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An I-category structure for crossed chain algebras

Andy Tonks

1 Crossed chain algebras and their pushouts

Let (Crs, ®) be the monoidal category of crossed (chain) complexes (of groupoids), with terminal
object * and ‘interval’ object Z given by the fundamental crossed complex of the zero- and one-
simplex respectively. The initial object in Crs is the empty crossed complex . A homotopy in
Crs is a homomorphismZ @ A — B.

A crossed chain algebra X consists of a crossed complex X with unit and multiplication given
by homomorphisms 0: ¥ — X and u: X ® X — X satisfying the usual identity and associativity
laws. Morphisms of crossed chain algebras are crossed complex homomorphisms respecting the
extra structure. The category so formed is denoted CrsAlg. The crossed complex * with unit
and multiplication structures given by the isomorphisms * & * and * ® * = x is both initial and
terminal in CrsAlg.

The forgetful functor U: CrsAlg — Crs given by X — X has a left adjoint F, where FA
has underlying crossed complex [[ ., A®" with unit given by the inclusion of * as the 0-fold
tensor product and multiplication given by the isomorphisms A®P @ A% = A®(P+e) Given a
crossed chain algebra X and a crossed complex homomorphism f: A — X, we write fT for the
corresponding morphism FA — X.

Suppose B is a crossed complex and X a crossed chain algebra. Then the free product of
algebras X II FB has underlying crossed complex [],,5o X ® (B ® X)®" and multiplication given
by px on the inner factors: B

X (BOX)® @ X (B X)® 228 x o (B X)0r+)

The algebra maps from X, FB to X1 F B are defined using the isomorphisms X = X ®@(B®X)®?,
FB2=]],50*® (B ® *)®" respectively.

Given also a crossed complex A and homomorphisms k: A = B, f: A = X, we can take the
pushout of algebras Y = X llpq F B:

FA Fk FB
fT
X I_Y

Let C = [,50X ® (B ® X)®", the underlying crossed complex of the free product, and consider
the homomorphisms a,b: C ® A ® C — C defined by & and by f and u:

C@A@CM

COoX@C
1Qk®1 1@u4 ®1

C®B@Ce . C



Then the pushout Y has underlying crossed complex given by the coequaliser of a and b:

a q
CRQAQRC —= C Y
b

and the unit and multiplication structures on Y are induced by those on C given in the free product
case. Suppose given a crossed chain algebra Z, a crossed complex homomorphism r: B — Z and
a morphism s: X — Z, such that the following diagram commutes:

Fk
FA FB
f'l" rT
X— .7

Then the morphism t: Y — Z corresponding to (r, s) may be defined via the homomorphisms

on 2n
x®(Box)en 288N se@nry K27 5

Recall that the diagonal approximation map of the Eilenberg-Zilber theorem [4] gives homo-
morphisms Z — Z®" which satisfy the obvious associativity laws and commute with the canonical
map p:Z — *. Using the symmetry of ®, these give homomorphisms

dn)

ITQAQAQ...0 A, IQAIRIRAIR®R.. QTR A,

for any crossed complexes Ay, As, ..., A,. Given crossed chain algebras X, X' we will say that a
homotopy o:Z® X — X’ in Crs respects the multiplication if the following diagrams commute:

(2)
T@x —2—+ & ToxeXx *areoxezeox 229 x'ex
1®0x Ox 1Qux Hx
o2
IQX X’ I®X X'

The following proposition will be used inductively in the constructions of section 2:

Proposition 1 (a) Suppose given algebras X, X', homomorphisms k:A —- B, f:A = X, a
homotopy ox: T @ X — X' which respects the multiplication, and a morphism nx: X' - X
satisfyingmx oox =p: I @ X — X. Let Y, Y' be the algebras given by the pushouts

ra—L* . pp rae ) L18F pren)
iT 7 g7 77
x4+ Iy X’ : [y

where g = ox o (1 ® f). Then there exist a homotopy oy:Z®Y — Y’ which respects the multipli-
cation and a morphism my:Y' = Y such that the following diagrams commute:

-
I®B Ty 2 . Tox 8L1ey Xt Ly
197 \ \ oy TX Ty

3! 7
I8y X' v X Y




vy

(b) Given also algebras Z, Z', a homotopy 07:I ® Z — Z' which respects the multiplication, and
a morphism wz:Z' — Z such that mg o oy = p, together with morphisms s:X = Z, &:Y = Z,
§: X' 5 Z' such that the diagrams

1 '
X Tox 225 1¢2 X — .7
i 5 ox o7 T nz
s’ 5
Y Y/ X' 7z X Z

¢

commute, then there exists a unique morphism of algebras t': Y’ — Z/ making the following dia-
grams commule:

1®t t
X’ I®Y ﬁ-— I®7 Y’ yA
7 s’ oy oz Ty g
! ! } t’ ! t
Y Z Y A Y Y/

”I

Proof: (a) Let C, C’ be the free products X 11 FB, X' I F(Z® B) and consider Y, Y’ in terms
of coequalisers in Crs as above. Since T ® (—) preserves colimits, we may specify oy by giving
homotopies ¢’, o' as in the following diagram:

1®a

IQCR®AQRC —=IQ®C ——~1I@Y
1®b .
o' o' oy
a’ g v
CRIQARC : ol Y’
b

We define ¢’ via the homomorphisms ox @ (1® ox)®" o d2r+1);

(3n+1) o o8
I®X®(BoX)®" 2 n 9x8(189x)

IRXR®R(IQ®BOI®X)® X' ®(Z®B®X')®"
Note that ¢’ respects the multiplication since oy does, and that the following diagrams commute:

IQB > I@+@B®» —2x818x_ 7400 I®X —IQC

~p@1@pod® o’ ox o’

14

01 @1Q0 C,

r@RIQBRsr———" " Xe—/(

Thus the relations § = oy o (1® f) and # o ox = oy o (1 ® i) will follow.



Now consider the diagrams

I®CRARC —2¥  _ 1¢C®BRC— . I)C
a® 4
IQ®CRIRARI®C 8l 10CRI®BRI®C o
o'®1Qa’ a'®1@d’
CeIeAgC — 28 C’®I®B®C’<'———>C;"
TeCeAeC —2® | 19cexec —3%8 100
d® 4
I6CeIoAeIoC ¥ 16CoTeX0Ial o
o'91@c’ o’'Qox Qo
CoToiac — B0 oo yigo — 1ekel

The commutativity of the first of these is clear; the second requires the fact that ox respects the
multiplication on X, X’. Thus we put ¢ = (¢/ @ 1 ® ¢') 0 d® and oy is well defined.
By definition of Y, the relation mx ¢ o¢x = p and naturality we have the following diagram:

Mz o A) L2238 pi1 e B)

F(18f) F(187) Fr
FZex) 208 preyY)
ox \\ \\
X'

Then #y: Y’ = Y is defined as the canonical morphism from the pushout, and the relation
my 0ot = iomy 1s clear. Explicitly my may be written in terms of the homomorphisms:

L\@n Qn
XI ® (I ® B ® XI)@n ”X®(1®xz\) X ® (I ® B ® 1\’)@!’1 1@(}3@1) X ® (B ® X)@ﬂ

and thus the relation 7y o oy = p follows from the diagram below.

(3n+1) Y-S
I®X®(B®X)® -2 ISX®I®BOI®X)® X287 vig (1o B g X)®"
r r&(1@p)®" x@(1@rx)®"
19(p81)%"

X®(B®X)®" X®(Z®B®X)®"



(b) For the second part, we note we have the commutative diagram

10k) ,

Pz o 4) (T® B)
F(lef) F(1®f)
Fizex) LU8) prgy) U@ pizg g
O'XT O’ZT
X' l z!

by our hypotheses and the definition of Y. Thus we have a canonical morphism t": Y’ — Z’, with
s’ = 1 o', by the definition of Y’ as the pushout. If we put r =t o f (and recall that s = ¢ o 7)
we note that ¢, ¢’ are given by the homomorphisms

X® (B ® X)@n +@(r@s)®" 7®(2n+1) pa’" A

X' ©(TeBex)or 18U 1o 1gze 7)en 8@V eGni) k2™ |

respectively. Recalling the descriptions of oy, 7y above, the required relations oz 0(18t) = t'ooy,
mz ot’ = tomy thus follow from the diagrams

I X®(B®X)®" 1906001 | 7 gotnty) _ 18ksT 1 7
dn+1) 4an+1)
I9X®(IeBeIeX)er [88U8eI8 oy o 1e(nty)
ox®(180x)®" az®(1®02)®" oz
,

FQ(18res" Yo"

X'Q@Ie@B®X)®" 70IeZez)®"

18(oz@1)%"

an

Zr®(2ﬂ+1) Hz! z!

n

X' @I ®B®X)on LBUEreNT 4o 1o 20 2/)8n 18028 ety ki |

Tx@(p@nx)®" Tz@(p@7z)%" 7y ®(n+1) Tz

2 @(re2)®" o n
X® (B X)®" 3(r&2) ZQ(Z® Z)®%" 7®(2n+1) _Hz 7

which commute by the naturality of the diagonal approximation, by the relations oz o (1 ® s} =
s§ocx, mz08 =sonmy, Mz 00z = p, and since ¢z respects the multiplication and 7z is an
algebra morphism.

For uniqueness, suppose {: Y’ — Z’ is another morphism satisfying the required relations.
Then t"ogT =t" 00y o F1Q® f) =040 F(1®1) o F(1® f) and t" o # = s’, 50 t” = t' by the
universal property of the pushout. O




2 Cofibrations and cylinders in CrsAlg

We first recall the notion of a crossed complex homomorphism of relative free type [2]. Let E7
be the free crossed complex on one generator in dimension =, and let z.:S""! — E" be the
inclusion into £ of its (r — 1)-truncation. We write Z for the class of arbitrary coproducts of the
homomorphisms z,. Then a homomorphism &: C — D in Crs is said to be of relative free type if
there exists a sequence of pushouts

in

An B,
Yn
5 [
Dn Dn+1

for n > 0, with Dg = C, y. arbitrary, 2, € Z, such that & is given by the canonical homomorphism

C

colim(Do %, p, L p, 22 Dy )

A crossed complex D is termed free if the homomorphism # — D is of relative free type.

We define a cofibration in CrsAlg to be any transfinite composite of pushouts of morphisms
of the form Fg for g of relatively free type. Clearly the class of cofibrations is closed under
pushouts, composition and isomorphism. For X an arbitrary crossed chain algebra, we will write
X/CrsAlg, for the category with objects the cofibrations with domain X and with arrows i — ¢/
the algebra morphisms j which satisfy jo i =4. An arrow of X/CrsAlg, is termed a cofibration
if the underlying algebra morphism is a cofibration.

A crossed chain algebra X is termed coftbrant if the unique morphism # — X is a cofibration.
Note that */CrsAlg, is just the full subcategory of CrsAlg on the cofibrant objects.

Suppose 1: X — Y is a cofibration in CrsAlg given by a sequence of pushouts ¥ = (¥x)xen
for some infinite regular cardinal A, as follows:

Fk
FA, ad FB,
—T
I P fx
s
Ys Ym+l

where Yo = X, each k. 1s a homomorphism of relative free type, and ¢ is the canonical morphism
X coli)rn Y.
—

Suppose also we are given a crossed chain algebra X’ together with a homotopy ox: I®X S5 X
which respects the multiplication and a morphism 7 : X’ — X satisfying mx cox = p. We use
transfinite induction to define for each ordinal £ € A a pushout

F1ek,
rze ) FU8k) pirg g
g . T’
o
v,— % Ty,

together with a homotopy o4:Z ® Ys — Y, which respecis the multiplication and a morphism



7Y’ — Y, which make the following diagrams commute:

1®i 1,
I® By I®Y: I@Y, —% T® VYepy Y, —5- YL,
1®f“ \ \ O Trt1 Ty Tr41
p e ; i
I ® Y‘ YR YK+1 Y,; Y,;.'_l

Let 09 = ox and mp = wx. Having defined o, and m., we give ¢, by putting g, = o 0 (1 ® fi)
and then o1 and meq are defined by applying proposition 1{a) to %, ¥%. For a limit ordinal
Kk < A, o, and m, are those induced by the o, and . for &’ € k.

From [2] we know that homomorphisms of relative free type are closed under tensoring with free
objects and in particular with Z. Thus 9’ = (¥, )xea generates a cofibration in CrsAlg, termed
the relative cylinder on (i, 0x) and written i, : X' — I,, Y. Note that the construction respects
the identity and composition of cofibrations. Also we have a homotopy ey = 01 ZQ@Y — I, Y
which respects the multiplication and a morphism 1y = m3:I,,Y — Y such that the following
diagrams commute:

Tox 2 1oy X —5 1, Y IQY —Xu I, Y
ox oy X Ty Ty
P
i
! s
X Y X Y Y

These are termed the shift and projection maps respectively.

In the special case X' = X, with ox:Z® X — X and 7x: X — X given by p and the identity
respectively, the cofibration #[, is termed the relative cylinder on ¢ written #: X — IxY.

Let ag,a1:Y - Z®Y be the homomorphisms given by the two inclusions * — Z. Note that
the homomorphisms o, ®" may be written as d™ o a,: Y®" 5 ZT@Y®" 5 (Z® Y)®" and that
poa, = ly for r = 0,1. It follows that composing «p, @y with the shift map gives morphisms of
crossed chain algebras ¢g,¢1: Y = IxY such that my o, is the identity on Y for r =0, 1.

Suppose we have another cofibration W — Z and a commutative diagram F' as below.

X Y
F 1
w Z

To define the relative cylinder on the morphism of cofibrations F, write ¢, for the composite
Y. > Y — Z and note that ¢, = 1,4y o ¢, for each ordinal &« € A. We use transfinite induction to
define morphisms ¢,: Y'x = IwZ, & < A, which satisfy

1®t ¢
Y, 1oY, 2107 Y, 1,z
i Le o o
x [ Z Te Tz
; ; 1 tx
Y., — IwZ Y, Iwz Y, /
r+1



Let ty be the composite X =+ W — Iy Z; the relation tj o 6x = 0z o (1 ® to) follows from the
diagram

IQX —IQW —IQRZ
D 2 oz

X W iwZz

together with . Having defined t) for x € A, we let ¢}, be the unique morphism satisfying the
required relations given by proposition 1(b). For £ < A a limit ordinal, ¢/, is that induced by the
t for &' € K.

Writing It for ¢y, we have a morphism of cofibrations I/ satisfying {tooy = 0z 0 (1®1t) and

rnzgolt=tomy:

1®t
X IxY I@Y—-—gb.I@Z IxYLIwZ
IF It oy oz Ty Tz
It i
W IwZ IxY w2 Y Z

In certain situations the above constructions coincide:

Proposition 2 Suppose :X = Y, j:Y — Z are cofibrations and let i, (j o 1) be the relative
cylinders on i, j o i with corresponding shift maps oy, 6z. Then the morphism Ij oblained from
(1,7) regarded as a morphism of cofibrations i — (j o) is itself a cofibration, given by the relative
cylinder 7' on (j,0v).

i i
X Y X IxY
1 j 1 7' |
. o
x 1° .z AL

Proof: Suppose i is given by the sequence of pushouts (1x)xex as above, and let 1,5, i,
be the canonical morphisms Y, — Y, Y, — IxY for each ordinal £ < A. Then the morphisms
7 Y. = IxZ in the construction of /j are defined via proposition 1(b} from the morphisms
Jx = joixaa: Y, = Z. We will show by transfinite induction that j; = j' o4, _,, for all & < A.
For & = 0 this is just (j 0 i)’ = §' o #’. If the result holds for £ € A then the following diagrams
commute:

1®£n+1—+)\
—— -

1®j
Y, IQYes1 IoY —L 10z
» . )
i e N# Trt1 oy oz
NN i
Y, = IxY —— IxZ Yl IxY IxZ
15-1—1—}/\ 7

(as does the corresponding diagram for 7 instead of o) and so jy ., = j'o#, ,;_, by the uniqueness

part of proposition 1(b). For a imit ordinal £ < X the result follows from the result for all &’ € &.
a



Proposition 3 The relative cylinder construction is functorial.

Proof: Putting 7 = 1 in the previous proposition gives I = 7/ = 1, so I preserves identity
morphisms between cofibrations.

Suppose given cofibrations X - Y, W — Z, U — V and morphisms of cofibrations ¥, G,
GoF:

X Y w yA X Y
F (1 G (2 C GoF |t =t@ o)
w Z U v U v

Suppose X — Y is given by (¥x)xex and write tﬁl) =tM o iy, tx =tois,, as usual. Note

that ¢ o1 = tx for each ordinal x < A. We show inductively I¢(*) ot,(f)’ =t/ for all K < A,
which gives /G o [F = I(G o F). For & = 0, this follows from the commutativity of the diagram
IG. If the result holds for k € A, we have the following commutative diagrams:

1914, Loz 81

x4l I® Yeps ®Z IQV
|
i ig)’ i Or+1 oz oy
1]
’ J , (), 1@
ch-l-l (1) 7 IWZ _{t(2) IUV ch-l-l IWZ —_— IU
t

s+1

plus a corresponding diagram for #. Thus the result holds for £ + 1 by the uniqueness in the
definition of ¢, ;. The result for a limit ordinal £ < A follows from the result for all &' € & as
usual. O

Corollary 4 The relative cylinder X — IxY on a cofibration X — Y is well defined up to
isomorphism. O

Let Cof(CrsAlg) be the category whose objects are cofibrations of crossed chain algebras and
whose morphisms are commutative diagrams ' as above. Then we have a relative cylinder functor
I on Cof(CrsAlg), together with natural transformations ¢g, ¢y :id = [ and 7 : I — id such that
mot. = 1 for r = 0,1. In particular, we have I,t., 7 on V/CrsAlg_, for any algebra V, and by
proposition 2 I takes cofibrations to cofibrations in V/CrsAlg,.

Proposition 5 The relative cylinder functor preserves pushouts of cofibrations in V /CrsAlg,.

Proof: Given an arrow a:b — ¢ and a cofibration i:4 — 7 ¢ ¥, the pushout of i along a in
V/CrsAlg, is given by :¢ = 70 ¢ where 7 is the pushout of ¢ along a in CrsAlg. Suppose
i is given by the sequence of pushouts (x)ces as usual, and define morphisms ax: Y, — Zg
inductively by setting a,41 to be the pushout of a. along i, with ag = a.

b ' P, i
A% X — .y FA, FB, Y. — + Yeu
a a T P :f_sT ax Gry1
c -
i i [
w Z Y. —— Yn+1 Z, —r zlc+1




Then 7 is the composite of the pushouts of Fk, along a, o fT, and so by proposition 2 I and /7
are given by sequences of pushouts ¢ and ¢ as below.

F(1Qky) F(18k.)

F(I® Ax) F(I® By) F(Z® Ag) F(I® By)
(0vx010f)"  Bx  (0v,,,0187)7 (oz.oleﬂxﬂf-))T P (03,4,018(axs100))T
v, —t Ly, z, — Lo,
Now consider the following diagrams for £ € A:
F(Z® Ax) FL®k) F(I® By)
(ov. 010 fu)T (Ve 01@ Jx)T
Y, = Yo
Ta, fapp
z, & Ziys

From the relations Ja, ooy, = oz, o (1 ® a.) the outer rectangles are just the pushouts ., and
the upper squares are the pushouts ¢.. Thus the lower squares are also pushout squares and we
are done. O

Given a cofibration : X — Y as usual, and homotopies 0x:Z® X = X', 01T ® X' = X"
which respect the multiplication, we can define the double relative cylinder on (i,0x,0%) as the

relative cylinder on (¢ _,c% ). As a cofibration this is given by the sequence of pushouts ¢ as
X g eq p

Tx
follows:
Flloelek
FIeIoA,) —L8L8k)  rrorem,)
(6201©10 fx)" ¥ (021010107,
v e

where 02 = oL o (1 ®o,). I ®Z = I®Z is given by the symmetry of ®, and 7x is

x
an endomorphism of X" satisfying ¢ o (r ® 1) = 79 0 02, we can define inductively from ¢, rx

endomorphisms 7, of Y/ satisfying 62 o (1® 1) = 7, 0 02,

I®I®Yg:§-1>1®1®yn

Tk

"
YR

i
YN

The induced morphism 7y on I, I, Y is termed the interchange map, and taking ox = o’y = 1x
we get a natural transformation 7: /T — I in X/CrsAlg,. Since the morphisms ¢/, [t,: IxY —
I2Y can be defined via the homomorphisms +® I @Y, - ZQ®ZI® Y, —= Y/ I®*®Y: —
IQRI®Y,— Y) respectively, we have ro i, =t and 7ot = [t for r =0, 1.

10



3 The homotopy extension property in Crs and CrsAlg

A homomorphism k:C' — D is said to have the homotopy extension property (HEP) in Crs if,
given homomorphismsa: D — Z, b: T@®C — Z such that boag = ack, there exists a homomorphism
b"IT @ D — Z satisflying b’ o (1® k) =b and b oy = a.

Suppose z: V = X, y: V = Y are cofibrations in CrsAlg, and write z', ¢/ for the corresponding
relative cylinders. Then an arrow #: 2z — y is said to have the homotopy extension property (HEP)
in V/CrsAlg, if, given arrows c:y — z, d: 2’ — z such that do iy = c o i, there exists an arrow
d:y — z satislying &’ o [i = d and d' 0 19 = c.

i

X Y

Lo\
.
IyX — Iy Y

Lo

Note that by the symmetry of Z, it is equivalent to use ay,t; instead of ag,tp in the above
definitions.

Proposition 6 Suppose every homomorphism of relative free type has the HEP in Crs. Then all
cofibrations have the HEP in V/CrsAlg, .

Proof: Suppose i, ¢, d are as above, with 7 a cofibration given by a pushout sequence % as usual.
We define inductively morphisms dg: Y, — Z satisfying dg 0 tp = coix,y and dy = dyyy 0 1.
Let dp = d. Given d., we define a homomorphism e.:Z @ B, — Z by the HEP for k. and hence
a morphism dx11: Y}y, = Z by the definition of Y, as a pushout:

kx Fl®k
Ax B, F(I® Ax) 1O k) F(I ® By)
A
Qg
fx
I® A, Y, i Y1 1y
. ap c
1Q® fx
ok s dy
I®Y, Y, VA

It remains to show that de4q 0 tg = c01gp105x. On precomposing each side with T,: and with i,

11



we have the following commutative diagrams:

7
Yr:+1 ,;+1 Yn+1 K41
4
i 4‘ \ ) il N
Lo d

B, I® Bx Ye Y! f . Z

A i I
[ [44
4 : .
Tl T4l
}In+1 _.'i:__. Y I‘+1 —K'+__b., Y

Thus the result follows. O

Proposition 7 All homomorphisms of relative free type have the HEP in Crs.
Proof: We prove the result for the addition of a single generator ¢, to a crossed complex C.

k

D

n

Sn—l cC z E"

For n = 0 we have $"~! = @, so & may be defined via : Z®C — Z and aoGop: I® E* = E° —
D~ Z.

For n = 1, let s{e!), t(e!) € Cp be the images under y of 0,1 € S®. Then Z ® D is the crossed
complex with generators 0®e!, 1®el, ! ®e! and i®c € Z®C, subject to the following relations:

s(roel) = r@se
tree') = rote!
tlel®el) = 1@te!

S{e'®@e!) = (10e' ) to(e!®@se!) 'o0®e' oe! ®te!

for r = 0,1, together with the standard relations in Z ® C [4). Note that sa(e') = b(0 ® se!) =
sb(e! ® se!) and ta(e!) = sb(e! @ te!) similarly. Then ¥ is defined on the generators as follows:

Yi0®e') = alel)
Y(1@e') = ble! @se') Loale!)oble! ®tel)
b’(el @6 ) = idb(l@te‘)

b(i®c) = b(i®c)

The boundary relations are clear, as are ¥ oag = a and b o k = b.

For n = 2, let s € C; be the image under y of the generator of S!, and write e° for t(s!).
Then T ® D is the crossed complex with generators 0 ® e?, 1 ®e®, e! @ e? and i® c € I® C,
subject to the relations

t(r@ez) = r®e’
SH(r@e?) = r@s
te!®e?) = 1@
53(81 ® e2) — (1 ® 62)—1 ° (0 ® e2)e‘®e“ ° (Bl ®sl)—l

12



for r = 0,1, plus the relations in Z ® C. Then ¥ is defined by:

Y0®e*) = a(e?)
H(1@e?) = a(e?)?'@) op(e! @ ')~
Vel @e?) = idy(1@e0)

V(ige) = b(i®c)
The boundary relation 626'(1 ® €2) = b'd3(1 ® e3) follows from

S2b(e? @) = b((10 ') Lo (e'®e®) 100 ®s  oe' @e°) = b(1® s!)~ o dy(a(e?)b(e'®")

since dza(e?) = a(d2¢?) = b(0 ® s!). The other relations are clear.

For n > 3 the constructions differ from the n = 2 case only in very minor ways. For example,
the triviality of 8,-15""! is used instead of ss! = ts! = €® in showing d,b(e! @ s(*~1) = b1 ®
s=DY =16 6, (a(e”)?'€). D

A similar technique can be used to prove the relative cylinder axiom for crossed chain algebras.
First we need the fact that for any homomorphism k: C' — D, the canonical homoemorphism

Dl (Z@C)le D —I®D

is also of relative free type; this is quite straightforward. Now suppose i:z — y 1s a cofibration in
V/CrsAlg, given by a pushout sequence 1 as usual. Then the canonical morphism

Yux IvXH);Y —_— IVY

is a cofibration also, given by the pushout sequence ¢ as below.

F(Bx Ua, (T® Ax) A, By) F(I ® By)

b

Yy, Y.ly, Y

Yy, Y. Oy, Y
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