The geometric realisation of C-groups

Victor S. Kulikov

Chair "Applied Mathematics II"
Moscow Institute of Railroad Engineers (MIIT)
ul. Obraztsova 15 101475 Moscow, A-55
Max-Planck-Institut fur Mathematik
Gottfried-Claren-Straße 26
D-5300 Bonn 3
Germany
Russia

THE GEOMETRIC REALISATION OF C-GROUPS.

Kulikov Victor S.

Max-Planck-Institut für Mathematik, Gottfried-Claren
StraBe 26, 5300 Bonn 3 (current address)

13.04.1993

Chair "Applied Mathematics II", Moscow Institute of Railroad Engineers (MIIT), ul. Obraztsova 15, 101475 Moscow, A-55, Russia (permanent address).
0. In [K2], one class of groups, so called C-groups, was introduced (see the definition of a C-group in n.2). This class contains naturally the class of knot and link groups (with the Wirtinger corepresentation) and the class of the fundamental groups of the complements of algebraic curves in \mathbb{C}^{2} (with the corepresentation from [K1]).

Denote by \mathcal{C} the class of C-groups, and let \mathcal{L} be the class of knot and link groups, \mathcal{A} the class of the fundamental groups of the complement of algebraic curves in \mathbb{C}^{2}. It was shown in [K2] that

$$
\mathcal{A} \nsubseteq \mathcal{L}, \quad \mathcal{L} \nsubseteq \mathcal{A}, \quad \mathcal{A} \cup \mathcal{L} \varsubsetneqq \mathcal{C} .
$$

It follows from [L], that there exists an irreducible C-group G such that G can not be a group of a 2 -knot, i.e. G can not be the fundamental group of the complement of a sphere S^{2} imbedded in \mathbf{R}^{4}.

The purpose of this note is to prove the following
Theorem. For each C-group G, there exists a smooth orientable compact Riemannian surface $S \subset \mathbb{R}^{4}$ such that

$$
\pi_{1}\left(\mathbb{R}^{4} \backslash S\right) \simeq G
$$

Acknowledgement. I would like to thank Max-Planck-Institut für Mathematik (Bonn) for hospitalily and support during the preparation of this paper.
1.1. Let $S \subset \mathbb{R}^{4}$ be a smooth orientable compact Riemannian surface. Choose a point $o \notin S$. Let $K \subset \mathbb{R}^{4}$ be the cone over S with the vertex o. The cone K is a singular real hypersurface, $\operatorname{dim} K=3$. Denote by $\operatorname{Sing} K$ the set of singular points of K, and let $K(2)$ be its double locus, i.e. $K(2)$ is a subset of K such that at each point $x \in K(2), K$ is locally a union of two nonsingular hypersurfaces meeting transversally at x.

Let us choose $o \in \mathbf{R}^{4}$ in general position with respect to S. In this case Sing $K \backslash$ $K(2)$ is a set of a finite number of straight lines $\left\{L_{1}, \ldots, L_{k}\right\}$. Moreover we can assume that the following conditions are satisfied:
(i) If L_{i} touches S at a point x, then $L_{i} \cap S=\{x\}$.
(ii) If L_{i} meets S at more than two distinct points, then $L_{i} \cap S=\left\{x_{1}, x_{2}, x_{3}\right\}$ and the tangent spaces $T_{x_{1}} S, T_{x_{2}} S, T_{x_{3}} S$ are in general position.
1.2. We fix a point $o \in \mathbb{R}^{4}$, which is in general position with respect to S, and choose a coordinate system in \mathbf{R}^{4} such that o is the origin of this system. Denote by l_{x} the ray begining at o and passing throuth x.

We shall say that a point $x \in S$ is invisible, if there exists $t \in \mathbf{R}, 0<t<1$, such that the point $t x$ also belongs to S, where $t x=\left(t x_{1}, \ldots, t x_{4}\right)$ for $x=\left(x_{1}, \ldots, x_{4}\right)$.

Let $I S$ be the closure of the set of invisible points. The set

$$
S S=\{x \in S \mid t x \in S \text { for some } t>1\}
$$

is called a screen.
The surface S divides K into two parts. Let

$$
E S=\left\{x \in \mathbb{R}^{4} \mid t x \in S \text { for some } t, 0<t<1\right\}
$$

be the part of $K \backslash S$, which does not contain the origin o. $E S$ is called a shade of S (or the external part of K).

Let $S \backslash I S=S_{1} \cup \ldots \cup S_{n}$ be the decomposition into the connected components. Denote by $E S_{i}$ the shade of S_{i} and let $E I S$ be the shade of the set of invisible points. The open hypersurface $K_{i}=E S_{i} \backslash E I S$ will be called a wall.
1.3. Fix an orientation on S and on \mathbb{R}^{4}. The orientation on S induces an orientation on each wall K_{i}, because $E S_{i} \simeq S_{i} \times\{t \in \mathbf{R} \mid 0<t<1\}$. Thus the orientations on K_{i} and on \mathbb{R}^{4} allow us to consider each K_{i} as a two-sided hypersurface each side of which is coloured: one of the sides is painted into "positive" colour and the other side into "negative" colour.
1.4. Consider a point $z \in E S \cap K(2)$. In a small neighborhood U_{z} of the point z, we have that $K \cap U_{z}=K^{\prime} \cup K^{\prime \prime}$, where K^{\prime} and $K^{\prime \prime}$ are nonsingular hypersurfaces intersecting transversally along nonsingular surface $K^{\prime} \cap K^{\prime \prime}$.

The ray l_{z} intersects S in two points a and b, where $a \in S S$ and $b \in I S$. In a neighborhood of the points a and b, the surface S splits into two disjoint connected components S^{\prime} and $S^{\prime \prime}\left(a \in S^{\prime}\right.$ and $\left.b \in S^{\prime \prime}\right)$ so that K^{\prime} is the shade of S^{\prime} and $K^{\prime \prime}$ is the shade of $S^{\prime \prime}$.

In the neighborhood U_{z} the intersection $K^{\prime} \cap K^{\prime \prime}$ divides each K^{\prime} and $K^{\prime \prime}$ into two parts $K_{1}^{\prime}, K_{2}^{\prime}, K_{1}^{\prime \prime}, K_{2}^{\prime \prime}$. The parts $K_{1}^{\prime \prime}$ and $K_{2}^{\prime \prime}$ belong to some walls, say K_{q} and K_{r} (it is possible that $K_{q}=K_{r}$). In U_{z}, the set K^{\prime} is divided by $K^{\prime} \cap K^{\prime \prime}$ into two parts K_{1}^{\prime} and K_{2}^{\prime}. But it is easy to see that these parts belong to the same wall. Denote by K_{p} this wall. The walls K_{p}, K_{q}, K_{r} will be called adjacent walls at the point z.

The hypersurfaces K^{\prime} and $K^{\prime \prime}$ divide U_{z} into four parts $E_{1}, E_{2}, E_{3}, E_{4}$. Let E_{1} be the part whose internal boundary is coloured into positive colour.

We shall say that the triple K_{p}, K_{q}, K_{r} is well-ordered if the boundary of E_{1} consists of K_{p} and K_{q} (and not K_{p} and K_{r}). Of course, it is possible that the walls K_{p}, K_{q}, K_{r} are the adjacent walls at some other point z_{1} and for this point, the triple K_{p}, K_{r}, K_{q} is well-ordered.
1.5. We associate a group Γ_{S} to the surface S. The generators of Γ_{S} are the walls K_{i} and the complete set of relations are

$$
\begin{equation*}
K_{q} K_{p}=K_{p} K_{r} \tag{1}
\end{equation*}
$$

for each $z \in E S \cap K(2)$, where K_{p}, K_{q}, K_{r} are well-ordered adjacent walls at z.

Theorem 1. Let $S \subset \mathbf{R}^{4}$ be a smooth orientable compact Riemannian surface. Then

$$
\pi_{1}\left(\mathbf{R}^{4} \backslash S, o\right) \simeq \Gamma_{S}
$$

Proof. The same as the proof of Theorem 3.1 in [K1].
Remark 1. It is easy to see that Γ_{S} is a finitely generated group, because S is compact.
2. In this section we shall recall the definition and some simple properties of C groups.
2.1. Let $I_{q}=\{1,2, \ldots, q\}$ be a segment of $\mathbb{N}, M \subset I_{q}^{3}=I_{q} \times I_{q} \times I_{q}$ a subset and $|M|=\# M$ the cardinality of M.

Deflnition. A group G together with a corepresentation

$$
\begin{equation*}
G=<x_{1}, \ldots, x_{q} \mid\left\{R_{\alpha}(x)\right\}_{\alpha \in M}> \tag{2}
\end{equation*}
$$

is called a C-group of type M, where for $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ the relation

$$
R_{\alpha}(x)=x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{1}}^{-1} x_{\alpha_{s}}^{-1}
$$

is a conjugation (the letter " C " in "C-group" is the first letter of the word "conjugation").

A homomorphism $f: G_{1} \rightarrow G_{2}$ is a homomorphism of C-groups if for each generator x_{i} of the C-group $G_{1}, f\left(x_{i}\right)$ is conjugated to some generator of the C group G_{2}.
Remark 2. If we add one more generator, say y, and one more relation $x_{i} y x_{i}^{-1} x_{j}^{-1}$ to the corepresantation (2), then we obtain the group which is isomorphic to G as a C-group.
2.2. To any C-corepresentation of type M we can associate an oriented graph Γ_{M} with vertices v_{1}, \ldots, v_{q}, and with edges $e_{\alpha}, \alpha \in M$. The edge e_{α} connects the vertex $v_{\alpha_{2}}$ with $v_{\alpha_{s}}$, where $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$.

It is easy to prove the following
Lemma 1. (cf. [K2]) Let G be a C-group of type M, and $G^{\prime}=[G, G]$. Then $G / G^{\prime}=\mathbf{Z}^{n}$, where n is the number of connected components of the graph Γ_{M}.

A C-group G of type M is called an irreducible C-group if its graph Γ_{M} is connected.

Let $\Gamma_{M}=\Gamma_{1} \cup \ldots \cup \Gamma_{n}$ be the decomposition into connected components. For each Γ_{j}, put $I(j)=\left\{i \in I_{q} \mid v_{i} \notin \Gamma_{j}\right\}$. The group

$$
G_{j}=<x_{1}, \ldots, x_{q} \mid\left\{R_{\alpha}\right\}_{\alpha \in M} \cup\left\{x_{i}\right\}_{i \in I(j)}>
$$

is called an irreducible component of a C-group G of type M, and we shall say that the C-group G is composed of n irreducible components G_{j}.

Remark 3. It is easy to see from Theorem 1 that for each smooth orientable compact Riemannian surface $S \subset \mathbb{R}^{4}, \pi_{1}\left(\mathbb{R}^{4} \backslash S\right)$ is a C-group composed of n irreducible components, where n is the number of connected components of S.
2.3. Denote by $i: I_{q}^{3} \rightarrow I_{q}^{3}$ the involution defined by

$$
i:\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \mapsto\left(\alpha_{1}, \alpha_{3}, \alpha_{2}\right)
$$

and let $M^{*}=i(M)$ be the image of $M \subset I_{q}^{3}$.
The C-group G^{*} of type M^{*} is called conjugate to a C-group G of type M.
Lemma 2. Let G and G^{*} be conjugated C-groups. Then G and G^{*} are isomorphic groups.
Proof. Indeed, if in the group

$$
G=<x_{1}, \ldots, x_{q} \mid\left\{R_{\alpha}(x)\right\}_{\alpha \in M}>
$$

we shall take the generators $y_{1}=x_{1}^{-1}, \ldots, y_{q}=x_{q}^{-1}$ instead of the generators x_{1}, \ldots, x_{q}, then the group G will have the following corepresentation

$$
G=<y_{1}, \ldots, y_{q} \mid\left\{R_{\alpha}(y)\right\}_{\alpha \in M^{*}}>
$$

2.4. Let G be a C-group. Denote by \mathcal{M}_{G} the collection of the sets $M_{i} \subset I_{q ;}^{3}$ such that the C-groups $G_{M_{i}}$ of type M_{i} are isomorphic to G as C-groups. The number

$$
r(G)=\min _{M \in \mathcal{M}_{G}} r k \pi_{1}\left(\Gamma_{M}\right)
$$

is called the rank of the C-group G, where $r k \pi_{1}\left(\Gamma_{M}\right)$ is the rank of a free group $\pi_{1}\left(\Gamma_{M}\right)$.
3.1. We shall say that $S \subset \mathbf{R}^{4}$ is a tamely imbedding of the simplest kind, if for S, there exists a projection $p: \mathbf{R}^{4} \rightarrow \mathbb{R}^{3}$ from a point $o \in \mathbb{R}^{4}$ such that the image $p(S)$ satisfies the following condition:
(s) Locally at each point $z \in p(S)$ either $p(S)$ is smooth, or $p(S)$ is a union of two smooth surfaces meeting transversally.

The main theorem follows from
Theorem 2. For each C-group G, there exists a tamely imbedding of the simplest kind $S \subset \mathbb{R}^{4}$ of a smooth orientable compact Riemannian surface S such that

$$
\pi_{1}\left(\mathbf{R}^{4} \backslash S\right) \simeq G
$$

Proof. Fix a C-group

$$
G=<x_{1}, \ldots, x_{q} \mid\left\{R_{\alpha}(x)\right\}_{\alpha \in M}>
$$

At the beginning, we shall construct the image $p(S)$ of the projection $p: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ from the point o, where S is a desired surface. The surface $p(S)$ will be glued from standart pieces step by step. Now we shall describe these standart pieces.

For this, let $n(i)$ be the number of all edges of Γ_{M} either starting or ending at the vertex $e_{i}, 1 \leq i \leq q$. Let $r(i)$ be the number of the relations R_{α} with $\alpha=(i, \cdot, \cdot)$. Put $n_{i}=n(i)+r(i)$.

The standart piece $A_{i}\left(n_{i}\right)=S_{i}^{2} \backslash \bigcup_{1 \leq j \leq n_{i}} \Delta_{i, j}, 1 \leq i \leq q$, is a sphere $S_{i}^{2} \subset \mathbb{R}^{3}$ from which n_{i} non-intersecting disks $\Delta i, j \subset S_{i}^{2}$ are cut out. We assume that $S_{i}^{2} \cap S_{j}^{2}=\varnothing$ for $i \neq j$. Let $z_{i, j}$ be the center of $\Delta i, j$.

The standart pieces $C_{\alpha}, \alpha \in M$ and $C_{\alpha^{\prime}} \cap C_{\alpha^{\prime \prime}}=\varnothing$ for $\alpha^{\prime} \neq \alpha^{\prime \prime}$, are the unions

$$
C_{\alpha}=C_{\alpha, 1} \cup C_{\alpha, 2} \cup \Delta_{\alpha}
$$

for each $\alpha \in M$, such that there exists a neighborhood U_{α} of C_{α} which is diffeomorphic (orientation being preserved) to

$$
I^{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}| | x_{i} \mid \leq 1 \text { for } i=1,2,3\right\}
$$

and such that C_{α} is diffeomorphic (via the same diffeomorphism) to $C_{1} \cup C_{2} \cup \Delta$, where

$$
\begin{aligned}
C_{1} & =\left\{\left(x_{1}, x_{2}, x_{3}\right) \in I^{3} \mid x_{1}^{2}+x_{2}^{2}=R^{2}, R \ll 1\right\}, \\
C_{2} & =\left\{\left(x_{1}, x_{2}, x_{3}\right) \in I^{3} \mid x_{2}^{2}+x_{3}^{2}=r^{2}, r \ll R\right\} \\
\Delta & =\left\{\left(x_{1}, x_{2}, x_{3}\right) \in I^{3} \mid x_{1}^{2}+x_{2}^{2} \leq R^{2}, x_{3}=-1\right\}
\end{aligned}
$$

Put $y_{1}=(0,0,1), y_{2}=(-1,0,0), y_{3}=(1,0,0)$, and let $y_{i, \alpha}, i=1,2,3$, be the corresponding points in U_{α}.

Let us connect for $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$, the point $y_{1, \alpha}$ with a free (that is not used at previous steps) point $z_{\alpha_{1}, j_{1}}$ by a smooth path $\gamma_{1, \alpha}$ which does not intersect the standart pieces. One connects the points $y_{2, \alpha}$ and $y_{3, \alpha}$ with free points $z_{\alpha_{2}, j_{2}}$ and $z_{\alpha_{3}, j_{3}}$ by smooth paths $\gamma_{2, \alpha}$ and $\gamma_{3, \alpha}$, respectively. Let $B_{i, \alpha}$ be the boundaries of tubular neighborhoods of the paths $\gamma_{i, \alpha}$. Each $B_{i, \alpha}$ is diffeomorphic to $S^{1} \times$ $[0,1]$. We choose the tubular neighborhoods of the paths $\gamma_{i, \alpha}$ so that one of the connected components of the boundary of $B_{i, \alpha}$ would coinside with one of the components of the boundary of $A_{\alpha_{i}}\left(n_{i}\right)$ and the other one would coinside with one of the components of the boundary of C_{α}. We glue each $B_{i, \alpha}$ with $A_{\alpha_{i}}\left(n_{i}\right)$ and C_{α} along these boundaries (see Fig.1). After these glueing, we obtain $p(S)$ which is immersed into \mathbb{R}^{3}.

Now we construct the surface S. For this let \mathbb{R}^{3}, considered above, be defined in \mathbb{R}^{4} by the equation $x_{4}=0$ and let $o=\left(o_{1}, \ldots, o_{4}\right)$ be coordinates of the center of the projection p, where $o_{4} \gg 0$. We shall say that the point o lies higher than the hypersurface \mathbb{R}^{3}.

For each standart piece C_{α}, the intersection $C_{\alpha, 1} \cap C_{\alpha, 2}$ is the disjoint union of two loops $\nu_{\alpha,+}$ and $\nu_{\alpha,-}$, where $\nu_{\alpha,+}$ corresponds to the circle

$$
\nu_{+}=\left\{x_{1}^{2}+x_{2}^{2}=R^{2}, x_{2}^{2}+x_{3}^{2}=r^{2}, x_{1}>0\right\} .
$$

Fig. 1
Let $U_{\alpha,+}$ and $U_{\alpha,-}$ be small open subsets of $\mathbf{R}^{4}, U_{\alpha,+} \cap U_{\alpha,-}=\varnothing$, and let $V_{\alpha,+} \subset U_{\alpha,+}, V_{\alpha,-} \subset U_{\alpha,-}$ be compactly imbedded neighborhoods of $\nu_{\alpha,+}$ and $\nu_{\alpha,-}$, respectively. We make a small shift up of the intersection $C_{\alpha, 2} \cap V_{\alpha,+}$ and glue the shifted surface with $C_{\alpha, 2} \backslash U_{\alpha,+}$ using smoothing functions. Similarly, we make a small shift down of the intersection $C_{\alpha, 2} \cap V_{\alpha,-}$ and glue the shifted surface with $C_{\alpha, 2} \backslash U_{\alpha,-}$.

After these shifts, we shall obtain a surface S. For this surface, the loop $\nu_{\alpha,+} \subset$ $C_{\alpha, 1}$ and the shifted loop $\nu_{\alpha,-}$, which belongs to the shifted down surface $C_{\alpha, 2}$, are the subsets of the set of invisible points.

The loop $\nu_{\alpha,+}$ divides $C_{\alpha, 1}$ into two parts. One of them is homeomorphic to a disk. Denote this disk by y_{α}.

We identify each standart piece $A_{i}\left(n_{i}\right)$ with the generator x_{i} of the C-group G. Then $S \backslash I S$ is the disjoint union of the connected components $x_{i}, i=1, \ldots, q$, and $y_{\alpha}, \alpha \in M$.

The relations in $\pi_{1}\left(\mathbb{R}^{4} \backslash S, o\right)$ between x 'es are either the relations $\left\{R_{\alpha}(x)\right\}_{\alpha \in M}$ or the relations $\left\{R_{\alpha}(x)\right\}_{\alpha \in M^{*}}$, and it depends on a choice of orientations on \mathbb{R}^{4} and S. If it is necessary, we change the orientation on S such that these relations will be $\left\{R_{\alpha}(x)\right\}_{\alpha \in M}$.

The relations in $\pi_{1}\left(\mathbb{R}^{4} \backslash S, o\right)$ between x 'es and y_{α} 's are the added relations as in Remark 2. Thus $\pi_{1}\left(\mathbb{R}^{4} \backslash S, o\right) \simeq G$ and Theorem 2 is proven.

Remark 4. It is easy to see that the genus $g(S)$ of the surface S constructed in the proof of Theorem 2 is equal to

$$
g(S)=r k \pi_{1}\left(\Gamma_{M}\right)
$$

4. Example. The simplest (non-trivial) irreducible C-group has at least three generators and two relations. There exist unique C-groups G_{1} and G_{2} of types $M_{1} \subset I_{3}^{3}$, and $M_{2} \subset I_{3}^{3}$, respectively, $\# M_{1}=\# M_{2}=2$. Their graphs $\Gamma_{M_{1}}$ and $\Gamma_{M_{2}}$ are presented on Fig.2.

$\Gamma_{M_{1}}$

$\Gamma_{M_{2}}$

Fig. 2
The group G_{1} is the clover-leaf knot group.

Fig. 3

The groups G_{1} and G_{2} are not isomorphic C-groups, because the Alexander polynomial $\Delta_{G_{1}}(t)$ of G_{1} is $\Delta_{G_{1}}(t)=t^{2}-t+1$ and the Alexander polynomial $\Delta_{G_{2}}(t)$ of G_{2} is $\Delta_{G_{2}}(t)=t-2$.

The group G_{1} can be realized as the fundamental group of the complement of a surface S_{1} in \mathbf{R}^{4} whose image $p(S)$ is pictured on Fig.3.

To obtain S_{1} from $p(S)$ we must shift up $C_{1,2}$ and $C_{2,3}$ in neighborhoods of $\nu_{3,+}$ and $\nu_{1,+}$, respectively, and then shift down $C_{1,2}$ and $C_{2,3}$ in neighborhoods of $\nu_{3,-}$ and $\nu_{1,-}$, respectively.

The group G_{2} can be realized as the fundamental group of the complement of a surface S_{2} in \mathbf{R}^{4}. To construct S_{2}, one can use the same image $p(S)$. Only it is necessary to make shifts in the another directions. One must shift up $C_{1,2}$ and $C_{2,3}$ in neighborhoods of $\nu_{3,+}$ and $\nu_{1,-}$ and shift down $C_{1,2}$ and $C_{2,3}$ in neighborhoods of $\nu_{3,-}$ and $\nu_{1,+}$, respectively.
5. Fix an irreducible C-group G. Let \mathcal{S}_{G} be the set of smooth connected compact orientable Riemannien surfaces $S \subset \mathbf{R}^{4}$ such that G is isomorphic to $\pi_{1}\left(\mathbb{R}^{4} \backslash S\right)$ as a C-group.

We shall call

$$
g(G)=\min _{S \in \mathcal{S}_{G}} g(S)
$$

the genus of the irreducible C-group G, where $g(S)$ is the genus of a Riemannian surface S.

Let $\mathcal{S}_{s, G}$ be the set of tamely imbeddings of the simplest kind of smooth connected orientable compact Riemannian surface $S \subset \mathbb{R}^{4}$ such that $\pi_{1}\left(\mathbb{R}^{4} \backslash S\right)$ is isomorphic to G.

We shall call

$$
g_{s}(G)=\min _{S \in \mathcal{S}_{a, G}} g(S)
$$

the s-genus of a irreducible C-group G.
Theorem 3. Let G be an irreducible C-group. Then

$$
r(G)=g_{s}(G)
$$

Proof. It follows from Remark 4.
Corollary. Let G be an irreducible C-group. Then

$$
g(G) \leq r(G)
$$

Remark 4. It follows from [L], that there exists an irreducible C-group such that its genus $g(G)>0$.

References

[K1] Vic.S. Kulikov, On the fundamental group of the complement of a hypersurface in \mathbb{C}^{n}, Lect. Notes in Math. 1479 (1991), 122-130.
[K2] Vic.S. Kulikov, The Alexander polynomials of plane algebraic curves, Izv. RAN, ser. math. (in Russian) 57, N. 1 (1993), 76-101.
[L] J. Levin, Some results on higher dimensional knot groups, Lect. Notes in Math. 685 (1978), 243-270.

