V(k) = SeciC * {z1} * ... * {z;} with ¢(k) = 7 + 1 representing unstable bundles are
isomorphic to projective spaces P*. After blowing up along these P*, one can blow down
“onto the other factor in the exceptional divisors”, completing the (i+1)-st step.

Proof of 2.5: Let L(ko, ) be the the parabolic line bundle with weights determined
by ko and « as in 2.2 and suppose p(L(ko,a)) > 0 > p(L(ko,3)). The nontrivial parabolic
extensions

0——>£(k0, ﬂ)—ipﬁ—bﬁ(ko y ﬂO)V—vO

are stable: Any subbundle ANy of Py different from L(kq, 8) maps nontrivially to L(kg, 8)Y
and therefor p(N;) < —p(L(ko,?)) for i € {a,f}. The inequality u(Ng) > 0 thus would
imply that o and 3 are situated on different sides of the hyperplane {pardeg N = 0} # H;,,
contradicting the assumption. Similarly all extensions

0—L(ky, )Y —Qq——L(kg, )—0

are stable. The extensions Q and P are classified by projective spaces P#(k)=1 and
Pr—#(k)=3  respectively. The vector bundle Q. with the same quasi—parabolic structure
as @, is semistable, as is Py. These semistable bundles are represented by one element
PO € U(7).
Now let U(a, B) C U(a) x U(B) denote the subset of all pairs (€4, Fg) of stable parabolic
bundles admitting a nontrivial parabolic map f : £g—Fg. Note that such a map only
exist if either £3 =2 Fpg or £5 = Qs and Fg = Pg. One may view £g and Fp as bundles on
an auxiliary elliptic surface. If V¢ andVr are versal deformations of these bundles, then
U(a, B) locally is the support of the function dim H°(X,,VY x V#). The semicontinuity
theorem implies that U(a, ) is a subvariety of U(a) x U(B). It remains to show the
smoothness of this variety. Dropping the subskript £, one can apply lemma 2.7 below.
By an argument similar to the proof of (x) in 1.4, it remains to compute the map
H(m.(f ®1d —id ® fV)). The bundles in the exact sequence

0—eerY LN c g g FoFY 1PN Foev—o

are simple, hence the sequence remains exact after application of the functor H(C;m,(.)).
The identities £ = £Y and F = FV show that the Zariski tangent space of U(«a, 8) has the
same dimension as the Zariski tangent space of U(«a) or U(f). This proves the theorem.d
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Lemma 2.7: The Zariski tangent space of (e, 3) at ([€], [F]) is isomorphic to the kernel
of the map

H (f@id—id@fY) H(X;EREVDFRFY)—H(X; FQE&Y).

Proof: Apply the method of Forster—-Knorr [74], §9: One has to compute the exten-
sions over the double point p (with structure sheaf Cle]/e?) of the pair (£, F) admitting
an extension of f. The holomorphic vector bundles £ and F are described by cocycles
(gi5) and (hi;) € ZH(U*; GI(2, Ox)) for a suitable open covering U* of X. The Cech coho-
mology H*(U; Hom(E,F)) for an open covering is the homology of the cochain complex
C*(U; M(2 x 2,0x)) with differential

q
k
(6$)io...iq+1 = h‘oilzl‘[---iq-pl + Z(_l) mio.../l'\h...:'q.{.l - (_1)qmio'“iqgi¢i9+l'
k=1

The space of vector bundles £ over X x p restricting to £ over X C X X p is isomorphic to
HY(X,&End £). For a cocycle v;; the corresponding bundle £ is represented by the cocycle
(g9i5 + €vi;) € Z*(U; GI(2,0x]e])). For F choose a representing cocycle (hij + €xij). An
extension f = (f —i+e€@;) : E—F of the map f = (fi) € Z°(U, Hom(E, F)) has to satisfy
the cocycle relation

(hij + eri;)(f5 + €b;) = (fi + €di)(gi; + €7i5)

or equivalently
fivij — wisf5 = hijéj — bigij.
But this is just the claim. &

The theorem applies to a conjecture of Fintushel-Stern [88}, proved by Kirk—Klassen
[89], compare also Bauer-Okonek [89] and Furuta-Steer [89).

Corollary 2.8: The representation space R = Hom([', SU(2))/ad SU(2) of a perfect
cocompact Fuchsian group I' admits a Morse function with only even indices.

Proof: Any component of R is diffeomorphic to U(p) for some weight p € W\ Uy H.
For 1- or 2-dimensional rational manifolds it is easy to directly construct such Morse func-
tions. Otherwise by a theorem of Smale [62] it suffices to prove the vanishing of the odd
dimensional integral cohomology. Taking a path in W from a o with (o) = P"~3 to the
given p, which intersects only one hyperplane Hy. at a time, one is reduced to computing
the cohomology of the blow-ups in 2.5 (compare Griffiths-Harris (78], p. 602ff):

H*(U(a, B)) = H*(U(a)) @ H*(P¥ko)=1 i prelke) =3y prv(pelko) =1y
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The Betti numbers of a component were in principle computed in Bauer—-Okonek [89].
Furuta-Steer [89] gave a formula for the Poincaré polynomial:

Corollary 2.9: The moduli space U(a) for &« € W \ Ug H; has the Poincaré polynomial
(142" - Eicel(/u(tw(k)

(1—12)(1 —1t4) ’
where k € K is the unique element in the mod 2K equivalence class k satisfying the
inequalities

P(U(a)) =

=14 (k) < S (ka) <14 (k).
Proof: First we check the formula for & = (a,).es with a, = 15. By theorem

2.4, U(a) = 0, so the formula to verify is (1 + t?)" = EEeKﬁK #2¢(8) " For the element
ky=3,es2 € K,J CI, one has
n — 2p(k)

—L p(ky) < ) J(kye) = p(ks) + —=7— < 1+o(ky).

Thus the coefficient of 2! in the polynomial 3 ;¢ x 2K t2¢(® is (), which was to be shown.
Now suppose «, 8 € W \ Ugx H}. are separated by one hyperplane only, say

D (ko) < 1+ (ko) < > (ko)
For the elements k* and k? in the mod 2K equivalence class k associated to the weights o
and # one easily checks k* = k? with the exeptions: ko and ko + Y_; 2. For these one has

ke = ko; kP = ko +22; e((ko+3;2)") = n—p(k}) for i € {e, B}. A simple computation
verifies the claim:

(12— § 2D [(1442)m = 5T 42008
K/2K K/2K
= t2¥(ko) + tQ(ﬂ—_ﬁP(ko)) — $20(ko)+2 _ 42(n—wp(ko)-2)

(1 — t2(ﬂ—ﬁ0(ko)—2)) (1 — ti"ﬁ(ko)) 4 2
_( — - N a-ma -

= [P(P"#(k0=3) PPt - 2)(1 — 1)
= [PU()) - PU(a)))(1 - £5)(1 — 1*)

The theorem also describes the singularities in U(a):

Corollary 2.10: Let @ € W be a weight. The singularities of /() are isolated and in 1-1
correspondence to hyperplanes H; C W containing «. Each singularity is determined by
its resolution: The exceptional divisor E is isomorphic to P! x P*~!~* and the projection to
either factor leads to a small resolution. In particular the normal bundle of E is isomorphic
to Oplxpn-l--l(_l, —-1)

Proof: The singularities correspond to equivalence classes of semistable bundles. Two

semistable bundles are equivalent, if their stable factors are isomorphic. But the stable
factors corresponding to Hy are £(k) and L£(k)V. )
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The subset of W of weights for which the moduli space U(a) is isomorphic to a
projective space is not connected for n > 5. Hence the procedure explained in 2.6 will
describe Cremona transformations P*~% — — — P"~3 for weights in different components.
Two examples will be discussed:

1) The transformation ¢ : P*~% — — — P™73, which in homogeneous coordinates is
given by z; — zoz;...%;...Z,, is not well defined in any hyperplane z; = 0. ¢ can be
described in a sequence of n — 3 blow ups and blow downs: Take the simplex generated
by the n — 2 points (0 :...0:1:0...:0). First blow up the vertices. Inductively the
strict transforms of the (i-1)~dimensinal linear subspaces spanned by i of the n — 2 points
can be blown up with exceptional divisor P*~! x P®~i=3, The projection onto the second
factor can be extended to a blow down of the ambient space completing the i-th step.

Let the weights «, 8 be given by a, = ﬁ for z € I and

g, = =~ for 2 € I'\ {z1, 22}
) 3=l else.

in
Then U(a) = U(B) = P*~? and the Cremona transformation described in 2.7 coincides
with ¢. ’
This follows from the fact that U(a) = Sym™~3C and the subvarieties V' (k) representing
unstable bundles with weights g are the linear subspaces spanned by the proper subsets

of I\ {z1,2,} C C C Sym"3C. &
2) For the second example choose « as above and

Bz=

n—
n—

-

{L if nis odd and z = 2

n=2 ifnisevenorz €I\ {z}.

Lemma 2.11: The moduli space ¢(8) is isomorphic to P*~3.

Proof: Let £ be the line bundle with parabolic structure concentrated in I, if n is
even and else in I\ {21}, weights ] and deg|C| = —[2]. One easily verifies that tensoring
a parabolic bundle with £ changes weights a into weights 8 and vice versa. &

The resulting Cremona transformation can be described by the procedure indicated

in 2.7. The subvariety V (k) C Sym"~3C corresponds to unstable bundles with weights 3,
if and only if

ke{ke K |3k e K and z € I with k+ %' = (n — 4)2; + z}.

In the 3-dimensional case one blows up six points on a rational norm curve C C P3.
Blowing up further the strict transforms of the fifteen connecting lines of these points and
of C, one can blow down the exceptional divisors P! x P! onto the second factor. The
strict transforms of the varieties C *{z}, 2 € I now are isomorphic to P? and can be blown
down . The resulting space again is isomorphic to P3.

16



References

W. Barth, C. Peters, A. Van de Ven: Compact Complex Surfaces. Erg. der Math. (3) 4.
Springer, Berlin, Heidelberg, New York (1985)

S. Bauer, C. Okonek: The algebraic geometry of representation spaces associated to Seifert
fibered homology 3-spheres. MPI-preprint (1989)

S.K. Donaldson: Anti-selfdual Yang—Mills connections over an algebraic surface and stable
vector bundles. Proc. Lond. Math. Soc. (3) 50 (1985) 1-26

R. Fintushel, R. Stern: Instanton Homology of Seifert Fibered Homology Three Spheres.
Preprint (1988)

O. Forster, K. Knorr: Uber die Deformationen von Vektorraumbiindeln auf kompakten
komplexen Raumen. Math. Ann. 209 (1974), 291-346

M. Furuta, B. Steer: The moduli spaces of flat connections on certain 3-manifolds. Re-
search announcement (1989)

A. Grothendieck: Eléments de Géometrie Algébraique. EGA III, Publ. Math. THES 11
(1961)

P. Kirk, E. Klassen: Representation Spaces of Seifert Fibered Homology Spheres. Preprint
(1989)

S. Kobayashi: Differential Geometry of Complez Vector Bundles Princeton U.P. (1987)

M. Liibke: Chernklassen von Hermite-Einstein—Vektorbiindeln. Math. Ann. 260 (1982)
133-141

M. Maruyama: Moduli of stable sheaves I, II. J. Math. Kyoto Univ. 17 (1977) 91-126;
: 18 (1978) 557-614

V. Mehta, C.S. Seshadni: Moduli of vector bundles on curves with parabolic structures.
Math. Ann. 248 (1980), 205-239

K. Miyajima: A Note on Moduli Spaces of Simple Vector Bundles. Publ. Research Inst.
Math. Sci. Kyoto Univ., 25,2 (1989) 301-320
Y. Miyaoka: Kéhler metrics on elliptic surfaces. Proc. Japan Acad. 50 (1974) 533-536

N. Nitsure: Cohomology of the moduli of parabolic vector bundles. Proc. Indian Acad.
Sei. (Math. Sci.) 95, 1 (1986), 61-77.
C.S. Seshadri: Fibrés vectoriels sur les courbes algébrigues. Asterisque 96 (1982)

C.S. Seshadri: Desingularisation of moduli varieties of vector bundles on curves. Proc.
Kyoto conf. Alg. Geom. (1977), 155-184.

S. Smale: Structure of manifolds. Am. J. Math. 84 (1962) 387-399

M. Ue: On the diffeomorphism types of elliptic surfaces with multiple fibers. Invent. math.
84 (1986) 633-643

17



