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ABSTRACT. We give elementary eonstruetions for Satake-Furstenbcrg, Martin anel
Karpclevieh boundaries of symmetrie spaces. Wc also eonsruct sorne new" boundaries

It is well-known that synlmetric spaces have nontrivial and nice boundaries.
There are two (disjoint) scicntific traditions of investigation of such boundaries. The
first tradition is related to enumerative algebraic geolnctry of quadrics. It was be­
gun by the paper of Study (1886) on the geollletry of the space PGL(3, C)j80(3, C)
(this is the space of all nondegenm'atc eonics in CIP2 ). This construction was ex­
tended by Semplc (1948-1951) to thc spaces PGL(n, C)/SO(n, C) and to the groups
PGL(n, C) itself. Later (1983) De Concini and Procesi constructcd analogical cOln­
pactification for arbitrary sYlnmetric space Gj K where G is a selnisilnple group
without ccnter and K is a complex syrnmetric subgroup.

Another scientific tradition is relatcd to hannonic analysis on synunctric spaces.
In 1960 Satake constructed nice cOlllpactifications of RiClnanian sylnmetric spaces(
these cOlllpactifications are real fOrIns of cOlllpactifications of cOlnplex symmetrie
spaces lllcntioncd above). In 1961-}969 in Karpelevich, Dynkin and Olshanetsky
eonstructed Inore COillplicatcd boundaries( their works were devoted to analysis of
harmonie functions on thc symmetrie spaees).

The purpose of these notes (it is apart of the paper [33]) is to give clemen­
tary deseription for Satake-Furstenberg boundary, Karpelevich boundary, Mar­
tin (Dynkin-Olshanetsky) boundary for Rieillann noncompact synlllletric spaces,
we also eonstruct some 1l ncw" boundarics(velocity boundaries in section 3 anel
sea urchins in scetion 6). Wc discuss only the boundaries of symmetrie spaces
PGL(n,1R)jSO(n, IR) (boundaries of other classical synllnetric spaces ean be de­
seribed by the saUle way).

K ey w01'ds and phrases. Hausdorff distunee, symmetrie space,compaetifieation, eomplete sym­
metrie varieties, linear relation, Satake- Furstenberg boundary, Martin boundary.
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1.PRELIMINARIES. RINGES

1.1. Linear relations. Let V, W bc linear space8. A linear relation V ~ W 18
arbitrary linear subspace in V ffi W.

Example 1.1 .. Let A : V ---7 W be a linear operator. Thcn its graph graph(A) is a
linear relation.

Let P : V ~ W be a linear relation. Then we define
1. the kernel K er(P) = P n (V ffi 0)
2. the image Im(P) is the projcction of P to 0 ffi W
3. the d01Tl,ain Dorn(P) is thc projectioll of P to V EB 0
4. the irulefinitness Indej(P) = P n (0 ES W)

Rernark 1.2. Let P = graph(A). Then ITn(P) is the usual iInage of the linear
operator A anel K er(P) is the usual kernel of the linear operator A.

We also define the rank of a linear relation P:

rk(P) = dirn Dom(P) - dilnKer(P) = dirn Im(P) - dilnlndej(P) =

= dilnP - dilnKer(P) - diInlndej(P)

Rernark 1.3. Let us consider a linear relation P : V ~ W. Then it defines by the
obvious way the invertible linear operator

[PJ : Dorn(P)/K er'(P) -t Im(P)/Indej(P)

1.2. Nonseparated qu.otient 0/ grassmanian. We dcnote by IR'" the rnultiplicative
group of IR. We denote by Grn the grassIllanian of all n-dinlensional subspaces in
IRH EBIRn. Let P : Rn ~ Rn be a eleluent of Grn . Let). E IR*. Wc define ).,. P E Grn

by the condi tion
(v, 'LV) E P {:} (v, ..\ 'LV) E AP

Re7nark 1.4. If P has the fonn gr'aph(A) thcn A' P = graph(AA).

Let us consider thc quotient space Grn/IR'" equipped with the usual quotient
topology (see [29]). Let us considcr a sequence Xj E Grn/R* and a point Y E

Grn/lR*. Let Pj, Q be representativcs of Xj and y in Grn . Then thc sequence Xj

convcrges to y if there cxist Aj, A E IR· such that Aj . Pj converges to A . Q in the
topology of GTn .

We will use the sanle notations for points P E Grn alld their IR* -orbits, i.e. we
dcnote the orbit IR* . P by P.

Thcre are two types of orbits of IR* on Grn . If rk(P) = O(i.c P = K er(P) EB
Indej(P)) then P is a fixed point of thc group IR*. If rk(P) i- 0 thcn the stabilizer
of P in IR* is trivial anel hence the orbit is isoIllorphic to the grollp ]R* itself. The
orbit of the first type are closcd. The orbits of the second type are not closcd.
Rence the topology in the space Crn/IR* is not separated in thc Hausdorff sence.
A point P E Grn is c10sed set only in thc case rk(P) = O.
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Exarnple 1.5. Let us consider a sequence

(
j 0)

Ai = ° 1

of linear operators in ]R2. Let pi E GT2 be their graphs. Let us consider the
sequences

j . Pi ; Pi ; j-l/2 . Pi j j-l . Pi ; j-2 . Pi

in Gr·2. Their lilnits in Gr2 are the subspaces Rb ... ,R5 having the fonn

R1 : (0,0; x, y)

R2 : (O,YjX,y)

R3 : (0 ,Y; x, 0)

R 4 : (x, 1]; x, 0)

R s : (x, y; 0, 0)

Hence the sequence Pj has 5 lilnits in thc quotient space Gr2/IR* .

Re11~ark 1.6. Let us considcr a sequcncc of invertible operators Ai : IRn -t IRn.
Let Pj be their graphs. Evidcntly subspaces IRn EB 0 anel 0 EB IRn are lilnits of the
sequcnse Pi in the quotient space Grn/IR* . By thc official topological definition
this sequence is convergent (anel Ul0reover it has at least 2 linlits). It is quitc clear
that official definition of convcrgencc ( thc sequence converges if it has limit) is bad.

Let A j be a scquence of invertible operators. Let Pj be their graphs. We say
that the sequence Pi is seriously convergent if each liInit point of Pi in the quotient
space Grn/IR· is the limit thc liulit of Pi in the quotient space.

Rernark 1. 7. Wc define serious convcregrnce only for sequences of invertible opera­
tors!

Wc say that the subset S E Grn/IR* is admissible if there cxists seriollsly COll­

vergent seqllencc Pj such that the set of lirnits of Pj coincides with S.

Exarnple 1.8. Thc sequencc Pj describcd in exalnple 1.5 is seriously convergent.
Hence the set R 11 ... Rs is admissible.

1.3. Hinges.

Definition 1.9. A hinge

is a farnily of cletnents of Grn/R* such that
00

• For all j Tk(P) > 0
1°. For an j

Ker(Pj ) = Dom(Pj+d

Im(Pj ) = Inde!(Pj +1 )
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Indef(Pd = 0

Ker(Pk ) = 0

Le. PI is the graph of a operator (!RH EB 0) -t (0 E9 Rn) and Pk is the graph of a
operator (Rn ffi 0) +- (0 ffi !Rn)

We denote space of all hinges in IRn by H'inge(n)

Rernark 1.10. The condition 2° is intepretation of the condition 1° if j = 0 and
j = k.

Example 1.11. The graph of a invcrtible operator is a hinge (k=l). The graph of
a noninvertible operator is not hinge (sec the condition 2°)

Example 1.12. In Exan1ple 1.4 the set

is a hinge. Note that the rank of R I , R3l Rs is O.

By the definition af hinge we have

Hence (by the condition 0°) we have k :::; n - 1

Theorem 1.13. Let us consider a hinge

Let
Qj = Ker(Pj ) E9 Im(Pj ) = DO'm(Pj +l ) EB Indef(Pj +l ) E Grn/IR*

Qo = IRH E9 0

Then the set

{Qo, PI, QIl P2,"" Pk, Qk}

is a admissible subset in Grn/IR* . Moreover each admissible subset has such form.

Rernark 1.14. Unforulally speaking hinges are linüts in Grn/JR.* of sequences of in­
vcrtible operators. For instance sequencc Aj dcscribed in the Examplc 1. convergcs
to the hinge (R4 , R2 ) . Hinges are slightly different fr0l11 admissible sets. Never­
less it is bettel' for us to forget about fixed points Q0, Q1, . .. (since they can be
rcconstructed by PI, P2 , ••• )

1.4. The topology on the space of hinges. Let M be a cOlnpact nletric space with
a Inetric p(" .). Let S(M) be the space of all closed subsets in M. Let X E S(M)
. We denote by O€(X) the set of points m E M such that exists x E X satisfying
the condition p(m, x), €.
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Let Xl, X z be closed subsets. Hausdorff distance (see [31]) between Xl and X 2

is infinHlnl of f. such that

It is weIl known that the space S(M) equipped with the Hausrorff distance is a
compact lnetric space.

Let us consider a invertible operator A and its graph P. Let us consider the
curve JR* . P in grassmanian. Let us consider its closure a(A). It contains the
curve JR* . P itself and two points Rn ffi 0 l 0 ffi IRn. We denote falnily of curves--a(A) E S(Grn ) by PGL(n , IR). We have thc obvious bijection

--PGL(n, IR) +-+ PGL(n, IR)

--We denote by PGL(n, lR) thc closurc of PGL(n, JR) in the Hausdorff metric.

Theorem 1.15. Let

be a hinge. Let Q j be the same as in the tlt eorern 1.13. Let us deno te by "y(~) the
curve

Then the map

is the bijection
Hinge(n) -+ PGL(n, IR)

We sce that Hinge(n) has thc natural strllcturc of a compact lnetric (nletrizablc)
space containing PGL(n, a) as open dence set( if A E PGL(n,lR) then its graph is
a one-element hinge ~ = (P) ).

The space Hinge(n) has thc natural structurc of (n 2 - l)-diIncnsional real an­
alytic 111anifold (it is not obviuous). The set Hinge(n)\PGL(n, IR) is the union of
(n - 1) sublnanifolds of codimension 1 (see below bibliographical rClnarks).

2. SATAKE-FuRSTENBERG BOUNDARY

2.1.Symrnetric space 8L(n, lR)/SO(n). Let HS consider the space Q of real sYln­
nletric positive definite Inatrices defined up to nlultiplier. The action of the group
SL(n, lR) on this space is defincd by the fonnula

where A is synunctric matrix, 9 E SL(n, lR) anel rl is the transposed matrix. Ob­
viously thc stabilizer of the point E is the group SO(n). Hence wc obtain

Q ~ SL(n, R)/80(11,)
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2.2. Positive linear relations. We want to describe the closure of the space Q in
Hinge(n). Für this purpose we need in some prelinünaries. Let HS consider in the
space IRn the standard scalar product

We deRne in the space }Rn EEl IRn the skew-synunetric bilinear fonn by the formula

{(v, v'); (w, w' )} =< v, w' > - < w, v' >

We deHne also indefinte sYlnmetric bilinear fonn on IRn EEl IRn by the fonnula

[(v, w); (v', w')] :=< v, 'l0' > + < v', 'UJ >

Wc say that a n-dilnensional linear relation P : IRn =t IRn is symmetrie if P is
a InaxiInal isotropie subspaee with respeet to the skew-symmetric bilinear fonll

< ',' >.
Remark 2.1. Let A be a sYlnmetric linear operator(i.e A = At). Then its graph is
a symmetrie linear relation.

Let us consider a sYlllllletrie linear relation: Rn =t IRn . Then Im(P) is the or­
thogonal complement in IRn to K er(P) (with respect to thc scalar product < ',' »
and Indej(P) is thc orthogonal eonlplelllent to Do7YI,(P) (with respect to the stan­
dard scalar produet in IRn ). Henee the linear relation P defines the nondegenerate
pairing

(2.1) Dom(P)/K e7'(P) x Im(P)/Indef(P) -7 IR

The linear relation P also defines thc operator

(2.2) D01n(P)/K er(P) -7 17n(P)/Indej(P)

Hence each synuuetric linear relation P defines nondegenerated synullctric bilinear
fOrIn qp on the space D07n(P)/K er(P).

We say that a sYll1lnetric linca.r relation P is nonnegative definite if the fornl
[', .] is nonnegative definite on the subspase P. It is cquivalent to thc positivity of
quadratic fonn qp.

Rernark 2.2. Let a linear relation P be thc b'Taph of a operator A. Then P is
nonnegative definite if and only if A is nonnegative definite.

2.3.Satake-Furstenberg boundar1j. Let us eonsider the closure Q of thc spaee Q in
the space Hinye(n). It is easy to show that a hinge ',p belongs to Q if and only if
all linear relations P are nonnegative definite. It appears that this closure coincides
with Satake-F'Utrsenberg eornpaetijication of t hc sYllllnetric space S L (TI" lR) / S 0 (n ).

Henee a point of Satake-Furstenberg cOlnpactification is givcn by ~he following
data:

1*.8 = 1,2, ... , n - 1
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2*. A hinge

such that all linear relations Pj are nonuegative definite.
Let us eonsider a point of Satake-Furstenberg compaetifieation (Le data 1* - 2*)

Let us eonsider thc subspaees

Then the fonn qPj is positive definite on Dorn(Pj )/K er(Pj ) . Now we can say that
a point of Satake-Furstenberg boundary is defined by the following data

1*.8=l,2, ... ,n-1
2*. A flag

OCV1 CV2 C···CV.. cJRn

where all subspaces 0, VI, ... , Vs,lRn are different.
3*.A positive definite quadratie form R j in each quotient space Dorn(Pj )/K er(Pj ).

3. VELOCITY COMPACTIFICATIONS OF SYMMETRIC SPACES.

3.1. Sirnplest velocity cornTJactification.

Let A E Q = SL(11, TR)j SO(n) be a positive definite rnatrix. Let

be eigenvalues of A. Let

We denote by A(A) the eollection

(3.1)

The matrix A is defined up to nulltiplier and henee A(A) is defined up to additive
constant:

(3.2)

We denote by E n the space of all colleetions A(A) (see (3.2)). It is easy to see that
A(A) is a (n - l)-diInensional siplicial cone. We can assume An = 0 and henee the
cone En can be considered as the space of collections

We denote by -Ün = DEn the (11 - 2)-dirncnsional simplex

1 ~ J1.2 ~ J1.3 ~ ... ~ J1.n-l ~ 0

It is natural to think that 1"1 = I, 'ln = O. Wc say that -Ün is the vclocity si1nplex.
Let us consider the natural projection
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defined by thc rule

Now we define the cOIllpactification

of Eu. A sequcllce Li = (Aii), ... , Ar!)) E E n converges to M E ß u if

1. Aii ) - AW) -+ 00 if j -+ 00

2.The scquel1ce 1f(Lj ) E ß n cOl1vergcs to M.
We also define the velocity compnctification

-=-vel
Q = SL(n, IR)/SO(n) U ß n

of thc sYllllnetric space SL(n, IR)/SO(n). A sequence A j in Q converges to M E ß u

if A(Aj ) converges to M in tbe topology of Eu.

3.2. Polyhedron of K arpelevich velocities.

Now we want to dcscribe Ulore delicatc cOlllpactification of the sinlplicial cone
En (compactification by Karpelevich velocitics). Let us consider a sequel1ce

AU) = {AU) > ... > AU)} E E
1 - - n u

Let 1 2:: P'2 2:: ... 2:: J-Ln-l > 0 be its lilnit in ~n' It can happens that sorne of
numbers J-Li are cquals:

J-Lk = tLk+l = ... = /J,l

In this case wc will separate vclocitics of

(') ( ')
{A~ 2:: ... ~ A/ } E El - k +1

by thc sarne rule as above.

Definition of the polyhedron. We denote by la,ß set {a, a + 1, ... ,ß} c N
Let us consider a intervalla,ß = {a, a + 1, ... ,ß} . We denote by E(Ia,ß) the

simplicial cone
Aa 2: Aa +l 2 ... ~ Aß

the elenlents of the cone E(Ia,ß) are defined up to additive constant (sec (3.2)). Wc
also definc the simplcx ~(Ia,ß) given by tbe unequalitie8

1 = J-Ln 2:: /J,a+l ~ ••. ~ J-Lß-l 2:: J-Lß = 0

Let 118 consider the cOInpactification
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Remark 3.1. Let us consider the case a = ß. The set L. (10,0) = E (10,0) consis t of
the uniclue point (it is one real nunlber defined up to additive constant).

Let k ::; a ::; ß ::; l. We define the Inap

given by the fonnula

We define two polyhedra

3(k, l) := II E(Io,ß)
0,ß:k5:0 5:1'Sß

2(k, l) := II
Obviously 2(k,l) C 3(k, l). Let us consider the natural (dia.gona.l )enlbedding

i : 3(Ik ,d -* 3(k, l)

(it is the product of the Inaps rrk,lß)
0,

The polyhedron 01 K aryelevich velocities (k, l) is the closure ofthe set i (E (1k, l ) )

in 3(k, l).

Criterium 01 convergence 01 a sequence 01 interior points to a ]Joint 01 the bound­
ary.

Let us consider a sequence

AU) = {dj) dj) dj)}
Äk ,Äk+l1"" Äl

Then the nessesary anel sufficient condition of convergence of the sequence AU) in
K,(k, l) is the convrgence of all sequences

rrk,l (AU)) = (' U) dj))n,ß Ä o , ... , Äß

in E(In,ß)'
The Karpelevich velocity polyhedron is defined. Now wc want to give explicit

description of its cOlnbinatorical structure.

Tree-partitions. Let us consider the set lk,l .- {k , k + 1, ... , l}. We say that a
partition of Ik,l is a representation of Ik,l as

where s > l.
We say that a systenl a of subsets of Ik,l is a tTee-partition if
a) Ik,l E a
b) Each elenlent J E a has the form In,ß = {a, a + 1, ... , ß}
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J1 n J2 = f/J or J1 :J J2 or .J2 C J1

d) Let J = Io,ß E Cl .Then there are only two possibilities
1· .There is no K E Cl such that K c J (in this case we say that Io,ß IS

irreducible) .
2*. J = Ia,ß can be decon1posed as the union

(3.3)

whcre 1a ,"{1l 1"{1 +1,"{2' ... , 1"{1J_1 +1,ß E u. In this case we say that J is reducible and
(3.3) is the canonical decomposition of J.

Remark 3.2. Let l o ,ß E u. Let b be thc set of all J C Ia,ß such that J E Cl. Then
b is the tree-partion of Ia,ß.

Renl,ark 3.3. In the other words tree-partition is givcn by the following data. We
consider a partition of thc segll1Cnt I k,l C N to subsegrucnts, thcn we consider
partitions of some subsegments, etc.

We denote by T P(k,l) the set of all tree-partitions of Ik,l' Let us define thc
partial canonical ordering on T P(k,l). Let Cl, b E T P(k,l). We say that Cl > b if
J E Cl in1plies J E b (i.e b :> Cl).

The partially ordered set TP(k, l) contains thc uniquc maxiInal element ClO. This
is the tree-partition which contains thc unique element Ik,l'

A elen1ent b E T P(k, l) is rniniInal if
a) Each irreducible element of b contains only one point.
b)If J E b is reducible then the canonical decon1position of J contains exactly

two elemen1ts (8 = 2 in (3.3) ).

Description of the polyhedron.
Let us consider a partition t of Io,ß:

(3.4)

We denote by ;i(Io,ßlt) the open siInplex
(3.5)
1 = J-Lo = ... = J-L"{1 > IL"{1 +1 = IL"{1 +2 = ... = I.L"{'J > ... > 1.L"{~_1 +1 = ... = J-Lß = 0

We denote by ß(Ia,ßlt) the compact sirl1plex
(3.6)
1 = fLo = ... = IL"{, 2:: fL"{l + 1 = tL"{1 +2 = ... = fL"{2 2:: ... 2:: I.L'IJ_I +1 = ... = I),ß = 0

It is natural to consider in ß(Ia,ßlt) and Li(Ia,ßlt) the coordinates
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Rernark 3.4. If s=2 thcn ~(J !t) = 6.(J It) consist of thc unique point {I > O}.

Rentark 3.5.
~(Io,ß) = U6. (Ia,ß It)

t

whcre the union is given by the all partitions of Io,ß

Fix a tree-partition a E T P(k, l). For each element J E a consicler its canonical
decolnposition t. We clenote the siInplex fi.(J lt) by fi.(a, J) .

For each a E T P(k, l) we define thc face

F(a) = ( TI
J =10<.13 E n is irreducible

(3.7) x TI
JEn is redicible

fi.(a,J)

Rernark 3.6. For the trivial trec-partition ao we have F(ao) = ~(Ik,z). If b is a
Inininlal tree -partition then F(b) is a one-point-set.

We dcfine Karpelevich velocity polyhedron K(k, l) by

K(k, l) = U F(a)
oETP(k,l)

We want to definc a topology of a cOlnpact Inetric space on K(k, l). Thc face
F(ao) = ~(Ik,z) will be a open dcnse subset in lC(k, l).

Rernark 3.7. Let l = k. Then K(k, k) consist of one point. Let l = k + 1. Then
we have two tree-partitions of thc set {k, k + I}: Thc trivial tree-partition ao and
maxiInal tree-partition al (its elClnents are (k, k + 1), (k), (k + l)).The face F(ao)
is closed half-line Al > °.The face F(al) is one-point-set. Hence K(k, k + 1) is
the segnlent [0,00].

Convergence of interior points to the boundary.
The definition of convergence is incluctive. We assurne thc convergence is clefinecl

for all Karpelcvich polyhcdra lC(a, ß) such that ß - 0:' < l - k.
We dcfine the convergencc of a sequence

in two steps.
The first step. The convergcncc of x(j) in ~(Ik,z) is a nessesary condition for thc

convergence in IC(k, l).
If y E ~(k, l) then thc Ibnit of x(j) in K(k, l) is definecl to bc y.
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~ The second step. Let y ~ E(Ik,l)' Then y is a elCInent of SOHle open siInplex

ö'(Ik,1 lt), i.e y has the form

{I =Yk = ... =y.·n > Y"'Yl+1 = ... = Y"'Y2 > ... > Y"'YII-l+1 = ... =,1 = O}

In this case the sufficient and nessesary condition of convergcnce of the sequence
x(j) in K(k, l) is the convergence of all sequences

in the Karpelevich velocity polyhedra K(,t/J + I, 'Yt/J+d (this convergencc is defined
by tbc inductivc assumption) .

This concludes thc definition.

Example 3.8. Let k = 1, l = 8.

x~) = j2 + j + 2 x~j) = j2 + j + 1 x~j) = j2 + j

x~j) = 2j x~j) = j x~) = 0

Then the associated tree-partition has thc ronn

(1 2 3 4 5 6 7 8)

( 1) (2) (3 4 5 6 7 8)

(3 4 5) (6 7 8)

(6) (7)(8)

The liInit of x(j) in E(I1,s) is the collection

(3.8) {I > 1/2 > 0 = 0 = 0 = 0 = 0 = O} E ö'(I1,s)

The sequence x(j) induces the sequence

The limit of y(j) in E(I3 ,s) is the collection

(3.9)

Now we obtain the sequences

1J,(j) = (x(j) x(j) x(j)) E ~(I )
6 , 7 , 8 6,8
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We have
zU) = (jz+j+2,jz+j+1,jz+j) = (2,1,0)

(recall that thc collection z(j) is defined up to additive constant) and Ihn z(j) is thc
collection

(3.10)

At last

{2 > 1 > O} E E(13,s)

u(j) = (2j, j: 0)

and the linlit of u(j) in E(16 ,s) is thc point

(3.11 ) {I > 1/2 > O} E Li(16,s)

Thc limit of thc sequencc x(j) is thc collection of collections (3.8 )-(3.11 ).

Topology on the boundary 0/ 1k ,l' This topology satisfies the following property:
the cIosure of F( a) consists of all faces F(b) such that b < a.

Wc aSSUllle thc topology is defined for all polyhedra K(a, ß) such that ß - Cl: <
l - k.

We definc the convergcnce of a sequence

z(j) E F(a)

in two steps.
The first step Let

bc the component of ZU) associatcd to Inultiplier Li(a ,lk ,d in the product (3.7 ).
Thcn the convcrgence of h(j) in ß (a , I k,l) is a ncsscsary condition for its convergencc
in K(k,l). Wc dcnote thc Ihnit of h(j) in ß(a ,Ik,l) by u.

Second step. Let us consider thc partition of 11.:,1 associatcd to a :

Thcn the collection u has the forrn

u = {I = Uk = ... = U'11 ~ u'n +1 = ... = 'lL'12 ~ •.. }

Let HS consider Tl, T2, ... such that

The set {Tl, TZ, ... } is a subset in thc set {'1,'Z, ... }) anel hence each segment
17"0+ 1 , To +1 is the union of the seglnents l')'m+ 1,')'m+l'
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Let us consider on each set

the tree-partition bo induced by the tree-partition Q.. The sequence ZU) induces

the sequence Z[~? in each face F(bo ) C ]((70 + I, 70 +d .
The nessessary and sufficient condition of thc convergence of ZU) is the conver­

gencc of each sequence Z[~? in Karpclevich polyhedron K(T 0 + 1, 70 +1).

3.3. The compaetification 01 symmetrie space by KlL"7Jelevich velocities. Let us
consider the boundary

8K(1, n) := K(l, n)\~(I1,n)

of thc polyhedron K (1, n).
We define thc cOlnpactification

(8L(n, IR)/80(n)) U (8K(1, n))

of thc sYlnmetric space 8L(n, IR)/80(n). Let xU) E 8L(n, IR)/80(n) be a sequencc
and y E 8K(I1,n)' Thc x U) ---+ y if

1. distance d(xU), 0) ---+ 00

2. A(xU)) ---+ y in the topology of K(I1,n) (where A(·) is defined by the fonnula
(3.1))

4. TITS BUILDING ON MATRIX SKY

We rccall that geodesics in the spasc 8L(n, IR)/80(n) have the fonn

(4.1)

wherc

(4.2)

Thc tenn geodesie below means thc oriented geodesics without fixed parametriza­
tion.

4.1. Matrix sky (visibility boundary). Let us considcr a Riclllann noncoillpact Sylll­
mctric space G/K. Fix a point Xo E G/K (in our case G/K = 8L(n, IR)/80(n) it
is natural to assulnc Xo = E). Let Txo be thc tangent space in the point Xo (in our
casc G/ K = 8L(n, IR)/80(n) thc tangent space is the space of syrnlllctric Inatrices
defined up to addition of a scalar Inatrix, i.e. A:::: A + AE). Let S be thc space of
rays in Txo with origins in zero (i.e. 8 = (Txo \O)/IR+ where IR+ is the nntltiplicativc
group of positive real numbers). Let v E 8, let v E Txo be a tangent vector on the
ray v. Let

14



be the geodesie such that

We dou't iuterested by the parauletrization of thc geodesic ,(s) but its direction is
essential for uso

Let Sk be another copy of the spherc S. Points of thc sphere Sk we consider as
infinitely far points of G/ K. We will caH the sphcre S k by the rnatrix sky or by the
visibility boundary. Let us describe the topology on the space

---lvi.9
(G/K) :=G/KUSk

Wc equip the spaces G/ K anel S k with the usual topology. Let Yj be a sequence
in G/ K. Let v E Sk. Let .,,(j) be the geodesic joining points Xo anel Yj. Let us
consider thc vectors Vj E S such that

Thc convergcnce of the sequence Yj E G/ K to a point v E Sk is defined by the
conclitions

l.p(xo l Y) -+ 00

2.vj -+ v in the natural topology of thc spherc Bk

4.2. The projection 0/ the matrix sky t0 the velocity simplex. Let G/ K = S L (n, IR) / SO (n ) .
Let us consider a geodesic , with thc origin in Xo = E. Then , has the fonn

(4.3)

where A E SO(n) alld

Let ß = ß n be the simplex

(see 3.1) . We associate to each geoelesic ,(s) the point

of the simplex ß .
Obviously D(,) is the lilnit of the gcoelcsics , in the silnplest velocity compact­

ification of SL(n, JR)/SO(n). We say that D(,) E ß is the velocity 0/ geodesie,
4·3. The projection 0/ the matrix sky to the space 0/ fiags. Let:F be the set of a11
flags

15



in]Rn (s = 0,1,2, ... ,n), see section 7. Denote by fcomplete the space of complete
Rags (i.e i = n)

Let us consider the geodesic ,(s) given by the expression (4.1). Let thc collection
A11 A2, ... , An has thc fornl

Let Ta be the subspase in ]Rn which consists of vectors

(Xl, ... , X 8o ' 0, 0, ... )

Let Va = ATo (see (4.3)). Wc dcnotc by F(,) the flag

(4.5)

We obtain the Inap F : Sky --+ f. It is easy to see that the geodesic / is detennined
by the pair

(D(,); F(,)) E ß x :F

A pair (ve1ocity (4.4), flag (4.5)) is not arbitrary. It has to satisfy the condition
dinl Vj = Sj'

4.4. Limits 0/ geodesics on the matrix sky. Let HS consider arbitrary geodcsic
,(s)given by thc fornnlla (4.1 )-(4.2). Let us consider the geodcsics /'l,s (t) joining the
points °and ,(s). Wc want to calculate linls-too K,( s).

For this purpose let us represent the rnatrix A E GL(n, IR) in thc fornl A = UB
where U E O(n) and B is uppertriangle Inatrix. It is easy to provc that the lilnit
of thc fanlily of geodcsics '8 is the geodesics a(t) given by the forrIlula

(

exp(Alt)

a(t) = U

This remark has several simple corollaries .

Construction 0/ the matrix sky doesn't depend on the ]Joint Xo.
Incleed let us consider two points xo anel Xl anel elenote the associateel nlatrix

skies by Sk(xo), Sk(Xl) . Let us consicler a gcodesic ,(s) with thc origin in Xl' Then
,(s) has liInit on Sk(xo) . Hence we obtain the canonical nlap 'l/JIO : Sk(xt} --+
Sk(xo). We also have canonical Inap 'l./JOI : Sk(xo) --+ Sk(Xl)' It is casy to
show that 7./JOl 0 'l/ho = id, 1f;lO 0 1f;Ol = id and we obtain the canonical bijection
Sk(xo) +-+ Sk(Xl)'

In particular for each point x E G / K and each ]Joint y E Sk there exists the unique
geode8ic joining x and y.

The group G/ K act by the natural way on the space (G/ K)vis.
Ineleeel the group G acts on the space of geoclesics.

For each 9 E G and each , E Sk
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4.5. Simplicial structure on the matrix sky. Let us consider a completc Rag L E

Fcomplete

L: 0 C W I C W 2 C ... C Wn - 1 C }Rn; dirn Wj = j

Let us consider the eUlbedding

O'L : 6. -+ Bk

defined by the conditions
1. G 0 (J'L is thc idcntity rnap 6. -+ 6.
2. The itnage of thc rnap FOUL: 6. -+ F consists of subflags of the flag L.
Now wc will givc a cxplicit construction of thc map (J'L. Without 10ss of generality

we can consider tbe flag

in IRn
, the subsubspacc IRj consists of vcctors (Xl, ... , Xj, 0, ... ,0). Let

1 2: 112 2: ... 2: 11n-1 2: 0

be a point of 6.. Then tbe a..~sociatedgeodesie (we rernind that geodesie is identified
with the point of Bk) has thc forrn

exp(s)

,(s) =

1

Hence we 0 btain the tHing of thc sphere Bk by the siruplices (J'L (6.). These sirnplices
are enurnerated by thc points L of thc spase of complete Hags. It is easy to show
that this tHing satisfics the conditions

a) Let g E SL(n, IR). Thcn

b) If L =I- L' then thc interiors of sirnplices UL(6.) and (Tv (6.) doesn't intersect
c) Let

L : VI C V2 C Vn - l

L' : V{ C V; c V~_l

be cornplete fiags. If Vj i- Vj for all j then (J'L (ß) n 0'L' (ß) = 0 . In the opposite
case the intersection

A = (J'L(6.) n O'v (6.)

is a joint face of sitnplices O'L(6.) and O'L,(ß). Let us describe A. Let al, .. " aB be
all indices j such that Vj = Vj (i.e Vo; = V~i and Vj =I- VJ for all j =I- ad. Let us
consider the face
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of the sirnplex ~. Then
A = L.L(N) = EL,(N)

Now we obtain on the sphere Sk the structure of a Tits building (see [30))

4.6. Tits metne on the matrix sky. Let us consider points YI, Y2 E aL(.6.). We
define thc distance d(YIl 712) as the angle between geodesics XOYI and XOY2. Let
z, u E Sk. Let us consider a chain

such that for all j points ZJ, Zj+1 belongs to one elenlent of our tHing.
Let us definc thc Tits rn etrie D (" .) on S k by thc forrnula

D(z, u) = inf(E d(zj), d(zj+d)
j

(we consider thc infinlulll by the all chains ZI, ... , zß)'

Rernark 4.1. Thc topology on the Sk dcfinecl by the Tits HlCtric is not equivalcnt
to the usual topology of the sphere.

Example 4.2. Let n = 3,GIK = SL(3,IR)ISO(3). Thcn Sk is the 4-dirnensional
sphere S4, dirn ~ = I,Le the simplices aL(~) are segulCnts. Wc will describc the
siplicial structure on S k = S4. Let P be the spase of all I-dimensional linear
subspaces in IR3 anel Q be the space of 2-dirnensional subspaces in IR3 (evidently
p ~ Q are thc projective planes). We want to construct SOlne graph r. The set
of verticcs of r is Pu Q. Let pEP, q E Q, p C q. Then p and q are adjacent to
the same cdge and all edges have such fornl. Asslllne that the length of each eclge
is 'Ir13. Then graph r is isoHlCtric to thc sphere Sk = 8 4 endowcd with the Tits
rnetric.

4.7. Abel subspaces. Let A be a orthogonallnatrix. Let HS considcr the subrnanifold
R[A] C SL(n, IR)ISO(n) consisting of Inatrices of the form

I

where SI, ... , 8 n -1 E lR..
The nlap

(SI, ... , sn-d H 'IjJ(SI, ... , sn-d
is thc iSOllletric Clnbedding Rn-1 --+ SL (11., IR)1SO (n) (with respect to the standard
nietries in IRn-1 and in SL(11., IR)1SO(11.)).

Let us consider the trace B[A] of tbc space R[A] on the surfacc Bk. It is ea..'3Y
to sec that S [A] is t he union of (n - I)! silnplexes aL (.6.) . These si Inplices are
separated by thc hypcrplancs Si = Sj.
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5. HYBRIDIZATION: DYNKIN-ÜLSHANETSKY AND KARPELEVICH BOUNDARIES

5.1 Hybridization. Let
i 1 : GIK --+ X

i 2 : CIK --+ Y

be elnbeddings of symnIetric space GIK to compact lnetric spaces X and Y. Let
the images of GIK in X and Y be dense.

Let us considcr the cnIbedding

i 1 X i 2 : GIK --+ X x Y

defined by the fonnula
h f-t (i 1 (h), i 2 (h))

where h E GIK. Let Z bc the closure of thc image of GIK in X x Y. Then Z is
thc new compactification of GIK. We say that Z is the hybrid of X and Y.

We want to apply this construction in the case thcn X is a velocity cOlnpactifi­
cation and Y is Satake-Furstcnberg compactification.

5.2. Dynkin-Olshanetsky boundary. Let us consider the hybrid Z of the sirnplest
velocity cOlnpactification (see 3.1) anel Satake-Furstenberg cOlllpactification of Rie­
lnann noncompact synullctric space. Again let us consider only thc casc ClK =
SL(n, IR)/O(n).

A point of the space Z is given by the following data
0*. s = 1,2, ... , n - 1
1*. A hinge

such that Pj are nonnegative definite (see scction 9 )
2*. A point of the sinIplex 6. 8 :

Let x(j) E SL(n, IR)/O(n) be a unbounded sequence. Let alj ) ~ ... ~ aW) be the

cigenvalues of x(j). Let >..~) = In a~). Then thc point A(x(j)) := (>"~), >..V), . .. ) be
a point of thc thc simplicial cone Eu(sce 4.1). The sequence x(j) E SL(n,lR)/O(n)
converges in Z if x(j) convcrges in Furstenberg-Satakc cOlupactification and A(x(j))
converges in thc velocity siluplex Eu = Eu U 6..

Now we want to explain how to calculatc Hnl x U). Let ~ = (PI, ... , Ps) be
the linlit of xU) in Satakc-Fufstenberg cOlllpactification. Let Tj = c1imI7n(Pj ).

Let (72, ... , 7 s -d be thc limit of A(x(j)) in the siInplex 6.. Then thc collection
72 ~ 73 ~ . .. has the fOrIn

(5.1)

We assullle

(5.2)

1 = 71 = ... = 7')'1 > 7')'1 +1 = ... = 7')'2 > ...
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and we obtain the data 0* - 2*.

5.3. The projection 01 the Dynkin-Olshanetsky boundary to the matrix sky. Let we
have data 0* - 2* Let us consider thc new data

1+. The Hag

2+. Thc collection of nurnbcl's 72, ... 7 8 -1 defined by thc fOflnula (5.2)
These data deHne the point of the rnatrix sky (see 4.2-4.3 )

5.4. Lirnits 01 geodesics. Let us considcr a geodesic8

(

eXP(A1 S)

,(s)=A

where A E 8L(n, IR) and Al 2': A2 2': ... 2': An = O. Let ~ = (PI,"" Ps) be the
lirnit of )'(s) in the space of hinges. The limit of ,(s) in the velocity simplex ß n is
72, ... , 7n -1 where Tj = Aj/Al. _

Let '0: = diruIm(PoJ. We define rnunbers

Now we obtain the data 0* - 2*.

Rema7'k 5.1. Not all points of Dynkin-Olshanetsky boundary are lirnits of geodesics.
A point defined by the data 0* - 2* is the lirnit of a geodesics if and only if 1 >
J-L2 > ... > J-Ln-l > 0

5.5. K arpelevich compactification. The Karpclevich corupactification is the hybrid
of thc conlpactification by Karpelevich velocities and Satake-Furstenberg compact­
ification.

A point of the Karpelevich compactification is givem by thc following data
0*. s = 1, ... , n - 1
1*. A hinge

such that are positive definite (see scction 10 )
2*. A point of thc boundary of the Karpclcvich velocity polyhedron K(I, s) (see

3.2)
The topology on Karpelevich cOlnpactification is defined by the obvious way .
Thc natural projection 8K(I, s) -t ß(I1,8) defines the projection of Karpelevich

boundary to Dynkin-Olshanctsky boundary

6. SPACE OF GEODESICS AND SEA URCHINS

6.1. Spase of fleodesics. Let 118 considcr a R,icrnann noncorupact synulletric space
G / K = 8L(n, IR)/80(71,). Denote by <8 the spase of all oriented geodesics in G / K.

The question about topologies on <8 is delicate. 1'11 dcscribe the topology which
seems to me the luost natural.
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Let us consider a collection of integers A = (ao, . .. , Qa) such that

Let us denote by ß(A) the open sinlplex

Silnplices ß(A) don't intersects and UA~(A) coincidcs with thc sitnplex ~n'

Let us consider a geodesie , E <B. Its vclocity is a point of OIlC of the sitnplices
ß(A). Thc space of all geodesics with a given velocity A E ~(A) is a SL(n, IR)­
hOlllogeneous space. Thc stabilizcr G(A) of thc geodcsic , (up to conjugacy) de­
pends only of the the collection A (it doesn't depend of A and thc geodesie itself):

We denote by <5(A) the space of all geodesics which velocities are elelnents of ß(A).
Then

<B(A) ~ ß(A) x (SL(n,IR)/G(A))

We equip this space with the usual topology of the direct product. We cquip the
space

<B = U<5(A) ~ U~(A) x (SL(n, IR)/G(A))
A A

with the topology of disjoint union.

Remark 6.1. Hence the space of gcodesics is disconnected set. It is not strange. Let
Ao = {O, 1,2, ... , n} Let us consider the set of litnits of the gcodcsics , E Q;(Ao)
on lllatrix sky. Then this set is open and deuce. The set of litnits of , E Q;(A)o in
Satake boundary is cOlllpact. Hence it is natural to think that Q) is disconnected.

6.2. Spase 0/ geodesics as boundary 01 symrnetric space. We define the natural
topology on the space

~=G/KU<5

Wc equip the space G/ K with thc natural topology. The space Q) is equipped
with the topology Inentioned above and thc spase Q) is closed in~. Fix a point
bo E G/K. Let Xj E G/K be a unboundcd sequence. The seguence Xj converges in
91 if it satisfies thc following conditions

1. Sequence of geodcsics boxj converges. Denote by y its linüt on thc nlatrix
sky.

2. There cxists a linlit Z of the sequence of geodcsics YXj.

Thc limit of the sequence Xj is defined to bc the geodesic z.

Remark 6.2. In our case the ditnension of the boundary

dinlQ) = 2ditnG/K - 2

is greatel' than dinl G/ K (even in the case then G/ K = S L (2, IR) / SO (2) is Labachevskii
plane)

21



Relnark 6.3. The spase 91 is not cOlnpact(since G is not compact)

6.3. Sea urchins. Recall that each geodesic , E (B has a velocity {/l'2, J.L3, ... } which
is a point of the siInplex ~ (see 3.1). We denote by (Brat the space of geodesics
having rational velocities (Le. Mj are rational). Let us consider the set (sea v..rchin
)

91rat := G/ Ku Q)rat c 91

We don't interested by thc topology on sea urchin (it is seems natural to consider
the discrete topology on thc set of velocities, the usual topology on the space of
geodesics with a given velocity and thc natural (see 6.2) convergence of sequences
in G/ K to geodesics)

6.4. Projective universality. Let Pj be a finite family of linear irreducible represen­
tations of the group G in the spaces Vj. We assume that for each j there exists
a K -fixeel nonzero vector Vj E Vj. Let us considcr thc direct sum P = ffipj o[
representations Pj anel the vector w = EBVj E EBVi. Let us consider the projective
space IP( EB Vj) . Let 0 ~ G/ K be the G-orbit of the vcctor w E IP(0). Let 0 be
the closllre of (J in IP(EBVj ).

The G-spaces 0 are called projective compactijications of G/ K
We will construct the lnap

'Ir:91=G/KU(540

The map G/ K 4 0 is obvious. Let us consider a geodesic ,(8) E \5. It is easy to
prove that there cxists lin18~00 P(,(8)) in IP( EBVi ). By dcfinition 'Ir (,) is this limit.

Proposition 6.4. a) The rnap 7f : 91. --+ 0 is surjective.
b) Moreover the 'Ir -image 0/ sea urchin 91rat is the whole o.

7.BIBLIOGRAPHICAL REMARKS

Remarks to section 1-2. Thc Satake-Furstcnbcrg boundary is aversion of Study­
Semple-Satake- Furstenberg-De Concini-Procesi-OshiIna boundary (see [1-7]) of
sYlnmetric space G / H where G is a semisiInple group and H is a symnletric sub­
bJTOUP (Le. subgroup H is set of fixccl points for sorne involution on the group G
). The usual definition is the following. Let us consider a finite-diInensional irre­
clucible representation of G having a H-fixecl vector v(the representation p have to
satisfy SOl1le nonclegeneracy conditions). Then our cornpactification is the closllre
of the orbit G . v in the projective space. Thc coinciclence of our construction with
classical is not obvious, for construction of projective elnbedding of space Hinge(n)
see [8,10].

Ringes were defined in [8], see also [10]. For construction of separatcd quotient
space through Hausdorff nletric see [9]. For construction of separated quotient
space it is also possible to use closure in Chow schenlc , see [11-12].

Dur space Hinge(n) is one of thc real fornl of Smnple cOlnplete collineation
variety. The Satake-Furstenberg cornpactification of SL(n, JR) is one of the real
fanns of Study-Senlple conlplete quadrics.
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Data 1* - 2* were introduccd in [3].

Remarks to section 3. I haven 't seen this construction in literature. The anal­
ogy of the collection{ln AJ} for arbitrary sYlnmetric space is so-called comp1ex (01'
cOlnpound) distance (see for instance [10])

Kaprelevich velocity polyhedron is the closure of a Weyl chanlber in Kaprelevich
compactification.

Remarks to section 4. Sec [15,32].
The 1110St of constructions described in this paper are very exotic froln the point

of view of the official differential geonletry. The visibility boundary is exeption. It
is Inore 01' less general differential-geolnetric objcct, sec [13-15].

Tits Inetric on the infinitely distant sphere(see also [16] for bounclaries of Brllhat­
Tits buildings) also is nlore or less general construction (sec [15]). Neverless nice
tHing of the sphere also seems exeptional phenomena.

Remarks to section 5. . Karpelevich boundary was constructed in [17] in tenns
of geoIIletry of geodcsics. Dynkin-Olshanetsky boundary (see [18-20]) is Martin
boundary (see [22-25]) for thc diffusion on synunetric spacesDiscussion of these
boundaries sec also [21].

Remarks to section 6. I havn' seen sea urchin construction in literature. See [26­
27] for universal projective cOlllpactification of sylnmctric space (see urchin is not
cOlllpact).
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