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L2-Topological Invariants of 3-manifolds
by

John Lott and Wolfgang Lück

Abstract: We give results on the L2·Betti numbers and Novikov·Shubin inva.riants of compa.ct
manifolds, especia.lly 3-ma.nifolds. We first study the Betti numbers and Nevikov·Shubin invariants
ef achain complex of Hilbert modules over a finite yon Neumann algebra. We establish inequa.lities
among the Novikoy·Shubin invariants ofthe terms in a. short exa.ct sequence of chain cemplexes. Dur
aigebraic results, along with same analytic results on geometrie ~ma.nifolds, are used to eompute
the L2-Betti numbers ef compa.ct ~ma.nifolds which satisfy a weaJe form of the geometrization
cenjecture, and to compute or estimate their Novikov·Shubin invariants.

o. Introduction

The L2-Betti numbers of a smooth closed manifold M, introduced by Atiyah [2], are
invariants of M wIDch are defined in terms of the universal eover M. Roughly speaking,
if M is Riemannian then the p-th L2-Betti number bp(M) measures the size of the space
of harmonie L2 p-forms on M, relative to the action of the fundamental group 1r on M.
We give the precise definition later. The L~-Betti numbers are homotopy invariants of M
(Dodziuk [13]), and ean be extended to become r-homotopy invariants of topologieal spaces
upon which a countable group r acts (Cheeger-Gromov [11]).

By means of a Laplace transform, there is an interpretation of the L2-Betti numbers
in terms of the large-time asymptotics of heat flow on M. Let e-t~p(x, y) be the Schwartz
kernel of the heat operator acting on L2 p--forms on M. The von Neumann trace of the heat
operator is given by

where :F is a fundamental domain for the 1r-action on M and the trace on the right-hand-side
is the ordinary traee on End(/\P(T;M)). The L2-Betti numbers of M can be expressed by

bp(M) = lim trN(1I") (e-t~p) .
t-oo

In many examples one finds that trN(,,) (e-tä;) -bp( M) approaches zero with an exponential .

or power decay as t ~ 00. Novikov and Shubin [33] introduced invariants which quantify
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this phenomenon. If there is an exponential decay, put äp(M) = 00+. Otherwise, put

äp(M) = SUp {pp : trNI") (e-t~p) - bp(M) is O(rßp
/

2
) as t -+ oo} E [0,00].

Rougbly speaking, äp(M) measures tbe thickness of tbe spectrum of ~p near 0; the larger
äp(M), the thinner the spectrum near O. Novikov and Shubin stated that these invariants
are independent of the choic~ of Riemannian metric on M, and hence are smooth invariants
of M. The first author sbowed that they are defined for all topological manifolds and depend
ooly on tbe homeomorphism type, and computed them in certain cases [24]. Gromov and
Shubin [18] proved that the Novikov-Shubin invariants are homotopy invariants of M. A
combinatorial Novikov-Shubin invariant was defined by Efremov in [15] and shown to be tbe
same as tbe analytically defined invariant, again under the assumption that M is closed.

In this paper we give some results on the L2-Betti numbers and Novikov·Shubin invari·
ants of compact manifolds (possibly with boundary), especially 3-manifolds. Dur interest
in these invariants comes froI!\ our work on related L2-invariants, the L2-Reidemeister and
analytic torsions [7,24,27, 28J. In particular, one wishes to know that the Novikov-Shubin
invariants of a manifold are aU positive, in order for the L2-torsions to be defined. We make
same remarks on tbe L2-torsions in sectian 9.

We define an invariant O:p(M) in terms of tbe boundary operator acting on p-chains on
M. Tbe relationship with O:p ( M) is that a;(M) = min(O:p (M), Qp-H (M) ), where the left­
hand-side is defined using p-forms on M which satisfy absolute boundary conditions if M has
boundary. Let us say that a prime 3-manifold is exceptional if it is closed aod.Do finite cover
of it is bomotopy equivalent to a Haken, Seifert or hyperbolic 3-manifold. No exceptional
prime 3-manifolds are known, and standard conjectures (Thurston geometrization conjecture,
Waldhausen conjecture) iIll;ply that there are none. The main results of this paper are given
in the following theorem:

Theorem Let M be tbe connected surn M} ~ ... #Mr of (compact connected orientable)
nonexceptional prime 3-manifolds Mi' Assurne that 11"} (M) is infinite. Then

1. The L2-Betti numbers of Mare given by:

o
r 1

(r -1) - [; l 1rl(Mj) 1- X(M) + I{C E 1ro(ßM) s.t. C ~ 52} I
r 1

- (r - 1) - L: I (M.) I + 1 {C E 1I"o(8M) B.t. C f'V S2} I
i=1 1r1 J

- O.
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Equivalently, if X(1rl(M)) denotes the rational-valued group Euler characteristic then
bl(M) = -X(1rl(M)) and ~(M) = X(M) - X( 1rl(M)).

In particular, M has vanishing L2~cohornology iff M is homotopy equivalent to SI X S2,
RP3#Rp3 or an irreducible 3-manifold with infinite fundamental group whose boundary
is ernpty or a union of tori.

2. Let the Poincare associate P(M) be the connected SUffi of the Mj's which are not 3­
disks or homotopy 3-spheres. Then op(P(M)) = op(M) for p ~ 2. We have ol(M) =
00+ except for the followi1?-g cases:

(a) 01 (.M") = 1 if P(M) is SI X D2, a closed 52 X R~manifold or homotopy equivalent
to RP3#Rp3

•

(b) al(M) = 2 if P(M) is T 2 x I or a twisted I-bundle over the Klein bottle K.

(c) ol(M) = 3 if P(M) is a closed .R3-manifold.

(d) 01 (M) = 4 if P(M) is a closed Ni1·manifold.

(e) 01 (M) = 00 if P(M) is a closed 501-manifold.

3. o'J(M) > O.

4. If M is a dosed hyperbolic 3·manifold then 02(M) = 1. H M is a closed Seifert 3­
manifold then o'J(M) is given in terms of tbe Euler dass e of the bundle and the Euler
characteristic X of the base orbifold by:

K..2:....Q X 0 x<O
e = 0 I 00+ 3 1
e -I 0 I 00+ 2 1

If M is a Seifert 3-manifold with boundary then o'J(M) is 00+ if M = SI X D2, 2 if M
is T 2 X I or a twisted 1-bundle over K, and 1 otherwise. If M is a closed S01-manifold
then 02 (M) ;:: 1.

5. lf 8M contains an incompressible torus then o'J(M) ~ 2. If one of the Mj's is dosed
with infinite fundamental group and does not admit an R3, 52 X R or Sol-structure,
then 02(M) ::; 2.

6. If M is closed then 03(M) = ol(M). If M is not closed then 03(M) = 00+. •

Let us briefly indicate how we prove that o'J(M) is positive. The important case is
when M is an irreducible Haken 3-manifold with infinite fundamental group whose boundary
is empty or consists of incompressible tori; the general case follows by further arguments.
The Jaco-Shalen·Johannson splitting of M, together with the work of Thurston, gives a
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family of embedded incompressible tori which cut the manifold into pieces that are either
Seifert manifolds or whose interiors admit complete finite~volume hyperbolic metrics. The
o2~invariaDtsof the Seifert pieces can be computed explicitly. By analytic means we derive
a lower bound for the o2-invariants of the (compact) hyperbolic pieces. We then face the
problem of understanding what happens to the Novikov-Shubin invariants when ODe glues
along incompressible tori. This is done algebraically by means of inequalities among the
Novikov-Shubin invariants of the terms in a short exact sequence.

A description of the contents of the paper is as follows. The natural algebraic setting for
our work is that of Hilbert A-modules, where Ais a finite von Neumann algebra. In Section
1 we define the Betti numbers and Novikov~Shubin invariants of a morphism of finitely
generated Hilbert A~modules, and derive some useful inequalities on the Novikov~Shubin

invariants. In Section 2 we define the Betti numbers and Novikov~Shubin invariants of a
finite Hilbert A~chain complex. If one has a short exact sequence of finite Hilbert A~chain

complexes tben there is an induced long weakly exact homology sequence, with which one
can relate the Betti numbers of the chain complexes (Cheeger~Gromov [10]). We show that
in addition, the Novikov~Shubininvariants of the chain complexes are related. We prove

Theorem 2.2: Let 0 --. C ..J...... D ~ E ---. 0 be an exact sequence 0/ finite Hilbert A­
chain complexes. Denote the boundary operator in the long weakly exact homology sequence
[10, Theorem 2.1) by bp : Hp(E) --+ H p- 1 (C). Then -

In Section 3 we give examples to show that these inequalities are sharp.

In Section 4 we specialize to the case of manifolds, in which A is the group von Neu­
mann algebra N(1r) of the fundamental group 7r. Proposition 4.2 gives the relations on
the L2~Betti numbers and Novikov~Shubin invariants due to Poincare duality, and Proposi~

tion 4.7 computes the L2~Betti numbers and Novikov-Shubin invariants of connected sums.
In Theorem 4.8 we show that if M admits a homotopically nontrivial SI-action then the
L2~Betti numbers vanish and the Novikov~Shubin invariants are bounded below by 1. In
Corollary 4.4 we show that the Novikov~Shubininvariants of closed manifolds of dimension
less than or equal to 4 depend only on the fundamental group. In Section 5 we compute the
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L2-Betti numbers and Novikov-Shubin invariants of Seifert 3·manifolds (Theorems 5.1 and
5.4).

Seetion 6 first extends the results of [13, 15] on the equality of combinatorial and
analytie L 2.topologieal invariants from the ease of closed manifolds to that of manifolds
with boundary. We then consider the Novikov-Shubin invariants of a compaet 3·manifold
M whose interior admits a complete finite-volume hyperbolie structul~. If M is closed,
the Novikov-Shubin invariants were eomputed in [24]. If M is not closed then we use a
Mayer.Vietoris construction in the analytie setting, along with Theorem 2.2, to derive needed
inequalities on the Novikov·Shubin invariants of the compact manifold, defined with absolute
boundary conditions.

The results on 3-manifolds, Theorems 7.1 and 7.8, are proven in Seetion 7. Section
8 gives some applications of our results to the question of whether a covering spa.ce can
have an invertible differential-form Lapla.cian. Section 9 has some remarks and gives sorne
conjectures that are supported by the results of this paper. In the appe~dix we eompute
the L 2-Betti numbers and Novikov-Shubin invariants of infinite eydic covers in terms of the
homology of the cover.

The seetions of the paper are:

1. L2-Betti numbers and Novikov-Shubin invariants for morphisms of Hilbert A-modules
2. L2-Betti numbers and Novikov-Shubin invariants for Hilbert A-chain complexes
3. Examples proving sharpness of various inequalities
4. L 2-Betti numbers and Novikov-Shubin invariants for manifolds
5. Seifert 3-manifolds
6. Analytic L2-Betti numbers and Novikov-Shubin invariants for manifolds with boundary,
and hyperbolic 3-manifolds
7. L2·Betti numbers and Novikov-Shubin invariants for 3-manifolds
8. L2-contraetibility
9. Remarks and conjectures
A. Infinite cydic coverings

Referenees

To understand the statements of Sections 4-9, it suffices to understand Definitions 1.2,
1.7 aod 2.1.

One of us (J.L.) wishes to thank the IHES, the Max·Planek-Institut-Bonn aod the
Cafe La Chope for their hospitality while part of this work was done, and the Humboldt
Foundation for finaneial support.
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1. L2-Betti numbers and Novikov-Shubin invariants für
morphisms of Hilbert A-modules

In this section we introduce the Betti numbers and Novikov-Shubin invariants for
morphisms of finitely generated Hilbert A-modules over a finite von Neumann algebra A.
We study their behaviour under compositiüll and exact sequences. For background material
on finite von Neumann algebras and their Hilbert modules, we refer to [2, 9, 12, 27].

Let A be a von Neumann algebra with finite faithful normal trace trA. Let f2(A)
denote the Hilbert completion of A with respeet to the inner product given by tr,A(a*b)
for a, b E A. A Hilbert A-module is a Hilbert space V with a continuous left A·module
structure such that there exists an isometrie A·embedding of V into z2(A) 0 H for some
Hilbert space H. A morphism of Hilbert A-modules f : U --+ V is a bounded operator
which is compatible with the A-muItiplication. A Hilbert A·module V is finitely gener­
ated if there is a surjeetive morphism ffii=l P(A) --+ V for some positive integer n. The
dimension dim,A (V) of a finitely generatecl Hi1bert A-module is the trace of any projection
pr : ffii::l z2(A) --+ ffii:l z2(A) whose image is isometrically A-isomorphic to V. A morphism
f : U --+ V is a weak isomorphism if i~s kernel is trivia.). and its image is dense. A se-

quenee of Hilbert A-modules 0 --+ U~ V ~ W --+ 0 is weakly exact if j is injective,
clos(im(j)) =ker(q) and q has dense image.

Lemma 1.1

1. // 0 --+ U -L.. V ~ W --+ 0 is weakly exact then

2. Let f : U --+ V be a weak isomorphism and L C V be a Hilbert A-submodule. Then

Proof: 1.) We have the exact sequenee 0 --+ ker(q) --+ V ---+ ker(q) 1. ---+ 0 and the
assertion is weil known in this ease. If f : W1 ---+ W2 is a weak isomorphism, the polar
deeomposition theorem yields an isometrie A-isomorphism W1 ---+ W2 and so

There are eanonical weak isomorphisms U~ ker(q) and ker(q)1. ..:......t- W, and the claim
follows.
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2.) We decompose f as

If u E (f-l(L))J.. is in the kernel of h then, thinking of u as an element of U, f(u) lies in
L, and so u bclongs to 1-1(L). Thus u = O. This shows that h is injective. Since k is also
injective, we conclude from assertion 1.)

dimA(/-1(L)) = dimA(clos(f(j-1(L)))) ~ dimA(L)

dimA (f-1(L)J..) = dimA (clos(j(f-1(L)J..))) ~ dimA(LJ..)

dimA(L) + dimA(LJ..) = dimA(V)

dimA(j-1(L)) +dimA (j-l(L)J.) = dimA(U)

dimA(U) = dimA(V)

Now the claim foilows. •

Let 1 : U ---+ V be a morphism of finitely generated Hilbert A-modules. Let
{E{- f : .-\ E R} denote the (right-continuous) spectral family of the self-adjoint non-negative
operator [-[. In what follows, Ix Iwill denote the norm of an element in a Hilbert A-module
and 11 111 will denote an operator norm.

Definition 1.2 Define the spectral density function 0/ f by

for.-\ E [0,00). •

Lemma 1.3 . I/x E U, E{;f(x) = 0 and x # 0 then If(x)1 > .-\·lxl.
I/ E{;J(x) = x then lf(x) I~ .-\. Ix I.

Proof: From the definition of the spectral family, we have

(f"/(x),x) = 1'''' >.d(E{"/(x),x).

Since (f-f(x),x) =1[(x)12, the claim follows. •

Let [,([,.-\) denote the set of all Hilbert Ä-submodules L of U with the property that
If(x) I~ .-\. Ix I holds for all x E L.
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Lemma 1.4 F(/, >") = sup {dimA(L) : L E .((/, >")} .

Proof: From Lemma 1.3, the image of E{; f belongs to .((/, .-\). Hence

F(/, .-\) :5 sup {dim.A(L) : L E .c(/, .-\)} ,

and it remains to show that for all L E .c(/, .-\),

dim.A(L) :5 dim.A(im(E{;f)).

Lemma 1.3 implies that ker(E{; f IL) is trivial_ Hence E{; J induces a weak isomorphism
L --Jo clos(E{; J(L)) and the claim follows. •

Proposition 1.5 Let / : U -t- V and 9 : V -t- W be morphisms 0/ finitely generated
Hilbert A-modules. Suppose that neither f nor 9 is the zero map. Then

1. F(f, n%n) ~ F(gJ, .-\).

2. F(g, rr1lr) ~ F(gJ,.-\) if J has dense image.

S. F(g/,.-\) ~ F(g, .-\l-r) + F(/,.-\r) for all r E (0,1).

Proof: 1.) Consider L E .cU, n%n). For all x E L, we have

.-\
19/(x) I~ Ilgll-l/(x) I~ IlglI-IT91r Ix 1= .-\. lxI·

This implies L E .c(g/,.-\) and the claim follows.

2.) Consider L E .((g, rr1lr). Für all x E /-l(L), we have

.-\ .-\
Ig/(x)1 ~ m·IJ(x)15 m·II/II·lxl = .-\. lxi,

implying /-l(L) E .c(g/,>..). Hence it suffices to show dim.A(L) ~ dim.A(f-1(L)).

Let 7 : U/ ker(J) -+ V be the map induced by fand p : U -t- U/ ker / be the
projection. Since p is surjective and / is a weak isomorphism, Lemma 1.1 implies that
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Assertion 2.) follows.

3.) Consider L E r.(gf, >..). Let Lo be the kernel of E{;! IL. We have a weak1y
exact sequence 0 ---+ Lo ---+ L ---+ c1os(E{;!(L)) ---+ O. From Lemma 1.3, we have that
If(x) I> >..r. Ix I for all nonzero x E Lo. In particu1ar, f ILo: Lo ---+ clos(f(Lo)) is a weak
isomorphism, and so dim.A(Lo) = dim.A(c1os(f(Lo))). For x E Lo, we compute:

>..
Igf(x)l~ >"'Ixl~ >..r·lf(x)!= >..l-r·lf(x)l·

Hence c1os(f(Lo)) E r.(g, >..l-r). This shows that

dim.A(Lo) ~ F(g, >..l-r).

We also have that

dimA(c1os(E{;! (L ))) ~ dim.A(im(E{;!)) = F(f, >..r).

Since Lemma 1.1 imp1ies that dim.A(L) = dim.A(Lo) +dim.A(c1os(E{:J (L))), we get

dim.A(L) ~ F(g, >..l-r) +F(f, >..r). •

Definition 1.6 We say that a function F : [0,00) ---+ [0,00] is a density function if F is
monotone non-decreasing and right-continuous and F(>") < 00 for some >.. > O. Let T> be
the set 01 density functions. We write F -< G lor F, G E V if there is a constant C > 0
such that F(>") ~ G(C . >") holds for all >.. E [0, (0). As in [SS}, we say that Fand Gare
di1atationally equivalent (in signs F ~ G) if F ~ G and G ~ F is true. •

Of course, the spectra1 density function F(f, >") is a density function. We introduce
the following ·invariants of a density function F:

Definition 1.7 The Betti number of F is

b(F) = F(O).

Its Novikov-Shubin invariant is

(F) = l' . f 1n(F(>") - b(F)) [0 ]
a ~~~ 10(>") E ,00,

provided that F(>") > b(F) holds for all >.. > O. Otherwise, we put a(F) = 00+.

If f is amorphism 0/ finitely generated Hilbert A-modules, we write b(f) = b(F(f, >"))
and a(f) = a(F(f,>")). •
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Here 00+ is a new formal symbol which should not be confused with 00. We have
o:(F) = 00+ if and only if there is an f > °such that F(..\) = b(F) for ..\ < €.

Example 1.8 The following are examples of Novikov-Shubin invariants of density functions:

F(..\) = Ar
F(..\) = exp((ln(..\))1/3)
F(A) = exp( _A-1 )

F(A) = 0

o:(F) = r

o:(F) = °
o:(F) = 00
o:(F) = 00+

•

We make the following conventions:

Convention 1.9 The ordering on [0,00] U {oo+} is given by the standard ordering on R
and r < 00 < 00+ for all r E R. For all 0:, ß E [0,00] U {oo+} ";.Te define

1 1
- < - <=? 0: > ß.o:-ß -

Given 0:, ß E [0,00] U {oo+}, we give meaning to 'Y in the expression

1 1 1
-+-=­
a ß I

as fallows: If 0:, ß E R, let I be the real number for which this arithmetic expression of real
numbers is true. If 0: E R and ß E {oo, oo+}, put 'Y to be 0'. If ß E R and a E {oo, oo+},
put 'Y to be ß. If 0: and ß belang to {oo, oo+} and are not both 00+, put 1=00. If both a
and ß are 00+, put 'Y = 00+.

For example,

111-+-=-00 11' 11'

1 1 1
00+ +;: = ;:
1 1 _ 1
~+~-~
1 + 1 _ 1;;:r ;;+ - ;;+

1 < 1.. + 1 + ! <=> 0' > 4/3
0' - 00 4 2 -

1 < .1. + 1 +.1. <=> 0' > 00.
0' - 00 ;;:r 00 -

Given r E (0,00) and 0' E [0,00), we define ra E [0,00) "to be the ordinary product of real
numbers, and we put roo = 00 and roo+ = 00+. •
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Here are the basic properties of these invariants.

Lemma 1.10 Given F, G E V and f amorphism of finitely generated A-Hilbert modules,

1. If F ~ G then b(F) ::; b(G).

!2. If F ~ G and b(F) = b(G) then a(F) ~ a(G).

9. If F ~ G then b(F) = b(G) and a(F) = a(G).

4. a(F(A r
)) = r· a(F(A)) for r E (0, (0).

5. a(F) = a(F - b(F)).

6. b(f) = dirn..,. (ker(f- f)) = dirn..,. (ker(f)).

7. If f is an isomorphism or Zi~ro then a{/) = 00+.

8. An endomorphism f is an automorphism iff b(f) = 0 and a(/) = 00+.

9. If i is injective with closed image and p is surjective then a( i 0 f 0 p) = a(f).

10. a(F + G) = rnin {a(F), a(G)}.

Proof: Tbe assertions 1.) to 5.) follow directly from the definitions.

6.) By definition, b(f) is the von Neumann dimension of im(Et·J) = ker(f* I). As II(x) 12=
(/- f(x), x}, f and f* f have the same kernel.

7.) If 1 is an isomorpbism or zero then F(f, A) is constant for small A.

8.) By tbe polar decomposition theorem, we mayassume that f is self-adjoint and 000­

negative. Suppose that b(f) = 0 and a(f) = 00+. Then tbe spectrum of 1 is contained
in [a, b] for positive real numbers a ::; b. An inverse of f is given by f: ..\-ldE>.. The other
implication follows from assertions 6.) and 7.).

9.) By the open mapping theorem, there is a positive constant C such that for all x,

C-1'lxl$li(x)l$ C·lxl·

Hence F(f 0 p,..\) and F(i 0 f 0 p,..\) are dilatationally equivalent. Assertion 3.) implies that

a(i 0 f 0 p) = a(f 0 p).
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We may write p as the composition j 0 pr of an isomorphism and a projection pr. Now one
easily checks that F(f 0 j,..\) and F(f, A) are dilatationally equivalent and that

F(f 0 j, A) + dim.A(ker(pr)) = F(f 0 p, A)

holds for A~ O. 'rhen assertions 3.) and 5.) prove the claim.

10.) As b(F + G) = b(F) + b(G), by assertion 5.) we may assume without 1055 of generality
that b(F) = b(G) = b(F + G) = O. Because F, G ~ F + G, assertion 2.) implies that
o(F +G) ~ min{o(F), o(G)}. To verify the reverse inequality, we may assume without loss
of generality that o(F) ~ o(G). The cases o(F) = 0 and o(F) = 00+ are trivial, and so we
assume that 0 < a(F) ~ 00. Consider any real number 0 satisfying 0 < 0 < o(F). Then
there exists a constant K > 0 such that for small positive ,\ we have F(A), G{A) ~ K,\o, and
so F()") + G{)") ~ 2I( . )..0, implying that a ~ o(F +G). The assertion follows. •

Prop.)sition 1.11 Let f : U ~ V and 9 : V ~ W be morphisms of finitely generated
Hilbert A-modules. Then

1. If f has dense image then o:(g) ~ o:(g/).

2. If ker(g) n im(f) = {O} then 0:(/) ~ o:(gf).

9. I/ ker(g) C clos( im(/)) then

1 1 1--<--+-.
0:(9f) -" o(f) o{g)

Proof: First, f factorizes over tbe projection U~ UI ker(f) ioto an injective morphism
f : UI ker(f) --J. V. From Lemma 1.10.9, 0(/) = o{f) and o(gl) = a(gf), and so we may
assume without loss of generality that / is injective.

1.) Then f induces an injection ker(gf) --J. ker(g), and so b(gf) ~ b(g). From Proposition
1.5,

)..
F(g, m) - b(g) ~ F(gf,..\) - b(gf)·

Now the claim follows from Lemma 1.10.2.

2.) Since ker(g) n im(f) = {O} holds by assumption, we have that ker{gf) = ker(f) and
hence b{gf) = b(f). Now the assertion follows from Proposition 1.5 and Lemma 1.10.2.

3.) By assumption, ker(g) C clos(im{f)). As f :U ----t clos{im(f)) is assumed t6 be a weak
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isomorphism, Lemma 1.1 implies that b(g/) = b(g) = b(J) +b(g). From Proposition 1.5 we
have that for 0 < r < 1,

F(gJ,..\) - b(gJ) ~ F(J, ..\r) - b(J) + F(g, ..\I-r) - b(g).

Lemma 1.10.10 shows that

o(g/) ;:: min {r . o(J), (1 - r) . o(g)} .

Taking inverses gives

1 {I 1}
o(g/) ~ max r. o{/)' (1 - r) . o(g) .

We only consider the case 0(/), o(g) E (0,00), the other cases being now trivial. Since r.o1(J)

(resp. (I-r).o (9)) is a strictly monotoni ca.11y decreasing (resp. increasing) function in r, the
maximum on the right side, viewed as a function of r, obtains its minimum precisely if the
two functions of r have the same value. One easily checks that this is the case if and only if
r = o(.n~l(g)' and the claim folIows. •

Lerruna 1.12 Let / : UI --+ V), 9 : U2 --+ VI, and h : U2 --+ V2 be morphisms oJ finitely
generated Hilbert A-modules. Then

1. a (~ ~) = min {a(J) , a( h)} .

!!. If f is invertible then a (~ i) = a(h).

9. IJ h is injective then

a(J) ~ a (~ i)
(a (~ i)fl ~ a(lI) + a[,;y'

4. IJ J has dense image then

a(h) ~ a (~ i)
( a (~ i)fl ~ eh! +a[,;y'
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5. F(f, A) - b(f) = F(f-, A) - b(f-) and o:{f) = o:{f-).

Proof: 1.) We have

F( (~ ~), >.) = F(f, >.) + F(h, >.).

Now apply Lemma 1.10.10.

2.) Apply Lemma 1.10.9 and assertion 1.) to

3. and 4.) We have

Lemma 1.10.7 and assertions 1.) and 2.) imply

a(h) = a (~ ~)

and

We have

Ir h is injective then (~ ~) has trivial kerne\. If f has dense image then (~ ~) has

dense image. The claim now follows from Proposition 1.11.

5.) As f(f- f) = (f /-)/ and f-(f f-) = (f- f)f-, f and f- induce morphisms

7:E{· f / ker(f) ----. E{r / ker(f-)

and
f- : Eir / ker(f-) ----. Ei·J / ker(f).

As ker(f) = ker(f- f) and ker(f-) = ker(f f·), the compositions f- 07 and f 0 f- are injective
endomorphisms, and hence are weak isomorphisms by Lemma 1.1. It follows that 7 is a weak
isomorphism. Lemma 1.1 now implies that the dimensions of E{· f / ker(f) and E{ r / ker(f-)
are the same, and so F(f, A) - b(f) = F(f-, A) - b(f-). •
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2. L2-Betti numbers and Novikov-Shubin invariants for
Hilbert A-chain complexes

In this section we introduce and study the Betti numbers and Novikov~Shubininvari­
aots for chain complexes, and investigate their behaviour with respect to exact sequences
and homotopy equivalences.

A Hilbert A-chain complex ia said to he finite if Cn ia a 11nitely generated Hilbert A­
module for all integers n and ia zero for all but a finite number of integers n. The homology
of C is de11ned to be Hp(C) = ker(ep)/clos(im(ep)) where ep denotes the differential. Note
that we have to quotient by the closure of the image of ep if we want to ensure that the
homology is a Hilhert space.

Definition 2.1 Let C be a finite Hilbert A-chain complex with p-th differential Cop. Its p-th
Betti~number is

bp(C) = dim,A(Hp(C)).

Its p-th Novikov-Shubin invariant is

Put
äp ( C) = min {a( ep-rt}, a(ep)} . •

Note that äp ( C) correspond to the notion of Novikov-Shubin invariants as introduced
in [33]. However, it turns out to he easier and more efficient to deal with the numbers op(C).

Theorem 2.2 (Additivity inequalities ror the Novikov-Shubin invariants)

Let 0~ c L D ~ E ~ 0 be an exact sequence 0/ finite Hilbert A-chain complexes.
Let 6 : Hp(E) ~ H p- 1(C) denote the boundary operator in the long weakly exact homology
sequence given in (10, Theorem 2.1 on page 10). Then

1. a)D) ~ a)C) + a)E) + a(1p )'

2. op~E) :::; Op_~(C) + op~D) + a(Hp~l (j))'

S. 1 < 1 + 1 + 1 .
op(C) - Qp(D) O'p+l(E) a(Hp(q))

15



Proof: 1.) The exact sequence 0~ C~ D~ E ~ 0 induces the following commu·
tative diagram with exact rows, where qp, dp and ep are canonical homomorphisms induced
by qp, dp and ep and i is the indusion:

ker qp

)p-l

Dp / ker(dp)

qp-l

To define 8p in the above diagrarn, let x E ker( epqp) represent [x] E ker (qp). Then dp (x) =
jp-l(Y) for a unique Y E Cp- 1 ' We put 8p([x]) = y. (In fact, y E ker(e;,-d.) Since ep is
injective, Lemma 1.1t.3 gives that

1 1 1
--<--+--
o(dp ) - o(8p ) a(ep )'

From Lemma 1.10.9 we condude that o(dp ) =a(dp ) and o(ep ) = a(ep ). This implies that

1 1 1--<--+--.
o(dp ) - a(8p ) a(ep )

It remains to show that

We construct a short weakly exact seque'nce

]p qp

The map J; is induced by jp in the obvious way. To define qp, consider x E Dp whose dass
[x] E Dpfker(dp) lies in ker(qp). Then qp(x) is in the kernel of ep and determines a dass
[qp(x)} in Hp(E)/clos(im(Hp(q))). Define qp([x]) to be [qp(x)]. One easily checks that J;
is injective, q;, 0 Y;; is zero and Qp is surjective. We will show that ker(q,,) is contained in
dos(im(jp)). We must show that if xE Dp is such that qp(x) E clos(im(ep+l))E9qp(ker(dp))
then x E im(jp) E9 ker(dp), or equivalently, that q;l (clos( im(ep+l))) C im(jp) EB ker(dp ).

Suppose that x E q;l(clos(im(ep+d)). Then there is a sequence {Yn}~=l in Ep+1 such that
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qp(x) = lillln_oo ep+l(Yn). As qp+l is surjective, there is a sequence {un}~=l in Dp+1 such that
Yn = qp+l(Un). Thus limn_ oo qp(x - dp+1 (un)) = O. Write x - dp+1 (un) = jp(wn) +r n with
W n E Cp and r n E im(jp)l.. Then limn _ oo qp(rn) = O. As the restrietion of qp to im(jp)l. is
an isomorphism, it follows that lilI1n-oo rn = O. Thus x = liIIln_oo(jp(wn}+dp+1 (un)) lies in
the closed subspace im(jp) EB ker(dp). This finishes tbe proof of weak exactness.

Next we construct a commutative diagram witb exact rows

ker(Q'p)

clos(im(ep) )

ker(qp)

ker(Cop-I)
pr

Tbe maps i l and i 2 are the canonical inclusions and tbe map pr is tbe canonical
projection. Recall tbat tbe boundary operator 8'1' : Hp(E) --t Hp - 1(C) is defined as follows:
Let x E ker(ep ) represent [x] in Hp(E). Cboose Y E Dp and z E ker(Cop_I) such that qp{Y) = x
and jq-l(Z) = dp(Y). Then 8p([x]) is defined to be the class [z] E Hp- 1(C). The map 6'1' is
induced from 8'1" Tbe map a; is induced from apo One easily verifies that tbe diagram
commutes. Tbe rows are clearly exact. Since Ö; is injective, we conclude from Lemma 1.12
tbat

1 1 1
-- < -- +---=-.
0'(ap) - 0'(8;) 0'(8'1')

Since Lemma 1.10.5 implies that 0'(8'1') = 0'(8'1')' it remains to show that

0'(Cop) ::; 0'("8;).

Let 1; : Cp / ker( Cop) --t ker(qp) be the weak isomorphism induced by Y;. Tbe map Cop induces a

morphism ep : Cp / ker(ep) --t clos(im(ep)). Oue easily checks that Bp 0 f; = Cop. Proposition
1.11.1 implies that

0'(8;) ~ 0'(ep).

From Lemma 1.10.9 we obtain that O'(ep) = O'(ep) . Tbis finishes tbe proof of the first
assertion of Theorem 2.2.

2.) Recall that in general [26, p. 213], the n-th differential of the mapping cylinder of
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a chain map 9 : C --t D is defined by

(

-Cn-I 0 0)
-id Cn 0 : Cn - I EB Cn EB Dn --+ Cn - 2 EB Cn - I EB D n - I •

gn-I 0 ein

There is a canonical map i : C --+ cyl(g) and cone{g) is defined to be the cokernel of i.
That is, the n-th differential of cone(g) is

(
-Cn-I 0)d : Cn - I ffi Dn --+ Cn-'J ffi Dn- I •
gn-I n

We define cone(C) to be the mapping cone of the identity map on C, and the suspension
EC to be tbe mapping cone of tbe O-map on C Le. (EC)n = Cn-I.

In our case there is a canonical exact sequence 0 ---+ D ---+ cyl(q) --+ cone(q) --+ 0
and chain homotopy equivalences E --+ cyl(q) and EC --+ cone(q). We will show later
using only assertion "1.) that the numbers 0'(ep) are homotopy invariants. So we may
Msume the existence of an exact sequence 0 --+ D --+ E --+ EC --t O. Moreover, the
connecting map from Hp(EC) to Hp-I(D) agrees under these identifications with the map
Hp-I(j) : Hp-I(C) --+ Hp_I(D). The claim now follows from assertion 1.).

3.) Repeat the argument in the proof of assertion 2.), yielding a sbort exact sequence
o-t E --+ EC --+ ED --+ O. •

Tbe dual chain complex C· is the cochain complex with tbe same chain modules a.s

C and the adjoints of the differentials of C as codifferentials. The definitions of the Betti
numbers and the Novikov-Shubin invariants carry over directly to cochain complexes. The
Laplace operator ß p : Cp --+ Cp is defined to be Cp+1 C;+I + c;ep.

Lemma 2.3 Let C be a finite Hilbert A-chain complex.

1. 2· ap(C) = a(ßp) and bp(C) = bp(ßp).

2. O:p(C) = op(C·) and bp(C) = bp(C·).

9. ap(C EB D) = min {op(C), O:p(D)} and bp(C EB D) = bp(C) +bp(D).

1.) The Hodge decomposition theorem (see e.g. [27, Theorem 3.7]) gives the claim for the
Betti numbers. Moreover, we have the following commutative square with isomorphisms as
horizontal morphisms:
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~

ker(c,,).1 EB ker(c~1).1 EB ker(ßp ) ---+ Cp

c;c" EB Cp+1 C~1 EB 0 ! ! ß p

:::
ker( Cp ).1 EB ker(c;+1).1 ES ker(ß p ) ---+ CI'

Lemmas 1.10.7 and 1.12.1 imply that

a(ßp ) = min {a(c;c,,), 0(Cp+1 C;+1)} .

Since E{·! = EifJ)2, Lemma 1.10.4 implies that o:(f* f) = 2· o:(f). We have shown in
Lemma 1.12.5 that a(f) = a(f-). This implies that 2 . 0:(c,,) = 0:(c;c,,) and 2 . o(c,,+1) =
0(c,,+1C~1)' and the claim follows.

2.) follows from assertion 1.)

3.) is a consequence of Lemma 1.12.1. •

We recaU that C is said to be contractible if C has a chain contraction I' i.e a coUection
of morphisms 11' : CI' ----+ Cp+1 such that IP-1c" +Cp+11P = id. for all p.

Lemma 2.4 The following assertions are equivalent for a finite Hilbert A-chain complex C:

1. C is contractible.

2. ß p is invertible for all p.

S. bp ( C) = 0 and a p ( C) = 00+ for all p.

Proof: 1.) ::::} 3. ).We use induction on the length I of C, i.e. the difIerence n - m, where
n (resp. m) is the smallest (resp. largest) number for which Ci = {O} holds for i > n
(resp. i < m). The initial step I ::; 1 is trivial since all of the differentials in a cootractible
chain complex of length 1 ::; 1 are zero or isomorphisms, aod hence have Novikov-Shubin
invariant 00+ by Lemma 1.10.7. In tbe induction step one constructs a short exact sequence

o----+ D ~ C ...!...t E ----+ 0 of contractible cbain complexes where D is conceotrated in

dimensions n aod n-1 and is given there by Dn = Cn J!. Dn - 1 = Cn, and Eis concentrated
in dimensions less than n and is given by En - 1 = ker(Cn_1).1, Ei = Ci for i < n - 1. Take
jn = id, jn-1 = Cn and qn-1 to be orthogonal projection. One easily checks that D and E
are contractible and the sequence is exact. As E has a smaUer length than C, the induction
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hypothesis applies to D and E and the claim now follows from Theorem 2.2.1.

3.) ~ 2.) From Lemma 2.3, b(ßp ) = 0 and o(ßp ) = 00+ for all p. Now apply Lemma
1.10.8.

2.) ~ 1.) Suppose that ß. is invertible. Then ß~l 0 C;+l is a chain contraction for C.

•
We now reprove the homotopy invariance of the L2-Betti numbers and the Novikov­

Shubin invariants [13, 15, 18].

Theorem 2.5 (Homotopy invariance) If f : C --+ D is a chain homotopy equivalence
then for all p E Z we have

bp(C) = bp(D)

F(c,,) ~ F(dp )

Qp(C) = op(D)

ap(C) = op(D).

Proof: There are exact sequences of chain complexes

o ----; C ----; cyl(f) ----; cone(f) ----; 0

and

o----; D ----; cyl(f) ---+ cone(C) ----; 0

with cone(f) and cone(C) being contractible. We obtain chain isomorphisms

C Ei:) cone(f) ---t cyl(f)

D EB cone(C) ---t cyl(f)

by the following general construction for an exa.ct sequence 0 ---t C~ D ~ E ---t 0
with contractible E. Choose achain contraction f. for E and for each p choose a morphism
tp : Ep ---t Dp such that qp 0 tp = id. Put

Sp = dp+1 0 t p+1 0 f p + tp 0 fp-l 0 ep •
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This defines a chain map s : E ----+ D satisfying q 0 s = id. Define a chain map u : D -+ C
by putting up(x), for x E Dp, to be the unique y E Cp such that x = spqp(x) + jp(y). Then
j +s is a chain isomorphism C ffi E ----+ D, with inverse u ffi q.

Since C El1 cone(f) and D ffi cone{ C) are isomorphie and cone{f) and cone(C) are
contraetible, we eonclude that F(ep) ~ F(dp ). The other claims now follow from Lemma
1.10. •
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3. Examples proving sharpness of various inequalities

We give examples which show that the inequalities of the preceeding seetions are sharp.
A trusting reader eau skip this seetion. Throughout this seetion A will be the von Neumann
algebra N(Z) of the integers. Note that N(Z) can be identified with the spaee Loo(SI) of
essentially bounded eomplex functions on SI. The space ['J(N(Z)) is isomorphie to the space
L2(SI) of L2- funetions on SI , and the regular representation L 00 (SI) --+ B (L 2(SI), L2(SI) )Z

sends f to the operator ffiJ of pointwise multiplieation by f. These identifications are based
on elementary Fourier analysis.

Lemma 3.1

1. Let Jl be the Lebesgue measure on SI. Given f E LOO(SI), the spectral density function
olmJ is

2. Letp(z) = azT·ni=l(z-aiYi be an element inC[Z], withr E Z, ri E Z~I, a E C - {O}
and the nonzero complex numbers ai pairwise disjoint. Then

a(mp ) = min {~ : 1 =:; i $ n and lai 1= I} .
ri

(The minimum ouer the empty set is taken to be 00+.)

Proof: 1.) follows directly from the definition of a spectral family.

2.) From 1.), we have that for small ).,

n

F(mp ,).) ::: L F(mpi , ).),

i=1

where Pi = (z - adTi. Lemma 1.10.10 implies that

Ir 1ai 1# 1 then mpi is an isomorphism and Lemma 1.10.7 implies that a(mpJ = 00+. Since
the group of isometries acts transitivelyon SI, it is now enough to show that for r ~ 1,

1
a(m(z-IY) = -.

r
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Writing z = cos( 4» + i . sin(4», we have

Iz - 1 I= /2 - 2 cos (4>).

This implies that

Because

I. 2 - 2cos(4» - 1
~ </J2 -,

the claim follows. •

Example 3.2 (examples ror Proposition 1.11)
Put f = 9 = z -1 E Loo(51

). Then

1 1 1

0:(9 f) = 0:(f) + 0:(9)"

Hence the inequality Proposition 1.11.3 ia sharp. The condition ker(9) C clos(im(f)) is
necessary, as the following example shows: Let f : U -+ U ffi U be the inc1usion onto the
first factor and 9 : U ffi U -+ U be given by (m z -1 EB 1). We have 0(/) = 0:(9) = 00+. On
the other hand, 0:(9/) = a(mz-1) = 1.

The first two inequalities of Proposition 1.11 are clearly sharpj take e.g. f = 1 or 9 = 1.
The conditions in the first two inequalities are necessaryj take e.g. / = 0 and 9 = z - 1 and
vice versa. •

Example 3.3 (examples far Lemma 1.12)
Put f = h = z - 1 E LOO(Sl). We have

(~l ~). 0 ~h). (hJ ~). (} n= (~ ~).
Lemmas 1.10 and 1.12 imply that

a( ~ ~) = a(hf) = (a!f) + a!hJ-1

.

This shows that the second inequality in item 3.) (resp. 4.)) of Lemma 1.12 is sharp. The
condition that h be injective (resp. that f have dense image) is necessary, as the example
f = 0, 9 = m Z -1 and h = 0 shows. Namely, in this case

a (~ ~) =1 and a(J) =a( h) =00+.
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The first inequality in Lemma 1.12.3 is sharp, as the example 9 = h = 0 shows. Again the
condition that h be injective is necessary. For example, put f = mz-I, 9 = 1 and h = O.
Then

The first inequality in of Lemma 1.12.4 is c1ear1y sharp. The condition that f have dense

image is also necessary. Put f = 0, 9 = 1 and h = m.-lo Then a(h) = 1. Since (~ i) is

the composition of the injection (with c10sed image) ( 1 ) and the projection (0,1),
m(z-l)

Lemma 1.10.9 implies that

•
Example 3.4 (Examples far Theorem 2.2)
Upan interpreting the morphisms in the first part of Example 3.3 as weakly acyclic 1­
dimensional chain complexes, we obtain an example where the first inequality in Theorem
2.2 is sharp.

Let C be a wea.kly acyc1ic chain complex such that ap(C) < ap_1(C), We have the
canonical exact sequence 0 ---+ C ---+ cone(C) --+ EC --+ O. Since cone(C) is contractible,
Theorem 2.5 implies that ap(cone(C)) = 00+ for all p E Z. It follows from the definition of
suspension that a p+1 (EC) = a p ( C). We have now constructed an example where the second
and third inequalities are sharp.

Here is an example in which the boundary operator of the long wea.kly exact homol­
ogy sequence enters. Consider a short exact sequence 0 --+ C --+ D --+ E --+ 0 such
that C is cODcentrated in dimension 0 and E is concentrated in dimension 1, and the
Novikov-Shubin invariant of the first differential of D is not 00+. The boundary operator
61 : H1(E) --+ Ho(C) is, up to composition with isomorphisms, the same as the differential
of D and so a(61 ) equals o(d1 ). Clearly ap(C) and ap(E) are 00+ for all p. This example
shows that the term depending on 6p has to appear in the first inequality of Theorem 2.2.

•
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4. L2-Betti numbers and Novikov-Shubin invariants for
manifolds

In this section we analyse the L2-Betti numbers and the Novikov-Shubin invariants of
compact manifolds.

Throughout this section we will use the following setup: Let M be a compact connected
orientable smooth manifold of dimension m with fundamental group 11" and universal cover
M. Suppose that aM ia the union of two Bubmanifolds 80M and alM such that 8(80M) =
80 M n alM = a(fhM). We allow that EJoM or fhM Me empty. Let a;;M denote the
preimage of ßaM under the projection Xi~ M. Let A be a finite von Neumann algebra,
V be a finitely generated Hilbert A-module and p : 7r --+ I SO.A {V)OP be a right unitary
representation of 11'". In most applications A will be the von Neumann algebra N (7r) of 11", V
will be fJ('1f') and p will be the right regular representation.

Let C(M, aoM) be the simplicial Z1r-chain complex of the lift of any triangulation of
M to a 1r-equivariant triangulation of M. Note that 1r acta on the left on C(M, BoM), and
on the right on V. Let C(M, ßoMj V) denote the cellular Hilbert A-chain complex given
by tbe tensor product V ~Z1l" C(M, a;M). If c denotes tbe differential of C(M, BoMj V),
define the L2-homology Hp(M, ßaM; V) with coefficients in V to be the Hilbert A-module
ker(ep)/clos(im(ep)). In this section we will only deal with homology. We note that the cor­
responding cohomology groups are isometrically isomorphie to the homology groups. Recall
that we have defined the L2-Betti numbers and Novik<;>v-Shubin invariants for chain com­
plexes in Definition 2.1. Since they are homotopy invariants (see Theorem 2.5), the following
definition ia independent of the choice of triangulation: .

Definition 4.1 Define the p-th L2 Betti-number 0/ (M, BoM), with coefficients in V, to be

bp(M, 8oM; V) = bp(C(M, EJoMj V)) = dim,A(Hp(M, BoM; V)).

Define the p-th Novikov-Shubin invariant to be

and put

Ö:p(M,8oM; V) = etp(C(M,ßaM; V)).

1/ V = 12 (1f') then we abbreviate:

bp(M,8oM) = bp(M, 8oM; P(1f'));

O:p(M,8oM) = O:p(M, 80Mj P(1f'));
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äp(M, ßaM) = äp(M, aoMj 12(tr)).

We abbreviate bp(M, 0) by bp(M), op(M,0) by op(M) and öp(M, 0) by öp(M). •

We refer to Cip(M, aoMj V) a.s tbe Novikov-Shubin invariant, whereas in the previous
literature ap(M, BoMj V) is called the Novikov-Shubin invariant. Also, in previous articles
the values 00 and 00+ are not distinguished. Moreover, we use the normalization of [24],
which differs by a factor of 2 from that used in [15, 18, 33].

We start with Poincare duality. It gives a Ztr-chain homotopy equivalence

n [M] : Cm-·(M,ßtM) -. C.(M,BoM).

Tensoring over Z1r with V then gives achain homotopy equivalence of Hilbert A-chain
complexes. From Theorem 2.5 and Lemma 2.3 we derive

Proposition 4.2 (Poincare duality)

2. Om+l-p(M, alM; V) = op(M, aoM; V).

3. ä:m-p(M, alM; V) = äp(M, ßaM; V). •

Lemma 4.3 Let (f, fo) : (M, aoM) ---+ (N, aoN) be a map between pairs such that fand
fo are n-connected for some n ~ 2. Then

1. bp(M,aoMjV) = bp(N,aoN;V) forp ~ n-l and
bn(M, 80Mj V) 2:: bn(N, aoNj V).

2. Cip(M, 80 Mj V) = op(N, BoN; V) for p ~ n.

Proof: Let C(1) : C(M, a-;;M) -. C(N, a-;N) be the Z1r-chain map induced by f. We will
abbreviate cyl(C(I)) by cyl and cone(C(1)) by cone. We have the exact sequence

t

o~ C(M,iJoM)----+
pr

cyl ~ . cone ---t 0

Let P be the subcomplex of cone such that Pi = {O} for i ~ n, Pn+l is the kernel of the
(n + 1)-differential of cone and Pi = conei for i > n + 1. As cone is n-connected by the
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Hurewicz theorem, Pn+l is finitely-generated stably free, and the indusion of P into cone
is a homotopy equivalence. A chain complex C is elementary if it is concentrated in two
adjacent dimensions n and n +1 and is given there by the same module Cn+1 = Cn, with the
identity as the n + I-th differential. By possibly adding a finitely-generated free elementary
chain complex 'concentrated in dimensions n + 1 and n + 2 to P, we obtain a finite free
Z1r-chain complex Q together with a chain homotopy equivalence 9 : Q~ cone. Let D be
tbe pullback chain complex of 9 : Q~ cone aod tbe canonical projection cyl~ cone, i.e.
the kernel of 9 EB pr : Q EB cy I --+ cone. Then we obtain a short exact sequence

of finitely-generated free Z1r-chain complexes such that D is chain homotopy equivalent to
C(N, ßoN) and Qi = {O} for i ::; n. By Theorem 2.5, it suffices to prove the claim for
Z2(1r) 0z'Ir C(M, 8oM) and f2(1r) 0z'Ir D. Since these chain complexes have the same chain
modules and differentials in dimensions less than or equal to n, the claim follows. •

Corollary 4.4 1. The L 2·Betti numbers bp(M) (respectively the Novikov-Shubin invari-
ants op(M)) 0/ a compaet connected manifold depend only on the fundamental group
provided that p :S 1 (respectively p :S 2).

~. The L 2-Betti numbers bp(M) and the Novikov-Shubin invariants op(M) 0/ a closed
connected 3-manifold depend only on the fundamental group.

9. The Novikov-Shubin invariants O:p(M) 0/ a closed connected 4-maniJold depend only
on the fundamental group.

Praof: Tbe classifying map M --+ B1r for 1r = 1r1 (M) is 2-connected, and B1r can be
chosen to be a CW-complex whose 2-skeleton B1r2 is finite. Hence Lemma 4.3 implies that
O:p(M) = O:p(B1r 2 ) (respectively bp(M) = bp(B1r 2 )) depends only on 1r provided that p ::; 2
(respectively p ::; 1). (Note that in the proof of Lemma 4.3, one ooly needs that Cp(N,8oN)
be a finitely generated Z1rl{N)-module for p ::; n.) The other claims follow from Theorem
4.2 on Poincare duality. •

Note tbat the second L2-Betti number of a closed 4-manifold depends on more than
just the fundamental group. For example, by taking repeated connected sums with Cp2 ODe
can increase b2 by any positive integer.

In the top and bottom dimensions the invariants can be computed completely. We
recall that a finitely generated group r is said to be amenable if there is a if-invariant

27



bounded linear operator Jl : LOO(r) ---+ R such that

inf{f(/) : I E r} ~ p(f) ~ sup{f(/) : I Er}.

Note that any finitely generated abelian group is amenable and any finite group is amenable.
A subgroup and a quotient group of an amenable group are amenable. An extension of an
amenable group by an ameriable group ia amenable. A group conta1ning a free group on two
generators is not amenable. A finitely generated group r ia nilpotent if r possesses a finite
lower central series

r = r] :> r2 :> ... :> r. = {I}

If r contains a nilpotent subgroup r of finite index then r is said to be virtually nilpotent.
Let di be the rank of the quotient ri/ri+l and let d be the integer Ei>1 idi . Then r has
polynomial growth of degree d [4]. Note that a group has polynomial gröwth if and only if
it is virtually nilpotent [16].

Lemma 4.5

1. G] (M) = äo(M) is finite if and only if 'Ir is infinite and virtually nilpotent. In this
case, G] (M) is the growth rate of 'Ir.

2. G] (M) = äo(M) is 00+ if and only if'Ir is finite or nonamenable.

9. G] (M) = äo(M) is 00 if and only if 'Ir is nonamenable and not virtually nilpotent.

4. bo(M) = 0 if'Ir is infinite and 1/ I'1r I otherwise.

5. If 80 M is not empty then G1(M, ßaMj V) and Cim(M, alM; V) are equal to 00+ and
bo(M, EJoMj V) and bm(M, a]Mj V) are zero.

6. If 80 M is empty then Gm(Mj V) = Ci](Mj V) and bm(M; V) = bo(M; V).

Proof: 1.) to 3.) Since Ci] (M) depends only on the fundamental group and there ia a closed
manifold with 'Ir as its fundamental group, we mayassurne that M is closed. Efrernov [15]
shows that G](M) equals its analytic counterpart. For the analytic counterpart, assertion
1.) is proven in [41] and assertion 2.) is proven in [5]. Assertion 3.) is a direct consequence
of 1.) and 2.)

4.) is proven in [11, Proposition 2.4].

5.) and 6.) If ßaM is nonempty then the pair (M, BoM) ia homotopy equivalent to a pair
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of finite CW-complexes (X, A) such that a11 of the O-cells of X lie in A. Hence the cellular
Z1r}(M)-chain complex C(M,8oMj V) is Z7r)(M)-chain homotopy equivalent to a Z1r}(M)-
chain complex which is trivial in dimension O. Now apply Theorems 2.5 and 4.2. •

For later purposes we will need the following result:

Lemma 4.6 Let j : 1r) (#) --+ f be an inclusion 0/ discrete groups. Let J. (l(f) be the uni­
tary representation 1rl (M) --+ I SON(r)( 12 (f))OP obtained lrom the right regular representation
01 f by composing with j. Then for all p, we have .

1. bp(M, BoM) = bp(M, BoMjj·fJ{f)).

2. ap (M,8oM) = cxp(M, BoM;j·12(r)).

Proof: Let I : ffii:=)Z1rl(M) --+ E9~lZ1rl(M)be a Z1rl(M)-linear map. By tensoring with
[2(1r1(M)) (resp. j·P(f)), we get a morphism of Hilbert N(1rt(M)) (resp. N(f))-modules
denoted by 11 (resp. f2)' Let {E{i h : ). E R} denote the spectral family of the self-adjoint
opera.tor I; 12 : EBi:t P(f) --+ EB~tI2(f) and {E{l· h : ). E R} denote the spectral family of

lift: EBi=t I2 (1rt(M)) --+ EBi:t P(1r)(M)). Then E{ih maps EBi:tI2(1rt(M)) into itself and
the restrietion of E{'J·h. to EBi=1[2(1rt(M)) is just E{th . By [12, Theorem 1, p. 97], this
implies

F(ft,).) = trN{1ft{M)) (E{i h
) = (E{i h (l), l)P(1tI{M)) =

(E{i h (l), l)i'J(r) = trN(r) (E{ih.) = F(f2' ).),

and the claim follows. •

We now investigate the behaviour with respect to connected sums.

Proposition 4.7 Let Mb M 2 , ••• Alr be compact connected rn-dimensional manifolds, with
m 2:: 3. Let M be their connected sum MtU ... UMr • Then

1. bt(M) - bo(M) = r -1 +2:j=) (bt(Mj ) - bo{Mj)).

2. bp(M) = 2:j=t bp(Mj ) for 2 ::; p ::; m - 2.

S. cxp(M) = min {ap(Mj ) : 1 ::; J ::; r} for 2 :5 p::; m-1.
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4. If 1rt(M;) is trivial for all i except for i = io then Ot(M) = D:l(Mio)' Suppose 1rl(Mi)
is trivial for all i except for i E {io, i t}, i o -:F i), and that 1rt (Mio) = 1rt (Mit) = Z /2.
Then O't (M) = 1. In all other cases O't (M) = 00+.

Proof: We may assume without 10ss of generality that r = 2. The connected surn Mt~M2 is
obtained by glueing Mt \int(Dm) and M2\int(Dm) together along 8Dm. Since aDm ---t- Dm
is (m - 1)-connected, the inclusion of Mj \int(Dm) into Mj is (m - 1)-connected. Hence the
inclusion

Mt \int(Dm
) U8Dm M2\int(Dm

) ---t- Mt UDm M2

is (m -1).connected. Since Mt UDm M2 is homotopy equivalent to the wedge Mt VM2 , from
Lemma 4.3 it suffices to prove the claims for Mt VM2 •

1.) to 3.) Let 1r denote 1rt(Mt VM 2 ) = 1rt(Mt) * 7rt(M2). H * denotes the base point,
we obtain an exact sequence

The long weakly exact Mayer-Vietoris sequence reduces to weak isomorphisms

and the weakly exact sequence

o-t Ht(Mt; f2(1r)) EB Ht (M2 ; f2(1r)) -t Ht(Mt VM2 ; 12(1r)) ---t- f2(1r)
---t- Ho(M1 ; f2(1r)) EB Ho(M2; /2(7r)) --t Ho(Mt VM2; f2(1r)) --t 0

We conclude from Lemmas 1.1 and 4.6 that

bt(Mt} + bt (M2 ) - bt(Mt VM2 ) + 1 - bo(Md - bo(Mo) + bo(Mt VM2 ) = 0

bp(Mt ) +bp(M2 ) = bp(M} VM2 ) for p '?: 2,

from which assertions 1.) and 2.) follow. We obtain assertion 3.) from Theorem 2.2.

4.) Since O't(M) only depends on the fundamental group and 1rt(M) = 7rt(M1) if 1I'"t(M2 ) is
trivial, the first part of the assertion follows. It remains to consider the case when 1rt (Mt) and
1rt (M2 ) are nontrivial. From Lemma 4.5.2, 0'] (M) is 00+ if and only if 1rt (M) is nonamenable.
We claim that 1rt (M) is amenable if and ooly if 1I'"t(M1 ) = 1r] (M2 ) = Z/2, in which case
0'] (M) = 1. Namely, suppose that 1I'"t (M) is amenable. Then it follows from [11, Theorem 0.2]
that b1(M) = bo{M) = O. But then assertion 1.) and Lemma 4.5 imply that l 1rt(Mi ) 1= 2
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for i == 1,2. As Z/2 * Z/2 is an extension of Z by Z/2, it is amenable. Also, there is a
two-fold covering of M wi th the fundamental graup of a circle. Hence 0'1 (M) = 0'1 (SI),
which is 1 by Lemma 3.1. •

Next we study manifolds with an SI·action. Let (M; 8oM) be as above. Suppose
that SI acts smoothly on M. Let f/J : 7t"1 (M) --t r be an homomorphism such that for one
orbit (and hence all orbits) SI / H in M, the composition of f/J with the map induced by the
inclusion 'TrI (SI / H) --t 1rl (M) has infinite image. In particular, the SI-action has 00 fixed
points. Choose A to be N(r) and the representation f/J*z2(r) to be the composition of the
regular representation f --t I SON(r)(I2(r)) with f/J. In other words, we are looking at the
cover M --t M of M associated with f/J.

Theorem 4.8 (SI-manifolds) With the above conditions on the SI-manifoZd M, tor all
p ;::: 0 we have:

1. bp(M, 8oM; cP·p(r)) == O.

f. O'p(M, 8oM; 4>*P(f)) ;::: 1.

Proof: The first assertion was praven in [27, Theorem 3.20].

In what follows we will write P(f) instead of fjJ*p(r), or j*fjJ*p(r) for j an inclusion.
Since we have a smootb SI-action, M carries a SI.equivariant CW-structure'. This means
that we have a filtration

0= M-l C Mo C MI C ... Mm-l = M

such that Mi is obtained from Mi-l by attaching a finite number of SI-equivariant cells
SI / H X ni with attaching maps SI / H X Si-l --t Mi-I. Since the SI-action has 00 fixed
points, the subgroups H C SI are aH finite cyclic groups. We will show that

O'p(Mi , 80M n Mi; [2(r)) ;::: 1 for p ~ i +1

O'p(Mi , 80 M n Mi; p(r)) = 00+ for p > i + 1

by induction aver i, where the representation of 'Trl(Mi) is induced from the inclusion
1rl(Mi) --t 1rl(M). Tbe initial step i == -1 is trivial. The induction step from i - 1 to
i is done as follows:

There is an exact sequence of chain complexes
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o~ C(Mi-l' ßoM n Mi- 1 ; J2(r)) --+ C(Mi,EJoM n Mi; J2(f)) --+

C(Mi l Mi-1 u (ßaM n Md; I2(f)) --+ 0

The last chain complex is isomorphie to a direct sum of chain complexes of the form
C(8 1/ H X D i

l 8 1/ H X 8 i
- 1 ; 12(f)). Since all isotropy groups H must be finite, such achain

complex looks like EiC (8 1 ; [2 (f) ), where 12(f) is viewed as a representation space of 1r1(81 ) by
means of an injection 1l'1 (81

) --+ f. Lemmas 4.6 and 3.1 imply that op(Ei C(8l; p(r))) is 1 if
p = i +1 aDd 00+ otherwise. Lemma 2.3.3 implies that op(C (Mi, Mi- 1 U ({kM n Mi); [2 (f))
is also 1 for p = i + 1 and 00+ otherwise. Upon applying Theorem 2.2.1 to the short exa.ct
sequence of wea.kly a.cyclic chain complexes above and using the induction hypothesis on
Mi-I, the claim follows. •

We now consider manifolds which fiber over 8 1 •

Theorem 4.9 Let (M, 8oM) fiber over 8 1 with fiber (F, ßoF). Suppose that (F, ßaF) has
vanishing L2 -cohomology. Then

1. bp ( M, 8oM) = 0 for all p.

12. 1 < 1 + 1 .
op(M, BoM) - O:p-1 (F, BoF) op(F, BoF)

Proof: We have a short exact (Wang) sequence of Hilbert chain complexes:

o--+ C(F, EJoF; J2(1r1(M))) i. C(F x I, 80 F x Ij 12(1r1(M))) ...!..t
C(M, 8oM; J2(1r1(M))) --+ O.

Since Hp(F, ßoF, [2(1r1(F)) vanishes for all p by assumption, Lemma 4.6 implies that the
same is true for Hp(F, 8oF; 12(1r1(M))) and Hp(F x I, EJoF x I; 12(1r1(M))). Consideration of
the lang weakly exa.ct homology sequence associated to the Wang sequence gives assertion
1. Assertion 2. follows from Theorem 2.2.2. •

Remark 4.10 Let 9 : M --+ N be an n-fold finite covering. Then bp(M) = n . bp(N) and
op(M) = op(N) for all p ~ O. Note that the ordinary Betti numbers of a manifold are not
multiplicative under finite coverings. •

Example 4.11 We state the values of the L2-Betti numbers and Novikov-Shubin invariants
for all compact connected 1- and 2-manifolds. In dimension 1 there are only 8 1 and the unit
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interval 1. From Theorem 3.1, we have that bo{SI) = bt (SI) = 0 and (}1 (SI) = 1. As 1 is
contractible, we have that 110(1) = 1, bl (1) = 0 and (}1 (1) = 00+.

Let F; be the orientable closed surface of genus 9 with d embedded 2-disks removed.
(As any nonorientable compact surface is finitely-covered by an orientable surface, Exam­
pIe 4.10 shows that it is enough to handle the orientable case.) Using the general formula
for the Euler characteristic in terms of L2-Betti nUmLtfS [9] :

X(M) = 2:) -1)Pbp (M),
p

Lemma 4.5 and the fact that a compact surface with boundary is homotopy-equivalent to a
bouquet of circles, one derives:

bo{F d ) = {1 9 = 0, ~ = 0, 1
9 0 otherwlse.

bt(Fd)-{ 0 g=0,d=0,1
9 - d + 2(g - 1) otherwise.

~(Fd) = {1 9 = 0, d = 0
9 0 otherwise.

9 = O,d = 2
g=l,d=O
otherwise.

( d) d {2 9 = 1, d =0
°2 Fg = Q2 (Fg ) = 00+ otherwise. •
Example 4.12 Suppose that M is a compact connected orientahle 3-manifold with finite
fundamental group 7r. We have that op(M) = 00+ for all p. If M is closed then M is a
homotopy sphere, and Remark 4.10 implies that bo(M) = ~(M) = ~ and bt(M) = ~(M) =

O. If 8M is nonempty then M is a connected surn of a homotopy sphere and k 3-disks, for
some positive integer k [20]. Then bo(M) = ~, b2(M) = ~;Il and bl (M) = b:3(M) = O.

•
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5. Seifert 3-Manifolds

In this section we compute the L2-Betti numbers and Novikov-Shubin invariants of
Seifert 3-manifolds. We also discuss Sol manifolds. We use the definition of Seifert fibred
3-manifold , or briefly Seifert manifold , given in [36], which we will use as a reference on
Seifert manifolds. Recall that a geometry on a 3-manifold M is a complete locally bomoge­
neous Riemanian metric on its interior. The universal cover of the interior has a complete
homogeneous Riemannian metric, meaning that tbe isometry group aets transitively [37].
Tburston has shown that there are preeisely eight maximal simply-eonnected 3-dimensional
geometries having compact quotients, namely 53, Jf3, 52 X R, H 2 X R, Nil, 5L2 (R), Sol
and H3. If a elosed 3-manifold admits a geometrie structure modelled on one of these eight
geometries tben tbe geometry involved is unique.

In the ease of tbe L 2·Betti numbers, the following result was already given in [7].

Theorem 5.1 Let M be a closed Seifert 3-manifold. If its fundamental group is infinite
then it has tJanishing L2-cohomology. In terms of the Euler class e of the bundle and the
Euler characteristic X of the base orbifold, 01 (M) =03(M) is gitJen by

x>O X 0 X<O
e = 0 I 1 3 00+

e # 0 I 00+ 4 00+

and .o2(M) is given by

X>O X 0 X<O
e = 01 00+ 3 1

e # 0 I 00+ 2 1.

Praof : Tbe geometrie strueture of M is determined as follows: [36, Theorem 5.3]:

e = 0 I
e # 0 I

x- O
Jt3
Nil

Ir M has a S3-structure then 1rl(M) is finite and we can apply Example 4.12.

In all other cases M is finitely covered by the total space M of an SI-principal bundle
over an orientable elosed surface F. Moreover, e(M) = 0 Hf e(M) = 0, and tbe Euler
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eharaeteristie x of the orbifold base of M is negative, zero or positive aceording to the same
eondition for X(M/ S]) [36, p. 426, 427 and 436]. From Remark 4.10, in what follows we
may assume without loss of generality that M is M. Theorem 4.8 implies that bp(M) = O. H
X(F) is negative then 1r](F) is non-amenable sinee it eontains a free subgroup of rank 2. As
1l"] (F) is a quotient of 7r] (M), 7r] (M) is also non-amenable and so 0] (M) = 00+ by Lemma
4.5. Next, we verify the remaining claims for 0] and 02.

R3: We may assume that M = T J
• A direet eomputation by Fourier analysis gives that

op(TJ
) = 3 for all 1 :5 p :$ 3.

S2 X R: We mayassume that M = SI X S2. Now apply Lemma 5.2.

H 2 X R: We may aBsume that M = S] X Fg for 9 ~ 2. Now apply Lemma 5.2.

Nil: From [24] we have that öo(M) = 4 and ä l (M) = 2, and so the claim for 01 and 02

follows.

SL2 (R): A eomputation using harmonie analysis on SL2 (R), which we will not reproduee
here, gives 02(M) = 1.

The next lemma will finish the proof of Theorem 5.1. •

Lemma 5.2 Let F; be the (orientable compact connected) sur/ace 0/genus 9 with d boundary
components. Then

1. bp (SI x F;) = 0 for all p.

l:rl(SI x F;) =1
1 9 = 0, d = 0,1

2.
2 9 = O,d = 2
3 g=l,d=O
00+ otherwise

l:r2(Sl x F;) =1
00+ 9 = 0, d = 0,1

9.
3 g=1,d=0
2 9 = 0, d = 2
1 otherwise

40 l:r3(Sl x F;) = { ~
9 = O,d = 0
g=l,d=O

00+ otherwise
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Proof: The claim for the L2-Betti numbers follows from Theorem 4.8. In the eases 9 =
0, d = 0, 1, 2 and 9 = 1, d = 0, Le. SI X S2, S] X D2, SI X SI X I a.nd T 3 , the claim
follows from earlier eomputations for SI, T2 and T 3 (see Example 4.11 and Theorem 5.1).
In the remaining eases Example 4.11 gives that ap(F;) = 00+ for all p and bp(F;) = 0 for
p 1= 1. We abbreviate F = F;. Let H be the Hilbert ehain eomplex over the von Neumann
algebra of 7rl(F) whieh is concentrated in dimension 1, and is given there by ker{ß l ), where
.6.1 : Cl (Fj I2(7rl(F))) --+ Cl (F; P(7rl{F))) is the Laplace operator. There is a natural split
indusion i : H --+ C(F; I2(7rl(F))). From Lemma 2.4, i is a homotopy equivalence. We
have that C(SI x F,12(7rl(SI X F))) is the Hilbert tensor product of C{F;[2(7rl(F))) and
C(SI; P(7rl(SI))), a.nd so is homotopy equivalent to the Hilbert tensor produet of H and
C(SI; [2(1f'1 (SI))). As the part of H in dimension one is isomorphie to ffi~(F)[2(1rl(F)),this
Hilbert tensor produet is isometrieally isomorphie to the suspension of the direet surn of
-X(F) eopies of C(Sl; [2(1rl(SI x F))). From Lemma 2.3, Theorem 2.5 and Lemma 4.6, the
Novikov-Shubin invariants of Mare the same as those of the suspension of C(SI; [2 (1rl (SI))).
The claim now follows from Example 4.11. •

Remark 5.3 The fact that the Novikov·Shubin invariants are the same for dosed H2
X R­

manifolds and SL2(R)-manifolds is probably related to the fact that the universal covers
of such manifolds are quasi-isometrie. This latter statement, whieh is due independently to
D. Epstein and S. Gersten and was communicated to us by M. Gromov, follows ea.sily from
the fact that the fundamental dass of a closed orientable hyperbolic surface, eonsidered as
an element of the group cohomology of the fundamental group, ean be represented by a
bounded group cocycle. •

Theorem '5.4 Let M be a Seifert manifold with nonempty boundary. Then all L 2-Betti
numbers vanish. We have that 0'3(M) = 00+, and the other Novikov-Shubin invariants are
given by:

al 02

1 00+ M is a solid torus or [([ein bottle
22M is an I-bundle over T 2 or over a Klein bottle K

00+ 10therwise.

Proof: We have that the boundary of M is eompressible iff M is homeomorphic to asolid
torus or Klein bottle [36, Corollary 3.3). The theorem follows in this case from Remark 4.10
and Lemma 5.2, and so we mayassurne that M has ineompressible boundary. As any
2-dirnensional orbifold with boundary is finitely covered by a 2-dirnensional surface with
boundary, we ean find a finite cover M of M whieh is homeomorphic to some SI X F;, with
d ~ 1. From Remark 4.10 and Lemma 5.2, we have to know that M is an I-bundle over T'J
or K Hf F; = S] x 1. This follows from [20, Theorem 10.5). •
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Proposition 5.5 lf M is a closed Sol-manifold then M has vanishing L 2 -Betti numbers,
ol(M) = 00 and o2(M) ~ 1.

Proof: By taking a finite cover, we mayassume that our Sol-manifold is a torus bundle
over SI with hyperbolic glueing map 4J [36, Theorem 5.3]. Hence 1rl (M) ia a semi-direct
product of Z2 and Z where the action of Z on Z2 is given by a hyperbolic automorphism
of Z2. Then 1rl(M) is amenable, as it ia an extension of amenable groups. It ia easy to see
that 1l"l(M) is not virtually nilpotent. Lemma 4.5.3 implies that ol(M) = 00.

By Example 4.11, bp(T2) = 0 for all p and op(T2) = 2 for pE {1,2}. Then Theorem 4.9
implies that the L2-Betti numbers of M vanish, and that

1 1 1
--<-+-. •
o2(M) - 2 2 ,
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6. Analytic L2-Betti numbers and' Novikov-Shubin
invariants for manifolds with boundary, and hyperbolic

3-manifolds

In this section we define analytic Novikov-Shubin invariants and L2-Betti numbers for
manifolds with boundary, and show the equivalences between the analytic invariants and the
combinatorial invariants of the previous section. As an application, we give a lower bound
for the Novikov-Shubin invariants of a compact 3-manifold whose interior admits a complete
finite-volume hyperbolic metric.

As the Hilbert spaces with which we deal in this section will have infinite von Neumann
dimension, we must first discuss the notion of A-Fredholmness of morphisms. A related
discussion appears in [10]. Let f : U -+ V be a morphism of (possibly infinite dimensional)
A-Hilbert modules. Dur morphisms are still bounded operators. We again have the spectral
density function F(f, A.), although it may ncw take infinite values.

Definition 6.1 The morphism f is A-Fredholm if there exisis a A > 0 such that F(f, A) <
00 and F(f·,A) < 00.

Note that if A = ethen we recover the usual nation of a bounded Fredholm operator.

Definition 6.2 Let C be a Hilbert A-chain complex with differentials Cp. Let

be the quotient map. Then C is an A-Fredholm complex if for all p, there exists a Ap > 0
such thai F(?p, Ap ) < 00.

Note that an A-Fredholm complex has finitely generated homology groups. The rela­
tionship between Definitions 6.1 and 6.2 is given by the following proposition.

Proposition 6.3 If f : U -+ V is a morphism of (possibly infinitely dimensional) A-Hilbert
modules and C is the Hilbert A-chain complex

f
O-+U-+V-+O

then f is an A-Fredholm morphism if and only if C is an A-Fredholm complex.
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Proof: The condition that C be an A-Fredholm complex is equivalent to requiring that
there exist a). > 0 such that F(j,).) < 00, and that b(j"') = dim.A(ker(j"')) < 00. It is dear
that if fis an A-Fredholm morphism then C is an A-Fredholm complex. Suppose that Cis an
A-Fredholm complex. We showed in Lemma 1.12.5 that F(f,).) - b{f) = F{f*,..\) - b{f"'). If
F(f,).) < 00 then F(f*,..\) < 00, which shows that f is an A-Fredholm morphism. •

If C is an A-Fredholm complex, we define its Betti numbers as in Definition 2.1 and
we define its Novikov-Shubin invariants by a p ( C) = a(ep). One can check that all of the
results of Sections 1-3 hold when one replaces morphisms of finitely generated Hilbert A­
modules by A-Fredholm morphisms, and finite Hilbert A-chain complexes by A-Fredholm
chain complexes.

For dosed manifolds, the facts that the analytic L 2-Betti numbers and Novikov-Shubin
invariants equal their combinatorial counterparts were proven in [13] and [15]. In order to
make the comparisons between the analytic and combinatorial invariants for a compact man­
ifold M with bC'undary, it will be convenient for us to think of the combinatorial invariants
as defined by silnplicial cochains, instead of simplicial chains. In this section, except where
otherwise stated, the Novikov-Shubin invariants will be those of the coboundary operator.
The smooth forms on M will be denoted by COO(I\*(M)). Those with compact support will
be denoted by C[;(I\*(M)). Note that the-elements of C[;(I\*(M)) do not necessarily vanish
on ßM.

We assurne that M has a smooth Riemannian metric. We give M the induced Rie­
mannian metric. Let d denote the exterior derivative, 6 denQte its formal adjoint, l::i. denote
the Laplacian d8 + 6d,~ denote the Hodge duality operator and b : ßM -4 Xi denote the
boundary indusion in M. As before, 1r denotes the fundamental group of M.

Definition 6.4 Define norms 11 • 11. on C[;(I\*(M)) for nonnegative integers s inductively
by saying that 11 • 110 is the L2 -norm and 11 W 11;+1 = 11 W Il~ + 11 dw 11; + I1 ow II~. Let
'H;(M; P(1r)) be the Hilbert space completion o/Ctf(/\"'(M)) under the norm 11 • 11.. •

Put A = N(1r). We have a Hilbert A-cochain complex

... d-42 ~-1(M; 12(1r)) d~1 rf;(M; 12(1r)) ~ ~1(M; 12(1r)). (1)

We will show in Lemma 6.8 that the complex (1) is A-Fredholm at dp , which will be all that
we need.

Definition 6.5 The analytic p-th L2-cohomology group is

HP(M; [2(1r)) = ker(dp)/clos(im(dp_1 )),
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the analytic p-th L2-Betti number is

and the analytic p-th Novikov-Shubin invariant is

If we put äp{M) = min(op{M), 0p-l{M)) then the ~pplication of a Laplace transform
to the spectral density function shows that the analytic invariants of the introduetion, defined

. using heat kerneis, are the same as those defined here [18, Appendix].

As a topological veetor space, "H: (M j P(71")) is independent of the Riemannian metric,
as the norms 11 • 11., on C~{/\"'{M)) coming from two Riemannian metries are relatively
bounded. Given two Riemannian metrics, the identity map between the corresponding
eomplexes (1) is a bounded coehain homotopy equivalence, and so Theorem 2.5 implies
that the analytic L2-Betti numbers and Novikov-Shubin invariants are independent of the
Riemannian metric.

We note that 'Hr(Mj fl(7I"))/clos(im(dp_1)) and im(dp_1)1. C 'Hr(M; [2(71")) are isomet­
rically isomorphie.

Proposition 6.6

(2)

Proof: Given w E im(dp_dJ., for aU." E COO(I\'" (M)) n ~-l(Mj [2(1r)) we have

o - < d'l, 'w >1 =< d'l, w >0 + < 6d'l, 6w >0= !;)d'l!l *w +6d'l !I *6w]

- 1_(1 + od)." 1\ *ow + f_ b·." 1\ b"'(*w). (3)1M kM

Let p E C~J.I\"'(M)) have support within the interior of M. We claim that there exists
an 1] E COO(/\*(M)) n ~-l(M; 1:L7t')) such that (1 + od)." = p and b"'." = O. To see this,
consider the elliptic equation on M

(1 + 6)1]' = P+dop,
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with the (relative) bouodary conditions b·1]' = b·(o1]') = O. By standard elliptic theory, this
system has a solution 1]' E COO(I\·(M)) n ~-l(M; fl(1r)). Applying 0 to both sides of (4)
and putting u = 01]' - op, we obtain (I +8d)u = 0, with b·u = O. Then

o - f_ (u + t5du) 1\ *0' = f_ u 1\ *u + f_ du 1\ *du ± f_ b·(*du) 1\ b·(j1M 1M 1M kM
- i;, u /I *u + 1M du /I *du =11 u II~ . (5)

Tbus u = 0 and equation (4) becomes (I + t5d)1]' = p. So we can take 1]' for 1].

As p was arbitrary, it follows from (3) tbat 6w = O. Then considering 1] 's which do not
vanish on 8M, it follows from (3) that b·(*w) = O. That is, we have shown

im(dp - 1)1. C {w E 1ii(M; ['J (1r)) : ow = b- (*w) = O}.

Conversely, given w E rf{(M; Z'J(1r)) such that t5w = b-(*w) = 0, equation (3) implies that
o = < d1],w >1 for all 1] E COO(I\·(M)) n ~-I(M; [2(1r)). Tbe density of COO(I\*(M)) n
~-I(Mj [2(1r)) in ~-l(Mj [2(1r)) gives

{w E 7-l!;(M; [2(1r)) : 6w = b-(*w) = O} C im(dp_1)1.. •

For a moment, let us take tbe Riemannian metric 00 M to be a product near 8M.
Then there is an induced Riemannian metric on the double DM, upon which Z2 acts by
isometries. With 1r still denoting 7T"l(M), there is a 1r~normal cover of DM, namely tbe
double DM of M, and it is easy to see that im(dp _ 1 )1. C rf{(M; ['J(1r)) is isomorphic to

(ker(6) C rf{(DM; z2(1r)))Z:l, tbe subspace of ker(6) C ?-f;(DM; Z'J(1r)) which fs invariant
nnder tbe induced Z2 action. The papers [13] and [15] imply tbe equality of tbe ana.lytic
and combinatorial invariants a.s defined for tbe 1r-cover on DM. One can go through their
proofs making everything equivariant with respect to the Z2 action, in order to show that
the same is true when one restriets to the Z2-invariant subspaces. (As in [13] and [15], one
first deals with Sobolev spaces of a high enough order that tbe de Rham map is well-defined.
One then shows the analytic invariants are independent of order of tbe Sobolev space. In
our case, we are finally interested in tbe Sobolev space 7-l!;. All of these steps will go through
equivariantly.) Now the combinatorial invariants defined with Z2-invariant cochains on DM
can be identified with the absolute invariants of M. Putting all this together, we have shown

Proposition 6.7 The analytic L2-Betti numbers and Novikov-Shubin invariants 0/ Defini­
tion 6.5 are equa[ to the combinatorial invariants 0/ Section 4, with 80 M = 0.

Since we know that tbe analytic invariants are independent of the Riemannian met~

rie on M, we may now say that the combinatorial invariants equal the analytic invariants
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as eomputed using the quadratie form q(w,w') = < dw,dl..l./ >0 with domain Dom(q) =
im(dp_dl. C 1f;(M; z2(1r)), for any Riemannian metrie on M. That is, bp(M; 12(11'")) is the
Betti number and Qp(M; P(1I'")) is the Novikov-Shubin invariant of the density funetion

F(A) = sUPL {dim.A(L) : L is a Hilbert A - submodule 0/ Dom(q) s.t.

Vw E L,q(w,w) ~ A2 11 w II~}·

In partieular, HP( M; l2( 11'")) is isomorphie to

{w E ~(M;r(1I'")): dw = 6w = b-(*w) = O} =
{w E COO("-(M)) n L2("-(M)) : dw = 6w = b-(*w) =; O}.

Lemma 6.8 The complex (1) is A-Fredholm at dp •

Prüof: Suppose first that the Riemannian metrie 9 on M is 11 produet near 8M. As above,

im(dp_d.1. C 1f;(M; [2(7t")) is isomorphie to (ker(6) C 1f{(DM; [2(11'")))~, and the differential
dpon im(4_1).1. C 1f{(M; 12(11'")) eomes from the differential on 1f{(DM; 12(11'")). As the latter
differential is A-Fredholm [18], it follows that the differential dp of eomplex (1) is, too. As
the Hilbert spaees defined using two Riemannian metries on Mare relatively bounded, the
differential dp of the eomplex (1) is A-Fredholm regardless of the Riemannian metrie on M .

•
Altbough it is not neeessary for this paper, there is a deseription of the analytie invari­

ants in terms of differential forms with boundary eonditions. Let us define Sobolev spaces
of differential forms with absolute boundary eonditions by

~.ab..(M; 12(7t")) - {w E ~(M; [2(11'")) : b-(*w) = b-(*m.v) = O},

1-li'.ab~(M; [2(7r)) - {w E 1ii(M; 12(11'")) : b-(*w) = O},

'H~,ab ..(M; 12(1i" )) - ?-lh(M; 12(11'" )) . (6) ,

Proposition 6.9 HP(M; P(1i")) is isomorphie to the homology 0/ the sequence

(7)

Proof: The same argument a.s in the proof of Proposition 6.6 gives that im(d:~l).1. =
ker(6) C 'Hi,ab..(M; P(1r)). (The only differenee is that now there is no boundary term
in the analog of equation (3)). Then the homology of the sequenee (7) is isomorphie to
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ker(d;b~) n im(d;~l).1. = ker(d;b6) n ker(ö) C 'J-li,ablJ(M; P(1r)). But we showed above that
this is isomorphie to HP(Mj J'J(1r)). •

Let the Hilbert spaee 11. be the closure of ker (ö) c 1i'{ ,ablJ(M; 1'J(1r )) in ~,ab.(M j J'2 (1r ) ).

The domain Dom(q) of the quadratie form q defined above is dense in 11.. It follows imme­
diately that q is closed in the sense of [34, Chapter 8]. Theorem VIII.15 of [34] implies that
there is a unique self-adjoint operator A, densely defined on 11., to which q is the assoeiated
quadratic form. The next proposition identifies the domain and action of A, at least when
M is isometrieally a produet near the boundary.

Proposition 6.10 If M is isometrically a product near the boundary then Dom(A) ­
ker(S) C ~,ablJ(Mj J'J(1r)) and A = öd.

Proof: As above, we have

(ker(ö) C ~,ablJ(Mj P(1r))) :: (ker(ö) c ~(DM; J'J(1r))Z2)

(ker(ö) C 11.tablJ(M; J2(1r))) ~ (ker(ö) c 1f{(DMj J2(1r))Z2)

1i ~ (ker(ö) c ~(DMj 12(1r))Z2). (8)

Here ker(ö) C ra;(DM; J2( 1r))q is understood to be in the sense of the Hodge deeomposition.
Thus it is enou~ to work on DM and only eonsider Z'J-invariant differential forms. In
partieular, as DM is closed there is 00 need to worry about boundary terms. By definition,

Dom(A) = {w E Dom(q) : 37] E 1i S.t. Vw' E Dom(q),q(w,w') = < 7],W' >'H}'

Then Aw = 7].

Suppose that w lies in Dom(A). Then for all smooth eompactly-supported Z2-invariant
(p + l)-forms u on DM,

q(w, öu) = < dw, döu >0 = < d6dw, u > = < 7], ÖU >0 = < d7], u >,

where dödw aod d7] are taken in the distributional sense. It follows that d(6dw - 7]) = O. As
ö(ödw - 7]) = 0, ödw - 11 is harmonie. Elliptie theory then implies that it is smooth and lies
in all Sobolev spaees. Taking w' to be a arbitrary harmonie Z2-invariant ~form on DM, we
have

o = < dw, dw' >0 = q(w,w') = < f],w' >0 .

Thus 11 is perpendieular to such harmonie forms, and from the Hodge deeomposition on DM
we eonclude that 7] = ödw. As EJw = 0, it follows that w lies in ~(DMj P(1r))Z2, and so
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Dom(A) C (ker(S) C ~,ab ..(M; J2(7r))). Conversely, given w E ker(S) C ~,Qb.(M; f2.(7r)),
for all w' E Dom(q) we have q(w,w' ) =< Sdw,w' >0. Thus we ean take Tl = Sdw, and so

(ker(S) C ~,ab ..(M; 12(7r))) C Dom(A), with Aw = Sdw. •

Now let M be a eompaet 3-manifold whose interior admits a eomplete finite-volume
h.vperbolic metrie. If M is closed then we have that b.(M; P(7r)) = 0 [14] and the Novikov·
Sbubin invariants of the exterior derivative operator are eomputed in [24] as

Suppose M is not closed. Then it has ineompressible torus boundary and the interior M'
of M is tbe union of a eompact eore and a finite number of hyperbolie eusps (see [40]
or [31, pages 52 and 54]). Let i : M -+ M' be an embedding of M in M' obtained by
smoothly truneating the eusps of M' and let M have the indueed Riemannian metrie. Let
i t : Mt -+ M' be the embedding of a submanifold (with boundary) Mt of M' obtained by
attaehing a collar to M, and let i 2 : M 2 -+ M' be tbe embedding of a submanifold (with
boullJary) M2 of M' obtained by attaching a collar to M' - M. Then M3 = M) n M'J is
diffeomorphie to a disjoint union of 1 x T2,S (where we take {O} x T2 to be contained in the
interior of Mt and {I} X T 2 to be contained in the interior of M'J) and is embedded in M'
by a map i 3 : M3 -+ M'. Let i 4 : M 3 -+ Mt and i s : M3 -+ M'J be the obvious embeddings.
Put 7r = 7r) (M).

For eaeh p E {O, 1,2, 3}, define the Hilbert eochain eomplexes

C(p) - 'H;+t_.(M'; 12(7r))

D(p) = 'H~t_. (Mt; P(7r)) EB ?-{*p+t-. (M2 ; i;12
( 7r))

E(p) - 'H~1_.(M3;i;12(7r)),

with differentials c, d and e given by exterior differentiation. (Although M' is noncompa.ct,
the Sobolev spaee 'H; (M' j /2 (7r )) eao be defined as in Definition 6.4, and is in fact a Sobolev
spa.ce of differential forms on H 3 , the hyperbolic 3·space.)

Lemma 6.11 There is an exaet sequence 0/ Hi/bert cochain comp/exes

. k
o-+ C(p) ~ D(p) .-+ E(p) -+ 0,

with j(w) = ii(w) EB i;(w) and k(Wl EB W2) = i:(wt} - i5(W2)'

(9)

Proof: It follows from the definitions that ker(j) = 0, and it is easy to check that ker(k) =
im(j). To see that k is onto, let 4> : 1 --+ R be a bump function which is identically zero
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near 0 and identically one near 1. Let ~ : M 3 -+ R denote the c~mpositionof the pullbacks
of t/> to M 3 and then to M 3 , th~reimage _of M 3 in H 3

• We can think of an element ~f
E(p) as a differential form ij on M3 • Then tPii extends by zero to a differential form on MI,
which comes from an element Wl of 1i;+I_.(Ml; 12(11")). Similarly, we can extend (~-1)ij by

zero to a differential form on M2 , which comes from an element W2 of 1i:(M2 ; i;z2(1I")). Then
k(Wl ffi W2) = TJ· •

Proof: As the map Z2 = 11"1 (M3 ) --. 11" is an inclusion, the proof of Lemma 4.6 goea through
for the analytic invariants to give that bp(E(p)) = bp(I x T 2

; P(Z2)) and op(E(p)) = op(I x
T 2 ; 12(Z2)), where the right-hand-sides are defined by Definition 6.5. By the equivalence of
the analytic and combinatorial invariants and the homotopy invariance of the combinatorial
invariants (Theorem 2.5), these are the same as the invariants of T 2

, which were given in
Example 4.11. •

Proof: As the universal cover of M' is isometrically H3
, this follows from the same calcu-

lation in [24] a.s was cited above for the case of closed hyperbolic 3-manifolds. •

Theorem 6.14 ol(M; P('Jr)) ~ 2/3.

Proof: We apply Theorem 2.2 to the exact sequence (9) with p = 1. As H1 (E{1)) = 0,
0'(81 ) = 00+. From Proposition 6.13, 01(C(I)) = 1 and from Proposition 6.12, ol(E{1)) = 2.
Then Theorem 2.2 gives ol(D(I)) ~ 2/3. From Lemma 1.10,

O:I(D{1)) = min(O:I(Mt ; [2(11")), 0:1 (M2; i;[2(1I'")) ,

from which the assertion of the theorem follows. •

Theorem 6.15 bp(M; 12(11")) = 0 for all p.

Proof: We can exhaust M' = int(M) by a sequence of compact manifolds (with boundary)
{Mk} which are all diffeomorphic to M. From [10, Theorem 1.1], bp(M; 12(11'")) = bp(Mki [2(1r))
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is the von Neumann dimension of the space of L2 harmonie p-forms on M'. As M' is H 3
,

there are 00 such forms [14]. •

We now revert to letting the Q'p(M).invariants refer to boundaries, as in the previ­
ous sections, a.s opposed to coboundaries. The translation is that Q'p(M), defined using
coboundaries, equals Q'p+l (M), defined using boundaries.

Theorem 6.16 ol(M) =03(M) = 00+.

Proof: It follows from [43, Proposition 4.1.11] that 1T"I(M) is nonamenable. We derive from
Lemma 4.5.2 that 01 (M) = 00+. As M has nonempty boundary, Lemma 4.5.5 gives that
Q'3(M) = 00+. •

In summary, we have sbown

Theorem 6.17 1/ M is a compact 9-mani/old whose interior admits a complele jinite­
volurne hyperbolic structure then M has vanishing L'J-cohomology and Q'I(M) = o3(M) =
00+. I/ M is closed then Q''J(M) = 1 and i/ M is not closed then Q'2(M) ;::: 2/3. •

It will follow from Theorem 7.8 that if M is not closed then o2(M) ::; 2.
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7. L2-Betti numbers and Novikov-Shubin invariants "for
3-manifolds

In this section we analyse the L2-Betti numbers and Novikov-Shubin invariants of com­
pact connected orientable 3-rnanifolds. It is easy to extend the results to the nonorientable
case by means of the orientation covering.

We reca.ll sorne basic facts about (cornpact connected orientable) 3-manifolds [20, 36].
A 3·manifold M ia prime if for any decornposition of M as a connected sum M 1UM2 , Mt or
M 2 is horneomorphic to S3. It is irreducible if every embedded 2-sphere bounds an embedded
3-disk. Any prime 3-manifold is irreducible or is homeomorphic to SI X S2 [20, Lemma 3.13].
One can write M as a connected SUffi

M = M1UM2U... M r

where each Mj is prime, and this prime decomposition is unique up to renumbering [20,
Theorems 3.15, 3.21]. By the sphere iheorem [20, Theorem 4.3], an irreducible 3-manifold is
a K(1r, 1) Eilenberg-MacLane space if and only if it is a 3-disk or has infinite fundamental
group.

A properly-embedded orientable connected surface in a 3-manifold is incompressible if
it is not a 2-sphere and the inclusion induces a injection on the fundamental groups. One
says that 8M is incompressible in M if and only if 8M is empty or any component C of
ßM is incompressible in the sense above. An irreducible 3-manifold is Haken if it contains
an emhedded orientable.incompressible surface. If M is irreducible and in addition BI (M)
is infinite, which is implied if ßM contains a surface other than S2, then M is Haken [20,
Lemma 6.6 and 6.7]. (With our definitions, any properly embedded 2-disk is incompressible,
and the 3-disk is Haken.)

Before we state tbe main theorem of this section, we must mention what is known about
Thurston's geometrization conjecture for irreducible 3-manifolds with infinite fundamental
groups. (Again, our 3-manifolds are understood to be compact, connected and orientable.)
Johannson [22] and Jaco aod Shalen [21] have shown that given an irredueible 3-manifold
M with ineompressible boundary, there is a finite family of disjoint, pairwise-nonisotopic
incompressible tori in M whieh are not isotopie to boundary eomponents and which split M
ioto pieces that are Seifert manifolds or are geometrically atoroidal, meaning that they admit
00 embedded ineompressible torus (e~cept possibly parallel to tbe boundary). A minimal
family of such tori is unique up to isotopy, and we will say that it gives a toral splitting
of M. We will say that the toral splitting is a geometrie toral splitting if the geometrically
atoroidal pieces wbich do not admit a Seifert structure have complete hyperbolie metries on
their interiors. Thurston's geometrization conjeeture for irreducible 3-manifolds with infinite
fundamental groups states that such manifolds have geometrie toral splittings.
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Suppose that M is Haken. The pieces in its toral splitting are certainly Haken. Let
N be a geometrically atoroidal piece. The torus theorem says that N is a special Seifert
manifold or is homotopically atoroidal i.e. any subgroup of 1rl (N) which is isomorphie to
Z x Z is conjugate ioto the fundamental group of a boundary component. Thurston has
shown that a homotopically atoroidal Haken manifold is a twisted I-bundle over the Klein
bottle (which is Seifert), or admits a complete hyperbolic metric on its interior.

Thus the case in which Thurston's geometrization coojecture for an irreducible 3·
manifold M with infinite fundam~ntal group is still open is when M is a closed non-Haken
irredueible 3·manifold with infinite fundamental group whieh is not Seifert.· The conjeeture
states that such a manifold is hyperbolic.

Dur goal is to make general statements about the L2·Betti numbers and Novikov·
Shubin invariants of a 3·manifold. We have already treated the ease when the fundamental
group is finite in Example 4.12. We will eonfine ourselves in the sequel to the case when
1rl (M) ;8 infinite. We will compute the invariants using the putative geometrie deeompo­
sition of M. As we are studying homotopy invariants which have a simple behaviour with
respeet to finite coverings, it is enough to assume a weaker condition than that M have a
geometrie deeomposition. Reeall from the iotroduction that we say that a prime 3-manifold
is exceptional if it is closed and 00 finite cover of it is homotopy-equivalent to a Haken,
Seifert or hyperbolic 3-manifold.

Theorem 7.1 Let M be the connected sum Ml~' .. ~Mr of (compact connected orientable)
nonexceptional prime 3·manifolds Mj. Assume that 1rt (M) is infinite. Then

1. The L2-Betti numbers of M are given by:

bo(M) = 0

- (r - 1) - El1l"l(~j) I - X(M) + I {C E 1l"o(ßM) s.t. C ~ 52} I
r 1

- (r -1) - El1l"t(Mj) I + I {C E 1l"o(ßM) s.t. C~ 52} I

- o.

2. Let the Poincare associate P(M) be the connected sum of the Mj 's which are not 9-disks
or homotopy 3-spheres. Then O:p(P(M)) = O:p(M) for p ::; 2. We have O:t(M) = 00+
except for the following cases:

(a) O:t(M) = 1 if P(M) is SI X D'J, a closed S2 x R-manifold or homotopy equivalent
to RP3 ßRp3.
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(b) o} (M) = 2 iJ P( M) is T 2 X I or a twisted I -bundle over the Klein boUle K.

(c) o}(M) = 3 if P(M) is a closed R;'3-manifold.

(d) o} (M) = 4 iJ P(M) is a closed Nil-maniJold.

(e) o}(M) = 00 ij P(M) is a closed Sol-maniJold.

We will prove Theorem 7.1 by a succession of lemmas. In order to prove the statement
about 01 (M), we will show that if 01 (M) < 00+ then M is one of the special cases listed
in the statement of the theorem. The values of 01 (M) in these special cases follow from
previous calculations.

Lemma 7.2 If M is an irreducible Haken manifold with incompressible torus boundary then
M has vanishing L 2-cohomology and 0'2(M) > O. IJ O'I(M) < 00+ then M is one 0/ the
special cases listed in Theorem 7.1.2.

Proof: We know that M has a geometrie toral splitting. As a compact connected orientable
3-manifold with torus boundary whose interior has a complete hyperbolic metric is either
T2 x I or has a complete finite-volume hyperbolic metric [31, p. 52], the pieces in the toral
splitting either admit a Seifert structure or have a complete finite-volume hyperbolic metric
on their interior. Let s be the number of tori in such a minimal splitting. We will use
induction aver s. To begin the induction, if s = 0 then M is Seifert or hyperbolic and the
claim follows from Theorems 5.1, 5.4 and 6.17. The induction step from s - 1 to s is done
as follows:

Let T2 be a torus in a minimal family of splitting tori. Depending on whether T 2 is
separating or not, we get decompositions M = MI UT2 M2 or M = MI UPx81 T'J X I by
cutting M open along T 2

• We have the 8hort exact sequences

or

o~ C(T2 x 81) ~ C(M1 ) ffi C(T2 X I) ~ C(M) ~ 0
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or

with eoeffieients in P(1rt (M)). Note that eaeh M j satisfies the induetion hypothesis. Henee
bp(Mj) = 0 for all p and cx~(Mj) > O. From Lemma 4.6 and Example 4.11 we have that
bp(T2

) = 0 for all p and Qp(T2
) = 2 for p E {1,2}. The weakly exact Mayer-Vietoris sequenee

gives that M has vanishing L2-eohomology, and Theorem 2.2.2 and Lemma 2.3.3 give the
inequalities

1 < 1 +. 1 or
cx2(M) - cxl(T2) mln{o2(Mt ),0:z(M2 )}

1 < 1 + 1
o~(M) - Ot(T2 x 81) min{ot(Mt ), o2(T2 X I)}'

Thus 02(M) > O.

We also have the exaet sequenees

or

o~ C(Mt} ~ C(M) ~ C(T2 x I,T2 x 81) ~ 0

with P(1rt(M)) as eoefficients. As MI has- vanishing L2-eohomology, Theorem 2.2.1 gives
that

1 < 1 1
ot(M) - ol(Ml ) + 01 (M2 , T2)

1 < 1 1
) + .D:l(M - ot(Mt ) ol(T2 X I, T2 x 81)

From Lemma 4.5 we have that Ot(M2,T2) = ol(T2 X I,T2 x 81) = 00+. This implies in
both eases that Ot(M1) ~ ol(M). Hence Qt(M1) < 00+, and by symmetry ol(M2 ) < 00+ in
the first ease. By the induetion hypothesis, M j must be T 2 X I or a twisted I-bundle over
K. Thus M is either the gluing of two twisted I -bundles over K along their boundaries, or a
T 2-bundle over SI. If M is the gluing of two twisted I-bundles over K over their boundaries
then M is double-eovered by a T2_ bundle over SI. In either ease, Lemma 7.3 will give that
M has the geometrie type of some T 2-bundle over SI. (For later purposes, Lemma 7.3 is
stated in greater generality than is needed here.) Then [36, Theorem 5.5] implies that M
has a Sol, Nil or Jt3-strueture, and is one of the special cases listed. •
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Lemma 7.3 Let M be a finite cover 0/ an irr:.educible closed oriented 9-maniJold M with
infinite Jundamental group. IJ M is homotopy-equivalent to a closed 9-maniJold N with a
Seifert or Sol-structure then M has the same geometrie type as N.

Proof: From [29, Theorem 3] we have that M is irreducible. U N has a Seifert structure
then [35, pages 35 and 36] gives that Xl is homecmorphic to N and that M is also a Seifert
manifold of the same geometrie type. If N has a Sol-structure then M and N are Haken,
and so M is homeomorphic to N [20, Theorem 13.6]. It follows horn [36, Theorem 5.3] that
M has a Sol-structure. •

Lemma 7.4 If M is an irreducible Haken manifold with incompressible boundary then
bp(M) = 0 for p =I 1, b](M) = -X(M) and Q2(M) > O. I/ Q)(M) < 00+ then M is
one 0/ the special cases listed in Theorem 7.1.f.

Proof: Because of Lemma 7.2, we mayassume thai ßM is nonempty. Let N be M UaM M.
Then [42, Satz 1.8] implies that N is irredueible. Clearly N is a closed Haken manifold.
From Lemma 7.2 we have that N has vanishing LJ-cohomology and Q2(N) > O. We have
the exact sequence

o ----+ C(8M) ----+ C(M) ffi C(M) ----+ C(N) ----+ 0

with coeffieients in P(7I")(N)). From Example 4.11 we have that bp (8M) = 0 for p =I 1 and
Qp(8M) > 0 for all p. Then we get from the weakly exact Mayer-Vietoris sequence that
bp(M) = 0 for p =I 1. From the Euler characteristic formula we derive that bt(M) = -X(M).
Theorem 2.2.1 and Lemma 2.3.3 imply that

1 < 1 1
Q2(M) - Q2(8M) + Q2(N)

and hence 0'2(M) > O.

Next we prove the claim for Q)(M). Suppose that M does not have a toral boundary..
Then 8M contains a component Fg for 9 ~ 2. As 7I")(Fg ) is nonamenable and is a subgroup
of 7I")(M), 7I")(M) is nonamenable and Lemma 4.5.2 implies that O'](M) = 00+. Hence the
claim follows already from Lemma 7.2. •

Lemma 7.5 If M is an irreducible Haken mani/old and is not a 9-disk, then bp(M) = 0 for
p =I 1, b)(M) = -X(M) and 0'2(M) > O. If O')(M) < 00+ then M is one 0/ the special cases
listed in Theorem 7.1.2.

51



Proof: Because of Lemma 7.4, we may assume that 8M is compressible. The loop theorem
[20, Theorem 4.2] gives an embedded disk D 2 in M such that D 2 meets 8M transversally,
and 8D'J = D 2 n 8M is an essential curve on 8M. Depending 00 whether the disk D'J is
separating or not, we get the following two cases:

If D'J is separating then there Are 3-manifolds MI and M'J and embedded disks D'J C
aMI and D'J C -8M'J such that M = MI UD2 M'J. 10 particular, M is homotopy equivalent
to MI VM 2 • Since M is prime, MI and M 2 Are prime. As MI and M'J have nonempty
boundary, they are not SI X S2, and so are irreducible. As M is irreducible with infinite
fundamental group, it is a K(1r, 1) Eilenberg-Ma.clane space. Then'the same roust be true
for MI and M2 • If Mi were a 3-disk tben the boundary of the embedded' 2-disk would not
be an essential,curve on 8M. Thus MI and M'J have infinite fundamental groups.

If D'J is nonseparating then there ia a 3-manifold MI with embedded SO x D2 C 8MI

such that M = MI USO XD2 DI X D2
• The same argument as above shows that MI is an

irreducible 3-manifold which is a 3-disk or has infinite fundamental group. If it were a 3-disk
then M would be SI x D2, which satisfies the claim of the Lemma. So we may assume that
MI has infinite fundamental group.

We will prove tbe Lemma using the fact that M is homotopy equivalent to MI VM'J
(respectively MI VSI). It suffices to verify the claim for MI aod M'J (respectively MI), since
the claim for M then follows from the proof of Proposition 4.7. If MI and M 2 (respectively
MI) have incompressible boundary then we are done by Lemma 7.4. Otherwise, we repeat
the process of cutting along 2-disks described above. This process roust stop after finitely
many steps. •

Proof of Theorem 7.1: We have the prime decomposition

By assumption, each Mj in the decomposition is nonexceptional. We claim first that if
1rl(Mj) is finite then bI(Mj) = 0, if 1rI(Mj) is infinite then bI (Mj) = -X(Mj ), and that
u2(Mj) > O. The case of finite fundamental group follows from Example 4.12. From Theo­
rem 2.5 and Remark 4.10 we may assume that if Mj is closed tben Mj is Seifert, hyperbolic
or Haken. If Mi is closed aod Seifert then the result follows from Theorem 5.1. If Mj is
closed and hyperbolic then the result follows from Theorem 6.17. If Mi is closed and Haken
then the result follows from Lemma 7.2. H Mj has a boundary component which is a 2­
sphere then Mj is a 3-disk and the result follows from Example 4.12. If Mj has a nonempty
boundary with no 2-spheres then it is Haken and the result follows from Lemma 7.5.

From Lemma 4.5 we have that bo(M) = b:3(M) = O. From Proposition 4.7.1 we have
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that

b1(M) = r - 1 +t (b1(Mj ) - I (~.) I) .
j=) 1fl J

As we have shown that b1(Mj) = -X(Mj) + {1 if Mj f'V D3}, the claim of Theorem 7.1
for b} (M) follows. The claim for ~(M) now follows from the Euler characteristic equation.
From Proposition 4: 7.3 we have

From Corollary 4.4.1 we have that 01 (M) = o} (P(M)). Thus, by removing the simply­
connected factors, we may assume that M = P(M). Suppose that ol(M) < 00+. From
Proposition 4.7, we have tbe possibilities that r = 1, or that r = 2 and 1fl(Ml) = 1fl(M2) =
Z/2. If r = 1 then M f'V SI X S2 and is one of the special cases Hsted, or M ia irreducible.
If M is not closed then it is Haken and Lemma 7.5 implies that it ia one of the special cases
listed. If M is closed then by assumption a finite cover Xl of M is homotopy equivalent to a
Seifert, hyperbolic or Haken manifold N, whieh roust also be closed and orientable. If N ia
Seifert or hyperbolie then Theorems 5.1, 5.4 and 6.17 imply that N is a closed S2 x R, R3,
or Nil manifold. If N is Haken then Lemma 7.5 implies that N is a closed g'2 x R, R3, Nil
or Sol manifold. Lemma 7.3 gives that M is of the same geometrie type as N, and so is one
of tbe special cases listed.

If r = 2, it remains to show that a 3-manifold M witb 1fl(M) = Z/2 is homotopy
equivalent to Rp3

. Tbis follows from [39, Theorem 1.8]. •

Corollary 7.6 11 M satisfies the hypotheses 01 Theorem 7.1 and X(1rl(M)) denotes the
rational-valued group Euler characteristic {6, Section IX.7} then ~(M) = -X(1fl(M)) and
~(M) = X(M) - X( 1rl(M)).

Proof: First, for tbe group Euler eharacteristic to be defined we must show that 1f)(M) is
virtually torsion·free and of finite homological type. Let {Mj }j=l be tbe prime factors of M
with finite fundamental group. Put r 1 = 1r)(Md * ... * 1f)(M,,) and r 2 = 1fl(M,,+I) * ... *
7rl (Mr ). It is known that f 1 has a finite-index free subgroup F aod tbat f 2 is torsion-free.
Let 4> : f 1 * f 2 -. f 1 be the natural homomorphism. Then </J-l(F) is finite-index in 1rl(M),
and the Kurosh subgroup theorem [20, Theorem 8.3] implies that it is torsion-free. As f l

and f 2 have finite homological type, [6, Proposition IX.7.3.e] implies that 1I'"1(M) is of finite
homological type and that:

r

X(1fl(M)) = r - 1 +~ ~(1fl(Mj)).
j=1

53



Thus in order to show that bl (M) = - X(7r1(M)), it is enough to verify that for each j,

As Mj is either a K(7r, 1) Eilenberg-Maclane space, a 3-disk or a closed manifold with finite
fundamental group, the equation is easy to verify.

The statement for ~(M) now follows from the Euler characteristic equation. •

Corollary 7.7 Let M be a (compact connected orientable) 3-maniJold. IJ all L2-Betti num­
bers of M vanish then M satisfies one 0/ the Jollowing conditions:

1. M is homotopy equivalent to an irreducible 3-maniJold N with infinite fundamental
group whose boundary is empty or a disjoint union 0/ tori.

2. M is homotopy equivalent to SI X S2 or RP3#Rp3.

If condition 2.) holds, or if condition 1.) holds and N is nonexceptional, then all 0/
the L2·Betti numbers 0/ M vanish. •

Proof: Suppose that M has vanishing L2-cohomology. From Example 4.12, 7T'1(M) must
be infinite. From Proposition 4.7.1 we have that

Equivalently,

~ ( b.(Mj) - 11l"(~j) I +1) = 1.

It follows that the prime decomposition of M fiust consist of homotopy 3-spheres, 3-disks
and either
A. A prime manifold M' with infinite fundamental group and vanishing bl or
B. Two prime manifolds MI and M 2 with fundamental group Z/2.

In case A, M' is SI X 3 2 or is irredueible. Ir M' is irreducible and has nonempty bound­
ary theo Lemma 7.5 implies that its boundary eomponents must 'be tori. From the Euler
characteristie equation we have that X(M) = 0, and so 00 3-disks eau oeenr in the prime
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decomposition of M. In case B, we have already shown that MI and M 2 are homotopy­
equivalent to RP3. Again, because X(M) = 0, no 3-disks can occur in the prime decompo­
sition of M. Thus we have shown that if M has vanishing L2-cohomology then M satisfies
one of the two conditions of the corollary.

If M satisfies condition 2. of the corollary then Theorems 2.5 and 5.1 imply that M
has vanishing L2-cohomology. If M satisfies condition 1. of the corollary, from Theorem 2.5
we may assume without loss of generality that M = N. We have that its Euler characteristic
vanishes. If M has Donempty boundary then Lemma 7.5 implies that it has vanishing L 2

_

cohomology. If M is closed and nonexceptional then by passing to a finite cover and using
Theorem 2.5, we may assume that M is Seifert, hyperbolic or Haken. Theorems 5.1,5.4 and
6.17 imply that M has vanishing L2-cohomology. •

Theorem 7.8 If 8M contains an incompressible torus then o2(M) :5 2. I/one of the Mj '8
is clo8ed and nonexceptional with infinite fundamental group, and does not admit an Jt3,
S2 X R or Sol-structureJ then o2(M) :5 2.

Again, we will build up to the theorem by lemmas.

Lemma 7.9 If M is irreducible and 8M contains an incompressible torus then o2(M) :5 2.

Proof: From Lemma 7.4 we get b2(M) = O. As T2 has vanishing L2-cohomology, the
long weakly exact homology sequence of the pair (M, T 2) implies that H2(M, T2; [2(1rI(M)))
vanishes. We have a short exact sequence of chain complexes

and so from Theorem 2.2.3,

1 1 1
---< + .
02(T2) - 02(M) 03(M, T2)

Proposition 4.2 implies that o3(M, T2) = 01 (M, 8M - T 2 ). If this is 00+ then Q2(M) :5
02(T2) = 2 and we are done. If 8M - T 2 f:. 0 then Lemma 4.5.5 implies that ol(M, 8M ­
T2) = 00+. If 8M - T2 = 0 then Theorem 7.1 gives the possible cases in which ol(M, 8M­
T 2

) < 00+. The only case in which 8M is a single incompressible torus is when M is a
twisted I-bundle over K, and in this case Theorem 5.4 gives that Q2(M) = 2. •
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or

Lemma 7.10 If M is a closed Haken manifold and does not admit an R;3 or Sol structure
then Q2(M) ~ 2.

Proof: If M is Seifert or hyperbolic then the proposition follows from Theorems 5.1 and
6.17. Otherwise, consider tbe nonempty minimal fa.mily of splitting tori. Let T'2 be a member
of the minimal family. Cutting M open along T'J yields decompositions M = Mt Up M'2 or
M = Mt UPx8P T2 X 1, depending on wbether T'2 is separating or not. We get the exa.ct
sequences

or

with coefficients in 12(1l't(M)). Since b1(M) = 0 (Lemma 7.2), we derive from Theorem 2.2.2
that

111
----< +---
Q2{M2 , T2) - Qt(Md Q2(M)

111
------- < +--­
Q'J(T'2 X 1, T'J x 81) - ol(Md o2(M)

Suppose that ol{Mt ) ;::: 00. Then we have that 02(M) =5 a2(M2,T2) (respective1y 02{#) $
0'J(T2 x 1, T2 x 81) = 2). Proposition 4.2 gives that 02(M2 , T2) = a:z(M:z), and we have
already proven that this is less than or equal to two. By symmetry, it remains to treat the
case when ot(M1 ), O't(M2) < 00, (respectively ol(Mt ) < 00). From Theorem 7.1, MI and
M 2 roust be 1-bundles over K (respectively MI fiust be 1 x T:Z). As before, in either case
M carries a Sol, Nil or R3-structure. Since Q'2(M) = 2 in tbe Nil case (Theorem 5.1), the
lemma follows. •

Proof of Theorem 7.8: From Proposition 4.7.3 we bave that

Clearly, it is enough to verify the theorem under the assumption that M is prime. As
51 x 52 has an 52 x R-structure, we mayassume that M is irreducible. If 8M contains an
incompressible torus then we are done by Lemma 7.9. Suppose that M is closed, has infinite
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fundamental group and is nonexceptional. Then a finite cover M, which is closed, orientable
a.nd irreducible, is homotopy equivalent to a manifold N which is Seifert, hyperbolic or
Haken. If u2(M) > 2 then Theorems 5.1 and 6.17 and Lemma 7.10 imply that N has an
R3, 8 2 X R or Sol structure. By Lemma 7.3, M also has such a structure. •
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8..L2-Contractibility

Let r be a finitely~presented discrete group. Let M be anormal r ~covering of a compact
Riemannian manifold M, possibly with boundary. Give M the induced Riemannian metric.
Let ß denote the self~adjoint extension of the Laplacian acting on all compactly~supported

smootb forms on Al which satisfy absolute boundary conditions. We will say that M is
L:l-contractible if ?5 has a bounded L:l-inverse. (In [17] this is called L:l-acyclicity, but we
think that our terminology may be less confusing.) By Lemma 2.4, this is equivalent to
requiring that bp(M; 12(r)) = 0 and lXp(M; [2(r)) = 00+ for all 0 ~ p ~ dim(M). It is
an open question as to whether L2-contractible manifolds exist. There are some sufficient
conditions to rule out L2~contractibility. For example, it follows easily from higher index
theory that if M is closed, r satisfies the Strong Novikov Conjecture [23] and the image of
the fundamental dass [M] under the classifying map M --+ Br is Donzero in Hm(J;lr; Q)
then M is not L2~contractible. (In fact, the Laplacian is noninvertible in dimension '; if m
is even and in dimensions mg=l if m is odd.)

One can similarly consider the question of L2~contra.ctibility for any CW-complex K
whicb is a r -covering of a finite CW-complex !(. As a small step toward answering these
questions, we have the following result:

Proposition 8.1 Let!( be a finite CW-complex whose fundamental group is isomorphie to
the fundamental grO;2!P of a 3·manifold N satisfying the hypothesis of Theorem 7.1. Then
the universal cover K is not L 2-contractible.

Proof: Suppose that !( is L2~contractible. By passing to the Poincare associate of N,
we mayassume that aN contains no 2~spheres. From Theorem 2.5 and Corollary 4.4 we
conclude that bp(N) = 0 for p ~ 1 and Cip(N) = 00+ for p ~ 2. From Lemma 4.5 we have
that ~(N) = O. As X(aN) = 2 . X(N), we have that X(N) is less than or equal to zero.
But in this case X(N) = b'J(N), so we conclude that bp(N) = 0 for aU p. From Corollary
7.7 we may assume that N is an irreducible 3~manifold with infinite fundamental grOUI>
whose boundary is empty or a disjoint union of incompressible tori, or that N is SI X S'J
or RP3#Rp3. In the first case, Theorem 7.8 and the fact that D:'J(N) is 00+ imply that N
could only be a closed manifold with a Sol structure. However, this would then imply that
Cil (N) < 00+ (Theorem 7.1). In the second case we have that Ql (N) = 1. In either case we
get a contradiction. •

One can extend the notion of L2~contractibility (i.e. L'J-invertibility of the differential­
form Laplacian) from covering spaces of closed manifolds to general complete Riemannian
manifolds. (One may want to consider a condition of bounded geometry). Similarly, one
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can ask the question of L2-contractibility for general simplieial eomplexes, possibly with a
uniform loeal finiteness eondition [17]. We do not know of any L2-eontra.ctible eomplete
Riemannian manifoId". It follows from equivariant index theory [23] that if G is a connected
Lie group and K is a maximal eompact subgroup then G/ K, with a left-G·invariant metrie,
is not L2-contractible. The ease of surfaces is considered in the next proposition.

Proposition 8.2 A complete orientable surface is not L2-contractible.

Proof: (The following proof, which is simpler than our original proof, is due to J. Dodziuk.)
We use facts from [1, 38]. Suppose that the surface M is L2-contractible. The Riemannian
metrie gives a eomplex strueture on M. The eondition of having a nonzero L 2 harmonie
I-form is conformally invariant for snrfaees, and so only depends on the complex strueture.
It is known that nonzero L2 harmonie I-forma exist on nonplanar surfaees, and so M finst
be planar. It is also known that a planar surface has nonzero L2 harmonie I-forDls if and
only if it is nonparabolic, so M must be parabolie. As tbe Laplaeian .6.0 aeting on fUlletions
is invertible, the infimum AO of its speetrum is strictly positive. If 0 < ..\ < AO then there is
a positive superharmonie (00n-L2 ) eigenfunetion of .6.0 with eigenvalue A. This eontradiets
the definition of parabolicity. •

For further diseussion of some of the topies of this seetion, see [17, Seetion 8].
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9. Remarks and Conjectures

Conjecture 9.1 Let M be a compact connected mani/old, possibly with boundary. Then

1. The L2-Betti numbers 0/ M are rational. I/ 7fJ (M) is torsion-free then the L2-Betti
numbers 0/ M are integers.

f. The Novikov-Shubin invariants 0/ M are positive and rational. •

In the case of the L2-Betti numbers, this seems to be a well-known conjecture. The
question of the rationality of the L2-Betti numbers, for closed manifolds, appears in [2].
Theorem 7.1 shows that Conjecture 9.1.1 is true for the dass of 3-manifolds considered
there. By Lemma 4.5.1, Conjecture 9.1.2 is trivially true for al(M). Theorems 5.1 and 5.4
give that it is true for o:l(M) if M is a Seifert 3-manifol-l. Note that for any positive integer
k there are examples of closed manifolds in higher dimensions with 1rl(M) = Z such that
o3(M) = t [24].

We claim that Conjecture 9.1 is equivalent to the following conjecture: -

Conjecture 9.2 Let 1r be a finitely presented group and let / : ffii=lZ1r --+ ffii=lZ1r be a
Z1r-module homomorphism. Tensor by 1:l(1r) to get a bounded 1r-equivariant operator

Then

1. The von Neumann dimension 0/ ker(f) is rational. I/1r is torsion-/ree then it is an
integer.

2. The Novikov-Shubin invariant off is a positive rational number. •

If Conjecture 9.2 is true then upon triangulating a compa.ct manifold, we obtain that
Conjecture 9.1 is true. It remains to show that Conjecture 9.1 implies Conjecture 9.2.
Let X be a finite CW-complex with fundamental group 1r. Let / : EBi=lZ1r --+ EBi=lZ1r
be any Z1r-module homomorphism. For any given n 2:: 2, one can attach cells to X in
dimensions n and n + 1 in such a way that the resulting finite CW-complex Y has the
same fundamental group as X, and the relative chain complex C(Y, X) is concentrated in
dimensions n and n + 1 and given there by / [25, Theorem 2.1]. Ir we choose n > dim(X)
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theo O'n+l (Y) = 0'(/). Moreover, there is a compact manifold, possibly with boundary, which
is homotopy equivalent to Y. Sioce the L2-Betti numbers aod the Novikov-Shubin invariants
are homotopy invariaots, we obtain that O'n+l(M) = 0'(/). This shows that Coojecture 9.1
is equivalent to Conjecture 9.2.

Conjecture 9.2 in this form implies a well-koown conjecture of algebra.

Conjecture 9.3 Let 1r be a jinitely-presented group. Then the group ring Q1r has no zero-
divisors i/ and only i/1r is torsion-free. •

The only-if statement is trivial. The if statement would follow from the second con­
jecture as follows: Let u E Q1r be a zero-divisor. We want to show that u = O. We may
assume that u lies in Z 1r. Let / : Z1r~ Z'Fr be giyen by right multiplication with u. Since
u is a zero-divisor, f has a non-trivial kernel. Since the dimension of the kernel oI 7 must
be a positive number less 0r equal to the dimension of J2(7r), whicb is 1, it can only be an
integer if it is 1. Hence tbe k~rnel of 7 is 12 ( 1r ). This implies that u = O.

Conjecture 9.4 The second L2-Betti number 0/ a compact prime 9-manifold vanishes.

We have shown in Theorem 7.1 that the seeond L2-Betti number of a nonexceptional
eompact prime 3-manifold vanishes. However, there may be a reason why it should vanish
which is independent of any geometrie decompositioD theorem.

Conjecture 9.5 11 M is a closed I<{1r, 1) manifold then its L2-Betti numbers vanish outside
01 the middle dimension.

Corollary 7.7 implies that a closed K(1r, 1) 3-manifold of the type considered there
has vanishing L:l-Betti numbers, thereby verifying the conjecture. Conjecture 9.5 includes
the unproven conjeeture of Singer whieh states the same for nonpositively-curved manifolds.
If 1rl(M) contains an infinite normal amenable subgroup then the truth of the conjecture
follows immediately from [11, Theorem 0.2]. Conjeeture 9.5 was emphasized in the case of
4-manifolds in [17, p. 154]. A consequence would be that if dim(M) = 4k+2 then X(M) :5 0,
and if dim(M) = 4k then X(M) ;::: Ia(M) I.

Conjecture 9.6 Let f be a jinitely-presented group. Let b. (f) and 0'. (r) denote the L2_
Betti numbers and Novikov-Shubin invariants of a K(f, 1) complex. Suppose that f is non­
amenable, b] (f) = 0 and 0'2(f) = 00+. Then any closed 4-manilold M with fundamental
group f satisfies x(M) > O.
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This conjecture would be a consequence of non-L2-contractibility of M, as the hy­
potheses imply that bp(M) = 0 for all p :/= 2, and op(M) = 00+ for all p. Thus the ooly
way that M could be non-L2-contractible would be if ~(M) :f 0, which then implies that
X(M) > O. Examples of groups r satisfying the hypotheses of the conjecture are given by
the fundamental groups of closed irreducible nonpositively-curved locally symmetrie spaees
of dimension greater than three, and the produet of the fundamental groups of two eompact
surfaces of negative Euler ehar~teristie.

If 1r is the fundamental group of a closed 4-manifold M then an L2-extension of [19,
Theoreme 1] gives that X(M) ~ 2bo(1r) - 2b1 (1r) + ~(1r). It follows that Coojeeture 9.6 is
true if r is the fundamental group of a c10sed real or eompiex hyperbolic 4-manifold, or the
product of the fundamental groups of two compact surfaces of negative Euler eharacteristic.

As mentioned in the introduction, our motivation to study L2-Betti numbers and
Novikov-Shubin invariants comes from our work on the L2-Reidemeister and analytic tor­
sions [7, 24, 27, 28]. These are L2-generalizations of the Reidemeister and analytic torsions
of manifolds. One needs positivity of the Novikov-Shubin invariants in order to define the
L 2-torsion invariants. Thus our results show that if M is of the type considered in Theo­
rem 7.1 then the L2·torsions are well-defined invariants. If in addition the L2-cohomology
vanishes then the L2-Reidemeister torsion is a simple homotopy invariant (and in particu­
Iar a homeomorphism invariant) and the L2-analytie torsion is a diffeomorphism invariant.
Sufficient conditions for this are given in Corollary 7.7.

Conjecture 9.7 1/ M is a eompaet manifold then its Novikov-Shubin invariants are positive
and its L2-Reidemeister torsion equaIs its L2-analytie torsion.

This is the L2-analog of the Cheeger-Müller theorem for the ordinary Reidemeister
aod analytic torsions [8, 32). A proof of Conjecture 9.7 in the ease of c10sed manifolds with
positive Novikov-Shubin invariants aod vanishing L2-Betti numbers has been announced by
Carey, Mathai aod Phillips.

If M is a Seifert 3-manifold with ~nfinite fundamental group then its L2-Reidemeister
torsion vanishes [27]. If M is a closed 3·manifold which admits a hyperbolic structnre then its
L2-analytic torsion is - 3

1
1f Vol(M, ghJ/P) , where ghl/p is the unique (np to isometry) hyperbolic

metric on M [24, 28].

Conjecture 9.8 I/ M is a compaet eonnected 9-mani/old with a Thurston geometrie de­
composition which satisfies one 0/ the eonditions 0/ Corollary 7. 7 then its L2-torsion is - 3~

limes the sum 0/ the (finite) volumes 0/ its hyperboIic pieces.
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As one has a formula for the relationship between the L2-Reidemeister torsions of the
terms in a sbort exact sequence [27], Conjecture 9.8 would follow from Conjecture 9.7 if one
knew that the L2 torsion of a compact 3-manifold whose interior admitted a complete finite­
volume hyperbolic metric were equal to - 3

1
1( times the hyperbolic volurne of the interior.

We note Conjecture 9.8 would imply that for the manifolds it considers, the L2-torsion is a
universal constant times the simplicial volume discussed in [40].
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A. Infinite cyclic coverings

In this appendix we discuss infinite cyclic coverings. The Novikov-Shubin invariants in
this case were cornputed in [24] in terms of Massey products. We will show that they can
also be computed in terms of tbe homology of the cover.

Given an epimorphism cP : 7rl(M) --+ Z, we take A = N(Z) and the representation
cP*[2(Z) to be the composition of the regular representation Z ---.. I SON(Z)(l2(Z)) with cP.
In other words we are looking at the infinite cyclic cover M --+ M of M associated to cP.
Let C(M) denote tbe simplicial C[Z]-chain complex of M and H(U) its (ordinary) C[Z]­
homology ker(c)/im(c), where c denotes tbe differential. We will show how to read off the
Novikov-Shubin invariants of M, with coefficients in the representation cP*P(Z), in terms of
H(M).

The main simplification comes from the fact that the complex group ring of the integers
C[Z] is a principal ideal domain [3, Proposition 5.8 and Corollary 8.7]. Given an element
P E C[Z],· we computed the Novikov·Shubin invariant of mp : P(Z) --+ f2(Z) in Lemma
3.1. We now deal with a C[Z]-endomorphism f : ffi~:::l C[Z] --+ EB~~lC[Z]. Let A be the
(k, k)-matrix over C[Z] satisfying f(v) = vA. We derive from tbe fundamental theorem for
principal ideal domains (see Auslander-Buchsbaum [3], chapter 11 Theorem 1.1) that there is
an integer [ satisfying 0 ~ 1~ k, k' l a sequence of non·zero elements PI , P2, ... PI, a invertible
(k, k)-matrix U and an invertible (k', k')·matrix V over C[Z] such that Pi divides pi+l and
tbe product UAV is the ma.trix D whose (i, i)-th entry is Pi for 1 ::; i ::; [ and whose other
entires are zero. The determinant of a.oy (i, i)-submatrix of A is called a (i, i)-minor of A.
Let ei denote tbe greatest common divisor of all (i, i)-minors of A. If all the (i , i).minors are
zero, put ei to be zero. Tensoring with [2(Z) yields a morphism of Hilbert N(Z)-modules
denoted by f ®C[Z} [2(~) : ffi~=lf2(Z) ---.. ffif=l I2 (Z).

Lemma A.l Under the above conditions, if f =f 0 then

1. b(f 0c[Z] [2(Z)) = k - 1.

2. O'(f 0c[Z] P(Z)) = 0'(mpl )'

9. 1 is the largest integer i for which ei is different from zero.

4. ei = U. n~=l Pi for some unit u E C[Z] and i ::; l.

5. Pi = u· e,/e'-l for some unit u E C[Z].
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Proof : We derive from Lemma 1.10 that b(f @C[Z] P(Z)) and a(f @C[Z] [2(Z)) agree with
the corresponding invariants for the endomorphism given by the diagonal matrix D. Now
assertion 1.) and 2.) follow from Lemma 1.12.

Oue easily verifies that the numbers ei are the same for A and D and then verifies
assertions 3.) and 4.) directly for D. Claim 5.) follows from claim 4.) •

Note that Lemmas 3.1 and A.1 allow UB to compute the Novikov~Shubininvariants of
C @C[Z] z2(Z) for any finite free C[Z]-chain complex C. Next, we show that it suffices to
know the homology groups of C. Given any finitely-generated C[Z]-module P, there are
non~negative integers rand [ and a sequence of non-zero elements Pl, P2, ... , PI of erZ] such
that Pi IPi+l and

P = (EBi=lC[Z]) EB (ffi~=lC[Z]/(Pi))'

where (Pi) is the ideal generated by Pi [3, Chapter 10, Theorem 5.7]. The numbers r and [ and
the elements Pi, up to multiplication by a unit, are uniquely determined by the isomorphism
type of P.

Definition A.2 Define the rank 0/ P to be

rk{P) = r

and the Novikov-Shubin invariant 0/ P to be

a(P) = a(mpl )

if [ 2: 1 and a(P) = 00+ otherwise. •

Lemma tA.3 Let C be a finite /ree C[Z]-chain complex. Then

and

Proof: Let 0 --+ EB~=lC[Z]~ EBi~i erZ] --+ Hq( C) --+ 0 be tbe finite free resolution of
Bq (C) given by a matrix whose (i, i)-th entry is Pi for 1 ~ i ~ 1and whose entries vanish oth­
erwise. Let Fq denote the I-dimensional finite free C[Z]-chain complex given by fq. Lemma
A.1 gives that rk(Hq(C)) = b(/q @C[Z] I2(Z)) and a(Hq(C)) = a(lq ~C[Z] [2(Z)). One easily
constructs a C[Z]-chain map 9 : EBq~oEqFq --+ C which induces an isomorphism on homol­
ogy and is hence a chain homotopy equivalence. Now the claim follows from Lemma 2.3 and
Theorem 2.5. •
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Example A.4 (mapping torus) Let M be a closed manifold and 1 : M --+ M be a diffeo­
morphism. Let Ti be the mapping torus, the manifold obtained from the cylinder M x [0,1]
by identifying the boundary components by I. There is an epimorphism tjJ : 1rl (Ti) --+ Z.
The map 1 induces an automorphism Hq(/) on Hq(Mj C). The Jordan normal form of Hq(/)
consists of blocks B (j, .x) of j by j matrices of the form

~ 1 0 0
o -X 1 0
o 0 -X 0

000 -X

Let o(Hq(/)) be the minimum of the numbers ]- over all blocks B(j, -X) for which I -X 1= l.
If there are no such blocks, put o(Hq(/)) to be 00+. Since the C[Z]-mod~leHq(M), with
Z·action generated by Hq(/)-l, is isomorphie to Bq(TJ ), we conclude from Lemma A.3 that

and

Example A.5 Let us look at the special case in which / is a self-diffeomorphism of the
2-torus. We eall BI (I) periodic if H I (/)/1: = id for some k 1= 0, hyperbolic if 00 eigenvalue of
H1(I) has unit norm aod parabolic otherwise. From [36, Theorem 5.5), we have that BI (/) is
periodic if and only if TJ has a R3-structure, byperbolic if and only if Ti has a SoZ-structure
aod parabolic if and only if Ti has a N iZ-structure. One easily checks that

o2(T/; tjJ*J2(Z)) = 1 <=>
o2(T/; tjJ*J2(Z)) = 00+ <=>
o2(T/; tjJ*Z2(Z)) = 1 <=>

T/ has a W-structure
T/ has a SoZ-strueture

TJ has a NiZ·structure
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