SINGULARITIES WITH CRITICAL LOCUS AN
COMPLETE INTERSECTION AND TRANSVERSAL
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ABSTRACT. In this paper we study germs of holomorphic functions
f:(C™ 0) — (C,0) with the following two properties:

(i) the critical locus X of f is an isolated complete intersection
singularity (icis);

(i) the transversal singularity of f in points of 3\{0} is of type
Ay we first compute the homology of the Milnor fibre and
then show that the homotopy type of the Milnor fibre F' of
f is a bouquet of spheres.
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1. INTRODUCTION

Let O be the ring of holomorphic germs f : (C™,0) — (C,0). Let
I C O be a reduced ideal defining an icis ¥ of arbitrary dimension k.
As usual J(f) denote the jacobian ideal of f, namely:

J(f) = (5—;,...,%).

We consider, as in [Pe-1, Pe-2], the group D; of local analytic iso-
morphisms ¢ : (C™,0) — (C™,0) such that ¢*(I) = I.

Let f € O be a germ whose critical set contains Y. Then by [Pe-1,
Pe-2], f € I%. The group Dy acts an I*, and the extended codimension
of the orbit of f with respect to this action is

12
ZnJ(f)

we shall focus our attention on germs f € I? with c.(f) < co. We
are interested in the topology of Milnor fibre of f. We known if k
dimension of singular locus ¥ is 1 then Milnor fibre F' is homotopy

equivalent of bouquet of some dimensional sphere [Si-1, Si-2].
1

ce(f) = dim
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If k=m —11ie. codim ¥ = 1, then again F' is homotopy equivalent
of bouquet of some dimensional sphere [Sh-1, Sh-2, Ne-1]. If £ = 2 bou-
quet theorem also are valid the Milnor fibre F' is homotopy equivalent
bouquet of sphere [Za, Ne-2].

We consider case when k£ > 3 and give the properties in which case
we can prove the

Theorem. The Milnor fibre F' of f = (C™,0) — (C,0) is homotopy
equivalent of bouquet of spheres F' ~ Smv S~y §m=ly ...y gm-1
where n =m — k.
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2. NON-ISOLATED SINGULARITIES WITH TRANSVERSAL TYPE A;

Let as above I C O be a reduced ideal defining an icis (isolated
complete intersection singularity) % of dimension & and suppose that
I=1(g1,...,9,) withn = m—k. We shall assume that n > 2 and k& > 3;
the cases k = 1, k = 2 and n = 1 are situated in [Si-2], [Ne-2, Za] and
respectively [Sh-1] and [Ne-1]. Let f € O be a germ whose critical set
contains X.. It follows that f € I? and we have decomposition

f= Z hij 9 9
ij=1
with h;; = hj; [Pe-1, Pe-2]. Moreover, the class of h;; in O/I is uniquely
determined by f [Za].
In [Pe-1] and [Pe-2] were introduced D(k,p) singularity. Their lo-
cal equations, in a suitable coordinate system z;; (1 < ¢ < j < p),

21y~ 2 Y1y -+, Yn, 18
n
_ 2
f(z,y,2) = Z Tij Yiy; + Z?/z-
1<i<j<p l=p+1

Note also the singular locus of a D(k,p) singularity is smooth and of
dimension k = %p(p + 1) + g, while m = k +n. D(k,0) singularity in
[Pe-1, Pe-2] is also called A(k)

A(k) == D(k,0) : lilyf.

We note also: .

D(k,1) s zyi + > yi
=2
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Remark 2.1. As in [Sh-3], see also [Za], it is easy to see that following
are valid

(1) A singular point z € X is a singular point of type D(k,0) if the
matrix (h;;(z)) has rank n.

(2) A singular point z € X is a singular point of type D(k, 1) if the
matrix rank (h;;(z)) =n — 1 and grad,(det(h;;(2)))|s # 0.

Let D be defined as in [Za] by D(z) = det(h;;(z));; then if D(0) =0
then the ideal I + D = (¢1,...,gn, D) defines a complete intersection
in (C™,0), which depends only of f [Za]. Let us denote by A the zero
set of I + (D).

The following result is similar to [Si-1, Sh-1] criterion of finite codi-
men.

Theorem 2.2. Let f € I*, f = > hijgig; and I, and I + (D) is
ij=1
1solated complete intersection and Aj 15 an isolated singularity. Then
(a) the critical locus of f is ¥ and the germ of f in every points of
Y\{0} outside A is equivalent to a D(k,0) singularity and point an A
is equivalent to a D(k,1).
(b) ce(f) < +o0.

Proof. (a) If z € A and z # 0 then rank((h;;);;) = n — 1 since ¥ is icis
of dimension £ = m — n. Since A = det((h;;);;) is isolated singularity
on ¥ so grad Aly # 0 at the point of A\{0}, which means that f at
z is of type D(k, 1) by the remark of 2.2. Let us now z€A and z # 0.
Then we have det(h;;);;) # 0 at this point z, so rank((h;;);;) = n and
using Remark 2.2 f at this points z has D(k,0) singularity.

(b) Let f be some representative of the germ of given singularity. In
the domain where it is given we define a sheaf of O modules as follows

Fu) = I*[7(f),

where I? and 7.(f) are considered as modules over the holomorphic
functions on w. It is clear that F is coherent. We will use the fact:
F is concentrated in a point < dimI'(F) < oo. For z € C™\%, f is
regular at z and we have dim F, = 0 since I? = O, and (7.(f)). = O..
If z € ¥\{0} then as we proved above f is of type D(k,p), p <1 at z
and we have dim F, = 0 since c.(D(k,p)) = 0. So F is concentrated
at 0, hence c.(f) < 0. O

3. THE DEFORMATION OF NONISOLATED SINGULARITIES

First consider the case when singular locus ¥ of f : (C™,0) —
(C,0) is smooth k-dimensional submanifolds. Consider coordinates
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(3717 s ey Y1y - - - 7yn> in C™. Then f = Z hij YiYj- Let us det(hzj)w =
ij=1
D(z) and D(z)|y is isolated singularity at 0 € X.

In case of an ordinary isolated singularity it is useful to consider a
generic approximation g of with only ordinary Morse point [Br|. At
every Morse point one can study its local Milnor fibration, with Milnor
fibre homotopy equivalent to one n-sphere S™ (“the vanishing cycle”).
The Milnor fibre of the original f then has the homotopy type of the
wedge of those spheres.

We like to mimic the constructions in our case.

Let us X is k-dimensional complete intersection defining by the ideal
I=(g1,...,9n). Then f = > h;j g; g;. Assume that D(z) = det((hs;)i )

ij=1
is an isolated singularity and I + (D) is complete intersection.

Let G : (C™ x C",0) — (C™ x C",0) be a versal deformation of
(33,0) with G(z,v) = (G1(z,v),...,Gu(z,v),v) and G;(z,0) = g;(2)
[Loo]. Consider the deformation

fo i (C™x 8,0) =C™ x C" x C" x CM /2 5 c™" () — C

given by

fs(2) = f(z,v,u,a,b) = Z (hij(Z) + a;; + thj T 5ij>-
ij=1 =1

(Gilz,0) = w)(Gy(z,0) = uy),

where a;; = aj;, and S is the space of parameters (a,b,u,v). In case
k=dim> = 1,2 or m — 1, there exists a dense subset U in S such
that for every s € U, the germ of f, at the points of >, is of type
D(k,0) or D(k,1). Moreover, the set of points of ¥, where fs is of
type D(k, 1) is exactly Ay and this set is a Milnor fibre of the icis A.
[Si-2, Sh-1, Za] For an arbitrary k, we know at least two cases when
such deformation exists: i) the germ f at any point z € X\ {0} is of type
D(k,0), ii) the matrix (h;;(0));; has rank n —1. From this page assume
the existence of such deformation for the arbitrary k. The following
are valid [Za-Bo-Ne-2].

Lemma 3.1. There exist an £-ball B, with center D € C™, a proper
analytic set (A,0) C (S,0), and a neighborhood U of 0 € S, such that
for any s € U\A has the following:

(a) s ={z € B, : Gi(z,v) =u;, i =1,...,n} is the Milnor fibre of
3.
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(b) The zero set Dy(z) = det(hi;(2) + a;; + X byj 20 055) intersets g
transversally; hence A, = D;71(0) N X, ds smooth. In particular A, is
(diffeomorphic to) the Milnor fibre of A.

(¢) The singularities of fs in B:\Xs are of type A;.

(d) The germ of fs at any point of X \As is of type D(k,0) and at
any point of Ag is of type D(k,1).

(e) Fiz e sufficiently small and § sufficiently small with respect to
e. If U is sufficiently small with respect to € and §, then f7'(t) (as a
stratified set) intersects OB. transversally for any s € U andt € A =
{|t| < d}. In particular, the topological type of the smooth fibres of the
maps

fo: Xe=f Y AMNB. - A (s€U)

S

is independent of the parameter s € U. (In fact, even the vibrations
fs o [7HON) N B. — OA are equivalent to the fibration f: f~1(OA) N
B. — OA. In particular, the corresponding fibres are homotopically
equivalent).

(f) The spaces X, (s € U) are contractible.

4. THE ToPOLOGY OF MILNOR FIBRE

Let fs; be a deformation of f obtained by Lemma 3.1 and let us
suppose that the number of A; (Morse) points is o. The critical set of
f consists of

(a) A manifold ¥, with is the Milnor fibre ¥, of k-dimensional
isolated complete intersection singularity 3. The local singu-
larities of f on Xg are D(k,0) and D(k,1).

(b) X1 = {b1},..., X, = {bs}, where the local singularity of f is
isolated of type A;.

Define By, Bs, ..., B, as disjoint 2m dimensional balls in the space
C™ with centered of the points by,...,b, and Dy, D, ..., D, a disjoint
two dimensional disks at the points fs(b1),..., fs(by). Choose them

such that f: Biﬂfil(Di) — D; define a locally trivial Milnor fibration,
the following transversality condition holds: f;'(t) N dB;, Vt € D;,
1=1,...,0.

The situation at the points of b, ...,b, is well known we consider
the situation along ;.

Firstly we define BY a tabular neighborhood

BY = {z € B.: Z Gi(z,v) — u‘2 < p} of ¥,N B,
i=1
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which is diffeomorphic for sufficiently small p to the product (¥;0B.) x
Q", where Q" is a closed n-ball in C™ with center at the origin [Si-1].
Let us denote X, = f;'(t) N B and F' = BN X, then for the

sufficiently small ¢ we have

H,.(B° F°) if x#m
Ho 1(Xop) = Ho(Xy, Xog) = ’ : ’
1 &) ( * {Hm(BO, FY®z° if x=m,
[Si-2].
First compute the homology of the point (B°, FY). Following [Si-2,
Za] we shall consider in B° coordinates (wi, ..., Wn, Wy—gi1,-- - W)

such that (wy,...,w,) € Q" are the functions defined by w;(z) =
Gi(z,v) — u; and Wy_gi1,-.., Wy, € Xg (recall that dim¥ = &k and

m =n+ k). Then (wy,...,w,) are holomorphic functions on B® and
(Wm—k+1, - - -, Wy,) are real differentiable [Si-2]. Now consider the pro-
jection T : (Wy_pits .-, W) : (B% F% — X,. Then similarly [Si-2,

Za, Sh-3] we can prove

Lemma 4.1. If p and tubular neighborhoods Uy C Uy C 3 of Ay C 3
are sufficiently small then

(a) m : (BO\7 Y (Uy), FO\n 1 (U)) — Z,\U is locally trivial fibration
with fibre equal to the pair (C™=* Milnor fibre of 3 + - - - + 22),

(b) the map given by the superposition 7Y (Us) — Uy — A, is a
fibration of the pair (m='(Uy), FO 7Y (Us)) with fibre equal to the pair
(Cn*k | Milnor fibre of @123 + 22+ -+ + 22).

For a subset W C 3, we shall denote by Fy the following set:
FW :7T1<W)QFO.
The following statements holds

Lemma 4.2. H,(Fx,\v,) = 0 for ¢ = n—2 and ¢ = n. Moreover
anl(FES\U1) == Z27 HWL*I(FES\Ul) == ZH’A‘FH’Z’ H1<FES\U1) = 07 q Z
n— 2.

Proof. If n =1 this case was studied in [Sh-1, Ne-1]. n = 2 in [Ne-2],
so n > 3. We may assume that n > k 4 2 because of if w is a new
variable, then the Milnor fiber F,, of f(z)+w? is the suspension of the
Milnor fibre F' of f, in particular H.(F) = H.1(Fy).

Consider the fibration 7 : Fy\y, = 2,\Us.

The base space ¥,\U; is homotopy equivalent 3,\U; ~ ¥ IA_I U; x

St~ Stv SFv...vS* bouquet of circle S' and k-dimensional spheres.
The number of k-dimensional spheres p is equal same of us + pua [Za,
Sh-1]. The homotopy type of fibre of 7 is S"~! but unfortunately
we cold’'nt use Gysin exact sequence for this fibration m because 7 is
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not orientable. But the total space FO\Fy;, is homotopy equivalent to

E'SU_l E", where E' — S' and E” — k\f/lsf are fibre bundles with fibre

S 1 and in E' U1 E" a fibre of E’ is identified with a fiber of E”.
sn—

For the fibration E/ — S! which is nonorientable and its monodromy
is equal —1 [Ne-2] we may use Wang exact sequence. We obtain

— Hy(S™') = H(E') = H, 1(S"™") — H, 1 (S™1) — -+
Finally, we receive short exact sequence

00— Hn(E/) 7 = 7 0,

« is multiplication by 2. Therefore H,,_1(E’) = Zy, H,(E') =0, ¢ # 0,
qg#n—1. O

On the other hands, we have orientable fibration £” — \7 S¥ because

=1

of k£ > 3. Hence we may use Gysin exact sequence we obtain
= Hy(E") = Hy(V SF) = Hy oV SF) = Hy 1 (B") = -

Since n > k+ 2 and k > 3 we receive H,,_o(E") = H,(E") = 0 and
H, 1(E") ~7Z, Hyp,_1(E") ~ Zratk=,

The total space Fx,\y, = E' U E”, where E' N E” ~ S"~!. Using
Mayer-Vietoris theorem we obtain

— H,(E'NE") — H(E"®H,(E") - H,(E'UE") — H, 1(E'UE") — - --
After short computations we receive short exact sequence
0—-H,E)—>Z—-Z&®Z— H, 1(E)— 0.

Therefore H,(E) =0, H,_1(F) = Zy and H,,_»(E) = 0.
Similarly we receive H,,_1(E) = Z*2*#= and H,(E) =0, ¢ > n — 2.

Lemma 4.3. anQ(FUg\Ul) == 0, anl(FUg\Ul) = Zg, Hm72<FU2\U1) =
Z5* and Hy(Fypno,) =0ifq¢>n—2and g#n—1,m — 2.

Proof. We have fibration 7 : Fy,\p, — Us\U; with fibre S"~'. Since
U,\U, is homotopy equivalent to S* x A, using homotopy exact se-
quence of fibration m we receive H,_s(Fy,\py,) = 0. Because of 7 is
not orientable H,_1(Fy,\v,) = Zs. As in [Ne-2|, since the base space
has a product structure, one can write Fy,\y, as a fibre bundle over
A, with fibre Z is the total space of a fibre bundle with base S and
fibre S"~1. Using Wang exact sequence we obtain H, 1(Z) = Zs,
H,(Z) =0, ¢ # 0,n— 1. Because A, is simply connected, it follows

from the Serre spectral sequence [Me|] H,(Ay; H (Z)) = H.(Fu,\u,)
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that H,,—o(Fuau,) = Z4* and Hy(Fy,v,) = 0if ¢ > n—2, ¢ #
n—1,m—2. 0

Lemma 4.4. H, ,(Fy,) =0, H,(Fy,) =7Z and H,,—1(Fy,) = Z'~.

Proof. This follows from the fibration Fy, — A (cf. Lemma 3.1 (b)),
whose fibre has the homotopy type of S™. U

Corollary 4.5.

Z, if ¢=0,
Hq(FovFU2) = Z“AJr“Ev if gq=m—1,
0, otherwise.

Proof. Using the long exact sequence for the pair (Fy\v,, Fu,\v,) we
receive

— Hy(Fupv,) — Hy(Feav,) — Hy(Fe vy, Fuov,) —

— Hq—l(FUz\Ul) —

Since Fy,\p, — Fx,\v, is inclusion using excision Hy(Fx v, Fu,\v,) =
H,(F° Fy,), and Lemma 4.2, 4.3 we obtain H,(F?, Fy,) = 0 if ¢ #
0,n,m— 1. For n-dimensional homology group we have exact sequence

0 — H,(F° Fy,) = Zy < Zy — H,_(F°, I[y;,) — 0.

So H,(F°, Fy,) = 0 and H, ;(F° Fy,) = 0. For m — 1 dimensional
homology group we have following exact sequence

0 — Z' — H,, (F°, Fy,) — Z5* — 0.
As we known we have fibrations

Fsaun ~ Fou,

| |

1
ESAUSS X Ay éiQ )Sles

Let by, ..., by, generators of H,,_(Fx\v,). Take into account Ay ~
K/Ale_l. Let f; + be the map

1} x SETLH1Y x SFL = ST x A1} x A, —

DF :[
Z,:I: 07 2

—>ZSAu(SleS), i=1,..., .
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The pullback of the fibration Fy \py, — %, U (S' x Ay) along f; . is
trivial. Therefore we have following diagram )

fi+

(Df7Jr % Sn—l’ Szkfl % Sn—l) (FZS\UNFU2\U1)

| |

(DF_, SE1) firt (X N (ST x Ay), ST x Ay)

i+ M

Let a; € Ho_1(Fs\v,, Fup\v,) be image of a generator of Hy,_1(D}, x

Sr=1 Gh=1 x §n=1y = 7 under (ﬁ+) There is a homotopy between
fi+ and f; _ (as a map of pairs), namely

Dfxmjjz(m1pm%4/m}xsﬁﬂ><mﬂy+§gg(sleg.
fH([l — 2s)t, SL’),
fi- ([25 — 1)t, SL’),

Therefore (f; ). and (f;_), define the same clement a;. Hence 2a; as

IN
IN

— N

(It.2], ) s ’
<s

| = O
VA

an element H,,_;(Fx,\v,) is represented by ﬁ-ﬂr U ﬁ,,, which means
that

Hm_1(F23\U1,FUQ\U1) — Hm—l(FO, F,) = FHATIE =
Corollary 4.6.
Z, if ¢=q=n, q=0,
Hy(F°) = § Z%#atis if ¢g=m—1,
0, otherwise.

Proof. Use the long exact sequence of the pair (F°, Fy;,) and above
lemmas.

Now we consider the pair (B, F°) and the corresponding exact se-
quence in homology we obtain H,(B°, F°) = H, {(F°). As we men-
tioned in the beginning of this section for the Milnor fibre F' = X, ; the
homology group is equal

H._\(F) = {

Therefore finally we receive
Z if *x=0,n,
H(F) = Z?ratr=te  if x=m—1,

0 otherwise.

H, (F°%) if *#m,
Ho (FOY®Z°  if *=m.
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n

Now we will show that our Milnor fibre is homotopy equivalent to a
wedge of spheres S™ VvV S™ 1V ...V ™! following are valid.

Lemma 4.7. Let X be a (n — 2)-connected CW complex of dimen-
sion n > 3 with given homology H,(X,Z) = Z, Hpn1(X,Z) = ZH,
Hy(X,Z) =0 if k #n,m — 1. Then we have a homotopy equivalence

X ~8ny §mly...y gm-t

Proof. For n > 3 we have that X is simple connected. According to
Herewicz theorem 7,(X) ~ H,(X) = Z. We may attach an n-cell e,
corresponding to a generator ¢ of m, 1(X). Let X = X %)J €n. S0 we

have m,_1(X) =0 and m,(X) = m(X) =0, k <n — 2.

Moreover we can prove that X is homotopy equivalent bouquet of
n — 1 dimensional u copies of sphere (see [Si-2], Prop. 6.1).

Consider the following Hurewicz diagram

o a2
Hm*1<)?> — Tm 1(52)
B1 B2

o1 2
Hm_Q(X) 7Tm_2(X)
This implies 8 = 0 so ap is surjective. U

Let now Y = §*V,§™-1v. - .vS™1 and Y = Dy Sm-ty. ..y §m-L,
where 9D"t! = S™ Define h: Y — X and h: Y — X as follows

h|S™ = generator of m,(X),

h|S™ ! = lifted generator of m,,_1(X),
h|D =e,.
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It is obvious that H,(X) = H,(Y), if ¢ # m—1. For ¢ = m—1 consider

Hypr(X) Tt (X)
/ /
Hy 1 (Y) ~ Tt (Y)
~ Hpo1(X) Tt (X)
i |

Hypo(Y) T (Y)
The following maps are isomorphisms

h:mm1(Y) — mm-1(X) by construction,

— H, 1 (X ) by Hyrevicz-theorem,

)
) (
Tm-1(Y) = Hp1(Y) by Hyrevicz-theorem,
(Y) (Y) by exactness,
) (

Hyp(X) = Hp1(X) by exactness.

~

It follows that h is homotopy equivalence, because of H,.(Y) =
H.(X), X and Y are simple connected, as a consequence of whiteheads
theorem.

Main Theorem 4.8. Let ¥ = {gy = -+ = g, = 0} be a iso-
lated complete intersection and f : (C™ 0) — (C,0) a holomorphic
function with singular locus X(f) = X i.e. f = szzl hijgig;, with
D = det((hi;)i;) isolated singularity at the origin and (g1, ..., Gn, D)
icis and deformation fs described above exists. Then the Milnor fibre
of f is homotopy equivalent of to a bouquet of piym_1(f) = 2uar+ps+o
copies of S™1 and one copy of S™, where us, (respectively pa) is the
Milnor number of X (respectively of A), and o is the number of Morse
points which occur in a special deformation of f.

Proof. We know that Milnor fibre F' is n — 2 connected (see [Ka-Ma]).
As we mansion above n > 3 so F' is simple connected and we can apply
Lemma 4.6 and find F' ~ S™ Vv S™~1v ... §™=1 This finishes the
proof of the main theorem. ([l
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