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L%*-Topological Invariants of 3-manifolds

by
John Lott and Wolfgang Luck

Abstract : We give results on the L?-Betti numbers and Novikov-Shubin invariants of compact
manifolds, especially 3-manifolds. We first study the Betti numbers and Novikov-Shubin invariants
of a chain complex of Hilbert modules over a finite von Neumann algebra. We establish inequalities
among the Novikov-Shubin invariants of the terms in a short exact sequence of chain complexes. Our
algebraic results, along with some analytic results on geometric 3-manifolds, are used to compute
the L?-Betti numbers of compact 3-manifolds which satisfy a weak form of the geometrization
conjecture, and to compute or estimate their Novikov-Shubin invariants.

0. Introduction

The L2-Betti numbers of a smooth closed manifold M, introduced by Atiyah (2], are
invariants of M which are defined in terms of the universal cover M. Roughly speaking,
if M is Riemannian then the p-th L?-Betti number 5,(M) measures the size of the space
of harmonic L? p-forms on M, relative to the action of the fundamental group T on M.
We give the precise definition later. The L?-Betti numbers are homotopy invariants of M
(Dodziuk [13]), and can be extended to become I'-homotopy invariants of topological spaces
upon which a countable group T acts (Cheeger-Gromov [11]).

By means of a Laplace transform, there is an interpretation of the L?-Betti numbers

in terms of the large-time asymptotics of heat flow on M. Let e‘*z:'(z,y) be the Schwartz
kernel of the heat operator acting on L? p-forms on M. The von Neumann trace of the heat
operator is given by

trn(x) (e-tz:’) = /}_tr (c"ta;(z,:r)) dvol(z),

where F is a fundamental domain for the w-action on M and the trace on the right-hand-side

is the ordinary trace on End(A?(T:M)). The L2-Betti numbers of M can be expressed by
bp(M) = lim try(x) (e"‘r’) :

In many examples one finds that try (s (e“z‘;) —b,( M) approaches zero with an exponential

or power decay as t — oo. Novikov and Shubin [33] introduced invariants which quantify
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this phenomenon. If there is an exponential decay, put &,(M) = ocot. Otherwise, put
&,(M) = sup {5,, ) (e't‘?’) — b,(M) is O(t™%/?) as t — oo} € [0,00).

Roughly speaking, &,(M) measures the thickness of the spectrum of —-A-;, near 0; the larger
a,(M), the thinner the spectrum near 0. Novikov and Shubin stated that these invariants
are independent of the choice of Riemannian metric on M, and hence are smooth invariants
of M. The first author showed that they are defined for all topological manifolds and depend
only on the homeomorphism type, and computed them in certain cases [24]. Gromov and
Shubin [18] proved that the Novikov-Shubin invariants are homotopy invariants of M. A
combinatorial Novikov-Shubin invariant was defined by Efremov in [15] and shown to be the
same as the analytically defined invariant, again under the assumption that M is closed.

In this paper we give some results on the L2-Betti numbers and Novikov-Shubin invari-
ants of compact manifolds (possibly with boundary), especially 3-manifolds. Our interest
in these invariants comes from our work on related L2-invariants, the L?-Reidemeister and
analytic torsions [7, 24, 27, 28|. In particular, one wishes to know that the Novikov-Shubin
invariants of a manifold are all positive, in order for the L*-torsions to be defined. We make
some remarks on the L?-torsions in section 9.

We define an invariant a,(M) in terms of the boundary operator acting on p-chains on
M. The relationship with a,(M) is that &,(M) = min(a,(M), ap1(M)), where the left-
hand-side is defined using p-forms on M which satisfy absolute boundary conditions if M has
boundary. Let us say that a prime 3-manifold is ezceptional if it is closed and. no finite cover
of it is homotopy equivalent to a Haken, Seifert or hyperbolic 3-manifold. No exceptional
prime 3-manifolds are known, and standard conjectures (Thurston geometrization conjecture,
Waldhausen conjecture) imply that there are none. The main results of this paper are given
in the following theorem:

Theorem Let M be the connected sum Mf...§M, of (compact connected orientable)
nonexceptional prime 3-manifolds M;. Assume that 7,(M) is infinite. Then

1. The L*-Betti numbers of M are given by:
bo(M)
b](M) = T - 1) - E

(M) = (r-1) Zl 1(M |+|{C€7ro((9M)s.t.CESZ}[
by(M) = 0.

0

—x(M) + | {C € mo(dM) s.t.C = S} |

|7T1



Equivalently, if x(m(M)) denotes the rational-valued group Euler characteristic then
bi(M) = —x(m1(M)) and by(M) = x(M) — x(m:(M)).

In particular, M has vanishing L?-cohomology iff M is homotopy equivalent to S x 52,
RP3§RP3 or an irreducible 3-manifold with infinite fundamental group whose boundary
is empty or a union of tori.

2. Let the Poincaré associate P(M) be the connected sum of the M;’s which are not 3-
disks or homotopy 3-spheres. Then a,(P(M)) = a,(M) for p < 2. We have o;(M) =
oot except for the following cases:

(a) en(M) =1if P(M)is S x D?, a closed S? x R-manifold or homotopy equivalent
to RP3RP3.

(b) cy(M)=2if P(M)is T? x I or a twisted I-bundle over the Klein bottle K.

(c) an(M) =3 if P(M) is a closed R*-manifold.

(d) a1(M) =4 if P(M) is a closed Nil-manifold.

(e) ay(M) = oo if P(M) is a closed Sol-manifold.

3. Q’Q(M) > 0.

4. If M is a closed hyperbolic 3-manifold then ay(M) = 1. If M is a closed Seifert 3-
manifold then ay(M) is given in terms of the Euler class e of the bundle and the Euler
characteristic x of the base orbifold by:

x>0 x=0 x<0
e=0| oot 3 1
e#0| oot 2 1

If M is a Seifert 3-manifold with boundary then a;(M)is cot if M = ST x D? 2if M
is T? x I or a twisted J-bundle over K, and 1 otherwise. If M is a closed Sol-manifold
then az(M) > 1.

5. If M contains an incompressibie torus then az(M) < 2. If one of the M;’s is closed
with infinite fundamental group and does not admit an R®, S% x R or Sol-structure,
then az(M) < 2.

6. If M is closed then a3z(M) = oy(M). If M is not closed then as(M) = oot n

Let us briefly indicate how we prove that a3(M) is positive. The important case is
when M is an irreducible Haken 3-manifold with infinite fundamental group whose boundary
is empty or consists of incompressible tori; the general case follows by further arguments.
The Jaco-Shalen-Johannson splitting of M, together with the work of Thurston, gives a



family of embedded incompressible tori which cut the manifold into pieces that are either
Seifert manifolds or whose interiors admit complete finite-volume hyperbolic metrics. The
az-invariants of the Seifert pieces can be computed explicitly. By analytic means we derive
a lower bound for the as-invariants of the (compact) hyperbolic pieces. We then face the
problem of understanding what happens to the Novikov-Shubin invariants when one glues
along incompressible tori. This is done algebraically by means of inequalities among the
Novikov-Shubin invariants of the terms in a short exact sequence.

A description of the contents of the paper is as follows. The natural algebraic setting for
our work is that of Hilbert .A-modules, where A is a finite von Neumann algebra. In Section
1 we define the Betti numbers and Novikov-Shubin invariants of a morphism of finitely
generated Hilbert A4-modules, and derive some useful inequalities on the Novikov-Shubin
invariants. In Section 2 we define the Betti numbers and Novikov-Shubin invariants of a
finite Hilbert A-chain complex. If one has a short exact sequence of finite Hilbert .4-chain
complexes then there is an induced long weakly exact homology sequence, with which one
can relate the Betti numbers of the chain complexes (Cheeger-Gromov {10]). We show that
in addition, the Novikov-Shubin invariants of the chain complexes are related. We prove

Theorem 2.2: Let 0 — C — D -4 E —— 0 be an ezact sequence of finite Hilbert A-
chain complezes. Denote the boundary operator in the long weakly exact homology sequence

[10, Theorem 2.1] by 6, : Hy(E) — Hp_1(C). Then

1 1 1 1
1. < .
(D) S 0 5 (B) T al5)
2.

1 1 1 1
(B = Ha0) T D) T aHS )

1 1 1 1
5 @) S D) T an(®) T all,m)y

In Section 3 we give examples to show that these inequalities are sharp.

In Section 4 we specialize to the case of manifolds, in which A is the group von Neu-
mann algebra N(7) of the fundamental group . Proposition 4.2 gives the relations on
the L?-Betti numbers and Novikov-Shubin invariants due to Poincaré duality, and Proposi-
tion 4.7 computes the L2-Betti numbers and Novikov-Shubin invariants of connected sums.
In Theorem 4.8 we show that if M admits a homotopically nontrivial S-action then the
L*-Betti numbers vanish and the Novikov-Shubin invariants are bounded below by 1. In
Corollary 4.4 we show that the Novikov-Shubin invariants of closed manifolds of dimension
less than or equal to 4 depend only on the fundamental group. In Section 5 we compute the



L?-Betti numbers and Novikov-Shubin invariants of Seifert 3-manifolds (Theorems 5.1 and
5.4).

Section 6 first extends the results of (13, 15] on the equality of combinatorial and
analytic L?-topological invariants from the case of closed manifolds to that of manifolds
with boundary. We then consider the Novikov-Shubin invariants of a compact 3-manifold
M whose interior admits a complete finite-volume hyperbolic structute. If M is closed,
the Novikov-Shubin invariants were computed in [24]. If M is not closed then we use a
Mayer-Vietoris construction in the analytic setting, along with Theorem 2.2, to derive needed
inequalities on the Novikov-Shubin invariants of the compact manifold, defined with absolute
boundary conditions.

The results on 3-manifolds, Theorems 7.1 and 7.8, are proven in Section 7. Section
8 gives some applications of our results to the question of whether a covering space can
have an invertible differential-form Laplacian. Section 9 has some remarks and gives some
conjectures that are supported by the results of this paper. In the appendix we compute
the L?-Betti numbers and Novikov-Shubin invariants of infinite cyclic covers in terms of the
homology of the cover.

The sections of the paper are:

L*-Betti numbers and Novikov-Shubin invariants for morphisms of Hilbert .A-modules
L?-Betti numbers and Novikov-Shubin invariants for Hilbert .A-chain complexes
Examples proving sharpness of various inequalities

L?-Betti numbers and Novikov-Shubin invariants for manifolds

Seifert 3-manifolds

. Analytic L?-Betti numbers and Novikov-Shubin invariants for manifolds with boundary,
a.nd hyperbolic 3-manifolds

7. L?-Betti numbers and Novikov-Shubin invariants for 3-manifolds

8. L*-contractibility

9. Remarks and conjectures

A. Infinite cyclic coverings

References

To understand the statements of Sections 4-9, it suffices to understand Definitions 1.2,
1.7 and 2.1.

One of us (J.L.) wishes to thank the IHES, the Max-Planck-Institut-Bonn and the
Café La Chope for their hospitality while part of this work was done, and the Humboldt
Foundation for financial support.



1. L?-Betti numbers and Novikov-Shubin invariants for
morphisms of Hilbert .4-modules

In this section we introduce the Betti numbers and Novikov-Shubin invariants for
morphisms of finitely generated Hilbert A-modules over a finite von Neumann algebra A.
We study their behaviour under composition and exact sequences. For background material
on finite von Neumann algebras and their Hilbert modules, we refer to [2, 9, 12, 27].

Let A be a von Neumann algebra with finite faithful normal trace try. Let 13(.A)
denote the Hilbert completion of A with respect to the inner product given by tr.(a*b)
for a,b € A. A Hilbert A-module is a Hilbert space V with a continuous left .A-module
structure such that there exists an isometric .A-embedding of V into [*(A) ® H for some
Hilbert space H. A morphism of Hilbert A-modules f: U — V is a bounded operator
which is compatible with the A-multiplication. A Hilbert A-module V is finitely gener-
ated if there is a surjective morphism @7 ,/*(A) — V for some positive integer n. The
dimension dim4(V) of a finitely generated Hilbert 4-module is the trace of any projection
pr: @, *(A) — &~,!*(A) whose image is isometrically .A-isomorphic to V. A morphism
f:U—V is a weak isomorphism if its kernel is trivial and its image is dense. A se-
quence of Hilbert A-modules 0 — U - V -5 W — 0 is weakly ezact if j is injective,
clos(im(j)) = ker(q) and q has dense image.

Lemma 1.1

1. If0 — ULV SW-—0is weakly exact then

dima(U) — dima(V) + dim (W) = 0.

2, Let f: U — V be a weak tsomorphism and L C V be a Hilbert A-submodule. Then
dimu(f~'(L)) = dimu(L).

Proof : 1.) We have the exact sequence 0 — ker(q) — V — ker(g)* — 0 and the
assertion is well known in this case. If f: W; — W, is a weak isomorphism, the polar
decomposition theorem yields an isometric A-isomorphism W; — W, and so

dimA(Wl) = dirnA(Wg).

There are canonical weak isomorphisms U — ker(g) and ker(g)t ~— W, and the claim
follows.



2.) We decompose f as
(¢ 1) rwe(w) —1er-

If w € (f~}(L))" is in the kernel of h then, thinking of v as an element of U, f(u) lies in
L, and so u bzlongs to f~!(L). Thus u = 0. This shows that & is injective. Since k is also
injective, we conclude from assertion 1.)

dimu(f1 (L)) = dimu(clos(f(f71(L)))) < dimu(L)

dimy (f~(L)*) = dimyu (clos(f(f~1(L)*))) < dimu(L*)
dima(L) + dim4(L1) = dim4(V)

dima(f7}(L)) + dima (f7(L)*) = dima(U)

dima(U) = dima(V)

Now the claim foiiows. ||

Let f : U — V be a morphism of finitely generated Hilbert A-modules. Let
{E{’’ . X € R} denote the (right-continuous) spectral family of the self-adjoint non-negative
operator f*f. In what follows, | z | will denote the norm of an element in a Hilbert .A-module
and || f|| will denote an operator norm.

Definition 1.2 Define the spectral density function of f by
F(f,)) = dima(im(EL"))
for A € [0,00). |

Lemma 1.3 . Ifz € U, EL,/(z) =0 and £ # 0 then | f(z)]| > ) |z].
If Ef;(z) = z then | f(z)| < ) |z|.

Proof : From the definition of the spectral family, we have
(7 fla)a) = [~ Ad(E{!(z),2).
0 -
Since (f* f(z),z) =| f(z)]?, the claim follows. |

Let £(f,A) denote the set of all Hilbert .A-submodules L of U with the property that
| f(z)| < A |z| holds for all z € L.



Lemma 1.4 F(f,A) =sup{dims(L) : L € L(f,A)}.

Proof : From Lemma 1.3, the image of EJ;” belongs to £(f, ). Hence
F(f,A) <sup{dimu(L) : L €L(f,N)},
and it remains to show that for all L € L(f, ),
dimu(L) < dim4(im(EL7)).

Lemma 1.3 implies that ker(Ef; 1) is trivial. Hence E’{; ! induces a weak isomorphism
L — clos(E{; /(L)) and the claim follows. ]

Proposition 1.5 Let f : U — V and g : V — W be morphisms of finitely generated
Hilbert A-modules. Suppose that neither f nor g is the zero map. Then

1. F(f, m) < F(gf,A).

2. F(g, ﬂ?Aﬂ) < F(gf,)\) if f has dense image.

8. F(gf,A) < F(g,\\=") + F(f, ") for all r € (0,1).

Proof : 1.) Consider L € L(f, "%”) For all z € L, we have

l0f(2) 1 < llgll - 17(2) < llgl “jf” 2= A |z].

This implies L € £{gf,A) and the claim follows.
2.) Consider L € L(g, ﬁn-) For all z € f~1(L), we have

A
£l
implying f~'(L) € L(gf,A). Hence it suffices to show dim4(L) < dim4(f~*(L)).

9f(z)] < ﬁ f@)] < o ]2 = A |2,

Let f : U/ker(f) — V be the map induced by f and p : U — U/ ker f be the
projection. Since p is surjective and f is a weak isomorphism, Lemma 1.1 implies that

dima(f~(L)) 2 dima p(f~(L)) = dima(F (L)) = dima(L).
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Assertion 2.) follows.

3.) Consider L € L(gf,)). Let Lo be the kernel of Ef,f |,. We have a weakly
exact sequence 0 — Ly — L — c]os(E{;! (L)) — 0. From Lemma 1.3, we have that
| f(z)| > A" |z| for all nonzero z € Lo. In particular, f |L,: Lo — clos(f(Lo)) is a weak
isomorphism, and so dim4(Lo) = dim4(clos(f(Lo))). For = € Ly, we compute:

0f@)1< X |21 3 1) = ¥ 15(@)].
Hence clos(f(Lo)) € £(g,A'™"). This shows that
dimu(Lo) < F(g,A'™").
We also have that
dimx(clos(ELJ (L)) < dimx(im(ELY)) = F(f, 7).
Since Lemma 1.1 implies that dim4(L) = dimu(Lo) + dim(clos(E{.{(L))), we get
dimu(L) < F(g,N'™")+ F(f,A). ®

Definition 1.6 We say that e function F : [0,00) — [0, 00] is a density function if F is
monotone non-decreasing and right-continuous and F(\) < oo for some A > 0. Let D be
the set of density functions. We write F <X G for F,G € D if there is a constant C > 0
such that F(X) € G(C - A) holds for all X € [0,00). As in [88], we say that F and G are
dilatationally equivalent (in signs F~ G) if F X G and G X F is true. |

Of course, the spectral density function F(f, ) is a density function. We introduce
the following invariants of a density function F:

Definition 1.7 The Betti number of F is

Its Novikov-Shubin invariant is

_ i In(F() — b(F))
o) = hmnf =15

provided that F()) > b(F) holds for all A > 0. Otherwise, we put a(F) = oo*.

e [01 w]’

If f is @ morphism of finitely generated Hilbert A-modules, we write b(f) = b(F(f,))
wd alf) = o(F(£,). W



Here oot is a new formal symbol which should not be confused with co. We have
a(F) = oot if and only if there is an € > 0 such that F(A) = b(F) for A < e.

Example 1.8 The following are examples of Novikov-Shubin invariants of density functions:

F(A) =X ol F)=r

F(\) = exp((n(\)*) o(F) =0 .
FO) = exp(=X1)  a(F) =

F(A) =0 qm=

We make the following conventions:

Convention 1.9 The ordering on [0, 00] U {co*} is given by the standard ordering on R
and r < oo < oo for all r € R. For all a, 8 € [0,00] U {c0*} -7e define

1 1
—<=&a2p.
[ag

B

Given a, # € [0, 00} U {00}, we give meaning to v in the expression

as follows: If @, f € R, let 4 be the real number for which this arithmetic expression of real
numbers is true. If « € R and 8 € {o0,00%}, put yto be a. If 3 € R and a € {00,00%},
put 7 to be B. If @ and 3 belong to {00, 00%} and are not both co*, put ¥ = co. If both «
and f§ are co*, put v = cot.

For example,

1,11
sTz=x
141
Ftr=x
1 1 _ 1
e teF T
1 1 _ 1
s
1 e 13101
sSEtitzea24fs
1 o1 1 1
sSxtorta®azm
Given r € (0,00) and e € [0, 00), we define ra € [0,00) to be the ordinary product of real
numbers, and we put roo = co and root = cot. ||
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Here are the basic properties of these invariants.

Lemma 1.10 Given F,G € D and f a morphism of finitely generated A-Hilbert modules,

[y

If F < G then b(F) < b((3).

If F <G and b(F) = b(G) then a(F) > o(G).
If F ~ G then b(F) = b(G) and o(F) = o(G).
o F(V)) = r- o F(N)) for r € (0,00).

o(F) = o F = b(F)).

b(f) = dimu(ker(f*f)) = dim(ker(f)).

If f is an isomorphism or zro then a(f) = co*.

An endomorphism f is an automorphism iff b(f) = 0 and a(f) = co*.

©® % =2 S A

If 1 is injective with closed image and p is surjective then a(io f o p) = a(f).

a(F + G) = min{«(F), a(G)}.

~
S

Proof : The assertions 1.) to 5.) follow directly from the definitions.

6.) By definition, b(f) is the von Neumann dimension of im(E{ /) = ker(f*f). As | f(z)[*=
(f*f(z),z), f and f*f have the same kernel.

7.) If f is an isomorphism or zero then F(f, )) is constant for small A.

8.) By the polar decomposition theorem, we may assume that f is self-adjoint and non-
negative. Suppose that b(f) = 0 and a(f) = ocot. Then the spectrum of f is contained
in [a, b] for positive real numbers a < b. An inverse of f is given by [° A~'dE,. The other
implication follows from assertions 6.) and 7.).

9.) By the open mapping theorem, there is a positive constant C such that for all z,
Chz|<iz) < C =]
Hence F(fop,A) and F(io f op, A) are dilatationally equivalent. Assertion 3.) implies that
a(io fop) =a(f op).
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We may write p as the composition j o pr of an isomorphism and a projection pr. Now one
easily checks that F'(f o 7,A) and F(f, ) are dilatationally equivalent and that

F(f3j,A) + dim(ker(pr)) = F(f o p,A)
holds for A > 0. Then assertions 3.) and 5.) prove the claim.

10.) As b(F + G) = b(F) + b(G), by assertion 5.) we may assume without loss of generality
that b(F) = b(G) = (F + G) = 0. Because F,G < F + G, assertion 2.) implies that
o F 4+ G) < min{aF),a(G)}. To verify the reverse inequality, we may assume without loss
of generality that a(F) < a(G). The cases a(F) = 0 and a(F) = co™ are trivial, and so we
assume that 0 < a(F) € co. Consider any real number a satisfying 0 < o < a(F). Then
there exists a constant K > 0 such that for small positive A we have F(A),G()) < KA?, and
so F(A) + G(A) £ 2K - A, implying that a < a(F + G). The assertion follows. |

Proposition 1.11 Let f : U — V and g : V — W be morphisms of finitely generated
Hilbert A-modules. Then

1. If f has dense image then a(g) > a(gf).
2. Ifker(g) N im(f) = {0} then a(f) 2 a(gf).
8. Ifker(g) C clos(im(f)) then

1 1 1

«ah) = o T )

Proof : First, f factorizes over the projection U — U/ ker(f) (into an injective morphism
f:U/ker(f) — V. From Lemma 1.10.9, o f) = a(f) and a(gf) = a(gf), and so we may

assume without loss of generality that f is injective.

1.) Then f induces an injection ker(gf) — ker(g), and so b(gf) < b(g). From Proposition
1.5,

A
Flg, m) —b(g) < F(gf,A) = b(gf).
Now the claim follows from Lemma 1.10.2.

2.) Since ker(g) Nim(f) = {0} holds by assumption, we have that ker(gf) = ker(f) and
hence b(¢f) = b(f). Now the assertion follows from Proposition 1.5 and Lemma 1.10.2. ‘

3.) By assumption, ker(g) C clos(im(f)). As f: U — clos(im(f)) is assumed to be a weak

12



isomorphism, Lemma 1.1 implies that b(¢gf) = b(g) = b(f) + b(g). From Proposition 1.5 we
have that for 0 < r < 1,

F(gf, ) = b(gf) S F(f,A") = b(f) + F(9,A"") — b(g).
Lemma 1.10.10 shows that
a(9f) 2 min{r-a(f),(1 —r) - a{g)}.

Taking inverses gives

ﬁﬁ Smw{,.i(f),(l_,;.a(g)}-

We only consider the case a(f), a(g) € (0,00), the other cases being now trivial. Since :.’773

(resp. zl—_—r-}m) is a strictly monotonically decreasing (resp. increasing) function in r, the
maximum on the right side, viewed as a function of r, obtains its minimum precisely if the
two functions of r have the same value. One easily checks that this is the case if and only if
r= ;.(—,‘;&“3@ and the claim follows. ]

Lemma 1.12 Let f: Uy, — W, g:U; — V,, and h : U; — V, be morphisms of finitely
generated Hilbert A-modules. Then

L a ( - ) = min {a(f), a(h)}.

2. If f is invertible then o ( 'g ‘z ) = alh).

3. If h 1s injective then
a(f) 2 a( 'g i )
fa\\~
(2 %))
4. If f has dense image then
a(h) > a ( - )
: <

(5 2)

1

3(1T5+W?5'

IA

1 1

o) &y

13
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5. F(f,A) = b(f) = F(f*,A) = b(f*) and o(f) = a(f").

Proof : 1.) We have

(30 )2 = PN+ Flb )
Now apply Lemma 1.10.10.

2.) Apply Lemma 1.10.9 and assertion 1.) to
faN_(F O\ [1 fg
0 h 0 A 0 1 ’
10 (1 gy _(1yg
0 A 01/ h |-

Lemma 1.10.7 and assertions 1.) and 2.) imply
g
h

a(f):oz({; 2)

faN_(19) (f0O

0 A 0 R 01/
1 g . . . fo
0 h has trivial kernel. If f has dense image then 01 has
dense image. The claim now follows from Proposition 1.11.

5.) As f(f*f) = (ff*)f and f*(ff*) = (f"f)f*, f and f* induce morphisms
7 E{" [ ker(f) — E{'" [ ker(f")

3. and 4.) We have

oo

a(h):a(

We have

If h is injective then

and

7 E{7 [ ker(f*) — E{"/kex(f).
As ker(f) = ker(f* f) and ker(f*) = ker(ff*), the compositions f*o f and fo f* are injective
endomorphisms, and hence are weak isomorphisms by Lemma 1.1. It follows that f is a weak
isomorphism. Lemma 1.1 now implies that the dimensions of E{ //ker(f) and E{/"/ker(f*)
are the same, and so F(f,A) —b(f) = F(f",X) — b(f*). [

14



2. L?-Betti numbers and Novikov-Shubin invariants for
Hilbert A-chain complexes

In this section we introduce and study the Betti numbers and Novikov-Shubin invari-
ants for chain complexes, and investigate their behaviour with respect to exact sequences
and homotopy equivalences.

A Hilbert A-chain complex is said to be finite if C,, is a finitely generated Hilbert A-
module for all integers n and is zero for all but a finite number of integers n. The homology
of C is defined to be H,(C) = ker(c,)/clos(im(c,)) where ¢, denotes the differential. Note
that we have to quotient by the closure of the image of ¢, if we want to ensure that the
homology is a Hilbert space.

Definition 2.1 Let C be a finite Hilbert A-chain complez with p-th differential c,. Its p-th
Betti-number is

b(C) = dimu(H,(C)).
Its p-th Novikov-Shubin invariant is

Put
&(C) = min{a(ep) a(e,)} . W

Note that &,(C) correspond to the notion of Novikov-Shubin invariants as introduced
in {33). However, it turns out to be easier and more efficient to deal with the numbers a,(C).

Theorem 2.2 (Additivity inequalities for the Novikov-Shubin invariants)

Let 0 — C - D 25 E — 0 be an ezact sequence of finite Hilbert A-chain complezes.
Let 6 : H(E) — H,_1(C) denote the boundary operator in the long weakly ezact homology
sequence gien in [10, Theorem 2.1 on page 10]. Then

1 1 1 1
1. < .
aP(DS - apfcj + ap(E) + a(é,)

1 1 1 1
S o) Rwn (o) B 0 ) Bl o AT €)X

1 1 1 1
% %0 = 5D T an(E) T alH, @)
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Proof : 1.) The exact sequence 0 — C ~, D —% E — 0 induces the following commu-
tative diagram with exact rows, where g, d, and €, are canonical homomorphisms induced
by ¢p, dp and e, and ¢ is the inclusion:

1 9
ker g, - Dp[ker(d,) - E,/ker(ep)
8 A - &
j -1 dp—1
Cper - Dy, — B

To define 3, in the above diagram, let z € ker(eyq,) represent {z] € ker(g,). Then dy(z) =
jp—1(y) for a unique y € Cp_1. We put 9,([z]) = y. (In fact, y € ker(cp-1).) Since & is
injective, Lemma 1.12.3 gives that

—

1 1
a@) = @) T am)

From Lemma 1.10.9 we conclude that «(d,) = a(d,) and o(%;) = a(e,). This implies that

1 1 1
a(dy) = a(@) T aler)

It remains to show that
1 1 1

(@) = o) T ale)

We construct a short weakly exact sequence

I %

0 — Cpl/ker(e;) —= ker(g;) — Hp(E)/clos(im(Hy(g))) —= 0

The map J, is induced by j, in the obvious way. To define g,, consider z € D, whose class
[z] € D,/ ker(d,) lies in ker(g;). Then g,(z) is in the kernel of e, and determines a class
[g5(2)] in H,(E)/clos(im(H,(q))). Define §,([z]) to be [go(z)]. One easily checks that 7,
is injective, g, 0 j, is zero and §, is surjective. We will show that ker(d;) is contained in
clos(im(7,)). We must show that if z € D, is such that g,(z) € clos(im(eps1)) ® gp(ker(d,))
then z € im(j,) @ ker(d,), or equivalently, that g;'(clos(im(ep41))) C im(j,) @ ker(d,).
Suppose that = € ;' (clos(im(ep41))). Then there is a sequence {yn}32, in E,41 such that

16



¢p(z) = liMp—co €p41(Yn). As gp41 is surjective, there is a sequence {un}52, in Dpy4q such that

Yn = Gps1(tn). Thus lim,o gp(z — dppa(un)) = 0. Write 2 — dpy1(un) = jp(wn) + rn with

w, € C, and r, € im(j,)*. Then limn—e gp(rs) = 0. As the restriction of g, to im(j,)* is

an isomorphism, it follows that lim,—c rn = 0. Thus z = limy oo (Jp(wn) + dpy1(un)) lies in
the closed subspace im(j,) @ ker(d,). This finishes the proof of weak exactness.

Next we construct a commutative diagram with exact rows

-~

11 Gy
ker(gp) » ker(3) » Hy(E)/clos(im(Hp(g)))
5, By &
12 pr
clos(im(c,)) —  ker(cp,—1) — H,,(C).

The maps ¢, and i, are the canonical inclusions and the map pr is the canonical
projection. Recall that the boundary operator é, : Hy(E) — Hp_1(C) is defined as follows:
Let = € ker(e,) represent [z] in H,(F). Choose y € D, and z € ker(cp—1) such that g,(y) =z
and j,—1(z) = d,(y). Then 6,([z]) is defined to be the class [z] € H,—1(C). The map &, is
induced from &,. The map §, is induced from 8,. One easily verifies that the diagram
commutes. The rows are clearly exact. Since &, is injective, we conclude from Lemma 1.12
that

1
()

Since Lemma 1.10.5 implies that «(8,) = a($,), it remains to show that
a(¢p) < (By).

Let _-7': : Cp/ ker(cp) — ker(g,) be the weak isomorphism induced by 7,. The map ¢, induces a
morphism & : C,/ ker(c;) — clos(im(c;,)). One easily checks that 8,0 _7,-":,' = G,. Proposition
1.11.1 implies that

o(3,) 2 of5).

From Lemma 1.10.9 we obtain that a{c,) = (%) . This finishes the proof of the first
assertion of Theorem 2.2.

&

2.} Recall that in general {26, p. 213}, the n-th differential of the mapping cylinder of
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a chain map g : C — D is defined by

—Cp1 00
—id Cn 0 : Cn—l & Cn & Dn R C -2 @ Cn—l 57} Dn—l-
rn-1 0 dﬂ

There is a canonical map ¢t : C — cyl(g) and cone(g) is defined to be the cokernel of 7.
That is, the n-th differential of cone(g) is

( _gc'n—ll (? ) : Cn—l @Dn — Cn-2 @Dn—h

We define cone(C) to be the mapping cone of the identity map on C, and the suspension
EC to be the mapping cone of the 0-map on C ie. (£C), = Cp-s.

In our case there is a canonical exact sequence 0 — D — cyl(q) — cone(q) — 0
and chain homotopy equivalences E — cyl(q) and £C — cone(q). We will show later
using only assertion 1.) that the numbers a(c,) are homotopy invariants. So we may
assume the existence of an exact sequence 0 — D — E — E(C — 0. Moreover, the
connecting map from H,(EC) to H,—1(D) agrees under these identifications with the map
Hy_1(j) : Hp—1(C) — H,_1(D). The claim now follows from assertion 1.).

3.) Repeat the argument in the proof of assertion 2.), yielding a short exact sequence
00— E—XC — XD —0. |

The dual chain complex C* is the cochain complex with the same chain modules as
C and the adjoints of the differentials of C' as codifferentials. The definitions of the Betti
numbers and the Novikov-Shubin invariants carry over directly to cochain complexes. The
Laplace operator A, : Cp — C, is defined to be cp41¢54y + 65y '

Lemma 2.3 Let C be a finite Hilbert A-chain complez.

1. 2-&(C) = a(A,) and b,(C) = by(A,).
2. a,(C) = a,(C*) and b,(C) = b,(C").
3. a,(C ® D) = min {c,(C), a,(D)} and b,(C & D) = b,(C) + b,(D).

1.) The Hodge decomposition theorem (see e.g. [27, Theorem 3.7]) gives the claim for the
Betti numbers. Moreover, we have the following commutative square with isomorphisms as
horizontal morphisms:
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ker(c,)t @ ker(c;, )t @ ker(A,) : Cp
Cep @ Cpr1Cryy B0 | N !
ker(cp)* @ ker(c;, )t @ ker(A,) i Cyp
Lemmas 1.10.7 and 1.12.1 imply that
a(A,) = min{a(ce,), a(ept16541)} -

Since E{’ = Ef\';.!)z, Lemma 1.10.4 implies that a(f*f) =2 a(f). We have shown in
Lemma 1.12.5 that o(f) = o(f*). This implies that 2 - a{¢,) = a(c;c;) and 2« a(cp4) =
a(cp41€541), and the claim follows.

2.) follows from assertion 1.)

3.) is a consequence of Lemma 1.12.1. [

We recall that C is said to be contractible if C has a chain contraction «, 1.e a collection
of morphisms v, : C, — Cp4q such that vy,_1¢, + cp417p, = id. for all p.

Lemma 2.4 The following assertions are equivalent for a finite Hilbert A-chain complez C:

1. C is contractible.
2. A, is invertible for all p.
8. b,(C) =0 and a,(C) = oo for all p.

Proof : 1.) = 3.)We use induction on the length [ of C, i.e. the difference n — m, where
n (resp. m) is the smallest (resp. largest) number for which C; = {0} holds for : > n
(resp. ¢ < m). The initial step [ £ 1 is trivial since all of the differentials in a contractible
chain complex of length I < 1 are zero or isomorphisms, and hence have Novikov-Shubin
invariant co* by Lemma 1.10.7. In the induction step one constructs a short exact sequence

0 — D -1 C 5 E— 0 of contractible chain complexes where D is concentrated in
dimensions n and n—1 and is given there by D, = C, __1_(_1_' D,_1 = C,, and F is concentrated
in dimensions less than n and is given by E,_; = ker(c,—1)*, E; = C; for t < n — 1. Take
Jn = 1d, jn_1 = ¢, and ¢,-; to be orthogonal projection. One easily checks that D and E

are contractible and the sequence is exact. As F has a smaller length than C, the induction
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hypothesis applies to D and E and the claim now follows from Theorem 2.2.1.

3.) = 2.) From Lemma 2.3, b(4,) = 0 and a(A,) = oot for all p. Now apply Lemma
1.10.8.

2.) = 1.) Suppose that A, is invertible. Then A7}, oc},, is a chain contraction for C.
[

We now reprove the homotopy invariance of the L?-Betti numbers and the Novikov-
Shubin invariants [13, 15, 18].

Theorem 2.5 (Homotopy invariance) If f : C — D is a chain homotopy equivalence
then for all p € Z we have

b,(C) = b,(D)
F(cp) = F(d,)
ap(C) = ap(D)
a,(C) = a,(D).

Proof : There are exact sequences of chain complexes

0 — C-—= cyl(f) — cone(f) — 0

and

0 — D — cyl(f) — cone(C) — 0

with cone(f) and cone(C) being contractible. We obtain chain isomorphisms

C & cone(f) — cyl(f)
D & cone(C) — cyl(f)

by the following general comstruction for an exact sequence 0 — C 2 D E—0
with contractible E. Choose a chain contraction € for E and for each p choose a morphism
tp : B, — D, such that ¢, 0, = id. Put

Sp = 0Gp410tlpp1 0€, + 1,0 €51 0 €p.
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This defines a chain map s: £ — D satisfying g o s = id. Define a chain mapu: D — C
by putting u,(z), for z € Dy, to be the unique y € C, such that z = s,q,(z) + j,(y). Then
j + s is a chain isomorphism C @ E — D, with inverse u & q.

Since C & cone(f) and D @ cone(C) are isomorphic and cone(f) and cone(C) are

contractible, we conclude that F(c,) ~ F(d,;). The other claims now follow from Lemma
1.10. n .
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3. Examples proving sharpness of various inequalities

We give examples which show that the inequalities of the preceeding sections are sharp.
A trusting reader can skip this section. Throughout this section A will be the von Neumann
algebra N(Z) of the integers. Note that N(Z) can be identified with the space L*(S") of
essentially bounded complex functions on S*. The space {*(N(Z)) is isomorphic to the space
L?*(S) of L*-functions on S, and the regular representation L*(S') — B(L?(S), L*(S"))?
sends f to the operator m; of pointwise multiplication by f. These identifications are based
on elementary Fourier analysis.

Lemma 3.1

1. Let p be the Lebesque measure on S'. Given f € L®(S"), the spectral density function
of my is

F(mg,A)=p{z €S : |f(z)|<A}.

2. Let p(z) = az"-[]%,(z—a;)" be an element in C[Z), withr € Z,r; € Z2}  a € C ~ {0}

1=1
and the nonzero complez numbers a; pairwise disjoint. Then

c.f(m,,)=man{;1T :1<i<n and |a;|=1}.

(The minimum over the empty set is taken to be co*.)

Proof : 1.) follows directly from the definition of a spectral family.

2.) From 1.), we have that for small A,

F(mp, A) >~ E F(my;, A),
=1
where p; = (z — a;)”. Lemma 1.10.10 implies that
a(my) = min {a(my;): 1 <i < n}.
If |a;|# 1 then m,, is an isomorphism and Lemma 1.10.7 implies that a(m,;) = co*. Since
the group of isometries acts transitively on S?, it is now enough to show that for r > 1,
1

a(m(,_l)r) = ; .
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Writing z = cos(¢) + ¢ - sin(¢), we have
|z=1|= /2 —2cos(d).
This implies that
F(moyy, A) = #{¢ €l-mm): |2—2cos(d)|/* < A}.

Because

2 — 2cos(¢)
fm—— =1

the claim follows. [ |

Example 3.2 (examples for Proposition 1.11)
Put f=g=2-1¢€ L*(S"). Then

1 1 1

a(ef) o) " alg)

Hence the inequality Proposition 1.11.3 is sharp. The condition ker(g) C clos(im(f)) is
necessary, as the following example shows: Let f: U — U @ U be the inclusion onto the
first factor and ¢ : U @ U — U be given by (m,—; & 1). We have a(f) = afg) = co*. On
the other hand, a(gf) = a(m,-1) = 1.

The first two inequalities of Proposition 1.11 are clearly sharp; takee.g. f=1org=1.
The conditions in the first two inequalities are necessary; take e.g. f =0 and ¢ =2 —1 and
vice versa. |

Example 3.3 (examples for Lemma 1.12)
Put f=h=2-1¢€ L*(S"). We have

0 1Y (1 ~hY fhfO) (1 0)_
-1 0 0 1 0 f1/"
Lemmas 1.10 and 1.12 imply that
f 1Y _ (1 1\~
o’(o h)"“("f)‘(a(f)+a(h)) '
This shows that the second inequality in item 3.) (resp. 4.)) of Lemma 1.12 is sharp. The

condition that h be injective (resp. that f have dense image) is necessary, as the example
f=0,g=m,_; and h = 0 shows. Namely, in this case

f
0

).

o

a('g i):landa(f):a(h):oo*.
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The first inequality in Lemma 1.12.3 is sharp, as the example ¢ = h = 0 shows. Again the
condition that h be injective is necessary. For example, put f = m,_;, ¢ =1 and A = 0.
Then

a('g i):oo"'a.nda(f):l.

The first inequality in of Lemma 1.12.4 is clearly sharp. The condition that f have dense

image is also necessary. Put f =0, ¢ =1 and h = m,_;. Then a(k) = 1. Since ( g ”; ) is

the composition of the injection (with closed image) ( ) and the projection (0,1),

M(z-1)

a(’éi):oo"’. |

Lemma 1.10.9 implies that

Example 3.4 (Examples for Theorem 2.2)

Upon interpreting the morphisms in the first part of Example 3.3 as weakly acyclic 1-
dimensional chain complexes, we obtain an example where the first inequality in Theorem
2.2 1s sharp.

Let C be a weakly acyclic chain complex such that a,(C) < ap-1(C). We have the
canonical exact sequence 0 — C — cone{C) — LC — 0. Since cone(C) is contractible,
Theorem 2.5 implies that a,(cone(C)) = oot for all p € Z. It follows from the definition of
suspension that ap41(EC) = a,(C). We have now constructed an example where the second
and third inequalities are sharp.

Here is an example in which the boundary operator of the long weakly exact homol-
ogy sequence enters. Consider a short exact sequence 0 — C — D — E — 0 such
that C is concentrated in dimension 0 and E is concentrated in dimension 1, and the
Novikov-Shubin invariant of the first differential of D is not co*. The boundary operator
6y : Hy(E) — Hy(C) is, up to composition with isomorphisms, the same as the differential
of D and so a(é,) equals a(d;). Clearly a,(C) and a,(F) are oot for all p. This example
shows that the term depending on §, has to appear in the first inequality of Theorem 2.2.
]
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4. L2-Betti numbers and Novikov-Shubin invariants for
manifolds

In this section we analyse the L?-Betti numbers and the Novikov-Shubin invariants of
compact manifolds.

Throughout this section we will use the following setup: Let M be a compact connected
orientable smooth manifold of dimension m with fundamental group 7 and universal cover
M. Suppose that @M is the union of two submanifolds oM and 3, M such that d(GM) =
OoM N M = 8(61M). We allow that OoM or )M are empty. Let oM denote the
preimage of doM under the projection M — M. Let A be a finite von Neumann algebra,
V be a finitely generated Hilbert .A-module and g : 7 — Iso4(V)” be a right unitary
representation of 7. In most applications A will be the von Neumann algebra N(7) of », V
will be I?(7) and u will be the right regular representation.

Let C(M, 674) be the simplicial Z7-chain complex of the lift of any triangulation of
M to a m-equivariant triangulation of M. Note that 7 acts on the left on C(ﬂ, B;Ef), and
on the right on V. Let C(M,doM;V) denote the cellular Hilbert A-chain complex given
by the tensor product V ®z, C(M,8M). If ¢ denotes the differential of C(M,8M; V),
define the L2-homology H,(M,8,M; V) with coefficients in V to be the Hilbert .A-module
ker(c,)/clos(im(c,)). In this section we will only deal with homology. We note that the cor-
responding cohomology groups are isometrically isomorphic to the homology groups. Recall
that we have defined the L?-Betti numbers and Novikov-Shubin invariants for chain com-
plexes in Definition 2.1. Since they are homotopy invariants (see Theorem 2.5), the following
definition is independent of the choice of triangulation: '

Definition 4.1 Define the p-th L? Betti-number of (M, 8, M), with coefficients in V, to be
b (M, 8oM; V) = b,(C(M, 8oM; V) = dim u(H,(M, 8oM; V).
Define the p-th Novikov-Shubin invariant to be
oap(M,00M; V) = ap(C(M, B M; V))

and put
a,(M,00M; V) = &,(C(M,0M;V)).

If V = [*(7) then we abbreviate:

bp(M, B0 M) = b,(M, o M; I3(7));
ap(M, 00 M) = a,(M, 0 M; I*(7));
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ap(M, M) = a,(M, o M; 1*(x)).
We abbreviate b,(M,®) by b,(M), a,(M, ) by a,(M) end &,(M,0) by &,(M). |

We refer to a,(M, 3, M;V) as the Novikov-Shubin invariant, whereas in the previous
literature @,(M, 3y M; V) is called the Novikov-Shubin invariant. Also, in previous articles
the values oo and cot are not distinguished. Moreover, we use the normalization of [24],
which differs by a factor of 2 from that used in [15, 18, 33].

We start with Poincaré duality. It gives a Zr-chain homotopy equivalence
N[M]: C™ (M, M) — C.(M,5M).

Tensoring over Zr with V then gives a chain homotopy equivalence of Hilbert A-chain
complexes. From Theorem 2.5 and Lemma 2.3 we derive

Proposition 4.2 (Poincaré duality) 1. bn_p(M,00M;V) = b(M,8M; V).
2. am+1—p(M1 oM, V) = Cfp(M, OoM; V)-
3. &pmp(M,00M; V) = a,(M,0:M;V). ||

Lemma 4.3 Let (f, fo) : (M,0M) — (N,0uN) be a map between pairs such that f and
fo are n-connected for somen > 2. Then

1. b,(M,00M; V) = b,(N,0oN; V) forp <n-1 and
ba(M,06M;V) 2 by(N,0N; V).

2. a,(M,00M;V) = a,(N,0N;V) for p < n.

Proof : Let C(f): C(M,8,M) — C(N,8N) be the Zr-chain map induced by f. We will
abbreviate cyl(C(f)) by eyl and cone(C(f)) by cone. We have the exact sequence

. : pr
0 — C(M,00M) — cyl =— -cone-— 0

Let P be the subcomplex of cone such that P; = {0} for 1 < n, P,4; is the kernel of the
(n + 1)-differential of cone and P; = cone; for i > n 4+ 1. As cone is n-connected by the
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Hurewicz theorem, P4, is finitely-generated stably free, and the inclusion of P into cone
is a homotopy equivalence. A chain complex C is elementary if it is concentrated in two
adjacent dimensions n and n+1 and is given there by the same module C,4; = C,, with the
identity as the n + 1-th differential. By possibly adding a finitely-generated free elementary
chain complex concentrated in dimensions n + 1 and n + 2 to P, we obtain a finite free
Zm-chain complex @ together with a chain homotopy equivalence g : Q — cone. Let D be
the pullback chain complex of g : @ — cone and the canonical projection cyl — cone, i.e.
the kernel of g & pr : @ @ cyl — cone. Then we obtain a short exact sequence

0 C(M,@;Kl)—-» D— Q—0

of finitely-generated free Zr-chain complexes such that D is chain homotopy equivalent to
C(N,5N) and Q; = {0} for i < n. By Theorem 2.5, it suffices to prove the claim for
12(7) ®z» C(M,3oM) and I*(7) ®z, D. Since these chain complexes have the same chain
modules and differentials in dimensions less than or equal to n, the claim follows. H

Corollary 4.4 1. The L*-Betti numbers b,(M) (respectively the Novikov-Shubin invari-
ants a,(M)) of a compact connected manifold depend only on the fundamental group
provided that p < 1 (respectively p < 2).

2. The L*-Betti numbers b,(M) and the Novikov-Shubin inveriants a,(M) of a closed
connected 3-manifold depend only on the fundamental group.

8. The Novikov-Shubin invariants a,(M) of e closed connected 4-manifold depend only
on the fundamental group.

Proof : The classifying map M — B for # = m(M) is 2-connected, and B7 can be
chosen to be a CW-complex whose 2-skeleton Br? is finite. Hence Lemma 4.3 implies that
ap(M) = a,(Bn?) (respectively b,(M) = by,(B7?)) depends only on 7 provided that p < 2
(respectively p < 1). (Note that in the proof of Lemma 4.3, one only needs that C,(N, 8 N)
be a finitely generated Zm(N)-module for p < n.) The other claims follow from Theorem
4.2 on Poincaré duality. [ |

Note that the second L?-Betti number of a closed 4-manifold depends on more than
just the fundamental group. For example, by taking repeated connected sums with C'P? one
can increase b, by any positive integer.

In the top and bottom dimensions the invariants can be computed completely. We
recall that a finitely generated group I' is said to be amenable if there is a 7-invariant

27



bounded linear operator u : L=(I') — R such that

inf{f(7): v €T} < p(f) $sup{f(y):7 €T}

Note that any finitely generated abelian group is amenable and any finite group is amenable.
A subgroup and a quotient group of an amenable group are amenable. An extension of an
amenable group by an amenable group is amenable. A group contzaining a free group on two
generators is not amenable. A finitely generated group I' is nilpotent if ' possesses a finite
lower central series

F=P13FQD.DF,={1} Fk+1=[r,rk].

If T contains a nilpotent subgroup I of finite index then T is said to be virtually nilpotent.
Let d; be the rank of the quotient I';/T;;, and let d be the integer 35, ¢d;. Then T has
polynomial growth of degree d [4]. Note that a group has polynomial growth if and only if
it is virtually nilpotent [16].

Lemma 4.5

1. oy (M) = &(M) is finite if and only if  is infinite and virtually nilpotent. In this
case, oy (M) is the growth rate of 7.
a;(M) = ao(M) is oo™ if and only if w is finite or nonamenable.

a1(M) = Go(M) is oo if and only if © is nonamenable and not virtually nilpotent.

bo(M) =0 if 7 is infinite and 1/ | 7| otherwise.

B o M

If 3M is not empty then oy(M,00M;V) and a,,(M,0,M;V) are equal to oot and
bo(M,BM; V) and by, (M,0.M; V) are zero.

6. If oM is empty then an,(M;V) = eq(M;V) and b, (M; V) = bo(M; V).

Proof : 1.) to 3.) Since a;(M) depends only on the fundamental group and there is a closed
manifold with 7 as its fundamental group, we may assume that M is closed. Efremov [15]
shows that a;(M) equals its analytic counterpart. For the analytic counterpart, assertion

1.) is proven in [41] and assertion 2.) is proven in [5]. Assertion 3.) is a direct consequence
of 1.) and 2.)

4.) is proven in 11, Proposition 2.4].
5.) and 6.) If GpM is nonempty then the pair (M, 3 M) is homotopy equivalent to a pair
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of finite CW-complexes (X, A) such that all of the 0-cells of X lie in A. Hence the cellular
Zm1(M)-chain complex C(M,8,M;V) is Zm(M)-chain homotopy equivalent to a Zm(M)-
chain complex which is trivial in dimension 0. Now apply Theorems 2.5 and 4.2. [

For later purposes we will need the following result:

Lemma 4.6 Let j : m(M) — T be an inclusion of discrete groups. Let j*I*(T) be the uni-
tary representation rl(M) — Ison(r)(I*(T"))°7 obtained from the rzght regular representation
of I by composing with j. Then for all p, we have :

1. by (M, 8oM) = by(M, 8M; j*I3(T)).
2. ay(M,00M) = (M, BoM; 5*I3(T)).

Proof : Let f: @L,Zm (M) — @®L,27(M) be a Zm(M)-linear map. By tensoring with
B(ry(M)) (resp. j*I*(T")), we get a morphism of Hilbert N(m;(M)) (resp. N(I'))-modules
denoted by f; (resp. fz). Let {E*/* : X € R} denote the spectral family of the self-adjoint
operator f3fy: &L, *(T) — &% ,1*T) and {E‘,\’.Jrl : A € R} denote the spectral family of

i=1
fif @, B(m(M)) — &%, 2(my(M)). Then E”* maps @r,2(m(M)) into itself and
the restriction of th to @2 2(mi(M)) is just Ef‘ A By (12, Theorem 1, p. 97], this
implies

(f1, A) = trn(ny (M) (Ef‘ Jh) = (B (1), Dy =
(E"(1), Dngy = vy (BE?) = F(f2,0),

and the claim follows. [ |

We now investigate the behaviour with respect to connected sums.

Proposition 4.7 Let My, M,, ... M, be compact connected m-dimensional manifolds, with
m 2> 3. Let M be their connected sum Mf.. §M,. Then

1. by(M) = bo(M) = 1 — 14 L0y (0(Mj) — bo(M;)).
2. bp(M) =30 bp(M;) for2<p<m-—-2.
8. ap(M)=min{a,(M;):1<j<r} for2<p<m-—-1.
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4. If m(M;) is trivial for all i except for i = ig then ay(M) = oy (M;,). Suppose my(M;)
is trivial for all i ezcept for i € {io,11}, io # 11, and that m(M;,)) = m(M;,) = Z/2.
Then ay(M) = 1. In all other cases a;(M) = oot

Proof : We may assume without loss of generality that r = 2. The connected sum M;§M; is
obtained by glueing M) \int(D™) and M,\int(D™) together along D™. Since 9D™ —s D™
is (m — 1)-connected, the inclusion of M;\int(D™) into M; is (m — 1)-connected. Hence the
inclusion

Ml\int(D"‘) UBD"‘ Mg\lﬂt(Dm) B M1 UDm Mg

is (m — 1)-connected. Since M; Upm M; is homotopy equivalent to the wedge M, V M;, from
Lemma 4.3 it suffices to prove the claims for M; V M,.

1.) to 3.) Let = denote m(M;V M;) = m (M) * m1(M;). If * denotes the base point,
we obtain an exact sequence

0— C(xB(r) — C(My;P(m)) & C(My; I*(m)) —  C(MyV My;1%(m)) —= 0

The long weakly exact Mayer-Vietoris sequence reduces to weak isomorphisms
Hy(My; (7)) @ Hp(M2; (7)) — Hy(M\ My (), p 2 2,
and the weakly exact sequence

0 — Hy(My; B(7)) @ Hi(Ma; (7)) — Hy(M, V My; I3(7)) — I*{x)
— Ho(My; (7)) @ Ho(Ma; (7)) — Ho(M1V M3; I%(7)) — 0

We conclude from Lemmas 1.1 and 4.6 that

bi(M1) + by(M3) — by(M1V Ma) + 1 — bo( M) — bo(Mo) + bo(Mi1V M3) =0
bp(My) + by(M3) = by(My V M) for p 2 2,

from which assertions 1.) and 2.) follow. We obtain assértion 3.) from Theorem 2.2.

4.) Since oy (M) only depends on the fundamental group and m(M) = m (M) if 7 (M;) is
trivial, the first part of the assertion follows. It remains to consider the case when 7 {M;) and
71(M,) are nontrivial. From Lemma 4.5.2, a; (M) is oo* if and only if 7, (M) is nonamenable.
We claim that 7,(M) is amenable if and only if m;(M;) = m(M;) = Z/2, in which case
a;(M) = 1. Namely, suppose that 7, (M) is amenable. Then it follows from [11, Theorem 0.2]
that by(M) = bo(M) = 0. But then assertion 1.) and Lemma 4.5 imply that | 7, (M;) |= 2
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for 1 = 1,2. As Z/2x Z/2 is an extension of Z by Z/2, it is amenable. Also, there is a
two-fold covering of M with the fundamental group of a circle. Hence a;(M) = o (S?),
which i1s 1 by Lemma 3.1. |

Next we study manifolds with an S'-action. Let (M;3M) be as above. Suppose
that S acts smoothly on M. Let ¢ : m;(M) — I" be an homomorphism such that for one
orbit (and hence all orbits) §*/H in M, the composition of ¢ with the map induced by the
inclusion my(S!/H) — m;(M) has infinite image. In particular, the S-action has no fixed
points. Choose A to be N(T') and the representation ¢*I*(T') to be the composition of the
regular representation I' — Isonr)({*(T')) with ¢. In other words, we are looking at the
cover M — M of M associated with ¢.

Theorem 4.8 (S'-manifolds) With the above conditions on the S'-manifold M, for all
p 2 0 we have:

1. b,(M,8M; ¢"1(T)) = 0.
2. a,(M,8M; ¢*12(T)) > 1.

Proof : The first assertion was proven in [27, Theorem 3.20].

In what follows we will write I?(T) instead of ¢*I%(T"), or j*¢*I*(T) for j an inclusion.
Since we have a smooth S'-action, M carries a S'-equivariant CW-structure. This means
that we have a filtration

0=M—1CM0CM1C...Mm_1=M

such that M; is obtained from M;_; by attaching a finite number of S!-equivariant cells
S'/H x D' with attaching maps S'/H x §*~! — M;_;. Since the S'-action has no fixed
points, the subgroups H C S are all finite cyclic groups. We will show that

ap(M;,8oM N M;; 3(T)) 2 1forp<i+1

ap(M;, OM N M;3(T)) =0t forp>i+1
by induction over i, where the representation of n1(M;) is induced from the inclusion
71{M;) — m(M). The initial step i = —1 is trivial. The induction step from ¢ — 1 to

t is done as follows:

There is an exact sequence of chain complexes
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0 — C(M;_I,BOM N M;.q; 12(1“)) —_ C(M,',(%M n M.';F(P)) —
C(M,‘,Mg_l U ((%M N M;); IZ(P)) — 0

The last chain complex is isomorphic to a direct sum of chain complexes of the form
C(S'/H x D',8'/H x S, I*T)). Since all isotropy groups H must be finite, such a chain
complex looks like £*C(S*; 1*(T)), where [?(T') is viewed as a representation space of m,(S?) by
means of an injection m1{S') — T'. Lemmas 4.6 and 3.1 imply that a,(L'C(S*; I3(I"))) is 1 if
p=1i+1 and co* otherwise. Lemma 2.3.3 implies that a,(C(M;, M;_; U (8oM N M;); I*(T))
is also 1 for p = ¢+ 1 and oo™ otherwise. Upon applying Theorem 2.2.1 to the short exact
sequence of weakly acyclic chain complexes above and using the induction hypothesis on
M;_4, the claim follows. |

We now consider manifolds which fiber over $?.

Theorem 4.9 Let (M,0oM) fiber over S! with fiber (F,8,F). Suppose that (F,0F) has
vanishing L*-cohomology. Then

1. by(M,00M) =0 for all p.

1 < 1 1
2. GP(M, aoM) - ap_1i13,5077 ) + GPEF,aoFi'

Proof : We have a short exact (Wang) sequence of Hilbert chain complexes:

0 — C(F,0F; B(m(M))) = C(F x 1,80F x I; B(my(M))) =
C(M,8M; *(m (M))) — 0.

Since H,(F,dF,*(ry(F)) vanishes for all p by assumption, Lemma 4.6 implies that the
same is true for H,(F, 8 F; 1*(m(M))) and H,(F x I,0,F x I;1*(m;(M))). Consideration of
the long weakly exact homology sequence associated to the Wang sequence gives assertion
1. Assertion 2. follows from Theorem 2.2.2. |

Remark 4.10 Let g: M — N be an n-fold finite covering. Then b,(M) = n - by(N) and
ap(M) = ap(N) for all p > 0. Note that the ordinary Betti numbers of a manifold are not
multiplicative under finite coverings. |

Example 4.11 We state the values of the L2-Betti numbers and Novikov-Shubin invariants
for all compact connected 1- and 2-manifolds. In dimension 1 there are only S! and the unit
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interval 1. From Theorem 3.1, we have that by(S?) = ;(S?) = 0 and y(S') = 1. As I'is
contractible, we have that by(J) = 1, b1(J) = 0 and o4 (I) = oot.

Let F¢ be the orientable closed surface of genus g with d embedded 2-disks removed.
(As any nonorientable compact surface is finitely-covered by an orientable surface, Exam-
ple 4.10 shows that it is enough to handle the orientable case.) Using the general formula
for the Euler characteristic in terms of L?-Betti numbers [9] :

x(M) =3 _(~1)"b,(M),

b4

Lemma 4.5 and the fact that a compact surface with boundary is homotopy-equivalent to a
bouquet of circles, one derives:

& 1 g:O,d=0,1
bU(Fy)"{ 0 otherwise.

dy _ 0 g=0,d=0,1
b(F;) = { d+2(g —1) otherwise.

1 =0,d=0
dy . g H
b2(Fy) = { 0 otherwise.
: 1 g=0,d=2
oot otherwise.

ag(Fd)=&2(Fd)={2 g=11d=0 -

oot otherwise.

Example 4.12 Suppose that M is a compact connected orientable 3-manifold with finite
fundamental group 7. We have that a,(M) = oot for all p. If M is closed then M is a
homotopy sphere, and Remark 4.10 implies that by(M) = b3(M) = ]-,1;[ and b, (M) = b(M) =

0. If M is nonempty then M is a connected sum of a homotopy sphere and k 3-disks, for
some positive integer k [20]. Then b(M) = ]-:;[, by(M) = “ﬁ and b(M) = k(M) = 0.
[
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5. Seifert 3-Manifolds

In this section we compute the L?-Betti numbers and Novikov-Shubin invariants of
Seifert 3-manifolds. We also discuss Sol manifolds. We use the definition of Seifert fibred
3-manifold , or briefly Seifert manifold , given in [36], which we will use as a reference on
Seifert manifolds. Recall ihat a geometry on a 3-manifold M is a complete locally homoge-
neous Riemanian metric on its interior. The universal cover of the interior has a complete
homogeneous Riemannian metric, meaning that the isometry group acts transitively [37].
Thurston has shown that there are precisely eight maximal simply-connected 3-dimensional
geometries having compact quotients, namely S3, R3, S x R, H? x R, Nil, SLi:(R), Sol
and H3. If a closed 3-manifold admits a geometric structure modelled on one of these eight
geometries then the geometry involved is unique.

In the case of the L3-Betti numbers, the following result was already given in [7].

Theorem 5.1 Let M be a closed Seifert 3-manifold. If its fundamental group is infinite
then it has vanishing L%-cohomology. In terms of the Euler class e of the bundle and the
Euler characteristic x of the base orbifold, ay(M) = az(M) is given by

x>0 =0 x<0
e=0| 1 3 oot
e#0| oot 4 oot

and.az(M) is given by

x>0 y=0 x<0
e=0| oot 3 1
e#0| oot 2 1.

Proof : The geometric structure of M is determined as follows: [36, Theorem 5.3]:

x >0 x=10 x <0
e=0| S5*x R Jind H*x R
e#0| 53 Nal SLy(R).

If M has a S3-structure then (M) is finite and we can apply Example 4.12.

In all other cases M is finitely covered by the total space M of an S!'-principal bundle
over an orientable closed surface F. Moreover, e(M) = 0 iff (M) = 0, and the Euler
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characteristic x of the orbifold base of M is negative, zero or positive according to the same
condition for x(M/S?) [36, p. 426, 427 and 436]. From Remark 4.10, in what follows we
may assume without loss of generality that M is M. Theorem 4.8 implies that b,(M) = 0. If
x(F) is negative then m;(F) is non-amenable since it contains a free subgroup of rank 2. As
71(F) is a quotient of (M), 71(M) is also non-amenable and so a;(M) = co* by Lemma
4.5. Next, we verify the remaining claims for a; and aj3.

R®: We may assume that M = T3. A direct computation by Fourier analysis gives that
ap(T?)=3foralll1 <p<3.

S5? x R: We may assume that M = S! x S§2. Now apply Lemma 5.2.
H? x R: We may assume that M = S x F, for ¢ > 2. Now apply Lemma 5.2.

Nil: From [24] we have that &(M) = 4 and & (M) = 2, and so the claim for & and a3
follows.

a— ——

SLy;(R): A computation using harmonic analysis on SL,(R), which we will not reproduce
here, gives ay(M) = 1.

The next lemma will finish the proof of Theorem 5.1. |

Lemma 5.2 Let F{ be the (orientable compact connected) surface of genus g with d boundary
components. Then

1. by(S§* x F#) =0 for all p.
!
2 (S x Fé)={ 2
. 1 g 3
| oot otherwise
(00t ¢=0,d=0,1
3 g=1,d=20
5 eafSIxF) =15  g_gd=2

(1 otherwise

1 g=0,d=0
4 a3(S'x FHy=¢3 g¢g=1,d=0
oot  otherwise
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Proof : The claim for the L?-Betti numbers follows from Theorem 4.8. In the cases g =
0,d = 0,1,2and ¢ = 1,d = 0, i.e. S' x 82, §? x D?, §' x §' x I and T3, the claim
follows from earlier computations for S?, T? and T2 (see Example 4.11 and Theorem 5.1).
In the remaining cases Example 4.11 gives that a,(FY) = oot for all p and b,(F}) = 0 for
p # 1. We abbreviate F' = F, :. Let H be the Hilbert chain complex over the von Neumann
algebra of m1(F') which is concentrated in dimension 1, and is given there by ker(A;), where
Ay Cy(F; B(m(F))) — Ci(F; 1(m(F))) is the Laplace operator. There is a natural split
inclusion ¢ : H — C(F;?(m(F))). From Lemma 2.4, ¢ is a homotopy equivalence. We
have that C(S? x F,1?(m(S* x F))) is the Hilbert tensor product of C(F;?*(m(F))) and
C(S*;13(m1(S?))), and so is homotopy equivalent to the Hilbert tensor product of H and
C(SY; 1*(m1(S?))). As the part of H in dimension one is isomorphic to ®;X"1%(r, (F)), this
Hilbert tensor product is isometrically isomorphic to the suspension of the direct sum of
—x(F) copies of C(5*;1*(n1(S* x F))). From Lemma 2.3, Theorem 2.5 and Lemma 4.6, the
Novikov-Shubin invariants of M are the same as those of the suspension of C(S?; I3(r;(S))).
The claim now follows from Example 4.11. |

Remark 5.3 The fact that the Novikov-Shubin invariants are the same for closed H? x R-
manifolds and SL,(R)-manifolds is probably related to the fact that the universal covers
of such manifolds are quasi-isometric. This latter statement, which is due independently to
D. Epstein and S. Gersten and was communicated to us by M. Gromov, follows easily from
the fact that the fundamental class of a closed orientable hyperbolic surface, considered as
an element of the group cohomology of the fundamental group, can be represented by a
bounded group cocycle. |

Theorem 5.4 Let M be a Seifert manifold with nonempty boundary. Then all L*-Betti
numbers vanish. We have that az(M) = oo™, and the other Novikov-Shubin invariants are
given by:

a Q2

1 oot M is a solid torus or Klein bottle

2 2 M is an I-bundle over T? or over a Klein bottle K °
1

oot otherwise.

Proof : We have that the boundary of M is compressible iff M is homeomorphic to a solid
torus or Klein bottle [36, Corollary 3.3]. The theorem follows in this case from Remark 4.10
and Lemma 5.2, and so we may assume that M has incompressible boundary. As any
2-dimensional orbifold with boundary is finitely covered by a 2-dimensional surface with
boundary, we can find a finite cover M of M which is homeomorphic to some S* x F 4, with
d > 1. From Remark 4.10 and Lemma 5.2, we have to know that M is an I-bundle over T?
or K iff Fj = §' x I. This follows from [20, Theorem 10.5). [
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Proposition 5.5 If M is a closed Sol-manifold then M has vanishing L%-Betti numbers,
a;(M) = oo and ax(M) > 1.

Proof : By taking a finite cover, we may assume that our Sol-manifold is a torus bundle
over S! with hyperbolic glueing map ¢ {36, Theorem 5.3]. Hence m(M) is a semi-direct
product of Z? and Z where the action of Z on Z? is given by a hyperbolic automorphism
of Z2. Then m(M) is amenable, as it is an extension of amenable groups. It is easy to see
that 7,(M) is not virtually nilpotent. Lemma 4.5.3 implies that oy (M) = oc.

By Example 4.11, b,(T?) = 0 for all p and a,(T?) = 2 for p € {1,2}. Then Theorem 4.9
implies that the L?-Betti numbers of M vanish, and that

1

= [
2

1
< —
CYg(M) _2+
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6. Analytic L?-Betti numbers and Novikov-Shubin
invariants for manifolds with boundary, and hyperbolic
3-manifolds

In this section we define analytic Novikov-Shubin invariants and L2-Betti numbers for
manifolds with boundary, and show the equivalences between the analytic invariants and the
combinatorial invariants of the previous section. As an application, we give a lower bound
for the Novikov-Shubin invariants of a compact 3-manifold whose interior admits a complete
finite-volume hyperbolic metric.

As the Hilbert spaces with which we deal in this section will have infinite von Neumann
dimension, we must first discuss the notion of .A-Fredholmness of morphisms. A related
discussion appears in [10]. Let f: U — V be a morphism of (possibly infinite dimensional)
A-Hilbert modules. Our morphisms are still bounded operators. We again have the spectral
density function F'(f, A), although it may ncw take infinite values.

Definition 6.1 The morphism f is A-Fredholm if there exists a A > 0 such that F(f,)) <
oo and F(f*,)) < 0.

Note that if A = C then we recover the usual notion of a bounded Fredholm operator.

Definition 6.2 Let C be a Hilbert A-chain complex with differentials c,. Let

5, : Cy/clos(im(cps1)) = Cpms

be the quotient map. Then C is an A-Fredholm complez if for all p, there exists a A, > 0
such that F(&,, ;) < 00.

Note that an A-Fredholm complex has finitely generated homology groups. The rela-
tionship between Definitions 6.1 and 6.2 is given by the following proposition.

Proposition 6.3 If f: U — V is a morphism of (possibly infinitely dimensional) A-Hilbert
modules and C ts the Hilbert A-chain complex

0-ULvao
then f is an A-Fredholm morphism if and only if C is an A-Fredholm complez.
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Proof : The condition that C' be an A-Fredholm complex is equivalent to requiring that
there exist a A > 0 such that F(f,A) < oo, and that b(f*) = dim(ker(f*)) < oo. It is clear
that if f is an .A-Fredholm morphism then C is an .A-Fredholm complex. Suppose that C is an
A-Fredholm complex. We showed in Lemma 1.12.5 that F(f,A)=b(f) = F(f*,A)=b(f*). If
F(f,A) < oo then F(f*,X) < oo, which shows that f is an 4-Fredholm morphism. [

If C is an A-Fredholm complex, we define its Betti numbers as in Definition 2.1 and
we define its Novikov-Shubin invariants by a,(C) = a(g,). One can check that all of the
results of Sections 1-3 hold when one replaces morphisms of finitely generated Hilbert A-
modules by A-Fredholm morphisms, and finite Hilbert .4-chain complexes by .A-Fredholm
chain complexes.

For closed manifolds, the facts that the analytic L?-Betti numbers and Novikov-Shubin
invariants equal their combinatorial counterparts were proven in [13] and [15]. In order to
make the comparisons between the analytic and combinatorial invariants for a compact man-
ifold M with boundary, it will be convenient for us to think of the combinatorial invariants
as defined by siinplicial cochains, instead of simplicial chains. In this section, except where
otherwise stated, the Novikov-Shubin invariants will be those of the coboundary operator.
The smooth forms on @_f!: will be denoted by C(A*(M)). Those with compact support will
be denoted by Cg°(A*(M)). Note that the elements of C5°(A*(M)) do not necessarily vanish
on dM.

We assume that M has a smooth Riemannian metric. We give M the induced Rie-
mannian metric. Let d denote the exterior derivative, § denote its formal adjoint, A denote
the Laplacian dé + éd, * denote the Hodge duality operator and b : M — M denote the
boundary inclusion in M. As before, 7 denotes the fundamental group of M.

Definition 6.4 Define norms || o ||, on C(A*(M)) for nonnegative integers s inductively
by saying that || e |o is the L*-norm and || w |Z,,=|| w |2 + || dw || + || 6w ||Z. Let
H;(M; () be the Hilbert space completion of C$°(A*(M)) under the norm || o |,. |

Put A = N(r). We have a Hilbert A-cochain complex
dp_z - dy—l dP
B HETH (MG P () B (M () S HET (MG (). (1)

We will show in Lemma 6.8 that the complex (1) is A-Fredholm at d,, which will be all that
we need.

Definition 6.5 The analytic p-th L*-cohomology group is
HP(M; (7)) = ker(d,)/clos(im(dp-1)),
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the analytic p-th L?-Betti number is
by (M; 13(m)) = dim a(HP(M; ()
and the analytic p-th Novikov-Shubin invariant is

oy (M; (7)) = afd,). n

If we put &,(M) = min{a,(M), ap—1(M)) then the application of a Laplace transform
to the spectral density function shows that the analytic invariants of the introduction, defined
~ using heat kernels, are the same as those defined here [18, Appendix].

As a topological vector space, H;(M;{*(r)) is independent of the Riemannian metric,
as the norms || o ||, on C°(A*(M)) coming from two Riemannian metrics are relatively
bounded. Given two Riemannian metrics, the identity map between the corresponding
complexes (1) is a bounded cochain homotopy equivalence, and so Theorem 2.5 implies
that the analytic L?-Betti numbers and Novikov-Shubin invariants are independent of the
Riemannian metric.

We note that H(M; ?(n))/clos(im(d,-1)) and im(dp-y)t C HE(M; 1?(7)) are isomet-
rically isomorphic.

Proposition 6.6

im(dyor)* = {w € HE(M; 12(r)) : 6w = b(xw) = 0). )

Proof : Given w € im(d,_;)*, for all n € C®(A*(M)) N HE™ (M; I*(x)) we have

0

il

< dn,w > 1=< dy,w >0 + < bdn, bw >o= /ﬁ[dn A *w + bdn A *6w]

= _/,{}(I + 6d)n A *bw + ja’i? b*n A b (»w). (3)

Let p € Cg°__(/\'(ﬁ7)) have support within the interior of M. We claim that there exists
an 7 € C®(A*(M)) N HEH(M; I*(r)) such that (I + éd)y = p and b*yp = 0. To see this,

consider the elliptic equation on M

(I+ )" = p +dbp, (4)
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with the (relative) boundary conditions b*p’ = b‘(5q ) = 0. By standard elliptic theory, this
system has a solution 7' € C®(A*(M)) N HE™'(M; 3(r)). Applying 6 to both sides of (4)
and putting ¢ = énp’ — ép, we obtain (I + 6d)cr = 0, with b*c = 0. Then

0 = /ﬁ(0+6da)/\*a=/ﬁa/\*a+/ﬁda/\*da:i: wb"(*da)/\b’

= ]ﬂaA*o-{-/ﬁdcrA*dcr:”aH?. (5)
Thus o = 0 and equation (4) becomes (I + éd)n’ = p. So we can take n' for 7.

As p was arbitrary, it follows from (3) that éw = 0. Then considering n’s which do not
vanish on dM, it follows from (3) that *(*w) = 0. That is, we have shown

im(d,_1 )}t C {w € Hy(M; (7)) : bw = b*(»w) = 0}.

Conversely, given w € H;(M;1%(x)) such that w = b*(+w) = 0, equation (3) implies that
0 =< dp,w >, for all § € C°(A"(M)) N HE™ (M;*(x)). The density of C=(A*(M)} N
HE (M; P(x)) in H(M; () gives

{w e HY(M; (7)) : bw = b*(»w) = 0} C im(dp—y)*. |

For 2 moment, let us take the Riemannian metric on M to be a product near M.
Then there is an induced Riemannian metric on the double DM, upon which Z; acts by
isometries. With 7 still denoting m (M), there is a m-normal cover of DM, namely the
double DM of M, and it is easy to see that im(d,_;)* C HE(M;*(r)) is isomorphic to
(ker(6) C HE(DM; 1*(x)))?, the subspace of ker(6) C HZ(DM;I*(r)) which is invariant
under the induced Z, a.ctlon The papers [13] and [15] imply the equality of the analytic
and combinatorial invariants as defined for the 7-cover on DM. One can go through their
proofs making everything equivariant with respect to the Z; action, in order to show that
the same is true when one restricts to the Z,-invariant subspaces. (As in [13] and [15], one
first deals with Sobolev spaces of a high enough order that the de Rham map is well-defined.
One then shows the analytic invariants are independent of order of the Sobolev space. In
our case, we are finally interested in the Sobolev space H}. All of these steps will go through
equivariantly.) Now the combinatorial invariants defined with Z,-invariant cochains on DM
can be identified with the absolute invariants of M. Putting all this together, we have shown

Proposition 6.7 The analytic L?-Betti numbers and Novikov-Shubin invariants of Defini-
tion 6.5 are equal to the combinatorial tnvariants of Section 4, with M = 0.

Since we know that the analytic invariants are independent of the Riemannian met-
ric on M, we may now say that the combinatorial invariants equal the analytic invariants
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as computed using the quadratic form ¢(w,w') = < dw,dw’ >¢ with domain Dom(q) =
im(dp-y)t C H}(M;I*(x)), for any Riemannian metric on M. That is, b,(M;1*(r)) is the
Betti number and a,(M;*(7)) is the Novikov-Shubin invariant of the density function

F(A\) = supy {dima(L): Lisa Hilbert A— submodule of Dom(q) s.t.
Vw € L,q(w,w) < A? |l w 1T}

In particular, H?(M;*(r)) is isomorphic to

{we HY(M; B(r)) : dw = bw = b*(3w) = 0} =
{w € C=(A*(M)) 1 LAA*(M)) : dw = 6w = b*(xw) = 0}.

Lemma 6.8 The complez (1) is A-Fredholm at d,.

Proof : Suppose first that the Riemannian metric g on M is a product near @M. As above,
im(d,—,)* C HP(M; 2(r)) is isomorphic to (ker(8) C HE(DM; 12(r)))?, and the differential
d, on im(dy-1)t C H(M;*(7)) comes from the differential on H}(DM; (7)). As the latter
differential is A-Fredholm [18], it follows that the differential d, of complex (1) is, too. As
the Hilbert spaces defined using two Riemannian metrics on M are relatively bounded, the
differential d, of the complex (1) is A-Fredholm regardless of the Riemannian metric on M.

Although it is not necessary for this paper, there is a description of the analytic invari-
ants in terms of differential forms with boundary conditions. Let us define Sobolev spaces
of differential forms with absolute boundary conditions by

Hy (M (7)) = {w € HG(M; (7)) : b (vw) = b*(xdw) = 0},
M s (M5 (7)) = {w € HY(M; 1 (7)) : 67 (3w) = 0},
babs (M (7)) = HG(M; (7). (6)

Proposition 6.9 HP(M;[*(r)) is isomorphic to the homology of the sequence

abs

2l (M B(m)) "B HE (M5 B(r)) B (M P (). M

Proof : The same argument as in the proof of Proposition 6.6 gives that im(d2)+ =

ker(6) C M} .,(M; (7). (The only difference is that now there is no boundary term
in the analog of equation (3)). Then the homology of the sequence (7) is isomorphic to
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ker(dsb) N am(de)* = ker(dst) N ker(6) C Hj ,,(M;3(7)). But we showed above that
this is isomorphic to H?(M; I*(r)). |

Let the Hilbert space H be the closure of ker(6) C MY ,,,(M; 1*(7)) in HG ,,,(M; 1*(x)).
The domain Dom(q) of the quadratic form ¢ defined above is dense in H. It follows imme-
diately that g is closed in the sense of [34, Chapter 8]. Theorem VIIL.15 of {34] implies that
there is a unique self-adjoint operator A, densely defined on H, to which ¢ is the associated
quadratic form. The next proposition identifies the domain and action of A, at least when
M is isometrically a product near the boundary.

Proposition 6.10 If M is isometrically a product near the boundary then Dom(A) =
ker(8) C Hj o,(M; (7)) and A = 6d.

Proof : As above, we have

(ker(8) C M3, (M; P(r))) = (ker(6) C H(DM; 1¥(x))?)
(ker(8) C 150, (M; 1P(x))) = (ker(8) C HY(DM; P (m))*)
H = (ker(§) C Hy(DM; P(m))™). (8)

Here ker(6) C Ho(DM; 1*(n))? is understood to be in the sense of the Hodge decomposition.
Thus it is enough to work on DM and only consider Z;-invariant differential forms. In
particular, as DM is closed there is no need to worry about boundary terms. By definition,

Dom(A) = {w € Dom(q) : In € H s.t. Yo' € Dom(q),q(w,w') =< 9w’ >x}.
Then Aw = 1.

Suppose that w lies in Dom(A). Then for all smooth compactly-supported Z;-invariant
(p+ 1)-forms o on DM,

g(w,80) = < dw,dbo >o=< dbdw,0 > =< 1,60 >g=<dn,o >,

where dédw and dn are taken in the distributional sense. It follows that d(édw —n) = 0. As
8(6dw — n) = 0, bdw — 4 is harmonic. Elliptic theory then implies that it is smooth and lies
in all Sobolev spaces. Taking w’ to be a arbitrary harmonic Z,-invariant p-form on DM, we
have

0 =< dw,do >9= qlw,w') =< n,w >q.

Thus 7 is perpendicular to such harmonic forms, and from the Hodge decomposition on DM
we conclude that § = 8dw. As dw = 0, it follows that w lies in H3(DM;*(7))?%, and so
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Dom(A) C (ker(5) C M apa(M; 12(1r))). Conversely, given w € ker(8) C Hj ,,(M; P (x)),
for all w' € Dom(q) we have g(w,w') = < édw,w’ >g. Thus we can take = §dw, and so
(ker(8) C M 4p,(M; I3(x))) C Dom(A), with Aw = Sdw. m

Now let M be a compact 3-manifold whose interior admits a complete finite-volume
hvperbolic metric. If M 1s closed then we have that b.(M;!*(r)) = 0 [14] and the Novikov-
Shubin invariants of the exterior derivative operator are computed in [24] as

ao(M; (1)) = aa(M; I*(7)) = oo, oy (M; I¥(7)) = 1.

Suppose M is not closed. Then it has incompressible torus boundary and the interior M’
of M is the union of a compact core and a finite number of hyperbolic cusps (see [40]
or [31, pages 52 and 54]). Let : : M — M’ be an embedding of M in M’ obtained by
smoothly truncating the cusps of M’ and let M have the induced Riemannian metric. Let
1 : M1 — M’ be the embedding of a submanifold (with boundary) M; of M’ obtained by
attaching a collar to M, and let ¢, : M; — M’ be the embedding of a submanifold (with
boundary) M; of M’ obtained by attaching a collar to M’ — M. Then M3 = M N M; is
diffeomorphic to a disjoint union of I x T'%’s (where we take {0} x T? to be contained in the
interior of M, and {1} x T? to be contained in the interior of M;) and is embedded in M’
by a map i3 : M3 — M’'. Let 14 : M3 — M, and 15 : M3 — M, be the obvious embeddings.
Put v = m(M).

For each p € {0,1,2,3}, define the Hilbert cochain complexes

Coy = Hop—a(M'; 1*())
Dy = My oMy P(m)) @ Hp g (Ma; 831 (7))
Ef) = My .(Ms;i3t(m)),

with differentials ¢, d and e given by exterior differentiation. (Although M’ is noncompact,
the Sobolev space H;(M’;{*(r)) can be defined as in Definition 6.4, and is in fact a Sobolev
space of differential forms on H?, the hyperbolic 3-space.)
Lemma 6.11 There is an ezact sequence of Hilbert cochain complezes

0 — Cpp) 2 Dz _k' E@) — 0, (9)
with j(w) = 17(w) @ i3(w) and k(w) B wy) = 15(w1) — 25 (w2).

Proof : It follows from the definitions that ker(j) = 0, and it is easy to check that ker(k) =
im(3). To see that k is onto, let ¢ : ] — R be a bump function which is identically zero

44



near 0 and identically one near 1. Let é: M3 — R denote the cbmposition of the pullbacks
of ¢ to M3 and then to M;, the__greimage of M3 in H3. We can think of an element n of
E(, as a differential form 7j on Ms. Then ¢7 extends by zero to a differential form on M,

-~

which comes from an element w; of H;,_,(M;;*(x)). Similarly, we can extend (¢ — 1) by

zero to a differential form on Mj, which comes from an element w; of H*(My;i312(r)). Then
Hr®w) =7 M

Proposition 6.12 b,(E(;)) =0, ao(E(g)) = e1(Eq)) = 2 and az(E()) = cot.

Proof : Asthe map Z? = m(M;) — = is an inclusion, the proof of Lemma 4.6 goes through
for the analytic invariants to give that b,(Eq,)) = b,(1 x T%1*(Z?)) and ap(E(;)) = ap(I x
T?;13(Z?%)), where the right-hand-sides are defined by Definition 6.5. By the equivalence of
the analytic and combinatorial invariants and the homotopy invariance of the combinatorial

invariants (Theorem 2.5), these are the same as the invariants of T2, which were given in
Example 4.11. |

Proposition 6.13 5,(C(;)) = 0, ao(Co)) = @2(C(z)) = oo and oy (Cpy)) = 1.

Proof : As the universal cover of M’ is isometrically H?, this follows from the same calcu-
lation in [24] as was cited above for the case of closed hyperbolic 3-manifolds. |

Theorem 6.14 o,(M;*(x)) > 2/3.

Proof : We apply Theorem 2.2 to the exact sequence (9) with p = 1. As Hi(E()) = 0,
a(é,) = oo*. From Proposition 6.13, &1(C(y)) = 1 and from Proposition 6.12, a1(Eq)) = 2.
Then Theorem 2.2 gives o (D)) > 2/3. From Lemma 1.10,

Clfl(D(l)) = min(a(M; 12(7")), o (Ma; 5312(‘”)),

from which the assertion of the theorem follows. [ |
Theorem 6.15 b,(M;*(r)) =0 for all p.

Proof : We can exhaust M’ = int(M) by a sequence of compact manifolds (with boundary)
{M:} which are all diffeomorphic to M. From [10, Theorem 1.1}, b,(M; 13(7)) = b,(My; (7))

45



is the von Neumann dimension of the space of L? harmonic p-forms on M'. As M'is H3,
there are no such forms [14]. |

We now revert to letting the a,(M)-invariants refer to boundaries, as in the previ-

ous sections, as opposed to coboundaries. The translation is that a,(M), defined using
coboundaries, equals a,4,(M), defined using boundaries.

Theorem 6.16 ay(M) = a3(M) = co*.

Proof : It follows from [43, Proposition 4.1.11] that 7;(M) is nonamenable. We derive from
Lemma 4.5.2 that e;{M) = oco*. As M has nonempty boundary, Lemma 4.5.5 gives that
O.'3(M) = OO+. [ |

In summary, we have shown

Theorem 6.17 If M is a compact $-manifold whose interior admils a complete finite-
volume hyperbolic structure then M has vanishing L*-cohomology and o1(M) = az(M) =
oot. If M is closed then ag(M) =1 and if M is not closed then ay(M) > 2/3. u

It will follow from Theorem 7.8 that if M is not closed then ay(M) < 2.
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7. L?-Betti numbers and Novikov-Shubin invariants for
3-manifolds

In this section we analyse the L?-Betti numbers and Novikov-Shubin invariants of com-
pact connected orientable 3-manifolds. It is easy to extend the results to the nonorientable
case by means of the orientation covering.

We recall some basic facts about (compact connected orientable) 3-manifolds [20, 36].
A 3-manifold M is prime if for any decomposition of M as a connected sum M;§M;, M, or
M3 is homeomorphic to $3. It is irreducible if every embedded 2-sphere bounds an embedded
3-disk. Any prime 3-manifold is irreducible or is homeomorphic to S* x S? [20, Lemma 3.13].
One can write M as a connected sum

M = M]ﬁMzu...M,-

where each M; is prime, and this prime decomposition is unique up to renumbering [20,
Theorems 3.15, 3.21]. By the sphere theorem [20, Theorem 4.3], an irreducible 3-manifold is
a K(=,1) Eilenberg-MacLane space if and only if it is a 3-disk or has infinite fundamental

group.

A properly-embedded orientable connected surface in a 3-manifold is incompressible if
it is not a 2-sphere and the inclusion induces a injection on the fundamental groups. One
says that dM is incompressible in M if and only if M is empty or any component C of
OM is incompressible in the sense above. An irreducible 3-manifold is Haken if it contains
an embedded orientable incompressible surface. If M is irreducible and in addition H, (M)
is infinite, which is implied if @M contains a surface other than S?, then M is Haken [20,
Lemma 6.6 and 6.7). (With our definitions, any properly embedded 2-disk is incompressible,
and the 3-disk is Haken.)

Before we state the main theorem of this section, we must mention what is known about
Thurston’s geometrization conjecture for irreducible 3-manifolds with infinite fundamental
groups. (Again, our 3-manifolds are understood to be compact, connected and orientable.)
Johannson [22] and Jaco and Shalen [21] have shown that given an irreducible 3-manifold
M with incompressible boundary, there is a finite family of disjoint, pairwise-nonisotopic
incompressible tori in M which are not isotopic to boundary components and which split M
into pieces that are Seifert manifolds or are geometrically atoroidal, meaning that they admit
no embedded incompressible torus (except possibly parallel to the boundary). A minimal
family of such tori is unique up to isotopy, and we will say that it gives a toral splitting
of M. We will say that the toral splitting is a geometric toral splitting if the geometrically
atoroidal pieces which do not admit a Seifert structure have complete hyperbolic metrics on
their interiors. Thurston’s geometrization conjecture for irreducible 3-manifolds with infinite
fundamental groups states that such manifolds have geometric toral splittings.
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Suppose that M is Haken. The pieces in its toral splitting are certainly Haken. Let
N be a geometrically atoroidal piece. The torus theorem says that N is a special Seifert
manifold or is homotopically atoroidal i.e. any subgroup of 7;(/N) which is isomorphic to
Z x Z is conjugate into the fundamental group of a boundary component. Thurston has
shown that a homotopically atoroidal Haken manifold is a twisted I-bundle over the Klein
bottle (which is Seifert), or admits a complete hyperbolic metric on its interior.

Thus the case in which Thurston’s geometrization conjecture for an irreducible 3-
manifold M with infinite fundamental group is still open is when M is a closed non-Haken
irreducible 3-manifold with infinite fundamental group which is not Seifert. The conjecture
states that such a manifold is hyperbolic.

Our goal is to make general statements about the L2-Betti numbers and Novikov-
Shubin invariants of a 3-manifold. We have already treated the case when the fundamental
group is finite in Example 4.12. We will confine ourselves in the sequel to the case when
71(M) is infinite. We will compute the invariants using the putative geometric decompo-
sition of M. As we are studying homotopy invariants which have a simple behaviour with
respect to finite coverings, it is enough to assume a weaker condition than that M have a
geometric decomposition. Recall from the introduction that we say that a prime 3-manifold
is exceptional if it is closed and no finite cover of it is homotopy-equivalent to a Haken,
Seifert or hyperbolic 3-manifold.

Theorem 7.1 Let M be the connected sum Milf...§ M, of (compact connected orientable)
nonezceptional prime 3-manifolds M;. Assume that 7(M) is infinite. Then

1. The L*-Betti numbers of M are given by:
bo(M) 0
z 1

bl(M) = (r—l)—gm—x(M)'i‘|{C€7Fo(aM)s.i.CESZ}l
by(M) = (r-1)-i———ﬁ(;4j)l

=1 |
ba(M) = o.

+ | {C € mo(dM) s.t.C = §?} |

2. Let the Poincaré associate P(M) be the connected sum of the M;’s which are not 3-disks
or homotopy 3-spheres. Then a,(P(M)) = o,(M) for p < 2. We have ay(M) = oot
ezcept for the following cases:

(a) cn(M) =11if P(M) is S* x D?, a closed 5% x R-manifold or homotopy equivalent
to RP3{RP3.
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(b) ar(M) =2 if P(M) is T? x I or a twisted I-bundle over the Klein bottle K.
(c) ar(M) =3 if P(M) is a closed R*-manifold.

(d) ax(M) =4 if P(M) is a closed Nil-manifold.

(e) ar(M) = oo if P(M) is a closed Sol-manifold.

5. CYQ(M) > 0.

We will prove Theorem 7.1 by a succession of lemmas. In order to prove the statement
about a;(M), we will show that if ay(M) < oot then M is one of the special cases listed
in the statement of the theorem. The values of a;(M) in these special cases follow from
previous calculations.

Lemma 7.2 If M is an irreducible Haken manifold with incompressible torus boundary then
M has vanishing L*-cohomology and a;(M) > 0. If oy(M) < oot then M is one of the
special cases listed tn Theorem 7.1.2.

Proof : We know that M has a geometric toral splitting. As a compact connected orientable
3-manifold with torus boundary whose interior has a complete hyperbolic metric is either
T? x I or has a complete finite-volume hyperbolic metric [31, p. 52], the pieces in the toral
splitting either admit a Seifert structure or have a complete finite-volume hyperbolic metric
on their interior. Let s be the number of tori in such a minimal splitting. We will use
induction over s. To begin the induction, if s = 0 then M is Seifert or hyperbolic and the
claim follows from Theorems 5.1, 5.4 and 6.17. The induction step from s — 1 to s is done
as follows:

Let T? be a torus in a minimal family of splitting tori. Depending on whether 7 is
separating or not, we get decompositions M = M; Upa My or M = M, Ura,5; T? x I by
cutting M open along T?. We have the short exact sequences

0— C(T)— CM)OC(M)— C(M)—=0

or

0— C(T*xdI) — CM)SC(T*xI)— CM)— 0
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with coefficients in 1*(7,(M)). Note that each M; satisfies the induction hypothesis. Hence
bp(M;) = 0 for all p and ay(M;) > 0. From Lemma 4.6 and Example 4.11 we have that
b,(T?) = 0 for all p and a,(T?) = 2 for p € {1,2}. The weakly exact Mayer-Vietoris sequence
gives that M has vanishing L%-cohomology, and Theorem 2.2.2 and Lemma 2.3.3 give the
inequalities

1 1 1
@) = (@) T minfas (%), a2 ()]

1 1 1
GQ(M) - C!](T2 X BI) min{al(Ml), Gz(Tz X I)}

Thus a3(M) > 0.

We also have the exact sequences

0— C(M)— CM)— C(M,,T?) —0

or

0— C(M)— CM)— C(T*xI,T*x8I)— 0

with 12(m1(M)) as coefficients. As M; has vanishing L?-cohomology, Theorem 2.2.1 gives
that

1 < 1 + 1
C!l(M) - CY](M]) al(Mg,Tz)
or
1 1 1

< .
o) = ) T e (T = 1,72 < 81)

From Lemma 4.5 we have that o;(M;,T?) = 1(T? x 1,T? x 8I) = oo*. This implies in
both cases that a;(M;) < a;(M). Hence o (M) < oot, and by symmetry a;(M;2) < oot in
the first case. By the induction hypothesis, M; must be T? x I or a twisted I-bundle over
K. Thus M is either the gluing of two twisted /-bundles over K along their boundaries, or a
T?-bundle over S*. If M is the gluing of two twisted I-bundles over K over their boundaries
then M is double-covered by a T?-bundle over S!. In either case, Lemma 7.3 will give that
M has the geometric type of some T*-bundle over S'. (For later purposes, Lemma 7.3 is
stated in greater generality than is needed here.) Then [36, Theorem 5.5] implies that M
has a Sol, Nil or R3-structure, and is one of the special cases listed. |
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Lemma 7.3 Let M be a finite cover of an irreducible closed oriented §-manifold M with
infinite fundamental group. If M is homotopy-equivalent to a closed S-manifold N with a
Seifert or Sol-structure then M has the same geometric type as N.

Proof : From [29, Theorem 3] we have that M is irreducible. If N has a Seifert structure
then [35, pages 35 and 36 gives that M is homecmorphic to N and that M is also a Seifert
manifold of the same geometric type. If N has a Sol-structure then M and N are Haken,
and so M is homeomorphic to N [20, Theorem 13.6]. It follows from [36, Theorem 5.3] that
M has a Sol-structure. |

Lemnma 7.4 If M is an irreducible Haken manifold with incompressible boundary then
b(M) = 0 forp # 1, (M) = —x(M) and ax(M) > 0. If oy(M) < oot then M is
one of the special cases listed in Theorem 7.1.2.

Proof : Because of Lemma 7.2, we may assume thai M is nonempty. Let N be M Ugps M.
Then [42, Satz 1.8] implies that N is irreducible. Clearly N is a closed Haken manifold.
From Lemma 7.2 we have that N has vanishing L?-cohomology and az(N) > 0. We have
the exact sequence

0 — C(OM)— CM)eaCM)— C(N)—0

with coefficients in {*(7;(N)). From Example 4.11 we have that b,(0M) = 0 for p # 1 and
a,(0M) > 0 for all p. Then we get from the weakly exact Mayer-Vietoris sequence that
b,(M) = 0 for p # 1. From the Euler characteristic formula we derive that & (M) = —x(M).
Theorem 2.2.1 and Lemma 2.3.3 imply that
1 1 1
< +
O'g(M) Qz(aM) OQ(N)

and hence a2(M) > 0.

Next we prove the claim for a;(M). Suppose that M does not have a toral boundary. -
Then OM contains a component F, for g > 2. As m,(F,) is nonamenable and is a subgroup
of n1(M), m1(M) is nonamenable and Lemma 4.5.2 implies that a;(M) = cot. Hence the
claim follows already from Lemma 7.2. |

Lemma 7.5 If M is an irreducible Haken manifold and is not a 3-disk, then b,(M) = 0 for
p#1, bi(M)==x(M) and ay(M) > 0. If ey(M) < 0ot then M is one of the spectal cases
listed in Theorem 7.1.2.
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Proof : Because of Lemma 7.4, we may assume that M is compressible. The loop theorem
[20, Theorem 4.2] gives an embedded disk D? in M such that D? meets M transversally,
and dD* = D? N dM is an essential curve on M. Depending on whether the disk D? is
separating or not, we get the following two cases: '

~ If D? is separating then there are 3-manifolds M; and M; and embedded disks D* C
OM, and D? C-GM; such that M = M; Up: M;. In particular, M is homotopy equivalent
to M,V M,. Since M is prime, M; and M, are prime. As M; and M; have nonempty
boundary, they are not S' x S?%, and so are irreducible. As M is irreducible with infinite
fundamental group, it is a K(=,1) Eilenberg-Maclane space. Then the same must be true
for M; and M,. If M; were a 3-disk then the boundary of the embedded 2-disk would not
be an essential curve on dM. Thus M, and M; have infinite fundamental groups.

If D? is nonseparating then there is a 3-manifold M; with embedded S° x D? C M,
such that M = M; Usoxp2 D' x D?. The same argument as above shows that M, is an
irreducible 3-manifold which is a 3-disk or has infinite fundamental group. If it were a 3-disk
then M would be S! x D? which satisfies the claim of the Lemma. So we may assume that
M, has infinite fundamental group.

We will prove the Lemma using the fact that M is homotopy equivalent to M; V M;
(respectively M; V S?). It suffices to verify the claim for M; and M; (respectively M), since
the claim for M then follows from the proof of Proposition 4.7. If M; and M; (respectively
M) have incompressible boundary then we are done by Lemma 7.4. Otherwise, we repeat
the process of cutting along 2-disks described above. This process must stop after finitely

many steps. |

Proof of Theorem 7.1: We have the prime decomposition
M= MiM,}.. . M..

By assumption, each M; in the decomposition is nonexceptional. We claim first that if
71(M;) is finite then b,(M;) = 0, if m(M;) is infinite then b (M;) = —x(M;), and that
a2(M;) > 0. The case of finite fundamental group follows from Example 4.12. From Theo-
rem 2.5 and Remark 4.10 we may assume that if M; is closed then M; is Seifert, hyperbolic
or Haken. If M; is closed and Seifert then the result follows from Theorem 5.1. If M; is
closed and hyperbolic then the result follows from Theorem 6.17. If M; is closed and Haken
then the result follows from Lemma 7.2. If M; has a boundary component which is a 2-
sphere then M; is a 3-disk and the result follows from Example 4.12. If M; has a nonempty
boundary with no 2-spheres then it is Haken and the result follows from Lemma 7.5.

From Lemma 4.5 we have that bo(M) = by(M) = 0. From Proposition 4.7.1 we have
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that

s 1
h(M)=r—-1+ (b M'———).
1( ) ng 1( J) | 1T1(M_,') |
As we have shown that b,(M;) = —x(M;) + {1if M; = D3}, the claim of Theorem 7.1
for b;(M) follows. The claim for b;(M) now follows from the Euler characteristic equation.
From Proposition 4.7.3 we have '

(M) =min{as(M;): j=1,...7} > 0.

From Corollary 4.4.1 we have that ay(M) = a;(P(M)). Thus, by removing the simply-
connected factors, we may assume that M = P(M). Suppose that a;(M) < ocot. From
Proposition 4.7, we have the possibilities that » = 1, or that r = 2 and = (M) = m(M;) =
Zf2. lf r =1 then M = S x S? and is one of the special cases listed, or M is irreducible.
If M is not closed then it is Haken and Lemma 7.5 implies that it is one of the special cases
listed. If M is closed then by assumption a finite cover M of M is homotopy equivalent to a
Seifert, hyperbolic or Haken manifold N, which must also be closed and orientable. If N is
Seifert or hyperbolic then Theorems 5.1, 5.4 and 6.17 imply that N is a closed S? x R, R3,
or Nil manifold. If N is Haken then Lemma 7.5 implies that N is a closed S? x R, R, Nil
or Sol manifold. Lemma 7.3 gives that M is of the same geometric type as N, and so is one
of the special cases listed.

If r = 2, it remains to show that a 3-manifold M with (M) = Z/2 is homotopy
equivalent to RP®. This follows from {39, Theorem 1.8]. ]

Corollary 7.6 If M satisfies the hypotheses of Theorem 7.1 and x(m(M)) denotes the
rational-valued group Fuler characteristic [6, Section IX.7] then bj(M) = —x(m(M)) and

bo(M) = x(M) — x(m(M)).

Proof : First, for the group Euler characteristic to be defined we must show that =, (M) is
virtually torsion-free and of finite homological type. Let {M;}4_; be the prime factors of M
with finite fundamental group. Put I'y = m(M)) * ...« m(M,) and T, = m(M,41) * ... %
71(M,). It is known that Ty has a finite-index free subgroup F and that T'; is torsion-free.
Let ¢ : Ty # T, — T be the natural homomorphism. Then ¢~!(F) is finite-index in 71 (M),
and the Kurosh subgroup theorem {20, Theorem 8.3] implies that it is torsion-free. As I'y
and T'; have finite homological type, [6, Proposition IX.7.3.€] implies that m;(M) is of finite
homological type and that:

X(m(M)) = r =143 x(m(M;)).

i=1
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Thus in order to show that & (M) = —x(m(M)), it is enough to verify that for each j,

1

ey ]~ XM + (L M5 2 D) = —x(ma(M,)).

As M; is either a K(=,1) Eilenberg-Maclane space, a 3-disk or a closed manifold with finite
fundamental group, the equation is easy to verify.

The statement for b;(M) now follows from the Euler characteristic equation. |

Corollary 7.7 Let M be a (compact connected orientable) 3-manifold. If all L?-Betti num-
bers of M vanish then M satisfies one of the following conditions:

1. M 1s homotopy equivalent to an trreducible 3-manifold N with infinite fundamental
group whose boundary is empty or a disjoint union of tori.

2. M is homotopy equivalent to S? x S? or RP3{RP3.

If condition 2.) holds, or if condition 1.} holds and N is nonezceptional, then all of
the L?-Betti numbers of M vanish. |

Proof : Suppose that M has vanishing L?-cohomology. From Exa.mple 4.12, (M) must
be infinite. From Proposition 4.7.1 we have that

r—1+i(bl(Mj)-—-|-T(%z)—|)=0.

i=1

Equivalently,

z 1
h(M;) - ———+ 1) =
% (400 - g
It follows that the prime decomposition of M must consist of homotopy 3-spheres, 3-disks
and either
A. A prime manifold M’ with infinite fundamental group and vanishing b, or
B. Two prime manifolds M! and M? with fundamental group Z/2.

In case A, M’ is §' x §2 or is irreducible. If M’ is irreducible and has nonempty bound-

ary then Lemma 7.5 implies that its boundary components must be tori. From the Euler
characteristic equation we have that x(M) = 0, and so no 3-disks can occur in the prime

54



decomposition of M. In case B, we have already shown that M! and M? are homotopy-
equivalent to RP3. Again, because x(M) = 0, no 3-disks can occur in the prime decompo-
sition of M. Thus we have shown that if M has vanishing L?-cohomology then M satisfies
one of the two conditions of the corollary.

If M satisfies condition 2. of the corollary then Theorems 2.5 and 5.1 imply that M
has vanishing L2-cohomology. If M satisfies condition 1. of the corollary, from Theorem 2.5
we may assume without loss of generality that M = N. We have that its Euler characteristic
vanishes. If M has nonempty boundary then Lemma 7.5 implies that it has vanishing L3-
cohomology. If M is closed and nonexceptional then by passing to a finite cover and using
Theorem 2.5, we may assume that M is Seifert, hyperbolic or Haken. Theorems 5.1, 5.4 and
6.17 imply that M has vanishing L*-cohomology. |

Theorem 7.8 If M contains an incompressible torus then az(M) < 2. If one of the M;’s
is closed and nonezceptional with infinite fundamental group, and does not admit an R3,
5% x R or Sol-structure, then as(M) < 2.

Again, we will build up to the theorem by lemmas.
Lemma 7.9 If M is irreducible and OM contains an incompressible torus then a;(M) < 2.

Proof : From Lemma 7.4 we get bo(M) = 0. As T? has vanishing L*-cohomology, the
long weakly exact homology sequence of the pair (M, T?) implies that Hy(M, T?; I*(m(M)))
vanishes. We have a short exact sequence of chain complexes

0 — C(T?) — C(M)— C(M,T? — 0

and so from Theorem 2.2.3,

1 1 1
< .
ar(T%) = wa(M) T (M, T7)

Proposition 4.2 implies that as(M,T?) = ay(M,0M — T?). I this is co* then (M) <
ax(T?) = 2 and we are done. If IM — T? # § then Lemma 4.5.5 implies that oy (M,0M —
T?) = oo*. If 9M — T = @ then Theorem 7.1 gives the possible cases in which o (M, M —
T?) < oot. The only case in which &M is a single incompressible torus is when M is a
twisted I-bundle over K, and in this case Theorem 5.4 gives that az(M) = 2. |
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Lemma 7.10 If M is a closed Haken manifold and does not admit an R® or Sol structure
then az(M) < 2.

Proof : If M is Seifert or hyperbolic then the proposition follows from Theorems 5.1 and
6.17. Otherwise, consider the nonempty minimal family of splitting tori. Let T'? be a member
of the minimal family. Cutting M open along T? yields decompositions M = M; Urz M; or
M = M, Ur2,572 T? x I, depending on whether T? is separating or not. We get the exact
sequences

0— C(M)— CM)— C(M,T?*)—10

or

0— C(M)— CM)— CT*xI,T*xdI)— 0

with coefficients in {?(71(M)). Since b,(M) = 0 (Lemma 7.2), we derive from Theorem 2.2.2

that
1 1 1

az(Mg,Tz) s Ql(Ml) t CYz(M)

or

1 1 1
<
T x LTI 01) = (M) | aa(8D)

Suppose that @;(M;) > co. Then we have that a;(M) < az(M;, T?) (respectively az(M) <
az(T? x I,T? x 8I) = 2). Proposition 4.2 gives that az(M;,T?) = a;(M,;), and we have
already proven that this is less than or equal to two. By symmetry, it remains to treat the
case when a;(M), a1(M;) < oo, (respectively a;(M,) < o0). From Theorem 7.1, M; and
M; must be I-bundles over K (respectively M; must be I x T?). As before, in either case
M carries a Sol, Nil or R*-structure. Since az(M) = 2 in the Nil case (Theorem 5.1), the

lemma follows. |

Proof of Theorem 7.8: From Proposition 4.7.3 we have that
az(M) = min{az(M;): 5=1,...7}.

Clearly, it is enough to verify the theorem under the assumption that M is prime. As
S x 82 has an S? x R-structure, we may assume that M is irreducible. If @M contains an
incompressible torus then we are done by Lemma 7.9. Suppose that M is closed, has infinite

56



fundamental group and is nonexceptional. Then a finite cover M, which is closed, orientable
and irreducible, is homotopy equivalent to a manifold N which is Seifert, hyperbolic or
Haken. If a;(M) > 2 then Theorems 5.1 and 6.17 and Lemma 7.10 imply that N has an
R3, 5% x R or Sol structure. By Lemma 7.3, M also has such a structure. n
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8. L?-Contractibility

Let I be a finitely-presented discrete group. Let M be a normal I'-covering of a compact
Riemannian manifold M, possibly with boundary. Give M the induced Riemannian metric.
Let A denote the self-adjoint extension of the Laplacian acting on all compactly-supported
smooth forms on M which satisfy absolute boundary conditions. We will say that M is
L3-contractible if A has a bounded L*inverse. (In [17] this is called L3-acyclicity, but we
think that our terminology may be less confusing.) By Lemma 2.4, this is equivalent to
requiring that by(M;{*(T)) = 0 and a,(M;13(T)) = oot for all 0 < p < dim(M). 1t is
an open question as to whether L2-contractible manifolds exist. There are some sufficient
conditions to rule out L?-contractibility. For example, it follows easily from higher index
theory that if M is closed, I' satisfies the Strong Novikov Conjecture [23] and the image of
the fundamental class [M] under the classifying map M — BT is nonzero in Hn(BT; Q)
then M is not L2-contractible. (In fact, the Laplacian is noninvertible in dimension Tifm
is even and in dimensions 2£! if m is odd.)

One can similarly consider the question of L2-contractibility for any CW-complex K
which is a I'-covering of a finite CW-complex K. As a small step toward answering these
questions, we have the following result:

Proposition 8.1 Let K be a finite CW-complez whose fundamental group is isomorphic to
the fundamental group of a 3-manifold N satisfying the hypothesis of Theorem 7.1. Then
the universal cover K is not L?-contractible.

Proof : Suppose that K is L?-contractible. By passing to the Poincaré associate of N,
we may assume that ON contains no 2-spheres. From Theorem 2.5 and Corollary 4.4 we
conclude that b,(N) = 0 for p < 1 and a,(N) = oo™ for p < 2. From Lemma 4.5 we have
that b3(N) = 0. As x(ON) = 2- x(N), we have that x(N) is less than or equal to zero.
But in this case x(N) = b(N), so we conclude that b,(N) = 0 for all p. From Corollary
7.7 we may assume that N is an irreducible 3-manifold with infinite fundamental group
whose boundary is empty or a disjoint union of incompressible tori, or that N is ! x §?
or RP3RP3. In the first case, Theorem 7.8 and the fact that a;(N) is oot imply that N
could only be a closed manifold with a Sol structure. However, this would then imply that
ai(N) < co* (Theorem 7.1). In the second case we have that a;(/N) = 1. In either case we
get a contradiction. [

One can extend the notion of L?-contractibility (i.e. L2-invertibility of the differential-

form Laplacian) from covering spaces of closed manifolds to general complete Riemannian
manifolds. (One may want to consider a condition of bounded geometry). Similarly, one
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can ask the question of L?-contractibility for general simplicial complexes, possibly with a
uniform local finiteness condition [17]. We do not know of any L?-contractible complete
Riemannian manifold. It follows from equivariant index theory [23] that if G is a connected
Lie group and K is a maximal compact subgroup then G/K, with a left-G-invariant metric,
is not L2-contractible. The case of surfaces is considered in the next proposition.

Proposition 8.2 A complete orientable surface is not L*-contractible.

Proof : (The following proof, which is simpler than our original proof, is due to J. Dodziuk.)
We use facts from [1, 38]. Suppose that the surface M is L?-contractible. The Riemannian
metric gives a complex structure on M. The condition of having a nonzero L? harmonic
1-form is conformally invariant for surfaces, and so only depends on the complex structure.
It is known that nonzero L? harmonic 1-forms exist on nonplanar surfaces, and so M must
be planar. It is also known that a planar surface has nonzero L? harmonic 1-forms if and
only if it is nonparabolic, so M must be parabolic. As the Laplacian Ay acting on functions
is invertible, the infimum Aq of its spectrum is strictly positive. If 0 < A < Ay then there is
a positive superharmonic (non-L?) eigenfunction of A with eigenvalue A. This contradicts
the definition of parabolicity. [ |

For further discussion of some of the topics of this section, see [17, Section 8].
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9. Remarks and Conjectures
Conjecture 9.1 Let M be a compact connected manifold, possibly with boundary. Then

1. The L2-Betti numbers of M are rational. If n,{M) is torsion-free then the L*-Betti
numbers of M are integers.

2. The Novikov-Shubin invariants of M are positive and rational. |

In the case of the L?-Betti numbers, this seems to be a well-known conjecture. The
question of the rationality of the L?-Betti numbers, for closed manifolds, appears in [2].
Theorem 7.1 shows that Conjecture 9.1.1 is true for the class of 3-manifolds considered
there. By Lemma 4.5.1, Conjecture 9.1.2 is trivially true for a;(M). Theorems 5.1 and 5.4
give that it is true for (M) if M is a Seifert 3-manifold. Note that for any positive integer
k there are examples of closed manifolds in higher dimensions with m;(M) = Z such that
as(M) = ¢ [24].

We claim that Conjecture 9.1 is equivalent to the following conjecture:

Conjecture 9.2 Let m be a finitely presented group and let f: ®_,Z7 — D[_,Z7 be a

=1
Zw-module homomorphism. Tensor by I*(7) to get a bounded w-equivariant operator

[ @i, B(r) — &, P(x).
Then

1. The von Neumann dimension of ker(f) is rational. If m is torsion-free then it is an
integer.

2. The Novikov-Shubin invariant of f is a positive rational number. |

If Conjecture 9.2 is true then upon triangulating a compact manifold, we obtain that
Conjecture 9.1 is true. It remains to show that Conjecture 9.1 implies Conjecture 9.2.
Let X be a finite CW-complex with fundamental group =. Let f:@®_,Zr — &®]_,Z7
be any Zr-module homomorphism. For any given n > 2, one can attach cells to X in
dimensions n and n + 1 in such a way that the resulting finite CW-complex Y has the
same fundamental group as X, and the relative chain complex C(Y,X) is concentrated in

dimensions n and n 4 1 and given there by f {25, Theorem 2.1]. If we choose n > dim(X)
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then an+1(Y) = a(f). Moreover, there is a compact manifold, possibly with boundary, which
is homotopy equivalent to Y. Since the L?-Betti numbers and the Novikov-Shubin invariants
are homotopy invariants, we obtain that a,4+1(M) = a(f). This shows that Conjecture 9.1
is equivalent to Conjecture 9.2.

Conjecture 9.2 in this form implies a well-known conjecture of algebra.

Conjecture 9.3 Let 7 be a finitely-presented group Then the group ring Qn has no zero-
divisors if and only if w is torsion-free. |

The only-if statement is trivial. The if statement would follow from the second con-
jecture as follows: Let u € Qw be a zero-divisor. We want to show that © = 0. We may
assume that u liesin Zx. Let f : Zr — Z= be given by right multiplication with u. Since
u is a zero-divisor, f has a non-trivial kernel. Since the dimension of the kernel of f must
be a positive number less or equal to the dimension of {?(x), which is 1, it can only be an
integer if it is 1. Hence the kernel of f is I*(7). This implies that u = 0.

Conjecture 9.4 The second L?-Betti number of a compact prime S-manifold vanishes.

We have shown in Theorem 7.1 that the second L?-Betti number of a nonexceptional
compact prime 3-manifold vanishes. However, there may be a reason why it should vanish
which is independent of any geometric decomposition theorem.

Conjecture 9.5 If M is a closed K(n,1) manifold then its L*-Betti numbers vanish outside
of the middle dimension.

Corollary 7.7 implies that a closed K(w,1) 3-manifold of the type considered there
has vanishing L3?-Betti numbers, thereby verifying the conjecture. Conjecture 9.5 includes
the unproven conjecture of Singer which states the same for nonpositively-curved manifolds.
If 7,(M) contains an infinite normal amenable subgroup then the truth of the conjecture
follows immediately from [11, Theorem 0.2]. Conjecture 9.5 was emphasized in the case of
4-manifolds in [17, p. 154]. A consequence would be that if dim(M) = 4k+2 then x(M) < 0,
and if dim(M) = 4k then x(M) > | (M) |.

Conjecture 9.6 Let T be a finitely-presented group. Let b.(I') and a.(T) denote the L?-
Betti numbers and Novikov-Shubin invariants of a K(T',1) complez. Suppose that T is non-
amenable, b;(T') = 0 and a3(T') = oot. Then any closed 4-manifold M with fundamental
group T' satisfies x(M) > 0.
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This conjecture would be a consequence of non-L?-contractibility of M, as the hy-
potheses imply that b,(M) = 0 for all p # 2, and a,(M) = oot for all p. Thus the only
way that M could be non-L?-contractible would be if b,(M) # 0, which then implies that
x(M) > 0. Examples of groups I' satisfying the hypotheses of the conjecture are given by
the fundamental groups of closed irreducible nonpositively-curved locally symmetric spaces
of dimension greater than three, and the product of the fundamental groups of two compact
surfaces of negative Euler characteristic.

If 7 is the fundamental group of a closed 4-manifold M then an L?-extension of (19,
Théoréme 1] gives that x(M) > 2by(7) — 2b(r) + by(w). It follows that Conjecture 9.6 is
true if " is the fundamental group of a closed real or complex hyperbolic 4-manifold, or the
product of the fundamental groups of two compact surfaces of negative Euler characteristic.

As mentioned in the introduction, our motivation to study L?-Betti numbers and
Novikov-Shubin invariants comes from our work on the L%-Reidemeister and analytic tor-
sions (7, 24, 27, 28]. These are L*-generalizations of the Reidemeister and analytic torsions
of manifolds. One needs positivity of the Novikov-Shubin invariants in order to define the
L?-torsion invariants. Thus our results show that if M is of the type considered in Theo-
rem 7.1 then the L2-torsions are well-defined invariants. If in addition the L?-cohomology
vanishes then the L?-Reidemeister torsion is a simple homotopy invariant (and in particu-
lar 2 homeomorphism invariant) and the L%-analytic torsion is a diffeomorphism invariant.
Sufficient conditions for this are given in Corollary 7.7.

Conjecture 9.7 If M is a compact manifold then its Novikov-Shubin invariants are positive
and its L?-Reidemeister torsion equals its L*-analytic torsion.

This is the L%-analog of the Cheeger-Miiller theorem for the ordinary Reidemeister
and analytic torsions [8, 32]. A proof of Conjecture 9.7 in the case of closed manifolds with

positive Novikov-Shubin invariants and vanishing L2-Betti numbers has been announced by
Carey, Mathai and Phillips.

If M is a Seifert 3-manifold with infinite fundamental group then its L?-Reidemeister
torsion vanishes [27]. If M is a closed 3-manifold which admits a hyperbolic structure then its
L*-analytic torsion is — 5-Vol(M, gu,,), where giy, is the unique (up to isometry) hyperbolic
metric on M [24, 28].

Conjecture 8.8 If M is a compact connected 3-manifold with a Thurston geometric de-
composition which satisfies one of the conditions of Corollary 7.7 then its L*-torsion is — =
times the sum of the (finite) volumes of its hyperbolic pieces.
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As one has a formula for the relationship between the L?-Reidemeister torsions of the
terms in a short exact sequence [27], Conjecture 9.8 would follow from Conjecture 9.7 if one
knew that the L? torsion of a compact 3-manifold whose interior admitted a complete finite-
volume hyperbolic metric were equal to — ;7 times the hyperbolic volume of the interior.
We note Conjecture 9.8 would imply that for the manifolds it considers, the L2-torsion is a
universal constant times the simplicial volume discussed in [40].
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A. Infinite cyclic coverings

In this appendix we discuss infinite cyclic coverings. The Novikov-Shubin invariants in
this case were computed in [24] in terms of Massey products. We will show that they can
also be computed in terms of the homology of the cover.

Given an epimorphism ¢ : m(M) — Z, we take A = N(Z) and the representation
¢*1%(Z) to be the composition of the regular representation Z — Ison(z)(1*(Z)) with ¢.
In other words we are looking at the infinite cyclic cover M — M of M associated to ¢.
Let C(M) denote the simplicial C[Z]-chain complex of M and H(M) its (ordinary) C[Z]-
homology ker(c)/im(c), where c denotes the differential. We will show how to read off the
Novikov-Shubin invariants of M, with coefficients in the representation ¢*/%(Z), in terms of
H(M).

The main simplification comes from the fact that the complex group ring of the integers
C[Z] is a principal ideal domain (3, Proposition 5.8 and Corollary 8.7). Given an element
p € C[Z], we computed the Novikov-Shubin invariant of m, : I*(Z) — [*(Z) in Lemma
3.1. We now deal with a C[Z])-endomorphism f: @%,C[Z] — &L ,C[Z). Let A be the
(k, k)-matrix over C|[Z] satisfying f(v) = vA. We derive from the fundamental theorem for
principal ideal domains (see Auslander-Buchsbaum [3], chapter 11 Theorem 1.1) that there is
an integer [ satisfying 0 <1 < k, ¥/, a sequence of non-zero elements p;, ps, ... pi, a invertible
(k, k)-matrix U and an invertible (¥, k')-matrix V over C[Z] such that p; divides p;4+, and
the product UAV is the matrix D whose (t,1)-th entry is p; for 1 <1 <[ and whose other
entires are zero. The determinant of any (i,7)-submatrix of A is called a (¢, 1)-minor of A.
Let e; denote the greatest common divisor of all (1,7)-minors of A. If all the (i, 1)-minors are
zero, put e; to be zero. Tensoring with [(Z) yields a morphism of Hilbert N(Z)-modules
denoted by f ®ciz I*(Z2) : @5,1}(2) — &L, 1%(2).

Lemma A.1 Under the above conditions, if f # 0 then

s,

CO(f ®cin B(Z) =k 1.

2. a(f Qciz *(2)) = a(my,).

8. 1 is the largest integer ¢ for which e; is different from zero.
4. e =u-Tli, p; for some unit u € C[Z) end 1 < 1.

5. pr=u-efeq for some unit u € C[Z].
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Proof : We derive from Lemma 1.10 that b(f ®c(z; I*(Z)) and a(f ®cjz) 1*(Z)) agree with
the corresponding invariants for the endomorphism given by the diagonal matrix D. Now
assertion 1.) and 2.) follow from Lemma 1.12.

One easily verifies that the numbers e; are the same for A and D and then verifies
assertions 3.) and 4.) directly for D. Claim 5.) follows from claim 4.) |

Note that Lemmas 3.1 and A.]l allow us to compute the Novikov-Shubin invariants of
C @ciz 1*(Z) for any finite free C[Z]-chain complex C. Next, we show that it suffices to
know the homology groups of C. Given any finitely-generated C[Z]-module P, there are
non-negative integers r and ! and a sequence of non-zero elements py, pa, ..., p; of C[Z] such
that p; | pi4+1 and

P = (@1:C12)) ® (8/-,C12)/ (7))

where (p;) is the ideal generated by p; [3, Chapter 10, Theorem 5.7]. The numbers r and ! and
the elements p;, up to multiplication by a unit, are uniquely determined by the isomorphism
type of P.

Definition A.2 Define the rank of P to be
r{P)=r
and the Novikov-Shubin invariant of P to be
o P) = a(my,)

if 1 > 1 and a(P) = oot otherwise. u

Lemma 'A.3 Let C be a finite free C|Z]-chain complez. Then
b(C) = rk(H,(C))

and

a(C) = a(He-1(C))-

Proof : Let 0 — EB'_]C[Z] ®2C[Z] — H,(C) — 0 be the finite free resolution of -
H (C) given by a matrix whose (z,1)-th entry is p; for 1 <1 < [ and whose entries vanish oth-
erwise. Let F}, denote the 1-dimensional finite free C[Z]-chain complex given by f,. Lemma
A.1 gives that rk(H,(C)) = b(f, ®ciz *(Z)) and a( H,(C)) = a(f, ®ciz 1*(Z)). One easily
constructs a C{Z]-chain map g : @;50L?F, — C which induces an isomorphism on homol-
ogy and is hence a chain homotopy equivalence. Now the claim follows from Lemma 2.3 and
Theorem 2.5. [
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Example A.4 (mapping torus) Let M be a closed manifold and f : M — M be a diffeo-
morphism. Let Ty be the mapping torus, the manifold obtained from the cylinder M x [0, 1]
by identifying the boundary components by f. There is an epimorphism ¢ : 71(Ty) — Z.
The map f induces an automorphism Hy(f) on Hy,(M; C). The Jordan normal form of H(f)
consists of blocks B(j, A) of j by 7 matrices of the form

A1 0
0 A 1 0
0 0 0
000 ... A

Let a(H,(f)) be the minimum of the numbers % over all blocks B(j, ) for which | |= 1.
If there are no such blocks, put a(H,(f)) to be co*. Since the C[Z]-module H,(M), with
Z-action generated by H,(f)™!, is isomorphic to H,(T}), we conclude from Lemma A.3 that

by(Ty;¢°1%(2)) = 0

and

a(Tr; 6" 1(2)) = ae(Hoa(f)). W

Example A.5 Let us look at the special case in which f is a self-diffeomorphism of the
2-torus. We call H,(f) periodic if H;(f)* = id for some k % 0, hyperbolic if no eigenvalue of
H,(f) has unit norm and parabolic otherwise. From [36, Theorem 5.5), we have that H,(f) is
periodic if and only if Ty has a R3-structure, hyperbolic if and only if Ty has a Sol-structure
and parabolic if and only if Ty has a Nil-structure. One easily checks that

Cl’z(Tl; ¢*12(Z))
aa(Ty; ¢*1%(Z))
ay(Ty; ¢°1*(2))

1 & Ty has a R3-structure
oot & Ty has a Sol-structure
1
2

& Ty has a Nil-structure [ |
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