An I-category structure for crossed chain algebras

Andy Tonks

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 53225 Bonn GERMANY

MPI/95-135

.

·

· · ·

. .

An I-category structure for crossed chain algebras

Andy Tonks

1 Crossed chain algebras and their pushouts

Let (\mathbf{Crs}, \otimes) be the monoidal category of crossed (chain) complexes (of groupoids), with terminal object * and 'interval' object \mathcal{I} given by the fundamental crossed complex of the zero- and one-simplex respectively. The initial object in **Crs** is the empty crossed complex \emptyset . A homotopy in **Crs** is a homomorphism $\mathcal{I} \otimes A \to B$.

A crossed chain algebra X consists of a crossed complex X with unit and multiplication given by homomorphisms $0: * \to X$ and $\mu: X \otimes X \to X$ satisfying the usual identity and associativity laws. Morphisms of crossed chain algebras are crossed complex homomorphisms respecting the extra structure. The category so formed is denoted **CrsAlg**. The crossed complex * with unit and multiplication structures given by the isomorphisms $* \cong *$ and $* \otimes * \cong *$ is both initial and terminal in **CrsAlg**.

The forgetful functor $U: \operatorname{CrsAlg} \to \operatorname{Crs}$ given by $\mathbf{X} \mapsto X$ has a left adjoint F, where FA has underlying crossed complex $\coprod_{n\geq 0} A^{\otimes n}$ with unit given by the inclusion of * as the 0-fold tensor product and multiplication given by the isomorphisms $A^{\otimes p} \otimes A^{\otimes q} \cong A^{\otimes (p+q)}$. Given a crossed chain algebra \mathbf{X} and a crossed complex homomorphism $f: A \to X$, we write f^{T} for the corresponding morphism $FA \to \mathbf{X}$.

Suppose B is a crossed complex and X a crossed chain algebra. Then the free product of algebras X II FB has underlying crossed complex $\coprod_{n\geq 0} X \otimes (B\otimes X)^{\otimes n}$ and multiplication given by μ_X on the inner factors:

$$X \otimes (B \otimes X)^{\otimes p} \otimes X \otimes (B \otimes X)^{\otimes q} \xrightarrow{1 \otimes \mu_X \otimes 1} X \otimes (B \otimes X)^{\otimes (p+q)}$$

The algebra maps from **X**, FB to **X** $\amalg FB$ are defined using the isomorphisms $X \cong X \otimes (B \otimes X)^{\otimes 0}$, $FB \cong \coprod_{n>0} * \otimes (B \otimes *)^{\otimes n}$ respectively.

Given also a crossed complex A and homomorphisms $k: A \to B$, $f: A \to X$, we can take the pushout of algebras $\mathbf{Y} = \mathbf{X} \amalg_{FA} FB$:

Let $C = \coprod_{n \ge 0} X \otimes (B \otimes X)^{\otimes n}$, the underlying crossed complex of the free product, and consider the homomorphisms $a, b: C \otimes A \otimes C \longrightarrow C$ defined by k and by f and μ :

Then the pushout Y has underlying crossed complex given by the coequaliser of a and b:

$$C \otimes A \otimes C \xrightarrow{a} C \xrightarrow{q} Y$$

and the unit and multiplication structures on Y are induced by those on C given in the free product case. Suppose given a crossed chain algebra Z, a crossed complex homomorphism $r: B \to Z$ and a morphism $s: \mathbf{X} \to \mathbf{Z}$, such that the following diagram commutes:

Then the morphism $t: \mathbf{Y} \to \mathbf{Z}$ corresponding to (r, s) may be defined via the homomorphisms

$$X \otimes (B \otimes X)^{\otimes n} \xrightarrow{s \otimes (r \otimes s)^{\otimes n}} Z^{\otimes (2n+1)} \xrightarrow{\mu_Z^{2n}} Z$$

Recall that the diagonal approximation map of the Eilenberg-Zilber theorem [4] gives homomorphisms $\mathcal{I} \to \mathcal{I}^{\otimes n}$ which satisfy the obvious associativity laws and commute with the canonical map $p: \mathcal{I} \to *$. Using the symmetry of \otimes , these give homomorphisms

$$\mathcal{I} \otimes A_1 \otimes A_2 \otimes \ldots \otimes A_n \xrightarrow{d^{(n)}} \mathcal{I} \otimes A_1 \otimes \mathcal{I} \otimes A_2 \otimes \ldots \otimes \mathcal{I} \otimes A_n$$

for any crossed complexes A_1, A_2, \ldots, A_n . Given crossed chain algebras \mathbf{X}, \mathbf{X}' we will say that a homotopy $\sigma: \mathcal{I} \otimes X \to X'$ in Crs respects the multiplication if the following diagrams commute:

The following proposition will be used inductively in the constructions of section 2:

Proposition 1 (a) Suppose given algebras \mathbf{X} , \mathbf{X}' , homomorphisms $k: A \to B$, $f: A \to X$, a homotopy $\sigma_X: \mathcal{I} \otimes X \to X'$ which respects the multiplication, and a morphism $\pi_X: \mathbf{X}' \to \mathbf{X}$ satisfying $\pi_X \circ \sigma_X = p: \mathcal{I} \otimes X \to X$. Let \mathbf{Y} , \mathbf{Y}' be the algebras given by the pushouts

where $g = \sigma_X \circ (1 \otimes f)$. Then there exist a homotopy $\sigma_Y : \mathcal{I} \otimes Y \to Y'$ which respects the multiplication and a morphism $\pi_Y : \mathbf{Y}' \to \mathbf{Y}$ such that the following diagrams commute:

(b) Given also algebras \mathbf{Z} , \mathbf{Z}' , a homotopy $\sigma_Z: \mathcal{I} \otimes Z \to Z'$ which respects the multiplication, and a morphism $\pi_Z: \mathbf{Z}' \to \mathbf{Z}$ such that $\pi_Z \circ \sigma_Z = p$, together with morphisms $s: \mathbf{X} \to \mathbf{Z}$, $t: \mathbf{Y} \to \mathbf{Z}$, $s': \mathbf{X}' \to \mathbf{Z}'$ such that the diagrams

4

commute, then there exists a unique morphism of algebras $t': Y' \rightarrow Z'$ making the following diagrams commute:

Proof: (a) Let C, C' be the free products X II FB, X' II $F(\mathcal{I} \otimes B)$ and consider Y, Y' in terms of coequalisers in Crs as above. Since $\mathcal{I} \otimes (-)$ preserves colimits, we may specify σ_Y by giving homotopies σ', σ'' as in the following diagram:

We define σ' via the homomorphisms $\sigma_X \otimes (1 \otimes \sigma_X)^{\otimes n} \circ d^{(2n+1)}$:

$$\mathcal{I} \otimes X \otimes (B \otimes X)^{\otimes n} \xrightarrow{d^{(2n+1)}} \mathcal{I} \otimes X \otimes (\mathcal{I} \otimes B \otimes \mathcal{I} \otimes X)^{\otimes n} \xrightarrow{\sigma_X \otimes (1 \otimes \sigma_X)^{\otimes n}} X' \otimes (\mathcal{I} \otimes B \otimes X')^{\otimes n}$$

Note that σ' respects the multiplication since σ_X does, and that the following diagrams commute:

Thus the relations $\overline{g} = \sigma_Y \circ (1 \otimes \overline{f})$ and $i' \circ \sigma_X = \sigma_Y \circ (1 \otimes i)$ will follow.

Now consider the diagrams

The commutativity of the first of these is clear; the second requires the fact that σ_X respects the multiplication on X, X'. Thus we put $\sigma'' = (\sigma' \otimes 1 \otimes \sigma') \circ d^{(3)}$ and σ_Y is well defined.

By definition of Y, the relation $\pi_X \circ \sigma_X = p$ and naturality we have the following diagram:

Then $\pi_Y: \mathbf{Y}' \to \mathbf{Y}$ is defined as the canonical morphism from the pushout, and the relation $\pi_Y \circ i' = i \circ \pi_X$ is clear. Explicitly π_Y may be written in terms of the homomorphisms:

$$X' \otimes (\mathcal{I} \otimes B \otimes X')^{\otimes n} \xrightarrow{\pi_X \otimes (1 \otimes \pi_X)^{\otimes n}} X \otimes (\mathcal{I} \otimes B \otimes X)^{\otimes n} \xrightarrow{1 \otimes (p \otimes 1)^{\otimes n}} X \otimes (B \otimes X)^{\otimes n}$$

and thus the relation $\pi_Y \circ \sigma_Y = p$ follows from the diagram below.

$$\begin{array}{c} \mathcal{I} \otimes X \otimes (B \otimes X)^{\otimes n} \xrightarrow{d^{(2n+1)}} \mathcal{I} \otimes X \otimes (\mathcal{I} \otimes B \otimes \mathcal{I} \otimes X)^{\otimes n} \xrightarrow{\sigma_X \otimes (1 \otimes \sigma_X)^{\otimes n}} X' \otimes (\mathcal{I} \otimes B \otimes X')^{\otimes n} \\ & & \\ & \\ & & \\$$

(b) For the second part, we note we have the commutative diagram

by our hypotheses and the definition of Y. Thus we have a canonical morphism $t': \mathbf{Y}' \to \mathbf{Z}'$, with $s' = t' \circ i'$, by the definition of Y' as the pushout. If we put $r = t \circ \overline{f}$ (and recall that $s = t \circ i$) we note that t, t' are given by the homomorphisms

$$X \otimes (B \otimes X)^{\otimes n} \xrightarrow{\mathfrak{s} \otimes (r \otimes \mathfrak{s})^{\otimes n}} Z^{\otimes (2n+1)} \xrightarrow{\mu_Z^{2n}} Z$$

 $X' \otimes (\mathcal{I} \otimes B \otimes X')^{\otimes n} \xrightarrow{\mathfrak{s}' \otimes (1 \otimes r \otimes \mathfrak{s}')^{\otimes n}} Z' \otimes (\mathcal{I} \otimes Z \otimes Z')^{\otimes n} \xrightarrow{1 \otimes (\sigma_Z \otimes 1)^{\otimes n}} Z'^{\otimes (2n+1)} \xrightarrow{\mu_{Z'}^{2n}} Z'$

respectively. Recalling the descriptions of σ_Y , π_Y above, the required relations $\sigma_Z \circ (1 \otimes t) = t' \circ \sigma_Y$, $\pi_Z \circ t' = t \circ \pi_Y$ thus follow from the diagrams

which commute by the naturality of the diagonal approximation, by the relations $\sigma_Z \circ (1 \otimes s) =$ $s' \circ \sigma_X, \ \pi_Z \circ s' = s \circ \pi_X, \ \pi_Z \circ \sigma_Z = p$, and since σ_Z respects the multiplication and π_Z is an algebra morphism.

For uniqueness, suppose $t'': \mathbf{Y}' \to \mathbf{Z}'$ is another morphism satisfying the required relations. Then $t'' \circ \overline{g}^{\mathrm{T}} = t'' \circ \sigma_Y^{\mathrm{T}} \circ F(1 \otimes \overline{f}) = \sigma_Z^{\mathrm{T}} \circ F(1 \otimes t) \circ F(1 \otimes \overline{f})$ and $t'' \circ \overline{i'} = s'$, so t'' = t' by the universal property of the pushout. \Box

2 Cofibrations and cylinders in CrsAlg

We first recall the notion of a crossed complex homomorphism of relative free type [2]. Let E^r be the free crossed complex on one generator in dimension r, and let $x_r: S^{r-1} \to E^r$ be the inclusion into E^r of its (r-1)-truncation. We write \mathcal{Z} for the class of arbitrary coproducts of the homomorphisms x_r . Then a homomorphism $k: C \to D$ in Crs is said to be of relative free type if there exists a sequence of pushouts

for $n \ge 0$, with $D_0 = C$, y_n arbitrary, $z_n \in \mathbb{Z}$, such that k is given by the canonical homomorphism

$$C \longrightarrow \operatorname{colim} \left(D_0 \xrightarrow{\overline{z_0}} D_1 \xrightarrow{\overline{z_1}} D_2 \xrightarrow{\overline{z_2}} D_3 \longrightarrow \cdots \right)$$

A crossed complex D is termed free if the homomorphism $\emptyset \to D$ is of relative free type.

We define a cofibration in CrsAlg to be any transfinite composite of pushouts of morphisms of the form Fg for g of relatively free type. Clearly the class of cofibrations is closed under pushouts, composition and isomorphism. For X an arbitrary crossed chain algebra, we will write $X/CrsAlg_c$ for the category with objects the cofibrations with domain X and with arrows $i \rightarrow i'$ the algebra morphisms j which satisfy $j \circ i = i'$. An arrow of $X/CrsAlg_c$ is termed a cofibration if the underlying algebra morphism is a cofibration.

A crossed chain algebra X is termed *cofibrant* if the unique morphism $* \to X$ is a cofibration. Note that $*/CrsAlg_c$ is just the full subcategory of CrsAlg on the cofibrant objects.

Suppose $i: \mathbf{X} \to \mathbf{Y}$ is a cofibration in **CrsAlg** given by a sequence of pushouts $\psi = (\psi_{\kappa})_{\kappa \in \lambda}$ for some infinite regular cardinal λ , as follows:

$$FA_{\kappa} \xrightarrow{Fk_{\kappa}} FB_{\kappa}$$

$$f_{\kappa}^{\mathrm{T}} \downarrow \qquad \psi_{\kappa} \qquad \qquad \downarrow \overline{f_{\kappa}}^{\mathrm{T}}$$

$$Y_{\kappa} \xrightarrow{i_{\kappa}} Y_{\kappa+1}$$

where $\mathbf{Y}_0 = \mathbf{X}$, each k_{κ} is a homomorphism of relative free type, and *i* is the canonical morphism $\mathbf{X} \to \operatorname{colim}_{\substack{\to \\ \to \\ \rightarrow \\ \end{pmatrix}} Y_{\kappa}$.

Suppose also we are given a crossed chain algebra \mathbf{X}' together with a homotopy $\sigma_X: \mathcal{I} \otimes X \to X'$ which respects the multiplication and a morphism $\pi_X: \mathbf{X}' \to \mathbf{X}$ satisfying $\pi_X \circ \sigma_X = p$. We use transfinite induction to define for each ordinal $\kappa \in \lambda$ a pushout

together with a homotopy $\sigma_{\kappa}: \mathcal{I} \otimes Y_{\kappa} \to Y'_{\kappa}$ which respects the multiplication and a morphism

 $\pi_{\kappa}: \mathbf{Y}'_{\kappa} \to \mathbf{Y}_{\kappa}$ which make the following diagrams commute:

Let $\sigma_0 = \sigma_X$ and $\pi_0 = \pi_X$. Having defined σ_{κ} and π_{κ} , we give ψ'_{κ} by putting $g_{\kappa} = \sigma_{\kappa} \circ (1 \otimes f_{\kappa})$ and then $\sigma_{\kappa+1}$ and $\pi_{\kappa+1}$ are defined by applying proposition 1(a) to ψ_{κ} , ψ'_{κ} . For a limit ordinal $\kappa \leq \lambda$, σ_{κ} and π_{κ} are those induced by the $\sigma_{\kappa'}$ and $\pi_{\kappa'}$ for $\kappa' \in \kappa$.

From [2] we know that homomorphisms of relative free type are closed under tensoring with free objects and in particular with \mathcal{I} . Thus $\psi' = (\psi'_{\kappa})_{\kappa \in \lambda}$ generates a cofibration in **CrsAlg**, termed the relative cylinder on (i, σ_X) and written $i'_{\sigma_X} : \mathbf{X}' \to \mathbf{I}_{\sigma_X} \mathbf{Y}$. Note that the construction respects the identity and composition of cofibrations. Also we have a homotopy $\sigma_Y = \sigma_\lambda : \mathcal{I} \otimes Y \to I_{\sigma_X} Y$ which respects the multiplication and a morphism $\pi_Y = \pi_\lambda : \mathbf{I}_{\sigma_X} \mathbf{Y} \to \mathbf{Y}$ such that the following diagrams commute:

These are termed the *shift* and *projection* maps respectively.

In the special case $\mathbf{X}' = \mathbf{X}$, with $\sigma_X: \mathcal{I} \otimes X \to X$ and $\pi_X: \mathbf{X} \to \mathbf{X}$ given by p and the identity

respectively, the cofibration i'_{σ_X} is termed the relative cylinder on i written $i': \mathbf{X} \to \mathbf{I}_X \mathbf{Y}$. Let $\alpha_0, \alpha_1: Y \to \mathcal{I} \otimes Y$ be the homomorphisms given by the two inclusions $* \to \mathcal{I}$. Note that the homomorphisms $\alpha_r^{\otimes n}$ may be written as $d^{(n)} \circ \alpha_r: Y^{\otimes n} \to \mathcal{I} \otimes Y^{\otimes n} \to (\mathcal{I} \otimes Y)^{\otimes n}$ and that $p \circ \alpha_r = 1_Y$ for r = 0, 1. It follows that composing α_0, α_1 with the shift map gives morphisms of crossed chain algebras $\iota_0, \iota_1: \mathbf{Y} \to \mathbf{I}_X \mathbf{Y}$ such that $\pi_Y \circ \iota_r$ is the identity on \mathbf{Y} for r = 0, 1.

Suppose we have another cofibration $\mathbf{W} \to \mathbf{Z}$ and a commutative diagram F as below.

To define the relative cylinder on the morphism of cofibrations F, write t_{κ} for the composite $\mathbf{Y}_{\kappa} \to \mathbf{Y} \to \mathbf{Z}$ and note that $t_{\kappa} = t_{\kappa+1} \circ i_{\kappa}$ for each ordinal $\kappa \in \lambda$. We use transfinite induction to define morphisms $t'_{\kappa}: \mathbf{Y}'_{\kappa} \to \mathbf{I}_{W}\mathbf{Z}, \ \kappa \leq \lambda$, which satisfy

Let t'_0 be the composite $\mathbf{X} \to \mathbf{W} \to \mathbf{I}_W \mathbf{Z}$; the relation $t'_0 \circ \sigma_X = \sigma_Z \circ (1 \otimes t_0)$ follows from the diagram

together with F. Having defined t'_{κ} for $\kappa \in \lambda$, we let $t'_{\kappa+1}$ be the unique morphism satisfying the required relations given by proposition 1(b). For $\kappa \leq \lambda$ a limit ordinal, t'_{κ} is that induced by the $t'_{\kappa'}$ for $\kappa' \in \kappa$.

Writing It for t_{λ} , we have a morphism of cofibrations IF satisfying $It \circ \sigma_Y = \sigma_Z \circ (1 \otimes t)$ and $\pi_Z \circ It = t \circ \pi_Y$:

In certain situations the above constructions coincide:

Proposition 2 Suppose $i: \mathbf{X} \to \mathbf{Y}$, $j: \mathbf{Y} \to \mathbf{Z}$ are cofibrations and let i', $(j \circ i)'$ be the relative cylinders on $i, j \circ i$ with corresponding shift maps $\sigma_{\mathbf{Y}}, \sigma_{\mathbf{Z}}$. Then the morphism Ij obtained from (1, j) regarded as a morphism of cofibrations $i \to (j \circ i)$ is itself a cofibration, given by the relative cylinder j' on $(j, \sigma_{\mathbf{Y}})$.

Proof: Suppose *i* is given by the sequence of pushouts $(\psi_{\kappa})_{\kappa \in \lambda}$ as above, and let $i_{\kappa \to \lambda}$, $i'_{\kappa \to \lambda}$ be the canonical morphisms $\mathbf{Y}_{\kappa} \to \mathbf{Y}$, $\mathbf{Y}'_{\kappa} \to \mathbf{I}_{X}\mathbf{Y}$ for each ordinal $\kappa \leq \lambda$. Then the morphisms $j'_{\kappa}: \mathbf{Y}'_{\kappa} \to \mathbf{I}_{X}\mathbf{Z}$ in the construction of Ij are defined via proposition 1(b) from the morphisms $j_{\kappa} = j \circ i_{\kappa \to \lambda}: \mathbf{Y}_{\kappa} \to \mathbf{Z}$. We will show by transfinite induction that $j'_{\kappa} = j' \circ i'_{\kappa \to \lambda}$ for all $\kappa \leq \lambda$. For $\kappa = 0$ this is just $(j \circ i)' = j' \circ i'$. If the result holds for $\kappa \in \lambda$ then the following diagrams commute:

(as does the corresponding diagram for π instead of σ) and so $j'_{\kappa+1} = j' \circ i'_{\kappa+1\to\lambda}$ by the uniqueness part of proposition 1(b). For a limit ordinal $\kappa \leq \lambda$ the result follows from the result for all $\kappa' \in \kappa$.

Proposition 3 The relative cylinder construction is functorial.

Proof: Putting j = 1 in the previous proposition gives Ij = j' = 1, so I preserves identity morphisms between cofibrations.

Suppose given cofibrations $\mathbf{X} \to \mathbf{Y}, \mathbf{W} \to \mathbf{Z}, \mathbf{U} \to \mathbf{V}$ and morphisms of cofibrations $F, G, G \circ F$:

Suppose $\mathbf{X} \to \mathbf{Y}$ is given by $(\psi_{\kappa})_{\kappa \in \lambda}$ and write $t_{\kappa}^{(1)} = t^{(1)} \circ i_{\kappa \to \lambda}$, $t_{\kappa} = t \circ i_{\kappa \to \lambda}$ as usual. Note that $t^{(2)} \circ t_{\kappa}^{(1)} = t_{\kappa}$ for each ordinal $\kappa \leq \lambda$. We show inductively $It^{(2)} \circ t_{\kappa}^{(1)'} = t_{\kappa}'$ for all $\kappa \leq \lambda$, which gives $IG \circ IF = I(G \circ F)$. For $\kappa = 0$, this follows from the commutativity of the diagram *IG*. If the result holds for $\kappa \in \lambda$, we have the following commutative diagrams:

plus a corresponding diagram for π . Thus the result holds for $\kappa + 1$ by the uniqueness in the definition of $t'_{\kappa+1}$. The result for a limit ordinal $\kappa \leq \lambda$ follows from the result for all $\kappa' \in \kappa$ as usual. \Box

Corollary 4 The relative cylinder $X \to I_X Y$ on a cofibration $X \to Y$ is well defined up to isomorphism. \Box

Let Cof(**CrsAlg**) be the category whose objects are cofibrations of crossed chain algebras and whose morphisms are commutative diagrams F as above. Then we have a relative cylinder functor I on Cof(**CrsAlg**), together with natural transformations $\iota_0, \iota_1 : \text{id} \to I$ and $\pi : I \to \text{id}$ such that $\pi \circ \iota_r = 1$ for r = 0, 1. In particular, we have I, ι_r, π on **V**/**CrsAlg**_c, for any algebra **V**, and by proposition 2 I takes cofibrations to cofibrations in **V**/**CrsAlg**_c.

Proposition 5 The relative cylinder functor preserves pushouts of cofibrations in V/CrsAlg.

Proof: Given an arrow $a: b \to c$ and a cofibration $i: b \to i \circ b$, the pushout of i along a in $\mathbf{V}/\mathbf{CrsAlg}_c$ is given by $\overline{\imath}: c \to \overline{\imath} \circ c$ where $\overline{\imath}$ is the pushout of i along a in \mathbf{CrsAlg} . Suppose i is given by the sequence of pushouts $(\psi_{\kappa})_{\kappa \in \lambda}$ as usual, and define morphisms $a_{\kappa}: \mathbf{Y}_{\kappa} \to \mathbf{Z}_{\kappa}$ inductively by setting $a_{\kappa+1}$ to be the pushout of a_{κ} along i_{κ} , with $a_0 = a$.

Then $\overline{\imath}$ is the composite of the pushouts of Fk_{κ} along $a_{\kappa} \circ f_{\kappa}^{T}$, and so by proposition 2 *Ii* and $I\overline{\imath}$ are given by sequences of pushouts ϕ and φ as below.

$$F(\mathcal{I} \otimes A_{\kappa}) \xrightarrow{F(1 \otimes k_{\kappa})} F(\mathcal{I} \otimes B_{\kappa}) \qquad F(\mathcal{I} \otimes A_{\kappa}) \xrightarrow{F(1 \otimes k_{\kappa})} F(\mathcal{I} \otimes B_{\kappa})$$

$$(\sigma_{Y_{\kappa}} \circ 1 \otimes f_{\kappa})^{\mathrm{T}} \phi_{\kappa} \quad (\sigma_{Y_{\kappa+1}} \circ 1 \otimes \overline{f_{\kappa}})^{\mathrm{T}} \qquad (\sigma_{Z_{\kappa}} \circ 1 \otimes (a_{\kappa} \circ f_{\kappa}))^{\mathrm{T}} \quad \varphi_{\kappa} \quad (\sigma_{Z_{\kappa+1}} \circ 1 \otimes (a_{\kappa+1} \circ \overline{f_{\kappa}}))^{\mathrm{T}}$$

$$Y'_{\kappa} \xrightarrow{Ii_{\kappa}} Y'_{\kappa+1} \qquad Z'_{\kappa} \xrightarrow{Ii_{\kappa}} Z'_{\kappa+1}$$

Now consider the following diagrams for $\kappa \in \lambda$:

From the relations $Ia_{\kappa} \circ \sigma_{Y_{\kappa}} = \sigma_{Z_{\kappa}} \circ (1 \otimes a_{\kappa})$ the outer rectangles are just the pushouts φ_{κ} , and the upper squares are the pushouts ϕ_{κ} . Thus the lower squares are also pushout squares and we are done. \Box

Given a cofibration $i: \mathbf{X} \to \mathbf{Y}$ as usual, and homotopies $\sigma_X: \mathcal{I} \otimes X \to X', \sigma'_X: \mathcal{I} \otimes X' \to X''$ which respect the multiplication, we can define the *double relative cylinder* on (i, σ_X, σ'_X) as the relative cylinder on $(i'_{\sigma_X}, \sigma'_X)$. As a cofibration this is given by the sequence of pushouts ψ'' as follows:

where $\sigma_{\kappa}^2 = \sigma_{\kappa}' \circ (1 \otimes \sigma_{\kappa})$. If $t: \mathcal{I} \otimes \mathcal{I} \cong \mathcal{I} \otimes \mathcal{I}$ is given by the symmetry of \otimes , and τ_X is an endomorphism of \mathbf{X}'' satisfying $\sigma_0^2 \circ (\tau \otimes 1) = \tau_0 \circ \sigma_0^2$, we can define inductively from t, τ_X endomorphisms τ_{κ} of \mathbf{Y}''_{κ} satisfying $\sigma_{\kappa}^2 \circ (\tau \otimes 1) = \tau_{\kappa} \circ \sigma_{\kappa}^2$.

$$\begin{array}{c|c} \mathcal{I} \otimes \mathcal{I} \otimes Y_{\kappa} \xrightarrow{\tau \otimes 1} \mathcal{I} \otimes \mathcal{I} \otimes Y_{\kappa} \\ & & & & \\ \sigma_{\kappa}^{2} & & & \\ & & & & \\ Y_{\kappa}^{\prime\prime} \xrightarrow{\tau_{\kappa}} & Y_{\kappa}^{\prime\prime} \end{array}$$

The induced morphism τ_Y on $\mathbf{I}_{\sigma'_X} \mathbf{I}_{\sigma_X} \mathbf{Y}$ is termed the *interchange* map, and taking $\sigma_X = \sigma'_X = \mathbf{1}_X$ we get a natural transformation $\tau: II \to II$ in $\mathbf{X}/\mathbf{CrsAlg}_c$. Since the morphisms $\iota_r, I\iota_r: \mathbf{I}_X \mathbf{Y} \to \mathbf{I}_X^2 \mathbf{Y}$ can be defined via the homomorphisms $* \otimes \mathcal{I} \otimes Y_\kappa \to \mathcal{I} \otimes \mathcal{I} \otimes Y_\kappa \to Y''_\kappa$, $\mathcal{I} \otimes * \otimes Y_\kappa \to \mathcal{I} \otimes \mathcal{I} \otimes Y_\kappa \to Y''_\kappa$, $\mathcal{I} \otimes * \otimes Y_\kappa \to \mathcal{I} \otimes \mathcal{I} \otimes Y_\kappa \to Y''_\kappa$ respectively, we have $\tau \circ I\iota_r = \iota_r$ and $\tau \circ \iota_r = I\iota_r$ for r = 0, 1.

3 The homotopy extension property in Crs and CrsAlg

A homomorphism $k: C \to D$ is said to have the homotopy extension property (HEP) in **Crs** if, given homomorphisms $a: D \to Z$, $b: \mathcal{I} \otimes C \to Z$ such that $b \circ \alpha_0 = a \circ k$, there exists a homomorphism $b': \mathcal{I} \otimes D \to Z$ satisfying $b' \circ (1 \otimes k) = b$ and $b' \circ \alpha_0 = a$.

Suppose $x: \mathbf{V} \to \mathbf{X}$, $y: \mathbf{V} \to \mathbf{Y}$ are cofibrations in **CrsAlg**, and write x', y' for the corresponding relative cylinders. Then an arrow $i: x \to y$ is said to have the homotopy extension property (HEP) in $\mathbf{V}/\mathbf{CrsAlg}_c$ if, given arrows $c: y \to z$, $d: x' \to z$ such that $d \circ \iota_0 = c \circ i$, there exists an arrow $d': y' \to z$ satisfying $d' \circ Ii = d$ and $d' \circ \iota_0 = c$.

Note that by the symmetry of \mathcal{I} , it is equivalent to use α_1, ι_1 instead of α_0, ι_0 in the above definitions.

Proposition 6 Suppose every homomorphism of relative free type has the HEP in Crs. Then all cofibrations have the HEP in $V/CrsAlg_{e}$.

Proof: Suppose *i*, *c*, *d* are as above, with *i* a cofibration given by a pushout sequence ψ as usual. We define inductively morphisms $d_{\kappa}: \mathbf{Y}'_{\kappa} \to \mathbf{Z}$ satisfying $d_{\kappa} \circ \iota_0 = c \circ i_{\kappa \to \lambda}$ and $d_{\kappa} = d_{\kappa+1} \circ i'_{\kappa}$. Let $d_0 = d$. Given d_{κ} , we define a homomorphism $e_{\kappa}: \mathcal{I} \otimes B_{\kappa} \to Z$ by the HEP for k_{κ} and hence a morphism $d_{\kappa+1}: \mathbf{Y}'_{\kappa+1} \to \mathbf{Z}$ by the definition of \mathbf{Y}'_{κ} as a pushout:

It remains to show that $d_{\kappa+1} \circ \iota_0 = c \circ i_{\kappa+1 \to \lambda}$. On precomposing each side with $\overline{f_{\kappa}}$ and with i_{κ}

we have the following commutative diagrams:

Thus the result follows. \square

Proposition 7 All homomorphisms of relative free type have the HEP in Crs. **Proof:** We prove the result for the addition of a single generator e_n to a crossed complex C.

For n = 0 we have $S^{n-1} = \emptyset$, so b' may be defined via $b: \mathcal{I} \otimes C \to Z$ and $a \circ \overline{y} \circ p: \mathcal{I} \otimes E^0 \to E^0 \to D \to Z$.

For n = 1, let $s(e^1), t(e^1) \in C_0$ be the images under y of $0, 1 \in S^0$. Then $\mathcal{I} \otimes D$ is the crossed complex with generators $0 \otimes e^1, 1 \otimes e^1, e^1 \otimes e^1$ and $i \otimes c \in \mathcal{I} \otimes C$, subject to the following relations:

$$s(r \otimes e^{1}) = r \otimes se^{1}$$

$$t(r \otimes e^{1}) = r \otimes te^{1}$$

$$t(e^{1} \otimes e^{1}) = 1 \otimes te^{1}$$

$$\delta_{2}(e^{1} \otimes e^{1}) = (1 \otimes e^{1})^{-1} \circ (e^{1} \otimes se^{1})^{-1} \circ 0 \otimes e^{1} \circ e^{1} \otimes te^{1}$$

for r = 0, 1, together with the standard relations in $\mathcal{I} \otimes C$ [4]. Note that $sa(e^1) = b(0 \otimes se^1) = sb(e^1 \otimes se^1)$ and $ta(e^1) = sb(e^1 \otimes te^1)$ similarly. Then b' is defined on the generators as follows:

$$b'(0 \otimes e^{1}) = a(e^{1})$$

$$b'(1 \otimes e^{1}) = b(e^{1} \otimes se^{1})^{-1} \circ a(e^{1}) \circ b(e^{1} \otimes te^{1})$$

$$b'(e^{1} \otimes e^{1}) = id_{b(1 \otimes te^{1})}$$

$$b'(i \otimes c) = b(i \otimes c)$$

The boundary relations are clear, as are $b' \circ \alpha_0 = a$ and $b' \circ k = b$.

For n = 2, let $s^1 \in C_1$ be the image under y of the generator of S^1 , and write e^0 for $t(s^1)$. Then $\mathcal{I} \otimes D$ is the crossed complex with generators $0 \otimes e^2$, $1 \otimes e^2$, $e^1 \otimes e^2$ and $i \otimes c \in \mathcal{I} \otimes C$, subject to the relations

$$t(r \otimes e^2) = r \otimes e^0$$

$$\delta_2(r \otimes e^2) = r \otimes s^1$$

$$t(e^1 \otimes e^2) = 1 \otimes e^0$$

$$\delta_3(e^1 \otimes e^2) = (1 \otimes e^2)^{-1} \circ (0 \otimes e^2)^{e^1 \otimes e^0} \circ (e^1 \otimes s^1)^{-1}$$

for r = 0, 1, plus the relations in $\mathcal{I} \otimes C$. Then b' is defined by:

$$b'(0 \otimes e^2) = a(e^2)$$

$$b'(1 \otimes e^2) = a(e^2)^{b(e^1 \otimes e^0)} \circ b(e^1 \otimes s^1)^{-1}$$

$$b'(e^1 \otimes e^2) = id_{b(1 \otimes e^0)}$$

$$b'(i \otimes c) = b(i \otimes c)$$

The boundary relation $\delta_2 b'(1 \otimes e^2) = b' \delta_2(1 \otimes e_2)$ follows from

$$\delta_2 b(e^1 \otimes s^1) = b((1 \otimes s^1)^{-1} \circ (e^1 \otimes e^0)^{-1} \circ 0 \otimes s^1 \circ e^1 \otimes e^0) = b(1 \otimes s^1)^{-1} \circ \delta_2(a(e^2)^{b(e^1 \otimes e^0)})$$

since $\delta_2 a(e^2) = a(\delta_2 e^2) = b(0 \otimes s^1)$. The other relations are clear.

For $n \ge 3$ the constructions differ from the n = 2 case only in very minor ways. For example, the triviality of $\delta_{n-1}s^{n-1}$ is used instead of $ss^1 = ts^1 = e^0$ in showing $\delta_n b(e^1 \otimes s^{(n-1)}) = b(1 \otimes s^{(n-1)})^{-1} \circ \delta_n(a(e^n)^{b(e^1 \otimes e^0)})$. \Box

A similar technique can be used to prove the relative cylinder axiom for crossed chain algebras. First we need the fact that for any homomorphism $k: C \to D$, the canonical homomorphism

$$D \amalg_C (\mathcal{I} \otimes C) \amalg_C D \longrightarrow \mathcal{I} \otimes D$$

is also of relative free type; this is quite straightforward. Now suppose $i: x \to y$ is a cofibration in $V/CrsAlg_c$ given by a pushout sequence ψ as usual. Then the canonical morphism

$$\mathbf{Y} \amalg_X \mathbf{I}_V \mathbf{X} \amalg_X \mathbf{Y} \longrightarrow \mathbf{I}_V \mathbf{Y}$$

is a cofibration also, given by the pushout sequence ϕ as below.

References

- H. J. Baues. Algebraic Homotopy. Cambridge studies in advanced mathematics 15, CUP, 1989.
- [2] R. Brown and M. Golasinski. A model structure for the homotopy theory of crossed complexes. Cahiers Top. Géom. Diff. 31 (1989) 61-82.
- [3] S. E. Crans. Quillen closed model structures for sheaves. J. Pure Appl. Algebra 101 (1995) 35-57.
- [4] A. P. Tonks. Theory and applications of crossed complexes the Eilenberg-Zilber theorem and homotopy colimits. Ph.D. thesis, University of Wales, 1993.