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Abstract
We present a pseudodifferential ealculus for boundary value problems on manifolds with

conical singularities. We then show how to associate to each totally eharacteristic (Fuchs type)
pseudodifferential symbol with values in Boutet de Monvel's algebra an operator-valued Mellin
symbol is such a way that the differenee between the two corresponding operators is smoothing
in the interior. This allows us to extend the action of the operators to weighted Mellin-Sobolev
spaces.
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Introduction

Following the work of Kondrat'ev, Plamenevskij, and Schulze it is now a widely accepted
idea that the analysis on manifolds with conical singularities should be based on (i) a
pseudodifferential calculus using totally characteristic (or Fuchs type) symbols near the
singularities and (ii) weighted Sobolev spaces.

A basic motivation is the interest in an index theory within a pseudodifferential al­
gebra that contains what one considers the typical differential operators: Near a corncal
singularity we identify the manifold with the cylinder X x R.r where X is a srnooth
compact manifold with boundary. Then the typical differential operators are those of
the form A = t- J.I L:j==0 Aj ( t )(t8t )j with families Aj ( .) of differential operators of order
J-L - j on X which are smooth up to t = O. One reason for this point of view is that
any Laplace·Beltrami operator associated with the Riemannian metric t2hx(t) + dt2 of a
warped cone provides an example for an operator of this kind whenever hx (.) is a family of
Riemannian metrics on X which is smooth up to t = O. Another justification sterns from
the observation that one can introduce an 'artificial' conical point on a smooth manifold
by introducing polar coordinates and that under this operation any differential operator
assumes this form; for details see [14]. In particular, suppose we are given a differential
operator and a conical domain D in Euclidean space; then the operator will have the
above type in the natural polar coordinates for D.

Operators of this kind are called totally characteristic or Fuchs type operators. Corre­
spondingly, a totally characteristic pseudodifferential operator of order p. on the cylinder
X x R+ is one whose symbol, up to the weight factor t-J.I, is of the form a( x, t, ~, T) =
b(x, t, ~, tT), where b is a usual pseudodifferential symbol which is smooth up to t = O.
The weightecl Mellin-Sobolev space 'H3

,"y are best described for sEN, when they consist
of all functions u such that tn/2-~(tat)kD~u E L2(X x R+) for all k +lai ~ Sj for general
sone can use duality and interpolation. Here, x and t are the variables on X and R+,
respectively, ~ and T are the corresponding covariablesj n is the dimension of X.

Outside a neighborhood of the singularities, Boutet de Monvel's calculus in its standard
form is the natural choice.

The principal analytical problem then is to define a quantization that associates with
a totally characteristic pseudodifferential symbol a continuous operator on the weighted
Sobolev spaces. This plays a crucial role for example in the construction of parametrices
to totally characteristic differential operators. The Leibniz inversion of the symbol yields
a totally characteristic pseudodifferential symbol. Apriori it is by no means clear how to
define from this symbol a continuous action on the weighted Sobolev spaces.

This is the question we address in this note. Our answer is what we call 'Mellin quanti­
zation '. We show that, for every weight , and each totally characteristic pseudodifferential
symbol a with values in Bautet de Monvel's algebra on X which is smooth up to t = 0, we
find a Mellin symbol f such that the difference op a - opAtf is a regularizing operator in
Boutet de Monvel 's calculus on the nonsingular part of the manifold. Here, opM-f is the
weighted Mellin pseudodifferential operator associated with the operator-valued Mellin
symbol f. It naturally acts on the spaces 1-f,3ty and therefore solves the problem.

There are two more satisfying aspects to this solution. For one thing, the Mellin calcu­
lus allows an intrinsic description of the totally characteristic pseudodifferential operators
in the sense that it respects the natural R+ structure of the space near the singularities.
Secondly, it turns out that there is a notion of ellipticity that allows us to characterize the
Fredholm property between the spaces 'H3

,'''{ while the degeneracy of the symbols at t = 0
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in general prevents these operators from being Fredholm on the usual Sobolev spaces.
The case of manifolds without boundary is automatically included in the analysis,

since the operators on the boundary also belang to the calculus. The methods to treat
the latter case have been developed by Schulze [16], [18].

It should be mentioned that the analysis of [14], [15] can be viewed as part of a more
general concept pointed out by Schulze [16]: Given a parameter-dependent pseudodiffer­
ential calculus on aspace X it should be possible to construct a pseudodifferential calculus
also for the 'cone' X x R+. In the present case the space X is a manifold with boundary,
and the calculus is a parameter-dependent version of Boutet de Monvel's calculus on X.
Since Boutet de Monvel's calculus in its standard form is already rather complex, the
parameter·dependent version has been established in [14] in a new efficient way; the cen­
tral idea is to use the concept of parameter-dependent pseudodifferential operators based
on group actions and wedge Sobolev spaces.

Mellin quantization is also relevant for pseudodifferential boundary value problems
without the transmission property, such as those considered by Vishik&Eskin [19] and
Eskin [5]. The interior normal direction then plays the role of the cylinder axis R+,
and the asymptotics of solutions can be described in terms of Mellin-Sobolev spaces;
the asymptotics for problems with the transmission property then correspond to Taylor
asymptotics near t = 0, while much more general asymptotics are possible, cf. [18].

1 Parameter-Dependent and Fuchs Type Operators
in Boutet de Monvel's Calculus

1.1 Manifolds with Conical Singularities

An n-dimensional manifold with boundary is a topologigal (second countable) Hausdorff
space M such that each point m E M has a neighborhood which is diffeomorphic to either
Rn or the closed half-space IG.. The former points are called the interior points of M,
the latter the boundary points. We will use the standard notation int M and 8M.

1.1 Definition. A manifold with boundary and conical singularities D 0/ dimension
n + 1 is a topological (second countable) Hausdorff space with a finite subset E C D
('singularities') such that D\E is an n + I-dimensional manifold with boundary, and for
every v E E there is an open neighborhood U of v, a compact manifold with boundary X
of dimension n, and a system :F =I 0 of mappings with the following properties

(1) For all 4> E :F, 4> : U ~ X x [O,l)/X x {O} is a homeomorphism with 4J(v) =
X x {O}/X x {O}.

(2) Given 4>I, rp2 E :F, the restriction cf>14>"21 : X x (0,1) ~ X x (0,1) extends to a
diffeomorphismX x (-1,1) -4 X x (-1,1).

(3) The charts 4> E :F are compatible with the charts for the manifold for D\E : The
restriction cf> : U\ {v} ~ X x (0,1) is a diffeomorphism.

We can and will assume that for each singularity v E E, the system :F is maximal
with respect to the properties (1), (2), and (3).
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1.2 Definition and Remark. By assumption, D\~ is a manifold with boundary. Prop­
erties 1.1(1) and (2) imply that any neighborhood of a point v E ~ contains points of the
topological boundary of D\'E, namely ofaX x (0,1).

A point x E D is an inferior point 0/ D if there is an open neighborhood of x which is
homeomorphic to an open ball in R n+I, and int D is the collection of all interior points;
aD = D\int D is the boundary of D. We always have E c aD.

1.3 Remark. Let D be a manifold with boundary and conical singularities. Then the
topological boundary aD of D is a (boundaryless) manifold with conical singularities in
the sense of [18, Definition 1.1.15].

1.4 Notation and Assumptions. In a neighborhood of one of the singularities, X
will denote the cross-section as in 1.1; it is a manifold with boundary of dimension n, in
particular, X contains its boundary. For practical purposes, this is often inconvenient. We
sha11 therefore agree to denote by X the open interior, and by X the manifold including

-/\ -
the boundary. We let X/\ = X x R+i X = X X R+, Y = ax is the topological boundary
of X; Y is a closed manifold of dimension n - 1. We let Y" = Y X R+.

It is on the cylinder X/\ that the analysis in this paper is performed. We assume that
X is endowed with a Riemannian metric and embedded in a closed Riemannian manifold
o and that X" carries the canonical (cylindrical) metric.

1.2 Parameter-Dependent Symbols and Sobolev Spaces

In a collar neighborhood of the boundary Y of X we introduce normal coordinates. A
point there can be written x = (y, r) with y E Y, r ;::: O. If U is an open subset of
Rn-I, then coordinates in U x R will also be written in the form x = (x', r) or likewise
x = (x', xn ), with x' E U and r, X n E R.

1.5 Sobolev Spaces on Rn and R+.. Let U be an open subset of Rn-I. For a function
or distribution u on U x RIet r+u denote its restriction to U x R+. We sha11 also use
the operator r+ to indicate the restriction of functions or distributions on 0 to X.

H"(Rn),.9 E R, is the usual Sobolev space over Rn. We let H"(R+.) = r+ H'(Rn) and

Hö(R+.) = {u E H"(Rn) : supp u ~ ~}. Equivalently, Hö(R+.) is the closure of Cgo(R+.)
in the topology of H"(Rn).

The notation extends to the case of compact manifolds via a partition of unity. This
yields the spaces H"(O), HtI(X), and Hö(X). We shall also employ the notation H"(X x
R+), Hü(X x R+), etc, understanding that we use the canonical choice of L2(X x R.r).

For functions on U x R+ or distributions in H"(R+.) , .9 > -~, we let e+ denote the
operator of extension (by zero) to U x R and H"(Rn). Again this carries over to the
manifold case and yields a bounded m-ap e+ : H"(X) -t H"(O), -~ < s < !.

S (Rn) denotes the space of a11 rapidly decreasing functions on Rn, and S (R+.) is
the space of an restrictions of functions in S(Rn) to R+.. S'(R+) is the dual space of
S(R+). Note that S'(R+.) contains distributions with support in aRf.. If we define the
weighted Sobolev space H"'OO (R+) and H~'oo (R+.) as the sets of all (x) -00 u, where u is an
element of H"(R+) and H8(R+), respectively, then S(R+) = proj -lim",oo_ooH"oo(Ri.}
and S'{R+) = ind - lim"oo__ooH~'oo(R+).

It was an important point in [14] to develop a new approach to Boutet de Monvel's
calculus based on group actions and operator valued symbols. Since this connection is
going to playa role also in this paper we repeat the essential notions.
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1.6 Group Actions and Operator-Valued Symbols. Let E, F be Banach spaces
with strongly continuous group actions {1C>. : ;\ E R+} and {k>. : ;\ E R+}. By definition
this means that

(i) A 1-+ 1C>. E C(R+, ['o:(E)), A 1-+ k>. E C(R+, ['o:(F)) (strong continuity of 1C and ie);
and

Here [,0:(') refers to the space [,(.) endowed with the strong topology.

Let U ~ R k and p E Coo(U x Rn, ['(E, F)), pER. We shall write p E SJJ(U, Rn; E, F)
provided that for every K ~ U and all multi-indices Ci, ß, there is a constant C =
C(I<,Ci,ß) with

(1)

cf. [16, 3.2.1, Definition 1]. The space SJJ (U, Rn; E, F) is a Frechet space topologized by
the choice of the best constants C.

For the usual or weighted Sobolev spaces on R+, we will always employ the group
action

1
[K >. f] (r) = A· f ("r). (2)

On E = C we use the trivial group action 1\.>. =id. For E = F = C we shall write
SJJ(U, Rn) instead of SJJ(U, Rn; C, C). The above definition then coincides with the stan-
dard symbol dass notation. .

If F I t-=' F2 +--=' ••• is a sequence of Banach spaces with the same group action, and F
is the Frechet space given as the projective limit of the Fk , then let

(3)

Vice versa, if E is the inductive limit of the Banach spaces EI t......+ E2 t......+ ••• with the same
group action, then

(4)

Finally, a symbol p belongs to SJJ(U, Rn; E, F), E = ind -limEk , F = proj -lim F
"

if the
group actions coincide on the Ek and F

"
respectively, and p E SJJ(U, Rn; Ek, EI) for all k

and I. We give it the topology induced hy all the topologies of the spaces SJJ(U, Rn; Ek , F,).
We will, in particular, deal with the spaces SJJ(U, Rn; S'(R+L S(~)). For the induc­

tive and projective limit constructions we shall then use the representation of S'(R+) and
S(R+), respectively, as limits of weighted Sobolev spaces over R+.

In view of the nudearity of Coo(U) we have

(5)

the functions in the last space on the fight hand side heing independent of y.

1.7 Definition. Let V = VI X U2 ~ Rn X Rn he open and p E SJJ(U, Rn; E, F) an
operator-valued symbol. Then the pseudodifferential operator op p is defined by

[op pU)J(y) = (211"t n JLe;(y-y')~p(y, y', '1)f (y') dy'd'l

5
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for f E Cgo(U2 , E), y E U1• This reduces to

(2)

for 'simple' symbols, i.e. those tbat are independent of y'. Here, j(7]) = (211" )-~ Je-iU'f/ f(y )dy
is tbe vector-valued Fourier transform of f.

We may also consider the case where apart of the covariables serves as parameters: For
U ~ Rn open, p E SIl(Uy , R~ x R~; E, F) then defines a parameter-dependent operator
op p(..\) by

[op p(A)fl(y) = (211"r n
/

2 Je'lI'lp(y, 71, A)l(71 )d7J,

1 E Ogo(U, E), similarly for 'double' symbols p(y, y', 7], ..\).

(3)

1.8 The Manifold Case. Let f2 be a smooth manifold, Vi, V2 vector bundles over
f2, and E, F Banach spaees with strongly continuous group aetions. Moreover, let P :
Cgo(f2, E) --l> 0 00(0, F) be a eontinuous operator. We shaU say that P E OpSIl(O, Rn; E, F)
if the following holds:

(i) For all Ogo functions 4>, 'ljJ, supported in the same eoordinate neighborhood, the
operator (4JP'l/J),. : 0o(U, E) --l> Ooo(U, F) indueed on U ~ Rn by 4>P'l/J and tbe
eoordinate maps has the form (4)P,,p) .. = op P for some pESIl (U, Rn; E, F).

(ii) For all Co funetions 4J,,,p, with disjoint supports, tbe operator 4>P'ljJ is given as
an integral operator with a kernel in Coo(O x 0, .c(E, F» (more preeisely a kernel
section, see [3, Section 23.4]).

If P depends on a parameter ..\ E .R1, then (i) carries over, while in (ii) we ask that
the integral kernel belongs to S(R' , Coo(O x 0, .c(E, F»).

Suppose we are given a loeally finite eovering of the manifold by relatively compact
coordinate neighborhoods {nj } with associated eoordinate maps Xj : 0i --l> Ui . Then (i)
aUows us to find Pi E SIl (U, R n j E, F) such that P(I 0 Xi)( x) = op Pi (I) (Xi (x» for aU
1 E 0o(Uj, E). We shall eaU the tuple {Pi} the symbol of P.

Let now Oj nOk =f:. 0, and suppose that both 4> and 'l/J are supported in the interseetion.
Denote by Pi and Pk the operators on 0 0 (0, E) indueed by (4J 0 Xjl) op Pi (tf; 0 XiI) and

(if> 0 X;;l) 0P Pk ('l/J 0 X;;l). Then Pi - Pk is an integral operator with a kernel in 0 00(0 x
f2, .c(E, F». Vice versa, given a tuple {Pi} with this property, we ean define an operator
P : Co(O, E) --l> O~(O, F) whose symbol is {Pi}' Henee the notion S~(O,Rn; E, F)
makes sense.

Given a parameter-dependent operator P(..\) : Co(O, E) --l> Coo(O, F), we define the
operator P+(..\) : Co(X, E) --l> Coo(X, F) by

(1)

Just like before, the distributions have to be sufficiently smooth in order to allow an
extension by zero.

6



1.3 Boutet de Monvel's Calculus

1.9 Definition. Let J-l E R, dEN and U ~ Rn-l open. In the following definition the
parameter-dependence will always refer to the parameter ,.\ E R l •

(a) A regularizing parameter-dependent singular Green operator (s.G.o.) on U x R+
of type 0 is a family of integral operators

given by a kernel in S(RI
, CCO(U x R+ x U x R+)). Here we identify Cgo(U, S(R+))

and COO(U, COO(~)) with subsets of COO(U x ~). A regularizing s.G.o. Go of type d
is a parameter-dependent operator of the form Go("\) = 2:::1=0 GOj("\)ß/. with regularizing
parameter-dependent s.G.o's GOi of type zero and the derivative ar on R+.

A parameter-dependent s.G.o. of order JL and type d on U is an operator

that can be written G = ~1=0 op gjat +Go, where each gj is a (parameter-dependent and
operator-valued) symbol gj in S~-j(U, Rn-l x Rl ; S'(R+), S(R+)) and Go is a regularizing
parameter-dependent s.G.o..

(b) A regularizing parameter-dependent trace operator of type 0 is an operator

with an integral kernel in S(Rl
, COO(U x U x R+)). A regularizing trace operator Ta of

type d is a sum To(A) = 2:::1=0 Tojatj each TOj being regularizing of type O.
A parameter-dependent trace operator T of order J-l and type d on U is an operator

that cau be written T = :L1=00ptjat +To, with tj in S~-j(U,Rn-l x R'jS'(R+),C) and
a regularizing trace operator To of type d.

(c) A regularizing parameter-dependent potential operator on U is an operator

given by an integral kernel in S(RI, C~(U x R+ x U)); a parameter-dependent potential
operator /( of order JL is a surn /( = op k + /(0 with a pseudodifferential symbol k in
S~(U, Rn-l x Rlj C, S(R+)) and a regularizing parameter-dependent potential operator
/(0.

(d) All these spaces of operators carry Fnkhet topologies in a natural way: We use the
topology of non-direct sums of Fnkhet spaces in connection with the natural topologies
on the symbol spaces and on the spaces S(Rl , . .• ) for the integral kerneis.

1.10 Remark. (Non-direct sums of Frechet spaces) Let E, F be Frechet spaces and
suppose both are continuously ernbedded in the same Hausdorff vector space.

The exterior direct surn E EB F is Frechet and has the closed subspace .6. = {(a, -a) :
a E EnF}. The non-direct surn of E and F then is the Frechet space E+F:= EEBF/.6..

1.11 Parameter-Dependent Operators in Bautet de Monvel's Calculus. Let
U ~ Rn-l be open. A parameter-dependent operator 0/ order J-l E Rand type dEN in
Boutet de Monvel's calculus on U is a family {A(A) : ,.\ E Rl} of operators

7



A(A) _ [ P+(A) +G(A) !«(A)]
- T(A) S(A)

C[f(U x R+)
EB

C[f(U)

Coo(U x R+)
~ EB

Coo(U)
(1)

where

P(·) = opp(') with p E Sir(U x R+ x U x ~, Rn; Rl ), P+ = r+ Pe+,
G(·) is a parameter-dependent singular Green operator of order J.L and type d,
K(.) is a parameter-dependent potential operator of order p.,
T(·) is a parameter-dependent trace operator of order J.l and type d,
S(·) is a parameter-dependent pseudodifferential operator of order J.l on U.

The subscript 'tr' indicates that the symbol p satisfies the transmission condition (see [13,
Section 2.2.2.1]) at the boundary U x {O}. Note that the decomposition P+ +G is not
unique; the regularizing pseudodifferential operators provide examples for operators that
belong to both classes. We shall write A E BIl,d(U X R+; Rl). The topology on this space
is that of a non-direct sum of Fnkhet spaces induced by (1) and the topologies on the
spaces of pseudodifferential, singular Green, trace, and potential operators.

A parameter-dependent regularizing operator A of type d in Boutet de Monvel's cal­
culus on U is one that can be written. in the form (1) with all entries being regularizing
operators. We shall write A E B-oo,d(U X R+; R l ), and give this space the obvious Frechet
topology.

It ia a consequence of 1.9 that the operators in (1) indeed have the desired mapping
properties.

Given an operator A E BIl,d(U X R+; R' ) we have a symbol a for A, namely the
quintuple a = {p, g, k, t, s} of the symbols for the operators P, G, K, T, and S, respectively.
As pointed out before, there is a certain ambiguity in the choice of the symbols; we
understand them as equivalence classes of tuples inducing the same operator modulo
B-oo,d(U x R+; R 1).

1.12 Boutet de Monvel's Algebra on a Manifold. Let X be an n-dimensional coo
manifold with boundary Y, embedded in an n-dimensional manifold n without boundary,
all not necessarily compact. Let vt, Vz be vector bundles over n and Wt , W2 be vector
bundles over Y.

Let {nj } denote a locally finite open covering of !1 and suppose that the coordinate
charts map X n Oj to Uj x R+ c R+. and Y n nj to Uj x {O} for a suitable open set
Uj ~ Rn-I, unless !1j nY = 0.

For a smooth function 4> on n write M", for the multiplication operator with the
diagonal matrix diag{ 4>, 4>ly }. We will say that A E BIl,d(X; Rl ), if

C[f(X,vt)
A(A) : EB ~

Cgo(Y, Wt )

Coo(X, V2)
EB

COO(Y, W2 )

(1)

is an operator with the following properties:

(i) For all Cgo functions 4>, 't/J, supported in one and the same coordinate neighborhood
!1j intersecting the boundary, the operator

Cff(Uj X R+, vt)
(M",A(A)M1/J). : EB ~

Cgo(Uj , W1 )

8
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induced on Vj x R+ by MtP A(>")M1/J and tbe coordinate maps, is an operator in the
dass BJj,d(Uj x R+; RJ) of Boutet de Monvel's calculus on R+. in the sense of 1.11.

(ii) If tP, 1/J are as before, but the coordinate chart does not intersect the boundary, then
all entries in the matrix (MtPA(>")M,p). - except for the pseudodifferential part - are
regularizing.

(ii) If the supports of the functions r/>, 'ljJ E Cr(!1) are disjoint, then (M~A(>")M,p). is
an integral operator whose kernel density is Coo and a rapidly decreasing function
of >.. in all semi-norms defining the Fnkhet topology of the smooth densities.

In each coordinate patch !1j intersecting the boundary we may associate a symbol tuple
with A by asking that the operator Aj which is locally induced by A and the coordinate
maps has a symbol tuple aj = {pj,gj,kj,tj,sj} as in 1.8 and 1.11. In an interior chart,
only the pseudodifferential part in the matrix for A is non-regularizing; it has a symbol
Pj in the sense of an equivalence dass of symbols. We shall call the tuple {aj} a symbol
for A.

1.4 Sobolev Spaces Based on the Mellin Transforrn

1.13 Parameter-Dependent Order Reductions on!1. For p. E R there is a parameter­
elliptic pseudodifferential operator AJj E op SJj(!1, Rn; R), depending on the parameter
7 ERsuch that

AJj(7) : H 6 (!1, V) -4 H 6 -Jj(!1, V)

is an isomorphism for all T. Parameter-ellipticity simply means that there is a symbol
q E s-Jj(n, Rn; R) such that )..Jjq - 1 and q)..JJ. - 1 both are elements of S-1(0, Rn; R).

In order to construct such an operator one can e.g. start with symbols of the form
(~, (T, C))Jl E SJj(Rn, Re; R T ) with a large constant C > 0 and patch them together to an

operator on the manifold n with the help of a partition of unity and cut-off functions.
Alternatively, one can choose a Hermitean connection on V and consider the operator

(C + 1712
- .ß)~, where ß denotes the connection Laplacian and C is a large positive

constant.

1.14 Weighted Mellin-Sobolev Spaces. (a) Let {AJl : pER} be a family of
parameter-dependent pseudodifferential operators as in 1.13. For s, 'I E R, the space
'H6 ,'y(n") is the dosure of C~(O") in the norm

(1)

Recall that n is the dimension of X and n and that rß = {z E C : Re z = ß}.
(b) We let 'H6

,''f(X") = {r+f : f E 'H6 ,"f (0" )}. The space 'H6 ,"f(X") carries the quotient
norm:

IIUII1t""7(XI\) = inf{llfll1t""7(ol\) : f E 'H","f(O"), r+ f = u}.

(c) For s = I E N we obtain the alternative description
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for all k ~ 1 and all differential operators D of order ~ 1- k on 0, cf. [16, Seetion 2.1.1,
Proposi tion 2].

(d) The space H6"-Y(X/\) is independent of the particular choice of the order-reducing
family.

(e) H6,'Y (X/\) ~ Htoc(X/\); H6,.-Y (X") = t'Y1{6,O(X"); 7{O,O(X") = t-n!2 L2(X").
(f) If 1> is the restrietion to X/\ of a function in Cgo(f! x R), then the operator Mt/> of

multiplication by 1>
Mt/> : H6·'Y(X/\) --+ 'H6 "-Y(X/\)

is bounded for all s" E R, and the mapping 1>.....-+ Mt/> is continuous in the corresponding
topology.

Notice that (d) is a simple consequence of the fact that if {AI-' : fL ER} and {ÄI-' : J.l E
R} are two order-reducing families, then for each fL, the operator AI-'Ä-I-' is parameter­
elliptic of order zero. (f) is immediate.from (c) and interpolation.

2 Mellin Quantization

2.1 Mellin Symbols

In Section 4 of [14] we considered Mellin symbols with asymptotics; they are meromorphic
functions on C with values in Boutet de Monvel's algebra. For the definition of the
Mellin operator opIta associated with the Mellin symbol a, we only need to know a on
the line f!_'Y' and we certainly do not need analyticity. We can extend the calculus to
larger c1as~es of Mellin symbols by considering the case where the symbols additionally
depend on the space variables i and t' - comparable to studying pseudodifferential 'double'
symbols p(x, y, e) after having treated Fourier multipliers p(~).

(Mu)(z) = [0 t%-lu(t)dt. (1)

M extends to an isomorphism M : L 2(R+) --7 L 2(f t ). Of course, (1) also makes sense for

functians with values in a Frechet space E. The fact that M u Ir,--r ( z) = Mt -+z (t -"1 u) (z+,)
motivates the following definition of the weighted MeZlin transform M'Y:

2.1 Mellin Transforms. For ß E R, fß denotes the verticalline {z E C : Rez = ß}·
We recall that the c1assical Mellin transform Mu of a complex-valued Cgo(R+)-function
u is given by

2.2 Notation. In the following let fL E Z and dEN be fixed. Given f E COO(R+ X

R+, BI-',d(X; f 1_..... )) we shall write f = f(t, i', z), where z indicates the variable in f1_'Y.
1 ' 1

For t, i', z fixed, f(i, t', z) is a boundary value problem in Bautet de Monvel's calculus, so
it acts on sectians of vector bundles aver X and Y. In order to fix the notation, assume
that

COO(X, Vi)
f (t, t', z) : EI? --+

COO(Y, W1 )

COO(X, V2)
EI?

COO(Y, W2 )

(1)

with smoath vector bundles Vi, V2, over X and Wb W2 , over Y.
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2.3 Definition. Let f E COO(R+ xR+, BI1,d(X; f t-I'))' For U E Cö(X", ltl)EI1Cö (Y", Wt} =

Cö(R+, COO(X, VI) ffi COO(Y, Wd) let

00

1 JJ dt'[opl(f)u](t) = -2.' (t/tl)-Z f(t, tl, z)u(t')-dz
7l'"t t l

r~_.., 0

(1)

The right hand side of (1) is to be understood as an iterated integral. Ir f is indepen­
dent oft' , or equivalently JE COO(R+,BI1,d(X;f!_I'))' then (1) reduces to

[op1-(f)u](t) =~ r t-Zf(t, z)[Ml'u](z)dz.
27l'"t Jr~_..,

(2)

We did not specify the variable x in (1) or (2), understanding that for fixed t l
, u(t l

) =
u(', t l

) is in COO(X, VI) EI1 COO(Y, Wt} and that f(t, t l
, z) acts as an operator in Boutet de

Monvel's calculus with respect to the x-variables.
Like pseudodifferential double symbols, Mellin double symbols are not uniquely deter­

mined. It is immediate from integration by parts in (1) that

(3)

For f E COO(R+ x R+,BI1,d(X;f!_I')) or f E COO(R+,B~,d(X;ft_I')) we will have a
continuous map .

C[;(X", Vt} COO(X", V2 )

opItf: EB ~ EB (4)
Cö(Y", Wt} COO(Y", W2 )

Smoothness of f up to zero yields continuity of op'kf on the weighted Mellin-Sobolev
spaces, cf. Theorem 2.4; the preceding relation (3), however, shows that smoothness is
not necessary.

2.4 Theorem. Let f E COO(R+ x R.r, 8 11,d(X; f t -I'))' S > d-~. Givenw},w2 E Cö(R.r),
there is a bounded extel1sion

1iS'")+~(X", Vt)
Wt [op1f]W2 : EB ~

1iS'I'+~(Y", Wt }

1i"-JJ,"),+~(X", V2 )

EB
1i"-JJ'I'+~(Y", W2}

(1)

A proof can be found in [15]. We will also need the following results. They show that,
just as in the case of pseudodifferential operators, one has asymptotic summation of
symbols and the possibility of switching from operators with 'double' symbols to those
with 'simple' ones.

2.5 Asymptotic Summation. Let dEN be fixed, Jlt, Jl2, . .. a sequence in Z tending
to -00, fj E COO(R+ x R+,B~j,d(X;rt_")')), and Jl = maxpj. Then there is an
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such that for any N E N there is a J with

J

I - LI; E COO(R+ x ~,ß~-N.d(X;f~_.J).
j=l

(1)

(2)

This I is unique modulo COO(R+ x ~, B-oo,d(X; f,-"Y))' We shall write I f'V ~i=o fj.

The same result is true with ~ x R+ replaced by R+, R+ X R+, or R+.

2.6 Theorem. For f E COO(R+ X R+, B~·d(Xj f o)) there is ag E COO(R+, B~·d(X; f o))
such that

opLf(t, t', z) - opLg(t, z) E B-OO.d(XA
) • (1)

In particular, relation (1) bolds for any symbol g with the asymptotic expansion

g(t, z) ~ f \(-t'ß.,)i tP.f(t, t', z)1.,=•.
j;;;;;;O J.

2.2 Pseudodifferential Action and Mellin Quantization

2.7 Pushforward of Pseudodifferential Operators. Let U, V be open sets in Rn,
X : U ~ V a diffeomorphism. Moreover, let E, F be Banach spaces with group action.
Given an operator

P: C~(U,E) ~ COO(U,F) ,

the pushforward X.P : Cgo(V, E) ~ COO(V, F) is defined by

(x.P)f(x) = (P(f 0 x)Hx-I(x)] .

If P = op p for some P E S~(U, Rn; E, F) then there is a symbol q E SJL(V, Rn j E, F)
with op q = X.P modulo regularizing operators, and q is unique up to symbols in
S-OO(V, Rn; E, F). In this sense X defines a pushforward also 00 the symbol level:

X.. : S~(U, Rn; E, F)/S-OO(U, Rn; E, F) ~ S~(V, Rn; E, F)/S-OO(V, Rn; E, F) .

The mapping is an isomorphism; the i~verse is ioduced by the pushforward via x-t. The
same statements are true for symbols with the transmission property.

one way of proving this is to first convert the symbol P to a 'double' symbol Pt (y, y', TJ )

by multiplying p with a cut-off function cP = 4>(y, y') near the diagonal {y = y'}; op p and
op PI ooly differ by a regularizing operator. Then one can compute a 'double' symbol
qI E S~(V x V, Rn; E, F) with X.Op PI = Op qI and finally switch to a y'-independent
symbol q with op qI =op q modulo regularizing operators.

In what follows it will often be possible to find a 'double' symbol qI with x.op p = op qI

by a straightforward substitution in oscillatory integrals. We will then also write qI = x.p.

2.8 Corollary. Let X : U ~ V be a diffeomorphism of open sets in R, and let
a E COO(U, B~,d(X; R)) induce a pseudodifferential action by

op a(u )(y) = 2~ JJeiC.-.').a(y, 71 )u(y')dy'd71 (1)

u

for 'U E Co(U, COO(X, Vd ffi COO(Y, Wd). For the pushforward x.op a we then have

x.op a = op b+G , (2)

where

12



(i) the symbol b belangs to COO(V, BIl,d(X; R)). It is determined via the symbol push­
forward of the various loeal symbols for a. In this sense we shall use the notation
b = X",a .

(ii) The operator G belongs to B-oo,d(X"). In other words, we ean write

(3)

here 8r is the normal derivative on X, and eaeh Gj is a matrix of integral operators
with kernel funetions whieh are smooth up to the boundary of X.

Proof We have Coo(U, BIl,d(Xj R)) = Coo(U)® 1r BIl,d(Xj R). Sinee eonvergenee of the
symbols implies eonvergenee of the associated operators, it is sufficient to assume that
a(y, '7) = 7jJ (y )A( '7) with 'ljJ E Coo(U) and A E BIl,d(X; R). The assertion is eertainly true
for regularizing A: In this ease, op aalready has the form (3); henee the pushforward
is of the same type and (2) holds with b = 0, for 8r is not affeeted. We ean therefore
loealize with respeet to a eoordinate neigborhood Oj for n and assume that A is given
loeally by a quintuple of parameter-dependent symbols in Bautet de Monvel's ealculus,
(Pj, gj, kj, tj, Sj), where Pj = pj(x, (, TJ) E Srr.(Xj ,Re x ~), Xj = Oj n X, is a pseudod­
ifferential symbol with the transmission property, 9 is a parameter-dependent singular
Green symbol, ete., cf. 1.12. We then have to show that their pushforward is preserved.

In order to see this, let us foeus on Pj; the arguments for the other symbols are similar.
We have

S::'(U x Xj, Rn X R) = COO (U)@ 1rSf,.(Xj ,Rn X R); (4)

thus t/J(y)p(X, (,1]) E Sr,.(U X Xj,Rn X R). We know that Sr,.(U X Xj,Rn X R) is invari­
ant under eoordinate transforms, therefore the pushforward x'" [7jJ(y )p(x, ~, 1])] belongs to
Sr,.(V x Xj, Rn X R) modulo S-OO(V X Xj ,Rn X R). Employing now (5) with with U
replaeed by V plus the faet that Coo(V,F) = Coo(V)@1rF for every Fnkhet spaee :F, we
see that X'" ['ljJ(y )p(x, e, TJ)] E Coo (V, Si,. (Xj , Rn X R)) may be eonsidered the pseudodiffer­
ential part (with transmission property) of a parameter-dependent symbol tuple for an
operator in COO(V, BIl,d(Xjj R)). Applying the same argument for the four other eompo­
neuts gj,kj,tj, and Sj we obtain the symbol bE Coo(V,BIl,d(X;R)). <J

2.9 Pseudodifferential and Mellin Symbols. Given f E COO(R+, BIl,d(X; f o)) let

b(y,TJ)=!(elJ,-iTJ) , y,TJER.

Denoting by exp the diffeomorphism y 1-+ elJ from R ~ R+ we have

1

op1! = exp",op b .

(1)

(2)

In more detail: Foru E Cü(R+,COO(X, V)EBCoo(y, V;)) letu"'(y) = u(eY ); then [opt!(u)](e lJ )

= [op b(u"')](y). This is a simple eonsequenee of the identity
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Equation (1) implies that b E Coo(R, ß#,d(X; R)). According to Corollary 2.8, we will
have exp.op b=op a modulo ß-oo,d(X"). Hence,

optf =op a modulo ß-oo,d(X")

We sha.ll now ana.lyze the relationship between f and a.

2.10 Definition and Remark. For Jl E Z and dEN let

Mß#·d(X") = {optf +G : fE Coo(R+,ß#,d(X;fo)), GE ß-oo,d(X")} .

For f E coo (R+, 8 -00,0(X j r 0))' opt f is an integral operator with smooth kerneion X".
Hence ft18- 00,d(X") := n#N!8#,d(X") = 8-00,d(X").

The following lemma may be considered a 'coarse' quantization result. It shows that
pseudodifferential and Mellin symbols induce the same operators modulo 8-oo,d(X") as
long as we consider symbol classes with arbitrary behavior near t = O.

2.11 Lemma.

NJß#·d(X")jM8-00 ,d(X") ~ ß#,d(X")j8-oo •d(X") .

The isomorphism is given by f ........ exp. b with b(y, '7) = f( ell , -i7]); the inverse by a ........ f
with f(8, z) = [ln. a](lns, iz).

Proof. By 2.8 and 2.9 the mapping f ........ exp.b, where b = f( eY , -iT]), maps the left hand
side to the right hand side injectively. A direct computation then yields the above inverse.
<l

For what follows it will be interestinK to know more precisely what the pushforward by
exp looks like. We start with a formal calculation.

2.12 Lemma. Let p E S#(R+, R). Then exp.op p is the pseudodifferential operator
witb tbe 'double' symbol

1
(exp.p)(t, t', r) = p(ln t, M(t, t')-lr)iiM(t, t')-l (1)

Here M (t, t') = In ~=~~ t' is coo and strictly positi ve on R+ x R+.

Proof. For'U E Cgo(R+), t' = eyl
, we have

00

[ap p(u a exp)](ln t) = 2~ JJei(ln t-~')'p(ln t, 11 )u(e~')dy' dl1

o

= 2~ JJe'(lnt-lnt')'p(ln t, l1)U(t') ~~' dl1

= 2~ JJei(t-t')M(t,t'). p(ln t, 11 )u(t') ~~' dl1

= 2~ JJei(t-t')Tp(ln t, M(t, t')-lT)U(t')~M(t,t')-ldt'dT.

This gives (1). The function M(t, t') is smooth and 2 0, for In is monotonely increasing.
Moreover, M has no zero since, for t = t', we have M(t, t) = t > O. <l
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2.13 Lemma. (a) 8~M(t, t') It'=t= Ckt-k-1 for suitable Ck E R, k = 0,1, .... In
particular, (t'8tl)k[t'M(t, t')]lt'=t is smooth up to t = 0.
(b) tk-la~[M(t, t,)-l11t'=t is smooth up to t = 0, k = 0,1, ....

Prao! (a) Let u, v E R+. We have for.1 + x = ~, lxi< 1

u L:oo
(-l)j+l L:oo (-1)i+ 1 (u-v)i

Inu-lnv=ln(-)=ln(l+x)= . x i = . ., (1)
V i=1 J .i=l J vJ

hence

Therefore

M(u, v) = In u - In v = ~ (_l)k (u - v)k .
u - v W k + 1 V k+1

k=O
(2)

OkM( ) I k' (-l)k -k-1 (3)
u u, V u=v = . k +1 v .

This proves the first state:ment. Now it is easily checked that, for k ~ 1, (tOt)k is a linear
combination of terms tiat, j = I, ... , k, so we obtain the second statement, too.

(b) By ioduction, o~ [M (t, t') -1] is alinear combination of terms of the form

r

M(t, t,)-r-l rr a!: M(t, t'),

'=1
where r ~ k and L:r=l j, = k. This implies that o;'[M(t, t')-l] Itl=t is a lineal" combination
of terms t r +1 t- r

-
k °< r < k. <l, - -

2.14 Definition. Let J-l E Z, dEN. By COO(R+, B~ld(X; R)) we denote the set of all
a E COO(R+, 8~·d(X; R)) for which there is a bE COO(R+, 8~,d(X; R)) such that

2.15 Theorem.
with

a (t, r) = b(t, tr ) .

For f E COO(R+, B~·d(X; f o)) tbere is an a E COO(~, B~,d(X; R))

(1)

(2)

Proof. We know from 2.9 that optf =op(exp.p) where p(y, 1]) - f(eY ,-i1]), and,
according to Lemma 2.12, Cl(t, t', r) = [exp.p](t, t', r) = p(ln t, M(t, t')-l r )f;M(t, t')-l =
f(t, -iM(t, t')-l r ),pM(t, t,)-l with the notation of 2.7. Let us convert the 'double' symbol
Cl to a symbol cE COO(R+, 8~ld(X; R)) independent of t':

c(t,r) ~ f:!8~D:Cl(t,tl,r)1••=•.
k=O

Now

8~D:Cl (t, t', r) = 8~{(_i)k(8:J)(t, -iM(t, t')-lr)~M(t, t')-k-l } (3)

By induction this is a linear combination of terms of the form

(a;+i f)(t, -iM(t, t')-lr) ri 9ki(t, t') 1 j = 0, ... , k, (4)
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(1)

where 9ki(t, t') is a linear combination of terms of the form

r

(t')-l-IO TI a::{M(t, t')-l}.
i=l

Here r == k +1 + j, and 10 + 2::;=1 li == k. Using Lemma 2.13 we conclude that t-igkj(t, t)
is smooth up to t == O.

Combining (3) and (4) we see that a~D;Cl (t, t', r) It ' =t is a li near combination of
terms of the form (a;+j f)(t, -itr) (tr)jski(t), where Skj is a smooth function on R+.
Since (8;+j f)(t, -itz) E COO(R+, 8#-k-i,d(X; R)), we obtain the symbol a by asymptotic

summation in COO(R+,8#,d(X;R)). Note that there is asymptotic summation in this

class: Given a sequence {aj} with aj E COO(R+,8#-j,d(X;R)) and aj(t,r) == bj(t,tr) for
bj E COO(R+, BIl-j,d(X; R)) choose b f'V E bj and let a(t, r) == b(t, tr). We will then have

N - -...
a - Ej::oaj E COO(R+,BIl-N,d(X;R)) ~ COO(R+,B#-N,d(X;R)); hence oPC - opa E
B-OO,d(X"). <l

2.16 Theorem. (Mellin Quantization) Let a E COO(R+, jjll,d(X; R)). Then there is
an f E COO(R+, BIl,d(X; f o)) such that

optf =op a modulo B-OO,d(X")

Proof We know from Lemma 2.11 that op a =optg with'

g(t, t', z) == [ln. aHln t, In t', iz) ; (2)

here, we use the 'double' symbol of [ln. a] one obtains by straightforward substitution in
the oscillatory integral. Given a symbol p E SIl(R X R, R) a computation similar to that
-in 2.12 shows that

(ln. p)(y, y', 71) == p(eil, M( eY , e
lll )71 )e

lll M( eil, eil')

with the function M(t, t') == In:=~~tl introduced in 2.12. Hence, in our case,

g(t,t',ir) == a(t,-M(t,t')r)t'M(t, t') . (3)

Now we apply Theorem 2.6. We have op1g =opkf modulo B-oo,d(X") whenever f E
COO(R+, BIl,d(X; f o)) has the asymptotic expansion

J(t, z) ~ f ~! (-t'ada~g(t, t', z) 1,,=, .
k=O

(4)

By assumption, the symbol b(t, r) == a(t, t-lr) is an element of COO(R+, BIl,d(X; R)). Thus
t-k(8:a)(t,t- lr) == a:b(t,r) E COO(R+,B#·d(X;R)). The function (t'8t ,)j(t'M(t,t')) It'=t
is smooth up to t == 0 for j == 0,1, ... , by Lemma 2.13. So all the terms on the right hand
side of (4) are smooth up to t == 0 and the asymptotic summation can be carried out in
COO(R+, BIl,d(X; f 0))' <l
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2.3 Mellin Quantization for Arbitrary Weights

In the previous section we studied the question how to associate to a totally char­
acteristic pseudodifferential symbol a E COO(R+, BJJ·d(X; R)) a Mellin symbol 11/2 E

COO(R+, BJJ,d(X j r 0)) with op a = opt /1/'J modulo B-oo.d(X/\). Given an arbitrary weight
, E R this result allows us to easily find a Mellin symbol 1'1 E COO(R+, BJJ·d(Xj r t -'1))

such that op a = op~/'1 modulo S-oo.d(X/\) :

2.17 Theorem. For every a E COO(R+, BJJ·d(X; R)) and every, E R there is an 1'1 E
COO(R+, BJJ·d(Xj rt-'1)) such that

opl/'1 =op a modulo B-oo,d(X/\) . (1)

Proof. The Mellin symbol /'1 can be computed in terms of the function 1 - /1/2 in
Theorem 2.16. The definition of oPM ~hows that

1

op a =op'M/I/2 = OP19'1'

where 9'1(t, t', z) = (t/t')1/2-'111/2(t, z - ~ + ,). We convert 9'1 to a t'-independent symbol
1'1 with

00

f·,( t, z) ~ L ~! (-t'8,,)k8:g..,(t, t', z )1,,=,
k=O

~ f= ~! (-t'8d(f,)t-"'I,,=, 8: fl/2(t, z - ~ + ,)
k=O

~ 1 1 I. k 1
rv LJ k!(2" -,) 8z11/ 2(t,z - 2" + ,),

1.=0

(2)

,where we used that (-t'8tl)k(t/t'P/2-'1l tl=t = (x8x )kxl/2-'1l x=1 = (1/2 - ,)k. Since 11/2 is
,smooth up to t = 0, the asymptotic summation can be carried out in COO(R+, BJJ,d(X; rl_ry)),
and we obtain the assertion. 1 <l

2.18 Remark. In [14] we defined sp~ces M~!d(X) of (t, t')-independent Mellin symbols
of order J.l and type d. They are meromorphic functions on C, their only singulari ties are
poles described in terms of the 'asymptotic type' P. We can then consider the c1asses
COO(R+, M~!d(X)) and the associated Mellin operators according to 2.3, cf. [15]. If
the singularity set P is empty we shall write h E COO(R+, Mb·d(X)). Then h(t,') is an
entire function, and Cauchy's theorem implies that op~h = opL-h for all ",' E R.
We now let 11/2 = hl ro ' According to Theorem 2.17 op1/'1 == op1-(hlr~_'1) modulo

S-oo,d(X/\). Therefore, 1'1 - hlr~_'1 E coo(R+, S-oo,d(X; r t-'1)' This can be viewed as a

slightly different convergence result for the Taylor series on the right hand side of 2.17(2).

2.19 Remark. The present Mellin quantization which ensures a control of the operators
in Boutet de Monvel's algebra up to the conical singularity will playa crucial role in
[15] as part of a cone algebra without asymptotics. This will then be an important step
towards the construction of the corresponding cone algebra with asymptotics that will
also be established in [15].
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