Non-Glimm-Effros equivalence relations at
second projective level

Viadimir Kanovei

Moscow Transport Engineering Max-Planck-Institut

Institute fur Mathematik

RUSSIA Gottfried-Claren-Str. 26
53225 Bonn
GERMANY

MPI / 95-137






Non-Glimm-Effros equivalence relations at
second projective level

Vladimir Kanovei *#8

10 December 1995

Abstract

. % ¢« .« -A.model.is presented,.in.which.the_ XJ ..equivalence.relation..z.C y..iff L(z] =.L{y]
on reals does not admit a reasonable form of the Glimm - Effros theorem. The
model is a kind of iterated Sacks generic extension of the constructible model, but
with an “ill”founded “length” of the iteration. In another model of this type, we
get an example of a [T} non-Glimm-Effros equivalence relation on reals.

As a more elementary applications of the technique of “ill”founded Sacks it-
erations, we obtain a simple cardinal invariant which distinguishes product and
iterated -Sacks extensions, and a model in which every nonconstructible real codes
a collapse of a given cardinal & > R$14 to wSld | i
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Introduction

Theorems of the following type are quite usual in mathematics:

every object in some domain is either “regqular” in some specified sense, or, if it is
“singular” then it includes a certain distinguished “singular” object.

For instance by an old Souslin theorem a Borel, or, more generally, X! set of reals
either is countable (= “regular”) or contains a perfect subset (= the distinguished type
of uncountable sets).

The question: how more complicated sets behave with respect to this particular
“dichotomy”, was completely solved in the early era of forcing: first, a X1 set is either
of cardinality < R; or contains a perfect subset; second, nothing like this can be proved
for I1} sets unless we use special strong axioms (like the axiom of determmacy) or work
n specnal ‘regular” models (for example the Solovay modet).

It is a related but more general and much more difficult problem to investigate, in
.this manner, the number of equivalence.classes of an.equivalence relation on reals. This
problem can be traced (at least) back to the origins of descriptive set theory. !

It was in 1970’es that Silver [17] proved that a IT] equivalence relation on reals either
has countably many equivalence classes or admits a perfect set of pairwise inequivalent
reals. (The Souslin theorem is an easy corollary: indeed if X isa X} set of reals then
the equivalence E defined as equality on X and zEy forall z,y ¢ X, is 11} .)

Moreover, it was recently recognized that equivalence relations allow a different type
of investigation, related to enumeration of classes by sets of ordinals (e. g. reals) rather
than ordinals themselves. Harrington, Kechris, and Louveau [5] proved that each Borel
equivalence relation E on reals satisfies one and only one of the following conditions:

(1) E admits a Borel enumeration of the equivalence classes by reals.

(I1) E continuously embeds Eo, the Vitali equivalence. ?

Some notation. An enumeration of classes for an equivalence E on reals is a function
U defined on reals and satisfying z Ey iff U(z) = U(y) for all z,y. Eo is the Vitali
equivalence on the Cantor space D = 2%, defined by: z Eqy iff z(n) = y(n) for all
but finite n € w. An embedding of Ep into E isa 1—1 function U : D — reals
such that zEgy «— U(z)EU(y) forall z,y € D.

1 Luzin noted in [15), section 64, that, although it looks natural that the Vitali equivalt-ance on reals
has continuum-many equivalence classes, a concrete enumeration of the equivalence classes by reals
had not been known. (If the axiom of choice is not assumed, the Vitali equivalence can have strictly
more equivalence classes than the cardinal of continuum, see Kanovei [10].) Even earlier Sierpinski [16]
demonstrated that if the set of all Vitali classes can be linearly ordered then there exists a nonmeasurable
set of reals, having approximately the same projective class as the linear order, provided it is projective.
We shall see that the Vitali equivalence in general plays a distinguished role in modern investigations.

Z Relations satisfying (I) are called smooth. Take notice that Ey is not smooth.



The dichotomy of type (I) vs. (II) was called the Glimm - Effros dichotomy in
[5]. (We refer the reader to [5] as the basic sourse of information on the history of
this type of theorems, to Hjorth and Kechris [9] and Kechris {13] as a review of further
development, to all the three mentioned in concern of applications and related topics,
and to Kechris [14] as a broad reference in the subject.)

Theorems of this type, but with a weaker condition (I) * are known for £} equiv-
alence relations, provided either the universe satisfies the sharps hypothesis (Hjorth and
Kechris [9]) or each real belongs to a generic extension of L (Kanovei [12]). *

However we prove that classes X} and I} contain counterexamples, equivalence
relations which do not admit a theorem of the Glimm-Effros type in ZFC, at least in
the domain of real-ordinal definable (R-OD, in brief) enumerations and embeddings.

Theorem 1 [t is consistent with ZFC that the L) equivalence relation C, defined
on reals by z Cy iff L[z] = L[y], has c-many equivalence classes, and:

- neither has a R-OD enumeration of.the.equivalence classes by sets of ordinals,
- nor admits a R-OD pairwise C-inequivalent set of cardinality ¢,

and in addition either of the following two cardinal equalities can be modeled in the
universe: c¢.=¥; = NI{ or ¢ =Ny = NIL; .

Theorem 2 [t is consistent with ZFC that some II] equivalence relation on reals
has c¢-many equivalence classes, and :

— netther has a R-OD enumeration of the equivalence classes by sets of ordinals,

- nor embeds Eq, the Vitali equivalence, via an R-OD embeddiné,

and in addition either of the following two cardinal equalities can be modeled in the
universe: ¢ = N =N'{ or c=N2=R%.

Remarks
)

The “nor” assertion of Theorem 1 implies the “nor” assertion of Theorem.2, because
obviously there exists a perfect set of pairwise Eg-inequivalent points. It is not clear
whether one can strengthen the “nor” assertion of Theorem 2 to the form of Theorem 1.

It makes no sense to look for non-R-OD enumerations, assuming we work in ZFC
(with Choice). Equally it would be silly to look for enumerations by sets of sets of
ordinals (the next level) because each equivalence class is an object of this type.

3 AMNC enumeration of the equivalence classes by countable (of any length < w; ) binary sequences.
4 Friedman [2], Hjorth [7, 8], Kanovei [11] obtained partial results of this type for £! I} and
more complicated relations, and different relevant theorems on equivalence relations, which we do not

intend to discuss in detail.



The theorems are close to a possible optimal counterexample. Indeed Hjorth {8]
proved that every Al relation (more generally, a relation which is both wi-Souslin and
wi-co-Souslin), which satisfies the property that the equivalence of the £} and II}
definitions is preserved in Cohen generic extensions, admits a Glimm — Effros theorem,
with an enumeration of classes by w;-long binary sequences in (I).

It is a very interesting problem at the moment to figure out whether all A} relations
admit a reasonable Glimm - Effros dichotomy. (Since the models we construct for the
theorems are very special, it would be reasonable to expect that even classes ¥} and
IT; admit a Glimm -~ Effros dichotomy under certain reasonably weak assurhptions.)

The models

The models for theorems 1 and 2 we propose, are iterated Sacks extensions of the
constructible model, having a nonwellordered set as the “length” of iteration. Therefore,
this is not a kind of iterated generic models in the usual setting (see Baumgartner and
- Laver,[1] on iterations,of Sacks-forcing) -where the length-of:the-iterationis; by-definition,
an ordinal. We use “ill”ordered Sacks iterations to prove the theorems. '

An idea as how to define iterated Sacks generic extensions, having inverse ordinals
as the “length” of iteration, was developed by Groszek [3]. We make different technical
arrangements to obtain “ill"ordered and even “ill”founded Sacks iterations. (The model
for Theorem 2 is an example of an “ilI”founded and not linear iteration; a model for
Theorem 1 can be obtained in two ways: as a linear “ill"ordered Sacks iteration, and
as a nonlinear wellfounded Sacks iteration; the latter version is equivalent to the usual
countable support iteration of Sacks x Sacks forcing, of length w; or ws.)

Let I be a partially ordered set in 91, the ground model, - the intended “length”
of the iteration. A typical forcing condition is, in 9, a set X C D¢, where ( C I is
countable, of the form X = H"D¢, where H isa 1—1 continuous function such that

zl{=yl{ «— H(z)[{=H(y)I¢

for all z, y € D¢ and any initial segment £ of (. Section 1 contains the definition and
several basic lemmas related to the conditions.

Section 2 shows how one splits the forcing conditions into smaller ones, and gathers
forcing conditions via a kind of fusion technique, common for the Sacks forcing.

Section 3 ends the study of the forcing notion by a theorem which describes the
behaviour of continuous functions mapping the conditions into reals.

Sections 4 and 5 define and study the extensions. We prove that the forcing notion
associated with a partially ordered set I in the ground model 901 produces a generic
model of the form 9 = 9M[(a; : 2 € I})], where each a; € D is Sacks generic over the
model 9M[(a; :j < i)], — the property which witnesses that 91 is a kind of iterated
Sacks extension of 9 despite I can be not wellordered.

We prove a cardinal preservation theorem, and a very important theorem which says
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that each real in 91 can be obtained applying a continuous function coded in 9 to
a countable sequence of generic reals. This theorem allows to convert properties of
continuous functions in the ground model to properties of reals in the extension.

In particular it occurs (Section 5) that, if every initial segment of I belongs to 9
then the degrees of 9M-constructibility of reals in the extension are in 1 —1 correspon-
dence with the countably cofinal initial segments of I.

Section 6 presents the proof of Theorem 1. The proof utilizes a particular property
of the sets I = (wy or wy) x Z, where Z = {...,~2,-1,0,1,2,...} - the integers: each
copy of Z admits nontrivial order isomorphisms — shiftings. This does not allow a real
in the extension to “know” definitely the exact place, say (a,2) € wy x Z, of its degree
of constructibility. One more possibility is I = (w; or wy) x (unordered {0,1}), which
is equivalent to the usual iteration of the forcing Sacks x Sacks, of length w; or w,.
We do not know whether an iteration of the Sacks forcing of an ordinal length can prove
Theorem 1.

A modification, I = (w; or wy) X (Z x {0,1}), is used to prove Theorem 2. We do
v ree wenOt-knowshows to-provesthisstheorem«notsusing-ill*founded: Sacks.iterations. ». . .

Two more applications

Two easier applications of the technique of Sacks iterations are obtained in Section 5.

Theorem 3 Let & > R be a cardinal in a countable model M. There ezists a
generic extension M of M in which R is still a cardinal, but every nonconstructible
real collapses k to RM,

(Clearly the result is impossible for Ry instead of R, since a collapse of an uncountable
cardinal to R provides nonconstructible reals which do not collapse cardinals.)

Of course different forcing notions produce reals that code much more sophisticated
things, but the model for Theorem 3 is somewhat exceptional because first it is really
simple (we use inverse & Sacks iteration and exploit the known phenomena that each
next Sacks real “knows” the previous steps, which compels every nonconstructible real
to code the collapse) and does not involve a complicated coding technique.

The second application is devoted to cardinal invariants which distinguish “long”
product and iterated Sacks extensions. Steprans gave some invariants in a talk on this
matter at Haifa Logic Colloquium (August 1995). We present a simpler invariant.

Every collection F of continuous functions f : reals —— reals determines a
partial order <5 on reals as follows: z <s5y iff z = fi(f2(... fu(y)...)) for some
functions fi, fo,..., fu € F. Let { (the linear order cardinal) denote the least cardinality
of a family F such that <s linearly orders the reals. Obviously [ < c.

Theorem 4 Let M be a countable transitive model of ZFC. Then [ = ¢ in each
countable support product Sacks extension of M but | = card ¢™ in each countable
support iterated Sacks extension of M .
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1 The forcing

Let CPO be the class of all countable (including finite) partially ordered sets. Greek
letters &, 1, ¢, ¥ will denote sets in CPO. Characters i, j are used to denote elements
of sets in CPO. For any ¢ € CPO, IS, is the collection of all initial segments of (.
For instance § and ( itself belong to IS,.

We shall usually have fixed a “basic” p. o. set { € CPO, so that all other p. o.
sets actually involved in the reasoning are subsets of { and even members of IS;. In
this case, for any ¢ € ( we shall consider special initial segments [<i]={j € (:j <i}
and [Zi]={j€(:j 21}, and [<i], [#?] defined in the same way.

As usual, N = w* is the Baire space; points of N will be called reals. .

D = 2¥ is the Cantor space. For any countable set ¢, D¢ is the product of
&-many copies of D with the product topology. Then every D¢ is a compact space,
homeomorphic to D itself unless £ =0 .

Assume that n C ¢ If 2 € D¢ then let z [1] € D7 denote the usual restriction. If
X.C. Db thendet X [p=fzdn 2 X L 2v . C

But if ¥ € D" then weset Y [! —{a:eD'f m[nGY}
To save space, let X< mean X [[<i], X[y mean X [[Z#:], etc.

Definition [The forcing]
For any set ( € CPO, Perf; is the collection of all sets X C D¢ such that there
exists a homeomorphism H : D¢ onto X satisfying

Tolé =2z, —— H(zo)[{=H(z)[{ — forall zo,zy € domH and £ € IS,.

Homeomorphisms H satisfying this requirement will be called projection—keeping. So,
sets in Perf, are images of D¢ via projection—keeping homeomorphisms. .

If H: D¢onto X is a projection-keeping homeomorphism then we define, for any
¢ € IS, an associated projection-keeping homeomorphism H; : D¢ onto X [€ by
He(z &) = H(z) ¢ for all z € D¢,

Proposition 5 FEvery set X € Perl; s closed and salisfies the following properties:
P-1. If 1€( and z € X[« then theset Dx,(i)={z(i):z € X & z=2z]} is5a
perfect set in D .

P2. If €IS, andaset X' C X is open in X (in the relative topology) then the
projection X'[€ is open in X [€.

P-3. If &,n€lS;, z€X[E yeXin and o[(ENn) =y[(EN7), then zUy €
X1(EUn). ’

5 In other words, it is required that the projection from X fs,- to X|<; is an open map.
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This proposition can be taken as the base for an independent definition of the forcing;
however it it not true that the requirements P-1, P-2, P-3 fully characterize Perf, .

Proof Obviously D¢ satisfies the requirements. On the other hand, one easily proves
that projection—keeping homeomorphisms keep the requirements. O

Let us prove several simple lemmas on forcing conditions.
The following lemma shows how P-3 works.

Lemma 6 Suppose that X € Perfy, ¢, 7€ IS;, YC X5, and Z = XFW(Y =1 ().
Then Z1&=(XTHNY (NI E).

Proof The inclusion C is quite easy. To prove the opposite direction let z belong to
the right-hand side. Then in particular z[({Ny) =y [({N7y) for some y € Y. On the
other hand, z € X [§ and y € X [7. Property P-3 of X (see Proposition 5) implies
:zUyGX{({Un) Thus a:UyEZ[(fUn) since yEYCX['r], 50 xEZ[{;’ i

—— -

Lemma 7 If X € Perf, and {E IS, then X 1€ € Perff O
Proof If H witnesses that X € Perf; then H; witnesses that X [£ € Perf,. O

Lemma 8 Suppose that H 1is a projection—keeping homeomorphism, defined on some
X € Perf,. Then the image H”X = {H(z):z € X} belongs to Perf; .

Proof It is easy to see that a superposition of projection—keeping homeomorphisms is
a projection—keeping homeomorphism. O

Lemma 9 Assume that X € Perfy, X' C X s open in X, and zo € X'. There
exists a clopen in X set X" € Perf;, X" C X', containing zo .

Proof By the previous lemma, it suffices to prove the result provided X = D¢. We
observe that if zo € X' C D¢ and X' is open in D¢ then there exists a basic clopen
set C C X' containing zo. (By basic clopen sets we understand sets of the form

C={ze€D":ui Cz(i) & ... & up Cz(im)},

where m € w, 11,...,tm € ( are pairwise different, and uq,...,um € 2<“.) One can
easily prove that every set C of this type actually belongs to Perf, . i

Lemma 10 Let X, Y € Perf; and n € 1S,, X [n =Y [n. Thereezists a ﬁrojection—
keeping homeomorphism H : X onto Y such that H(z)[n==z[n forall z€ X .

Proof Let F: D¢ onto X and G: D¢ onto Y witness that resp. X and Y belong
to Perfe. We put H(z)=G(G; (z{n) U F ' (z)[((\ 7)) forall z € X .

7



Then H”X C Y by the choice of G. Let us prove that H’X =Y. Let y € Y.
We put = = F(F7'(yIn) U G (y) (¢ \ 7)) (the dual transform). Then z[n =y[n
while F~Hz) [((\n) = G~ (y)[({\ 7)), sothat H(z) = G(G™'(y)) =y, as required.

Take notice that H(z)[n = G,(G;'(zn)) = = [n by definition.

To prove that H is projection-keeping, let zo, z; € X. Assume that £ € IS; and
zol& = 71 [€; we have to prove that H(zo) [€ = H(x,)[€. Since G is projection—
keeping, it would be enough to prove that the points

2= G (H(z)) =Gy (mln) U F 7 (z) [(C\n), 1=0,1,

satisfy 2¢[€ = 21 [€. We observe that z [£ = Gg,l(a:z 1€ U F~Yz;) [€", where ¢ =
ENn and £ =€\ n, sothat 20[¢ = 2, [{ because zo[€ = z;[{ and both F' and
(@ are projection—keeping. The converse is proved similarly. a

Lemma 11 Suppose that X € Perf;, 7 € IS¢, Y € Perf,, and Y C X [n. Then

Z=Xn(Y[1() belongs to Perf¢ . - .
Proof Let F: D¢ onto X and G : D" onto Y witness that resp. X € Perf, and
Y € Perf,. We define a projection-keeping homeomorphism H : D¢ —5 Z by

H(z)=F (F;'(G(zIn)) U 21 (C\m))

for all z € D¢. We check that H maps D¢ onto Z. Let z € D¢. Then H(z) € X
by the choice of F. Furthermore H(z)In = F,(F;'(G(zIn))) = G(z[9) € Y, so
H(z) € Z. Let conversely z' € Z, so that 2z’ = F(z) for some z € D¢. We define
z€ D¢ by: 2{(C\n)==z[(¢\7n), but z2{p = G- (F,(z179)). (To be sure that G~
is applicable in the last equality, note that Fo(z[n) = F(z)[n=2'[n€ ZInp=Y )
Then by definition H(2) = F(z) = 2. _

We prove that H is projection-keeping. Let 2z, 21 € D¢ and € € IS;. Suppose
that zo[¢& = z1 1€, and prove H(z)|é = H(z) €. Let us define z; € D¢ (1 =0, 1)
so that z;[((\n) = z[({\n), but z;[n = F ' (G(2[n)). Then, first, H(z) = F(z1),
second, since both F' and G are projection-keeping, we have zo[€ = 7, [€ and finally
F(zo) [ € = F(z1) €, as required. The converse is proved in the same way. O

Lemma 12 Assume that ( CJ € CPO, X,Y € Perf;, H 1is a projection—keeping
homeomorphism X onto Y. Then the sets X' = X |71 and Y' =Y ["1J belong
to Perfs and the function H', defined on X' by H'(z')[(9\ () =a'[(9\() and
H'(z)[¢{ = H(z'[ (), is a projection-keeping homeomorphism X' onto Y'.

Proof If a projection-keeping homeomorphism F : D¢ onto X witnesses that X €
Perf then the homeomorphism F’, defined on D’ by F'(z')[(9\ () = z’'[(#\ ()
and F'(z')[{ = F(z'[() forall 2’ € D?  witnesses that X’ € Perfy. The rest of the
proof is equally simple. ) O



2 Fusion technique

We shall exploit later the construction of sets in Perl¢ as X =) ¢, U, eom
every X, belongs to Perf,. This section introduces the technique.

X,, where

First of all we have to specify requirements which would imply an appropriate be-
haviour of the sets X, € Perf, with respect to projections. We need to determine,
for any pair of finite binary sequences u, v € 2™ (m € w), the largest initial segment
¢ = ([u,v] of ¢ such that the projections X, [¢ and X, [ have to be equal, to run
the construction in proper way.

Let us fix ( € CPO and an arbitrary function ® :w — (.

We define, for a pair of finite sequences u, v € 2™ (m € w), an initial segment
Coltt,9) = Micm, w(yut [E O = {5 € C: =l <m [u(l) #0(l) & j 2 0(1)]} € T8¢

Definition A ®-splitting system of order m in Perf; is a family (X, : u € 2™) of
sets X, € Perf¢, such that

. ' P S I T S T N SR .
S-1. Xy lCelu,v] = X, [{olu,v] for all u,ve2™, and
S-2. If i€ (\ (ofu,v], then Xu[<iN Xyl<i =0 — for all u,ve2™.

A splitting system (X, : v’ € 2™} is an ezpansion of a splitting system (X, : u € 2™)
iff Xyre C X, forall u€?2™ and e=0,1. ¢ 0O

We consider two ways how an existing splitting system can be transformed to another
splitting system. One of them treats the case when we have to change one of the sets
to a smaller set in Perf¢, the other one expands to the next level.

Lemma 13 Assume that (X, :u € 2™) is a ®-splitting system in Perf;, wug € 2™,
and X € Perf, X C X,,. We re-define X, by X. = X, N (X [lo[u,uo)|71() for
all uw € 2™. Then the re-defined ” family is again a ®-splitting system.

Proof Each set X, belongs to Perf, by lemmas 7 and 11. We have to check only
requirement S-1. Thus let u, v € 2™, £ = (g[u,v]. We prove that X. 1€ = X! |¢.
Let in addition ¢, = (¢fu,ue] and (, = (elv,us]. Then ;

XoTe=(Xu1&) N (Xol(ENG)ITE) and X, {€=(Xo[8) N (Xo[(ENEC)ITE)

by Lemma 6. Thus it remains to prove that €N {, = €N, (the “triangle” equality).
Assume on the contrary that ¢ € £N{, but ¢ ¢ (,. The latter means that 7 > ®(I) in
¢ for some [ < m such that v(l) # ug(l). But then either u(l) # uo(l) - so ¢ & (,,
or v(l) #u(l) —so ¢ g ¢, contradiction. ]

-

& Characters e, d will always denote numbers 0 and 1.
" Notice that X, =X .



We are going to prove that each splitting system has an expansion. This needs to
define first a special construction of the expansion.

Let 1 € {, X € Perf. A pair of sets Xp, X1 € Perf; will be called an -splitting
of X if XoUXy CX, Xolyi=Xily, and Xol<iN X, [<i = @. The splitting will
be called complete if XoU X; = X - in this case we have Xolyi = X1[yi = Xy .

Assertion 14 If ¢ € ( and X € Perf; then there exists a complete 1-splitting of X .

Proof If X = D¢ then we define X, = {z € X : z({)(0) = ¢}, e =0, 1. Lemma 8
extends the result on the general case. ' D

Lemma 15 Every ®-splitting system (X, :u € 2™) in Perf; can be expanded to a
®-splitting system (X, : v € 2™} in Perl; so that for each w € 2™, Xyro, Xum
is a complete i-splitting of X,, where i = ®(m).

Proof, We shall write ([u,v], instead.of..{s[u,v],.since .®..is fixed..,Let ,us. consider,
one by one in an arbitrary but fixed order, all sequences u € 2™. At each step u, we
shall z-split X, in one of two different ways.

Case A. Suppose that there does not exist w € 2™, considered earlier than u,
such that ¢ € ([u,w]. Let X,ag, Xys1 be an arbitrary complete i-splitting of X, .

Case B. Otherwise, let w be the one which was considered first among all sequences
w of the mentioned type. We put Xyne = Xy N (Xurelf<i[7'¢) for e=0, 1.

Let us prove that Xy,ag, Xur1 is a complete i-splitting of X, in this case. First of
all, Xy[([u,w] = Xy, [¢{u,w] by S-1; it follows that X,a.[<i C Xul<i = Xul<i, s0
that the sets X,a. belong to Perf; by lemmas 7 and 11.

By the choice of w, we had Case A at step w. (Indeed, if otherwise i € ([w,w’|
for some w’ € 2™ considered even earlier, then ¢ € ({u,w’] — by the “triangle” equality
in the proof of Lemma 13 - contradiction with the choice of w.) Therefore for sure
Xwnro, Xunr1 is a complete 2-splitting of X,,. In particular, Xy ael«i = Xy[<i. On the
other hand, Lemma 6 implies Xunre[yi = Xul3iN(Xuwrel<i [7! [21]) for e =0, 1, since
[Z1)N[<1] = [<i] - so we get Xurolyi = Xualyi.

By definition, Xuf\c[s,' = X, nre rsf for ¢ = 0,1, so that XuAng,' N Xum [S': =0
because X, ng, Xwar 15 a splitting of X,. Finally, since X, 10, Xya1 is a complete
t-splitting of Xu, and Xul[<i = Xul<i, we have XyaoU Xyay = Xy, as required.

Thus X,ag, Xua1 is a complete i-splitting of X, for all u € 2™. It remains to
prove that (X, :u' € 2™} is a splitting system.

To prove S-1 and S-2, let v’ = u”d and v’ =v"e belong to 2™*': d e € {0,1};
& =([u,v], ¢ =([,v], and Y = X, [€ = X, [{. We consider three cases.

Case 1: 1 & €. Then by definition £ = ¢ C [£i]. We have X [ =Y = Xy [€.
This proves S-1 for the sets X,., X,,, while S-2 is inherited from the pair X,, X,
because £ = ¢ and Xy C X, Xov CX,.

10



Case 2: 1 € { and d =€, say d = e = 0. Then again ¢ = £ by definition, so
S-2 is clear, but 7 € £'. To prove S-1, let w € 2™ be the first (in the order fixed at
the beginning of the proof) sequence in 2™ such that 7 € ([u,w]U[v,w] (e. g w
can be one of u, v). Then, since i € £ = ([u,v], we have i € ([u,w] N ([v,w] by the
“triangle” equality. Finally it follows from the construction (Case B) that

Xuno €= (Xu[€) N (Xunrol<i 171 €) and  Xyao € = (X [€) N (Xunolai] T ).

However X, [€ = X, [€ =Y this proves X,ao[€& = Xyno[€. (Note that ¢ =¢.)
Case 83: 1 €& but d#e, say d=0, e=1. Now ¢ = {N[#1], a proper subset
of £. Let w be introduced as in Case 2. We observe that £ N [<i] = [<1], so

Xu"\o Igl = (Xu “5’) N (XW"O[Q' f_l 5’) and Xv"l [6’ = (Xv fﬁ') N (Xw"l r<i [—] E’)

by the construction and Lemma 6. However X, rol«; = Xuari1{<i because the pair
Xuaro, Xyny is an z-splitting of X,,. Furthermore, X,[¢ = X, [€ = Y [£ because
WXy [ ei=eXy [ b= YiaWesconcludethat Xiagi€h =iXy api:¢'ynas required. :

Let us prove $-2 for some ¢ € (\ ¢. If i/ € ¢ then already Xul<o 0 Xyl = B
If /! € \¢ then ¢ > 1, so that it suffices to prove S-2 only for ' = ¢ = ®(m).
To prove §5-2 in this case, note that Xuaol<i = Xunol<i and Xyai[<i = Xunil<i by
the construction. But Xynaol<i N Xya1[<i = @ because the pair Xyng, Xyar Is an
i-splitting, so Xynglai N Xyril<i =0, O

To formulate the fusion lemma we need a couple more definitions.

Definition An indexed family of sets X, € Perf;, u € 2<¥, is a ®-fusion sequence
in Perf; if for every m € w the subfamily (X, : v € 2™} is a ®-splitting system,
expanded by (X, :u € 2™*!) to the next level, and

S-3. For any ¢ > 0 there exists m € w such that diam X, < e for all u € 2™. (A
Polish metric on D° is assumed to be fixed.) 0

Definition A function ® :w — ( is (-complete iff it takes each value 7 € ( in-
finitely many times. 0

Theorem 16 [Fusion lemma |

Let ® be a (-complete function. Suppose that (X, :u € 2<%} is a ®-fusion sequence
in Perf¢. Then the set X =(),c, U X, belongs to Perf, .

ugE2™

Proof The idea of the proof is to obtain a parallel presentation of the set D = D¢ as
the “limit” of a ®-fusion sequence, and associate the points in D and X which are
generated by one and the same branch in 2<“. So first of all we have to define a fusion
sequence of sets Dy € Perf such that D¢ =D = . U,com D -

11



Lemma 15 cannot be used: we would face problems with requirement S-3. We rather
maintain a direct construction. For m € w, we put (, = {®(): { <m}. Let i € (n,
and {{<m:0(l)=1i} = {I{,,...,l:(.-)_l} in the increasing order. If u € 2™ then we
define u;.€ 2°CY by wu;(s) = u(l}) for all s < s(i), and put .

D.,={y€D="D Vi€ (n(u Cy())},

so that D, is a basic clopen set in D¢. (Note that y(i) € D whenever y € D¢ and
1 € (.) We omit a routine verification of the fact that the sets D, form a ®-fusion
sequence (S-3 follows from the (-completeness of ® ) and |J,gom Du = D¢ for all m .

We observe that for each @ € 2¥ = D the intersections () Xatm and. (), Datm
contain single points, say z, € X and d, € D respectively, by S-3, and the maps
a — I, @+ d, are continuous. Let us define (oa,d] = (.o, Celalm,bIm]. In
particular (gpla,b] = ¢ iff a="5. It follows from S-1 and S-2 that

w'{ alolol = lGolo ] and doGolal = dlGolad] forall abe2”

Tal<i # ol and dal<i # dpl<i whenever i ¢ (ola, 8]

This allows to define a homeomorphism H : D = D¢ onto X by F(d,) = z, for all
a € 2¥. To see that H is a projection-keeping homeomorphism, let ¢ € IS, and, for
instance, dg, dy € D¢ and d, [€ =dy[€. Then & C (ofa,b] by the second line in (#),
so we get z, [€ =z [€ by the first line, as required. 0

Corollary 17 Suppose that X € Perf;, and C, C D¢ is closed for each m € w.
There ezists Y € Perf,, Y C X such that C,,NY is clopen in Y for every m .

Proof [t follows from Proposition 9 that for any m and any X' & Perf; there exists
Y' € Perf;, Y’ C X') such that either Y’ C C,, or Y'NC,, = 8. Therefore we can
define, using lemmas 13 and 15, a fusion sequence (X, : u € 2<%} of sets X, € Perf,
such that X) = X and either X, CC,, or X,NC,, =0 whenever u € 2™ — {or all
m €w. Theset Y =, o, Uyeam Xu is as required. 0

Corollary 18 Assume that X € Perf;, and B C D¢ is a set of a finite Borel level,
There ezists Y € Perfe, Y C X such that either YC B or YNB=0.

Proof ® Let B be defined by a finite level Borel scheme (countable unions plus
countable intersections) from closed sets C,,, m € w. The preceding corollary shows
that there exists X' € Perf;, X’ C X such that every X'NC,, isclopenin X'. Thus
the Borel level can be reduced. When one finally achieves the level of closed or open
sets, the previous corollary is applied. - O

8 In fact this is true for all Borel sets B but needs a more elaborate reasoning.
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3 Reducibility of continuous functions

~

This section studies the behaviour of continuous functions defined on sets in Perf,
¢ € CPO, from the point of view of a certain reducibility.

Definition For each set (, Cont¢ will denote the set of all continuous functions
F:D¢ — reals. (As usual, reals= N=w.) Let F € Cont;, £C(, XC i

1. F is reducible to £ on X iff z[& =y[€ implies F(z)= F(y) for all r,y€X.
2. F captures 1€ ( on X iff F(z)= F(y) implies z(i) = y(2) forall z,ye X . O

Remark 19 It follows from the compactness of the spaces we consider, that if X is
closed then in item 1 there exists a function F’ € Conte such that F(z) = F'(z[§)

for all z € X, while in item 2 there exists a continuous function H : N — D such
that z(i) = H(F(z)) forall z € X . O

.+ ~The following -theorem contains several statements rélated to the hotion ‘of rédicibil-
ity. These statements will later be transformed to properties of constructibility of reals
in the related generic extensions.

Theorem 20 Assume that X € Perf;, £ € IS, and F € Cont;. Then

1. If i,7 € ( and i < j then there exists Y € Perf¢, Y C X, such that the
co-ordinate function C;, defined on D¢ by C;(z) = z(j), captures i on Y .
2 If ie(\€ and F is reducible to ¢ on X then F does not capture i on X .
3. Suppose that for each X' € Perf;, X' C X, and each 1 € € there ezists a

set X" € Perfy, X" C X' such that F captures ¢ on X". Then there erists
Y € Perf;, Y C X such that F captures every 1€ € on Y.

4. If 1 €(, then there exists Y € Perf,, Y C X such that either F is reducible
to [Z1i] on Y, or F captures 1 on Y .

5. There ezists a set 'Y € Perfe, Y C X salisfying one from the following two
requirements:  (a) F is reducible to £ on Y, or

(b) F captures some 1 € (\€ on Y.

Proof We begin with a couple of technical lemmas, then come to the theorem.

Lemma 21 Let £, n € IS.. If F is reducible to both £ and n on X € Perf; then
F ts reducible to 9 =¢(Nn on X .

Proof Let, on the contrary, z,y € X satisly z[9 = y[d but F(z)# F(y). Then
by property P-3 of X (see Proposition 5) there exists z € X such that z[{ =z ¢
and z[n=y|n. Weobtain F(z)= F(2) = F'(y), contradiction. o
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Lemma 22 Suppose that & € IS., the sets X, and X, belong to Perf,, and
X11€ = Xo €. Then either F' 1s reducible to € on X, U X2 — and then obviously
F?X; = F"X,, — or there exist sets X, X; € Perf;, X] C X, and X; C X,, such
that still X{[&= X1, but FPX{NF"X;=0.°

Proof We assume that the function F is not reducible to € on X; U X;,. and prove
the “or” alternative. By the assumption, there exist points =,z € X; U X, satisfying
z1[€ = z2[€ and F(z,) # F(z2). It may be supposed that z; € X; and z, € X,,
because X; [£ = Xz [£. By the continuity of F there exist clopen neighbourhoods U,
and U, of z; and z; respectively such that F”U; N F"U, =§. Lemma 9 provides a
set X{ € Perf,, X| C X, NU, containing z; .

By Lemma 11 the set XJ = Xo N (X [€[7" () belongs to Perf;, and contains z,
since z; [€ = 23 [£. By Lemma 9 again, there exists a set X; € Perf;, X; C X/ NU,.
Now putting X = X N(X51€171¢), we get the required sets X; and Xj . O

We are alrea.dy equlpped enough to, ha,ndle dlfferent 1tems of 'lheorem 20

Item 2. Suppose that F is reduc1ble to £ on X a.nd on the contrary, F does
capture some 7 € (\ £ on X. Then the co-ordinate functlon Ci(z) = z(7) is itself
reducible to £ on X. Since i does not belong to ¢, and on the other hand C;
is obviously reducible to [<i], we conclude that C; is reducible to [<i] on X by
Lemma 21. But this clearly contradicts property P-1 of X (see Proposition 5).

Items 3 and 4 are carried out by one and the same construction.

Let us fix a (-complete function ® and define the initial segments ([, v] = (o[u, v]
(as in Section 2) for every pair of finite sequences u, v € 2<“ of equal length. The
notions of splitting system and fusion sequence are understood in the sense of @ .

We define a fusion sequence (X, :u € 2<%} satisfying Xax = X and the property

(x) f mew and u,v € 2™ then either (1) F is reducible to ([u,v] on the set
X, UX,y, or (2) FPX,NnF*X,=0.

First we put X, = X, as indicated.

Assume that sets X, (u € 2™) have been defined for some m. We use Lemma 15
to get a splitting system (W, : u € 2™*!) which expands the already obtained splitting
system (X, : u € 2™) to the next level m+1. Tt follows from lemmas 9 and 13 (applied
consecutively 2™*+! times) that there exists a splitting system of sets Z, C.W, which
satisfies diamZ, < m~! for all u € 2™*!. (We need this to provide requirement S-3.)

We now consider consecutively all pairs u, v € 2™*'. For every such a pair we
first apply Lemma 22, getting sets S,, S, € Perf, such that S, C Z,, S, C Z,,
Su 1 ¢[u,v) = Sy [¢[u,v], and either the function F is reducible to ([u,v] on S, U S,
or F’S,NnF"S, =0.

9 We recall that F”X is the imageof X via F .
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We set S, = Z, N (Su[¢[w,u] [7' ) for all w € 2™, (8! :w € 2™ is a
splitting system by Lemma 13. Note that S; = S, since S, [([u,v] = S, [([x,v]. This
allows to repeat the operation: putting Z., = S N (S, [Cfw,v]{~1¢) for all w € 2™,
we obtain a new splitting system of sets Z!, C S., (w € 2™*') such that Z= S, and
Z! = §,. This ends the consideration of the particular pair of u, v € 2™+, and one
comes to the next pair.

Let X, C Z, (u € 2™*') be the sets obtained after 2™+% steps of this construction
(the number of pairs u, v to consider). One sees easily that this is a splitting system
in Perf, satisfying (x) for m+1.

After the construction is accomplished for all m, we obtain a fusion sequence of
sets X, (u € 2<¥) satisfying (x). Theset ¥ =, U X, belongs to Perf, by
Theorem 16.

ue2m

Item 4. Let us assume that a set Y’ € X of the “either” type does not exist.
We prove that the set Y = [, U,eom Xu is of the “or” type, that is, F' captures
¢ on Y. Assume that, on the contrary, t.here exists a pa,lr of _points T,y € Y such
‘that F(z) = F(y)" but z(i) # y(i). Let 'z = 2, and y = z;, where a, b€ 2“”tha,t |
is, {z} = Npew Xatm and {y} = ,.c. Xstm, see the proof of Theorem 16. Then
i € (la,b) =), Clalm,b]m] (see assertion (*) in the proof of Theorem 16).

Let m be the least among those satisfying i & £ = ([a [m,b[m]. Then £ C [£1], so
that the case (1) in (%) is impossible for © = a[m and v = b[m by the assumption
of the “either” nonexistence above. (Otherwise F would be reducible to [Z1] on each
of X, and X, !). Therefore F”X, N F"X, =@, contradiction with the choice of z
and y because z € X, and y € X, .

ftem 3. We show that the set Y = [, |J,com Xu proves this item, too. Suppose
that z,y € Y satisfy F(z) = F(y); we have to verify that z[¢& = y[£. As above,
z =1z, and y =z, for some a, b € 2¥. It suffices to check that £ C {[a[m,b[m] for
all m.

Assume on the contrary that ¢ € ([u,v], where u = a{m and v = bjm for
some m. We assert that the case (1) of (%) is impossible for this pair u, v. (Indeed
otherwise in particular F is reducible to ([u,v] on a set X' = X, C X. Take an
arbitrary ¢ € € \ ([u,v]. Then F captures ¢z on a set X" € Perfy, X" C X', by the
assumption of item 3. Thus the co-ordinate function C; is reduced to ([u;v] on X”
- contradiction with the already proved item 2.) Thus we have case (2) of (%), that
is, F"X, N F"X, = 0. But this contradicts the assumption F(z)= F(y).

Item 1. Otherwise, by item 4 C; would be reducible to £ = [Zi] on some Y €
Perf;, Y C X, contradiction with the already proved item 2.

Item 5. Assume that a set Y € Perf; of type (b) of item 5 does not exist. Then by
item 4, if 7 € ( \ £ then every set Y € Perf;, Y C X contains a subset Z € Perf,
such that F' is reducible to {#1] on Z. Arguing as above, we obtain a fusion sequence
(Xy:u € 2%) such that Xy C X and F isreducible to [2®(m)] on X, whenever
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u€2™ and ®(m) €€ Then Y =[, U,com Xu € Perf, .
We prove that Y is a set of type (a), that is, F' is reducible to ¢ on Y
Let us define, for every m € w, an initial segment (, C ( by

Cm = nz<m,¢(z)ee[?-‘q)([)] ={je€¢:~Al<m(j=22()¢¢))}

Then obviously ¢ C (, for all m. Furthermore (n C ([u,v] whenever u,v € 2™
satisfy ¢ C ([u,v].

-

Assertion For any m, F is reducible to (m on Xpn = |, com Xu -

Proof of the assertion. We argue by induction on m. The case m = 0 is trivial: we
have (o = { by definition. Let us carry out the step from m to m+ 1. Let : = ®&(m).
If : €€ then (41 = {»n and the statement is obvious. Therefore one can assume
that i = ®(m) ¢ £&. Then F is reducible to [21] on each set X, (u' € 2™) by the
constructlon of the fusmn sequence.

TR FS T T T B S T N L E I
Suppose that u, v € 2"‘“, and pomt.s T 6 Xu, y € X, sa.tlsfy 33me+1 = nym+1,
and prove F(z)= F() Weput v/ =ulm, v =v[m; then v, v €2™.

We have (n41 C ([u,v] (otherwise X, [(rna1NXy [y =0 by S-2, but z [y =
Y [ (ms1 ), therefore € C ([u,v] because every set (, includes £. This implies £ C
C[u', ). Tt follows (see above) that (, C ([v/,v]. Therefore Xy [(n = Xy [Cn by
S-1,80 y[(n € Xu [(m. We choose some z' € X, satisfying z'[{n = y[{n. Then
F(z') = F(y) by the induction hypothesis, so it remains to verify that F(z) = F(z').

Take notice that =z and z’ belong to X, and z[(n41 = ' [{m+1 by the choice
of z’. Thus it suffices to prove that F is reducible to (my1 on X.. We observe
that, since i = ®(m) ¢ £, F is reducible to [#i] on X, see above. Moreover F
is reducible to (,, on Xy by the induction hypothesis. Therefore F' is reducible to
[Z2i]N(n on X, by Lemma 21. Finally, we have (nt+1 = [£27] N {n by definition. O

We end the proof of item 5 of Theorem 20.

It follows from the assertion that F is reducible to every (, on Y. Th]S allows
to conclude that F is also reducible to ¢ on Y. Indeed assume on the contrary that
c,y €Y and z[€ = y[€é but F(z) # F(y). By the continuity of F there exist
m € w and u,v € 2™ such that z € X,, y € Xy, and F’ X, NF”X, = 0. On
the other hand, we have X, [éN X, [£ # 0, therefore £ C ([u,v] by S-2. This implies
£ C (m C ([u,v], as above. Therefore F' is reducible to ([u,v] on Y, contradiction
with the equality F”X, N F”X, =0, because X, [([u,v]= X, [([u,v] by S-1. a
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4 Introduction to generic models

This section gives an introduction to generic models obtained by forcing conditions in
different sets Perf;. This approach will then be detalized for particular applications.

Ground model. Let 9 be a countable transitive model of ZFC, I € 9 be a
partially ordered set (generally speaking, uncountable in 91 ) — the intended “length”
of the planned Sacks iteration.

We let = = CPOT(I) € M be the collection of all finite and 9M-countable sets
EeM, £ECTI Y therefore 2 C CPO in M.

The forcing. For any ( € E, let P, = (Perf;)™. The set P = Ucez Pe will be the
forcing notion. To define the order, we first put || X|| = ( whenever X € P,. Now we
define X <Y (i. e. X is stronger than Y ) iff (= |Y| C|[|[X|| and X[{( CY .

Notice that every set in P, is then a countable subset of D¢ in the universe.
However we can transform it to a perfect set in the universe by the closure operation:
- theé topdlogical ‘tlosuré “X# of & 'set” X "€ P/ "8 a sét in"Perf; from the point of view
of the universe.

The extension. Let G C P be a P-generic ultrafilter over 9. It easily follows
from Lemma 9 that there exists unique indexed set x = (a; : ¢« € I), all a; being
elements of D, such that x[é € X* whenever X € G and ||X|| = £ € . Then
M[G] = M([x] = M[(a; :: € I}] .

In this section, we prove a cardinal preservation theorem for the extension 9N =
M[G], and an important technical theorem which will allow to study reals in 91 using
continuous functions in the ground model M. We also prove that the model 91 is in
fact a sort of iterated Sacks extensions of 9.

The next section will contain a more detailed study of reals in the extension.

Theorem 23 R remains a cardinal in M. If 2% =R, in M and every proper
initial segment J € M, J C 1 has cardinality cardJ < R in 9 then R remains
a cardinal in M. !

Proof We prove the lst assertion. Let f be a name of a function mapping w to w.

We fix X, € P. The aim is to obtain a condition X € P, stronger than Xp, and a
countable in M set R such that X forces that the range of f is included in R.
We argue in M .

Let & = || Xo||. We define the following objects:

10 In the case when all initial segments of 1 with perhaps the exception of I itself are countable

in M, it might be technically more convenient to define = to be the set of all M-countable initial
segments of I in M .

11 The behaviour of other cardinals depends on the cardinal structure in 9, the cardinality of I,
and the cardinality of chains in I. It is not our intension here to investigate this matter.
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1} a sequence (o C( C (2 C ... of sets (n € E such that & C (p;

2) the set ( = Upewlm € E, and a (-complete function @ :w — (, such that
®(m) € (i for all m;

3) for any m, a ©-splitting system (X, :u € 2™) of sets X, € Perf,,. such that
Xy CXol™ ' G and

(2) Xure C Xy 'Cny1 forall ue2™ and e=0,1;
(b) every set X, (u€2™) has diamX, < m~};

(c) every condition X, (u € 2™) forces f(m) = pu for a certain ordinal p, .

This solves the problem. Indeed, the family of sets Y, = X, [7'( is a ®-fusion se-
quence, 2 therefore X = Mmew Uuezm Yu € Perf by Theorem 16, and X is stronger
than X, by the construction. Finally, X forces that the range of f is a subset of a
countable in 9 set R = {p, :u € 2<“}. So let us concentrate on the construction.

... To begin.with,.we.find.a condition. X ,~strongersthan-the .givensXg; which:decides
the value f(0), and put (o = || Xal|.

Suppose that ®[m, (,, and the sets X, (u € 2™) have been defined. Let
up € 2™. There exists a condition Z,, € Perf, for some (' € 2, (' D (n, whichis
stronger than X, decides the value f(m + 1), and has diamZ,, < (m +1)7'. (We
use Lemma 9 to provide the last inequality.) Let Y = X, [7! ¢’ for all u € 2™; then
(Y, : u € 2™) is a splitting system in Perf;; and Z,, C Y, . Using Lemma 13, we
obtain a splitting system (X! :u € 2™) in Perf, such that X, C Y/ = X,["'( for
all v € 2™ and the condition X = Z,, decides the value f(m +1).

Running this procedure 2™ times, we finally get a set (mi1 € 2, (mt1r 2 (m, and
an auxiliary splitting system (X[ :u € 2™) in Perf, ., such that X C Xy [™' (i1,
diam X! < (m+1)7', and X! decides the value f(m +1) for all u € 2™ .

At this moment, we define ®(m) € (,, appropriately, with the purpose to provide the
final ¢-completeness of ®, and use Lemma 15 to get a splitting system (X, : u' € 2™F1)
in Perf¢ .. such that Xyr, € X, € Xy [ (41 forall w €2™ and e =0, 1. This
ends the recursive step of the construction.

Thus the equality X' = R has been verified.

To prove that R} = RP it suffices to show that, in 9, P does not have an
antichain of cardinality > ¥, .

We argue in 9N . In particular, ¢ =R, .

Let ACP be a maximal antichain. The set Py = |J g c;Perf¢ has cardinality
card Py < ®; (in fact =, of course) for any proper (i.e. other than I itself) initial
segment J C I by the assumptions of the theorem. Therefore there exists an initial

12 We assume that diam(Z[~!¢) < diamZ whenever Z C D¢ and ¢ C (. This suffices to prove
requirement S-3 for the sets X, by diamYy < diamX, < m~! for ue 2™,
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segment J C I of cardinality cardJ < R; such that A" = ANP; is.a maximal
antichain in Pj. It remains to check that A = A’.

Suppose on the contrary that X € A\ A Let ¢ = [|X||, » = (NJ. Then
X € Perf; and Y = X [n € Perf, and € P;. Therefore there exist sets Z’ € A" and
Z € P; such that Z is stronger than both Z' and Y. We come to contradiction if
prove that Z and X are compatible in P .

Let £ =||Z||, sothat n C¢CJ, and ¥ =£U(. Then X' = X [71 9 € Perfy by
Lemma 12. Theset £ = ¥NJ is an initial segment in ¥ and obviously X'[& =Y [ ¢;
therefore Z C X'[¢. Now X" = X'N(Z["!9) € Perfy by Lemma 11. But X” is
stronger than both Z and X . O

Continuous functions

We put F¢ = (Cont¢ )™ for ¢ € Z. It is a principal property of several forcing notions
(including Sacks forcing and for instance random forcing) that reals in the generic ex-
tensions*can”be obtained“by“application*of*continiicus funictions*(having*a“code) in the
ground model, to generic sequences of reals. As we shall prove, this is also a property
of the generic models considered here.

Obviously every F € F¢ is a countable subset of D¢ x w¥ in the universe, but
since the domain of F in 91 is the compact set D¢, the topological closure F# is a
continuous function mapping D¢ into the reals in the universe.

By “reals” we understand elements of the set N = w“, as usual.

Theorem 24 Let J € M be an initial segment of I and r a real in M[x[J].
There exists ( € B, ( C J, and a function F € F; such that r = F¥#(x[().

(It is clear that the equality is absolute for any model containing r, x[{, and F.)

Proof Let r be a name for the real r containing an explicit absolute construction of
r from x[J and some parameter p € 9. Let Xpo € P, & = || Xo|| -

We argue in 9N .

First of all, we observe that by lemmas 7 and 11 the forcing of statements about
r can be reduced to J in the following sense: if X € Perf; forces r(m) = k then
X 1({NJ) also forces r(m) = k. (The usual “restriction” argument.)

Having this in mind and arguing as in the proof of Theorem 23, one gets a system of
objects satisfying 1), 2), 3), with the following corrections: in 1), additionally, ¢, C J
— therefore ¢ C J, and in 3)(c), every condition X,, u € 2™, forces r(m) = k, for
some k, € w. Weset Y, = X,["!1( forall ue2<v,

Let us define a continuous function F' on the set X = [ U,com Yo € Perf¢ as
follows. Let =z € X, m € w. There exists unique u € 2™ such that z € Y,. We put
F'(z)(m) = ky. The function F’ can be expanded to a function F € Cont¢ (that is,
defined on D*). Then X forces r = F'#(x[() = F*(x[(). o
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The “Sacksness”

We are going to prove that the model 91 is a sort of iterated Sacks generic extension of
M, i. e. every real a; is Sacks generic over the model M[{a;:j < i)]. (To be more
exact, we shall not actually prove that, in the case when I is an ordinal in the ground
model 2, the extension N is equal to a “conventional” countable support iterated
Sacks generic extension of 9. This more substantial characterization also true, but
would need much more efforts.)

Theorem 25 FEvery a; is Sacks generic over IM(x|;] = M(a; : 7 <7)].

Before the proof starts, we have to present one more construction of forcing conditions.
Perhaps, Section 1 would be a more appropriate place, but we decide to put it here
because it is used only to prove Theorem 25.

We consider trees T C 2<%. Let a 2<“-like lree be any (nonempty) tree T C 2<%
..such that.the set,,B(T)\=. {t.€ T 120 €. & 2l 1ee L Juof iallisplitting.points. of . T +is
cofinal in T. Suppose T is such a tree. We define the following objects.

o T)={a€2¥:YVm(afm €T)}, aperfect setis D =2%. (Conversely if P C D

is a perfect set then T'={a[m:a € P & m € w} is a 2<¥-like tree satisfying
=[T7.) ;

e An order isomorphism By : 2<“ onto B(T'). We define fr(u) € B(T) for every

u € 2<% by induction on domu, putting fSr(u”e) to be the least s € B(T') such
that fBr(u)?e C s, for e=0,1.

o A homeomorphism Hr : D onto [T] by Hr(a)= (), Pr(a[m) forall a€ D .

Lemma 26 Assume that i is the largest element of ( € E, n=(\{:}, Y € Perf,,
y — T(y) is a continuous map Y into P(2<¥), and T'(y ) is a 2<%-like tree for all
y €Y. Thentheset X ={ze€D:z[neY & z(i) € [T(x[n)]} belongs to Perf, .

Proof of the lemma. The set Z = Y [~' { belongs to Perf; by Lemma 12, so it
suffices to define a projection-keeping homeomorphlsm H : Z onto X, by Lemma. 8.
Let 2z € Z. Then y = z[n € Y while a = 2(:) € D is arbitrary. We define
z = H(z) € D¢ so that z[n =1y and z(i) = Hy(a). Then H maps Z onto X
because every Hr) maps D onto [T(y)]={z(d):zeX & zln=y}. His 1-1
sinceeach Hp is 1—1, and H is continuous since so is the map y —— T'(y). It remains
to prove that H is projection—keeping, i. e. 29[ =2z1[€ «— H(z)[€ = H(z)[¢&
for all z9, 21 € Z and £ €IS,. If ¢t ¢ ¢ then £ Cn and z[& = H(z)[€ by definition.
If : € ¢ then £ = (, so the result is obvious as well. D

Proof of Theorem 25. Suppose that § € M[x[c:] is, in M[x[«], a dense subset
in the collection of all perfect subsets of D = 2¢; we have to prove that a; € P# for
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some P € S. Assume on the contrary that a condition Xo € GNP¢ (¢ € &) forces
the opposite. Since the forced statement is relativized to 9M[x[<;], we may assume that
¢ € [<1]. We can also suppose that i € {, so that ¢ is a maximal element in (. We
put p =(N[<i]=¢\{i}; 7 is an initial segment in (.

We argue in M .

Note that the set D(y) = Dx,y(2) = {z(i) : 2 € Xo & z [ =1y} is a perfect subset
of D=2 for all y € Yy = Xo[n by property P-1 of X; (see Proposition 5).

We argue in M[x (] .

Take notice that y = x [ belongs to Y. Therefore D¥(y) is a perfect set. Thus
there exists a set P € § such that P C D¥(y).

By the assumption, a; = x(i) € P .

Weput 7= {p[m:p€ P & m € w}. Then 7 is a 2<¥-like tree and P = [7].

By Theorem 24, there exist: ¢ € & and a continuous map y — T#(y) : D¢ into
P(2<¥), coded in M, such that ¢ C [<i) and 7 = T#(x[€). We can assume that

.. C ( (otherwise.put., (\.=.(. Uk .and.. X{ = XoJ LG innT wetc.).« Lhen. & C ;v s0 it

can be assumed that simply ¢ =75. Then 7 = T#(y), so that [T#(y)] = P C D¥(y).

The statement “T#(y) is a 2<“-like tree, [T#(y)] € S, and [T#(y)] C D¥(y)”
is relativized to M[y] = M(x [n]; therefore it is forced by a condition Y; € G stronger
than Y, and such that £ = (|Y1]| € [<i]. As above, we can assume that in fact £ =17,
sothat 1 C Y, . :

We argue in M .

The set U = {y € Y1 : T(y) i1s a 2<“-like tree and [T'(y)] € D(y)} is a subset of
Y, of a finite Borel level because T 1is continuous. Therefore, by Corollary 18, there
exists a set Y € Perf,, such that either Y CU or YNU =90.

Suppose that Y N U = @. Then by Shoenfield Y would force that either T#(y)
is not a 2<¥-like tree or [T#(y)] € D#(y) - contradiction with the choice of Y;.
Therefore in fact Y C U. In particular T'(y) is a 2<“-like tree for all y€ Y .

It follows that the set X = {z € D* : z[n € Y and z(¢) € [T(z[7)]} belongs
to- Perf, by Lemma 26 and, since Y C U, we have [T(y)] C D(y) = Dx,,(¢) for all
y €Y, sothat X C Xj.

Since X 1s also stronger than Y, X forces everything which is forced by X
and/or Y;, and everything which logically follows from the mentioned.

In particular, since X, forces that a; does not belong to a set in § while Y;
forces that [T#(y)] € S, we conclude that X forces a; ¢ [T#(y)]. It follows that
X forces a; € Dxsy (i) because by definition Dx,(i) = [T'(y)]. This means that X
forces x [( & X#, contradiction. a
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5 Reals in the extension

Theorem 24 practically reduces properties of reals in P-generic extensions to properties
of continuous functions in the ground model.

Te demonstrate how Theorem 24 works we prove several lemmas on reals in a
P-generic. model M = M[G]. Theorem 20 will be taken as a sourse of different proper-
ties of continuous functions in the ground model.

We keep the notation of the previous section.
Lemma 27 If 7,7 €1 and i <j then a; € M[a;].

Proof Theorem 20 (item 1) implies the existence of a condition X € G such that,
in M, the co-ordinate function C; captures ¢ on X. In other words, in 9 there
exists a continuous function H : D — D such that z(i) = H(z(j)) for all z € X.
It follows that z(i) = H#(z(j)) for all z € X# istruein M. ( H* is the topological
e emmee wClosUre of . Ho,as.a.subset.of D2.).Therefore..a;.= H%(a;) €. M(a;]. .. = . D

Lemma 28 Suppose that J € M is an initial segment in I and 2 € I\ J. Then
a; € M(x[J].

Proof Assume on the contrary that a; € 9M{x [J]. Applying Theorem 24, we obtain
in M aset £ € E, £ CJ, afunction F € Conte, and a condition X € P which
forces a; = F#(x [£). Let ¢ =|X||, so that X € Perf; in 9. We can assume that
£ €IS, and 7 € (. (Otherwiseput ¢'=(UEU{i}, &€ ={7 e :F3€&(' <},
define F'(z') = F(z'€) for 2’ € D, and consider X' = X[ (")

We argue in M .

We have z(i) = F(z[¢) for all x € X, because a; = F#(x[£) is forced by
X. (Indeed otherwise there exist m € w and a condition ¥ C X, Y € Perf, such
that z(z)(m) =0 but F(z[€)(m) =1, or vice versa, for all z € Y, by Lemma 9, a
contradiction with the choice of X .) Thus the co-ordinate function C; is reducible to
€ on X, a contradiction with Theorem 20 (item 2) because & £ . 0

Lemma 29 Suppose that £ € E and r is a real in N such that a; € M[r] for all
i € £. Then the indezed set x 1€ = (a;::1 € ) belongs to M[r].

Proof Otherwise by Theorem 24 there exist: a set ( € 2 such that ¢ C {, a function
F € F¢, and a condition X € P, which forces that a; € M{F#(x [()] for each i € ¢,
but also forces x [£€ & M[F#(x[()]. One can assume, by Lemma 27, that & is an
initial segment of (.

We argue in 1.

We assert that if ¢ € £ then for any set X' € Perf,, X' C X, F captures : on
a condition Y € Perf;, Y C X’. (Indeed, otherwise by Theorem 20 - item 4, there
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exists a condition Y € Perfy, Y C X such that /7 is reducible to n = (N[Z%] on Y.
Then Y forces F#(x[¢) € M[x[7n], hence forces a; € M[x [5] by the choice of X,
contradiction with Lemma 28 since z ¢ 7 .)

Now, using Theorem 20 (item 3), we obtain a condition Y € Perf;, Y C X such
that F captures each ¢ € ¢ on Y. This implies the existence of a continuous function
H:N — D% such that x[€ = H(F(z)) for all z € Y. We conclude that Y forces
x €€ MF#(x ()], contradiction. o

Lemma 30 Suppose that J € M is an initial segment of 1, and r is a real in M.
Then either v € 9M[x [J]| or there exists ¢ ¢ J such that a; € M(r].

Proof It follows from Theorem 24 that r = F#(x [() for some ¢ € E and a function
F € Cont; in M. Let this be forced by some X € Perf,. We assume on the contrary
that r does not satisfy the requirements of the lemma, and this also is forced by X .

We argue in M .

We put € = ¢NJ. Then ¢ is an initial _ségr‘nentof'C Tt is imbli"ea'by‘ Theorem 20
(item 5) that there exists Y € Perf;, Y C X, such that either F is reducible to ¢
on Y or F capturessome 1 € {(\{ on Y.

Consider the “either” case. There exists (see Remark 19) a function F’ € Cont,
such that F(z) = F'(z[£) for all z € Y. In this case ¥ forces that r € M[x ¢,
contradiction with the choice of X and Y because £ C J.

Consider the “or” case. There exists a continuous H : N — D such that z(z) =
H(F(z)) forall z € Y. Then Y forces a; = x(i) = H¥(F¥#(xI()) € M[F*(x ()],
again a contradiction with the choice of X and Y because 1 & J. O

The “discrete” case and the degrees of constructibility

In this subsection we consider a special but. quite important class of sets I which admit
a complete description of the degrees of 91-constructibility of reals in the extension. As
a rather simple corollaries, we shall prove theorems 3 and 4.

We keep the notation introduced above.

Definition A (partially ordered) set I € 9 is called 9M-discrete iff all initial segments
of I belong to M. O

For instance Z (the integers), ordinals, and inverse ordinals are discrete. Rationals and
reals in M are not discrete. An infinite set with the empty order is not discrete.

For areal r € M, weset I, = {t € I:a; € M[r]}, then I, is an initial segment
of I by Lemma 27. The following theorem shows, in particular, that in the case of a
discrete set 1 the 9-degrees of reals in 91 are in a 1-1 correspondence with initial
segments of I having countable cofinality in 91 .
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Theorem 31 Suppose that 1 is M-discrete. Then

1. For each real r € M, I, belongs to MM and has countable cofinality '* in M.
Conversely each initial segment J € M, J C I, of countable cofinality in M,
has the form J =1, forarea r€N.

2. If (€E iscofinal in I, then M[r] = M[x [(].
8. Forallreals ry7" €N, reM[] f I, CIL..

4. For all reals v, 7" € M, if r € M[r'] then there exists H € M, a continuous
map reals — reals from the 9M’s point of view, such that r = H#(r')

Proof Jtem I. First of all, I, € 9 since I is M-discrete. We have r € M[x [1,]
by Lemma 30. Hence r € M[x [£] for some £ € E, £ C I, by Theorem 24. It follows
that a; € M[x [£] whenever i € I,. Therefore £ is cofinal in I, by Lemma 28.

Conversely, suppose that J € 9 is an initial segment of I of countable cofinality in
v Let e O be d countablesin® M cofinal subset 6f T Obviously*thére exists'ad real
r € M such that M[r] = M[x [€]. One easily proves that J = I, using Lemma 27.

Item 2. Let ¢ € E be cofinal in I,. Then x[{ € M[r] by Lemma 29.- As above,
r € M[x1€] for some £ € E, £ CI,. Let 7' € N be a real which codes x{({ in
the sense that M[r'] = M[x [(]. Then, since every i € £ is < than some j € (
by the cofinality of {, we have a; € M[r'] for all ¢« € £ by Lemma 27. Therefore
x [€ € M['] by Lemma 29. We conclude that r € M[x (], as required.

Item 8. Suppose that I, C I,.. As above there exists £ € E, ¢ C I,, such that
r € M[x[£]. Then we have £ C I+ as well, hence x[¢ € M[r'] by Lemma 29.

Item 4. Let J = I,.. Assume on the contrary that such a function H does not exist.
Arguing as above, we find ( € E and functions F, F’ € F; such that r = F#(x[()
and r' = F'#(x[(), and a condition X € P, which forces the assumption as a property
of ¢, F, F', and also forces that J = Ipi(x1¢) and F#*(x[() € M[F*(x[()].

We argue in M .

Then X € Perf; and F, F' € Cont¢. Let £ =(N.J.

Fact 1. There exists Y € Perf;, ¥ C X such that F' captures every : €{ on Y.

Indeed we observe that for all ¢ € ¢ and X' € Perf;, X' C X, there exists
Y € Perf¢, Y C X' such that F' captures ¢ on Y . (Otherwise by Theorem 20 -
item 4 there would exist a condition Y € Perf;, Y C X’ such that F’ is reducible
ton={j€(¢:j5 %1t} onY for some 7 € £. Such a condition Y forces that

13 We understand countable cofinality so that it includes in particular sets having the largest element.

14 7This item should be true independently of the assumption that I is discrete. In fact.it should be
true that, given a pair of functions F, F/ € Cont¢ and a set X & Perf¢, there exists Y € Perf,
Y C X, such that either for a continuous H : reals — reals we have F(z) = H(F'(z)) for all
z €Y, or,forsome i €, F captures i on Y but F’ isreducible to [#i] on Y .
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F'#(x [ () belongs to M[x [n], therefore that a; belongs to M[x 7], contradiction
with Lemma 28.) It remains to apply Theorem 20 (item 3).

Fact 2. There exists Z € Perf;, Z CY such that F is reducibleto £ on Z.

Indeed otherwise by Theorem 20 (item 5) F would capture some i € (\¢ - therefore
it € J - onsome Y’ € Perf,, Y’ C Y. Such a condition Y’ forces a; € M[x [J],
contradiction because i & J .

To end the proof of item 4, we observe that by the choice of Y and Z one has
F(z) = H(F'(z)) forall z € Z, for a certain continuous function H :reals — reals,
one and the same for all z. Then Z forces F#(x[() = H*(F'#(x{()), contradiction
with the choice of X . a

A model in which all nonconstructible reals collapse « to ¥;

To get 2 model for Theorem 3 we suppose tha.t' K is an uncountable cardinal in 9.
'Let I=«" (i. e. x with the inverse order) Obv10usly I'is M-discrete. "

Take notice that every (nonempty) initial segment of I has cardinality = in 1.
In this case, since by Lemma 31 I, is nonempty for any real r ¢ M, and all reals a;
are pairwise different by Lemma 28, 9[r] contains at least & different reals. However
RM is preserved by Theorem 23. This proves Theorem 3. O

A cardinal invariant to distinguish iterated and product Sacks forcing

We prove Theorem 4. We recall that the cardinal [ was defined in Introduction.

Proposition 32 In any countable support product Sacks extension of M with at
least ¢™-many factors, | = ¢ .

Proof In such an extension, ¢ is equal to the number x of factors. Indeed since the
reals a, are pairwise incompatible in the sense of the 9M-constructibility, there cannot
exist (in the extension) a family JF of less than « functions f:reals — reals such
that <g linearly orders the reals. a

Proposition 33 In any iterated Sacks extension N of M, of the type we introduced
in Section 4, via a M-discrete p. o. set 1€ M, [ < card P

Proof The order <5 determined by family F of all continuous functions coded in
M — is a linear ordering on the reals in 91 by Theorem 31 (items 1 and 4). a

We observe that in the case of “long” products and iterations (strictly more than
¢™ factors or iteration steps), the invariant [ really makes a distinction between the
product and iterated models. O
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6 Non-Glimm-Effros equivalence relations

This section presents the proof of theorems 1 and 2. The proofs differ in some detail, but
also have much in common, in particular are based on several facts of general nature.
Therefore we start with those general properties of the iterated Sacks models, and then
detalize the reasoning at the appropriate splitting point.

We keep the notation (P, P, for ( € Z, x etc.) of the preceding sections, but
assume the following in addition:

(i) 9, the ground model, satisfies the axiom of constructibility V =L .
(ii) I is an 90-discrete set, that is, all initial segments of I belong to 9.

Let us fix a P-generic over M set ¢ C P and consider the equivalence relation C,
defined on reals by

zCy iff  Llz] =Ly},

in_the model 9 = M[G] = M([x] = M[(a; : i € I)], Take notice that C-equivalence =

classes degrees of constructlblllty of rea.]s and degrees of M- constructlblhty of reals —
is one and the same in I since M models V=1

We say that a set S of reals is C-invartant if z Cy implies z€ S «— y € S for
any two reals z,y. We say that a variable v is C-invariant in a formula ¢(v) if it
enters the formula only through the expression L[v].

Applications of uniformity of the forcing

In this subsection, we explmt the uniformity of the forcing, to obtain some definability
results.

Foraset 7€M, I CI, welet x[] be the name for x[/ = (a; :7 € I} in the
forcing language associated with P, to avoid ambiguities.

Proposition 34 Suppose that € € 2, J ts an initial segment of 1, and the variable
v is C-invariant in o(x [J,v), @ formula containing ordinals and x[J as parameters.
Assume that 9 € 2, ¥ =9NJ, and a condition Z € Py forces o(x[J,x[£). Then
the weaker condition Z' = Z[9¥' forces p(x[J,x[€) as well. -

Note that the assertion is not merely an example of the usual “restriction” argument
because it is not excluded that & € J. However x[{ enters the formula’in quite a
specific way: in fact only the L-degree of x[¢ rather than x{¢ itself participates
in the formula. This makes it possible to use the homeomorphisms included in the
definition of forcing conditions in Section 1.

Proof Assume that this is not the case. We assert that there exist: ( € E and a
pair of conditions X,Y € P, such that X [¢' =Y [{’, where ('=(NJ, X forces
w(x[J,x[£), but Y forces ~p(x]J,x[{).
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(Indeed, let us argue in M. There exists a condition Z* € Perfy» for some 9* 2 9,
stronger than Z’, which forces = p(x[J,x[{). We define ( = 9*Ud and Y =
27V, Xt =2Z|7'(; then Y, X* € Perf; by Lemma 12, X* forces (x x[J,x[£)

and Y forces —~(x[J,x[€). Toobtain X, let ¢’ =¢NJ; then ¢’ =9~NJ. Then
X*1¢' = Z' 7' ¢ while Y[¢' = Z*[{'. Therefore Y|{' C X" [¢' because Z* is
stronger than Z’. We conclude that X = X* N (Y [¢'[7! () € Perf; by Lemma 11,
and X [{¢'=Y'=Y[( Finally, X C X, therefore X forces o(x[J,x[§).)

In M, both X and Y are members of Perf;. Lemma 10 asserts that there exists

a projection—keeping homeomorphlsm H : X onto Y, satisfying z [({’ = H(z)[{" for
all z € X, because X [('=Y (.

The homeomorphism H induces a total order automorphism of the part of P
stronger than X onto the part of P stronger than Y, by lemmas 8 and 12. Take
notice that this automorphism does not change projections outside of ¢\ {’, therefore
does not change the projection on J because (' =(NJ.

Applying the automorphism to the given generic set G, we obtain a P-generic.
“over M set “G" C'P “and the corfesponiding X' € DI “sich that™ Y€ ¢, ~M[G] =
MG, x[J = x'|J (by the “does not change projections” property above), and
finally M[x €] = M[x'[€] for all £ € E because H € M. Thus one and the same
generic extension 9t = M[G] = M[G’] is defined using two different generic sets.

We observe that the statement o(x [J,x [£) is true in N = M([G] while the state-
ment p(x[J,x'[€) is false in 9 = M[G’] by the choice of X and Y, contradiction
since the variable v is C-invariant in the formula ¢(x[J,v). O

Corollary 35 Suppose that £ € E, J 1is an initial segment of I, and the variable
v 1s C-invariant in o(x{J,v,a), a formula containing ordinals and x|J .as parame-
ters. Then the set Q) ={a<A:MNEe(x[J,x[€a)} belongs to M[x[J] for every
ordinal A € M.

Proof Wehave 0, = {a <A :3X e G[||X||CJ & X forces p(x[J, x[€,a)]} by
Proposition 34. Therefore it suffices to prove that

(X €G: X[ SJ}={XeP: X CJ & x[|X]| € X*}.

The nontrivial direction is O, so assume that 9 C J, X € Py, and x[d € X¥#, and
prove that X € G. Suppose on the contrary that some Z € G forces the opposite, and
also forces that x [9 € X#. One may assume that ¥ C ¢ = |Z] .

Then, in M, X € Perfy and Z € Perf;. Lemma 9 implies the existence of a set
Z' € Perfy, Z' C Z, such that either Z’'{d C X or (Z'[9)N X = @. In the first
case Z' is stronger than X, so Z’' forces that X belongs to G, contradiction. In the
second case, Z' forces that x[9 ¢ X#, contradiction as well. » O
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Applications of order automorphisms

An ordinal does not admit a nontrivial order automorphism. However both nonlinear
wellfounded order relations and nonwellordered linear orders do admit. We consider the
effects available in the case when I, the intended “length” of the Sacks iteration, has a
nontrivial order automorphism.

Proposition 36 Suppose that J s an initial segment in I, h € M is an order
automorphism of I, h[J is the identity, 1 € I, h(1) =1 # i, A € N-is a set of
reals, definable in M by a formula containing only x[J and ordinals as parameters.
Then, in M, AN[ajc=0 f Anfavlc=40.

Proof Let A= {r:¢¥(x[J,r)} in M, where ¥ contains only x[J and ordinals as
parameters. Let o(x [J,r) be the formula 37/ (r Cr' & P(x|J,r)).

Assume on the contrary that e.g. AN[a]c #0 but An[ay]jc =0 in N. This
. means.that,.in..0N, (X J,1).ds.true.foruany .r. €.[a;] c-.and.false for.any .7 € [ai]c. .
Therefore a condition X € G forces

Vr{rCa; — o(x[J,r) and rCap — “‘P(X[JJ)]~ (*)

Let 4 = || X| and ¥ = d N J. It is implied by Proposition 34 (take ¢ = {i} and
£ = {7’} independently) that even the weaker condition Y = X |9’ € G forces (x).

The automorphism h obviously generates an order automorphism Z +— 2’ :
P onto P. We observe that Y’ =Y because h is assumed to be the identity on the
set J2V =|Y|.

Weset G'={Z': Z € G}. Then Y € G', G’ is P-genericover MM, and moreover,
M[G'] = M[G] because h € M. Let x' = (a’:j €I) be defined from G’ as x was
defined from G. Then we have aj ;) = a; for all j; in particular (a) aj, = a;, and
(b) x'tJ=x1{J.

Since Y forces (*), (b) implies — o(x[J,7) in 9 = M[G’] for any real r € N
satisfying » C a% in 91. On the other hand, the same property of Y directly implies
e(x[J,r) in N = M[G] provided rCa; in N, contradiction by (a). a

Proof of Theorem 1

We prove Theorem 1 in this subsection. In principle, a special choice of a model where C,
the equiconstructibility on reals, neither admits a R-OD enumeration of the equivalence
clesses by sets of ordinals, nor admits a R-OD pairwise C-inequivalent set of cardinality
¢, is not necessary. It occurs that everything what we need in addition to requirements
(i) and (ii) (see the beginning of this section) is the three more requirements:

(iii) In 9, I is not countably cofinal and has cardinality either R or RJ*.
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(iv) Every proper (i. e. J # I) initial segment J € I (belongs to 9 by (ii) and)
satisfies card J < cardI in 9.

(v) If J be a proper initial segment of I then there exists an order automorphism
h € M : 1 onto I, equal to the identity on J but not equal to the identity on I.

Surely a wellordered set I cannot satisfy (v), but we have both nonlinear wellfounded
order relations and nonwellordered linear orders I € 9 which do satisfy (ii) through
(v), see the examples below.

Theorem 37 Suppose that conditions (i) through (v) are satisfied. Then it is true in
N that C has c-many equivalence classes and :

- neither admils a R-OD enumeration of the equivalence classes by sets of ordinals;

- nor admits a R-OD pairwise C-inequivalent set of cardinality ¢ .

.In addition, .« =.RP.=R™, provided .card I.=.R™ _in. M, ..and. ¢ = RP =R _provided-. -
1 1 1 ST R e T

cardI = R® 4in 9.

This theorem obviously implies Theorem 1, provided we are able to realize requirements
(i) through (v) on a partial order I in a countable model M =V =1L .

Proof We prove the “additional” part of the theorem. The cardinals R, and X, are
preserved by Theorem 23. The reals a; (i € I) are pairwise different by Lemma 27,
therefore ¢ > cardI in 9. On the other hand, ¢ < card Ex R in 9 by Theorem 24,
therefore ¢ < cardI in M, whichever cardinality, R or R, I hasin M.

This reasoning also proves that C has ¢-many equivalence classes in 9, because
different a; are C-nonequivalent, not merely different. Therefore it remains to prove
the “neither” and “nor” statements.

We prove the “nor” part of the theorem. Let a pairwise C-inequivalent set S of reals
be defined in M by a formula containing ordinals and a real p € 91 as parameters.
It follows from Theorem 31 (items 1 and 2) that J = I, is an initial segment in I of
countable cofinality in 91, furthermore p € 9M[J] by Lemma 30. Then S is definable
in N by a formula containing x[J and ordinals as parameters.

We assert that S C M[x |J]. Indeed, let r € S. We have M[r] = M([x [¢£] for
some { € & by Theorem 31 (items 1 and 2). Therefore r is definable in_91 as the
unique real r € S which satisfies the equality L[r] = L[x[£{]. Then r € M[x[J] by
Corollary 35, as required.

It remains to prove that reals in 9[x[J]| generate less than c-many 9M-degrees
in 9. It suffices to check that J has (< card I)-many initial segments in 9, by
Theorem 31 (item 3).

Since J is countably cofinal in 9, it follows from (iii) that J s I, therefore
card J < cardI in 9 by (iv). We have two cases, by (iii).
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Case 1: cardI = ¥; in 9. Then J is countable in 9M. The collection IS; of
all initial segments of J is a Borel subset of 27, hence either IS; belongs to 9 and
is countable in M, or IS, € M. However the “or” case is incompatible with (ii).

Case 2: cardI =R, in M. Then cardJ < ¥; in M, so that J has at most ¥
countable subsets in 91, i. e. less than cardI =R, .

We prove the “neither” part of the theorem. It follows from Theorem 31 that for
each real r € M there exists unique initial segment I, € IS such that M[r] = M[r’
iff I, =1I,. Thus the map r —— I, enumerates the C-classes by initial segments of
I (all of them belong to M by (ii), therefore we can extract even an enumeration by
ordinals) in 9, but we shall see that such an enumeration cannot be R-OD in 91!

Suppose that on the contrary U is a R-OD enumeration of C-equivalence classes in
M by sets of ordinals. Then, as in the proof of the “nor” part, U is definable in N
by a formula containing ordinals and some x[J - where J € 9 is an initial segment
of I, J#1I, - as parameters.

We assert that U(r) € M[x[J] for each real r € M. Indeed, there exists £ € &
such that 9M[r] = D)I[x [€]. Then U{r) is definable in 91 as the set of ordinals
equal to the value U(r') for an arbitrary real =’ such that L[r'] = L[x €], hence

U(r) € M[x[J] by Corollary 35.

Thus each C-class is definable in 91 by a formula containing only ordinals and x [J
as parameters. In particular, x[J plus ordinals is enough to distinguish all C-degrees
from each other. This leads to a contradiction.

It is provided by condition (v) that there exist 7 € I and an order automorphism
h € M of I suchthat A[J is the identity but h(z) =1’ #i. The C-classes [a;]c and
[ay]c are different (by Lemma 27, since. i # ') in 91. Moreover, as we demonstrated
above, each of them is definable in 91 by a formula containing only x[J and ordinals
as parameters. But, this contradicts Proposition 36: for take A to be any of the two
sets, [adc or [av]c. 0

Particular models

Let 9M be a countable transitive model satisfying the axiom of constructibility, so that
(1) is provided. The following examples of the p. o. set I, the “length” of the iteration,
demonstrate different possibilities of realization of conditions (ii) through (v).

Ezample 1: I = w x{0,1} (w{™ copies of the unordered two-element set {0,1}),
ordered lexicographically. “Simmetries” (a,0) «— {(a,1) for big enough ordinals «
prove (v). In the extension, ¢ = R® = R . (In this case the extension M = M[G] is
in fact the ordinary Sacks x Sacks counta.ble support iteration of length w™.) '

Ezample 2: I = wP x {0,1}. Quite similar to the previous one, however we have
¢ = RF = RJ in the extension. (One gets nothing new taking say w3, because in this
case R collapses to R in the extension.)
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Ezample 8: Iy = w® x Z (w™ copies of the integers Z = {... -1,0,1,2,...} ),
ordered lexicographically. This is a linearly ordered but not wellordered set, so the model
cannot be defined as an ordinary Sacks iteration. (v) is provided by shiftings inside a
far enough Z-group. We have ¢ = R = R® in the extension.

Ezample 4: Iy = w x Z. Similar to the previous example, but ¢ = RP = R} in
the extension.

Ezample 5: Is = w® x (Z x {0,1}), ordered lexicographically. (As above, the two-
element set {0,1} is assumed to be unordered, 1. e. ordered by the empty order)

Thus, from the point of view of 9, I5 is the set of all triples i = (o, z,d), where
a<w, z€Z, and d = 0,1, partially ordered lexicographically, but of course not
wellfounded and not linear. To avoid any ambiguity, we stress that (o, z,d) < {/, 2/, d’)
in I iff either a < o' or a =¢' & 2 < 2/, independently on the values of d, d'.

Ezample 6: Is = w x (Z x {0,1}).

-+ Thissends-the-proof~of"Fheorem-1. - ==+ -« ~ v mrevima e O

Proof of Theorem 2

Let I be one of the sets 5, s henceforth. (The difference between the two possibilities
will be essential only for the computation of ¢ in the extension.) The requirements (ii)
through (v) are obviously satisfied.

Take notice that the pairs of the form {{ea,2,0),{a,2,1)}, and only-them, are
order-incomparable in T.

We keep the notation introduced above. Let us fix a P-generic over 9 set G C P
and consider the generic extension M = M[G] = M([x] = M[(a; :: € I))] .

The plan is to define, in N, an uncountable IT; set W such that the relation of
equiconstructibility C restricted to W also belongs to I13, prove that C[W behaves
in N similarly to the unrestricted C in the models of the preceding subsection, and
finally expand C[W to all reals in M, putting the expanded relation to be the equa.hty
outside W .

Theorem 38 [t is true in M that there exisis a I} set of reals W such that the
restricted relation C[W is [I), has ¢c-many equivalence classes, and:

- neither admits a R-OD enumeration of the equivalence classes by sets of ordinals;

- nor admits a R-OD pairwise inequivalent set of cardinality ¢ .

In addition, ¢ = R® = R provided I =I5, and ¢ = RF = XY provided 1= Is .
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First of all we demonstrate that this theorem implies Theorem 2. We have to expand
the relation C|W onto all reals. Let us define the relation C’' on realsin N as follows:

eCy ff (z,yeW & zCy) Vz=y.

The expanded relation is a [I] equivalence relation on reals in M. The C’-classes are
the old C-classes of reals in W plus the singletons {z}, z ¢ W. Therefore"C' cannot
admit a R-OD enumeration of the equivalence classes by sets of ordinals since otherwise
such an enumeration would be available for C|W, contradiction with Theorem 38.

Finally, ¢’ does not embed E, via a R-OD embedding. Indeed, since Eq-classes are
countable while the newly added C'-classes are singletons, the embedding must embed
Eo in CJW; this implies the existence of an uncountable R-OD pairwise inequivalent
subset of W simply because Ey; admits pairwise inequivalent perfect sets of reals —
again contradiction with Theorem 38. "

Proof of Theorem 38. It will be technically more convenient to define W as a set

of pairs of reals rather than reals themselves, but essentlally this does not make a big
difference.

Definition In D, W is the set of all pairs of reals (z,y) such that, for some ordinal
a (a<w® inthecase I =1 and o < w? inthecase I = Ig) and z € Z, either
z Cas and y Cag,, or vice versa zC ag;; and y Cagso . a

Lemma 39 In N, W isa II} set and the restriction CIW is a I} relation.

(We understand that (z,y) C (z/,y") iff L[z,y] = Llz’,¥']. In particular it is always
true that (z,y)C (y,z), but (z,y) C(z’,y’} does not imply zCz" or yCy’.)

Proof of the lemma. We observe that by Theorem 31, W coincides with the set of all
pairs of reals (z,y) such that z and y are <i-incomparable (that is, neither z € L{y]
nor y € L[z]), whichis [T}, in 91.

We further assert that, given pairs (z,y) and {(z’,3') in W, itis truein 91 that
(z,y) € L[z',y'] iff {(z',y') & L[z]. Indeed, let on the contrary (z,y) € L[z,y'] and
(z',y') € L[z], so that y € L{z] — contradiction because z and y are incomparable.

For the converse, suppose that {z,y) € L[z’,y']. Take notice that since the pairs
belong to W, one can assume that (z,y) = (as:0,84:1) and (z',¥') = (asz0, @azn)
for some ordinals «a, @ and integers 2,2’ € Z. Since (z,y) € L[z',y], we have
(o/,2') < {a,2) lexicographically, therefore (o,2',d') < {a,z,d) in I for any choice
of d,d" € {0,1}. Therefore {z',y') € L{z] in M by Lemma 27, as required. o

After we have established the class 1] of both the set W and the relation C[W,
the remainder of the proof of Theorem 38 can be carried out similarly to the proof of
Theorem 37 above.
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For instance, practically the same reasoning proves the “additional” assertion, as well
as the fact that C has c-many classes on W. But the “neither” and “nor” assertions
need some care.

We prove the “nor” part. Suppose on the contrary that,in 91, § C W is a pairwise
C-inequivalent R-OD subset of W of cardinality ¢. We recall that W consists of pairs
of reals. Let us consider the set §' = {z :-y({z,y) € S)}. Then, in M, 5 is
a pairwise C-inequivalent R-OD set of reals of cardinality ¢ — contradiction with
Theorem 37.

We prove the “neither” part. Suppose on the contrary that, in 91, U is an enu-
meration of the collection of all (C|W)-equivalence classes by subsets of an ordinal .
In other words, U maps W into P(y) so that U(z,y) = U(z',y") iff (z,y)C{(z",y’).

It is easy to see that if both (z,y) and (z,y’) belongto W then y Cy’, so we have
U(z,y) = U(z,y’). Thus one can define, for each real z € W’ = {z : Iy ((z,y) € W)},
U'(z) = U(z,y) for any y satisfying (z,y) € W.

..,...Take.notice.that W' is the set,of all reals_z € M _such that _z Ca; in IN_for,some.
i = {(a,z,d) € I, in particular, W’ is a C-invariant set. '

[t is not completely true that U’ enumerates C-classes of reals in W’. Of course
z Cz' still implies U'(z) = U’(z’), but now not conversely. But the following is true:
if U'(z) = U’'(z') then there exist @ (@ < w in the case I =I5 and a < Wi in
the case I = Is) and z € Z such that each of the reals z, z’ is C-equivalent to one of
Q,2:0, A4z1, Independently of each other.

(One may say that U’ is an enumeration of the C*-equivalence classes, where the
equivalence C* is defined so that, in addition to C, it glues each pair ag,0, 8as1 in
one class. This “amalgamation” of classes makes the simmetries (e, 2,0) «— (o, 2,1)
useless, but fortunately we still have the other type: shiftings inside Z-groups. This
allows to run the reasoning in the proof of Theorem 37.)

We first notice that U’ is definable in 91 by a formula containing ordinals and some
x [J, where J € O is an initial segment of I not equal to I, as parameters — see the
proof of Theorem 37 above. Then U'(z) € L{x[J] in M for all reals z € W', again
as in the proof of Theorem 37.

Since J # I, there exists an ordinal a (@ < w® in the case I =15 and o < w
in the case I = Ig) such that (a,z,d) does not belong to J for all z and d. In
particular both ¢ = (,7,0) and ¢ = («,8,0) are not members of J .

Let us define an order automorphism A of I by h({a,zd)) = (a,z+1,d) for all
2 € Z and d =0, 1, and this particular e, and h({a',z,d}) = («,z,d) whenever
o #a. Then h € M, h(t)=1', but h[J is the identity.

To end the proof of the “neither” part (and Theorem 38 as a whole), it now suffices
to reproduce the very end in the proof of Theorem 37. O

This also ends the proof of Theorem 2. ]
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