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o. In [K2], one dass of groups, so called C-groups, was introduced (see the def­
inition of a C-group in 0.2). This dass contains naturally the dass of knot and
link groups (with the Wirtinger corepresentation) and the dass of the fundamental
groups of the complements of algebraic curves in C2 (with the corepresentation
from [Kl)).

Denote by C the dass of C-groups, and let L be the dass of knot and link groups,
A the dass of the fundamental groups of the complement of algebraic curves in C2 •

It was shown in [K2] that

AU L ~ C.

It follows from [L], that there exists an irreducible C-group G such that G can not
be a group oI a 2·knot, i.e. G can not be the fundamental group of the complement
of a sphere 52 imbedded in R4

•

The purpose of this note is to prove the following

Theorem. For each C-group G, there exists a smooth orientable compact Rie­
mannian surface S C R4 such that

Acknowledgement. I would like to thank Max-Planck-Institut für Mathematik
(Bann) for hospitalily and support during the preparation of this paper.

1.1. Let S C IR4 be a smooth orientable compact Riemannian surface. Choose a
point 0 rt S. Let K C IR4 be the cone over S with the vertex o. The cone K is a
singular real hypersurface, dirn K = 3. Denote by SingK the set of singular points
of K, and let K(2) be its double locus, Le. K(2) is a subset of K Buch that at
each point x E K(2), K is locally a union of two nonsingular hypersurfaces meeting
transversally at x.

Let us choose 0 E R4 in general position with respect to S. In this case SingK\
K(2) is a set oI a finite number of straight lines {LI, ... , LI:}' Moreover we cau
assume that the following conditions are satisfied:

(i) U Li touches S at a point x, then Li n S = {x}.
(ii) II Li meets S at more than two distinct points, then Li n S = {Xl, X2, xa}

and the tangent spaces TX1 S, TX2 S, TX3 S are in general position.
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1.2. We fix a point 0 E R\ which is in general position with respect to S, and
choose a coordinate system in R4 such that 0 is the origin of this system. Denote
by Ix the ray begining at 0 and passing throuth x.

We shall say that a point x E S is invüible, if th.ere exists t ER, 0 < t < 1, such
that the point tx also belongs to S, where tx = (txI, ... , tX4) for x = (Xl, ... , X4)'

Let IS be the closure of the set of invisible points. The set

SS = {x E S Itx E S for some t > 1}

is called a "creen.
The surface S divides K into two parts. Let

ES = {x E IR4 Itx E S for some t, 0 < t < I}

be the part of K \ S, which does not contain the origin o. ES is called a "hade of
S (or the ezternal part of K).

Let S \ IS = SI U ... U Sn be the decomposition into the connected components.
Denote by ESi the shade of Si and let EIS be the shade of the set of invisible
points. The open hypersurface K i = ESi \ EIS will be called a wall.

1.3. Fix an orientation on S and on IR4
• The orientation on S induces an orienta­

tion on each wall K i , because ESi ~ Si X {t E RIO< t < I}. Thus the orientations
on Ki and on R4 allow us to consider each Ki as a two-sided hypersurface each
side of which is coloured: one of the sides'is painted into "positive" colour and the
other side ioto "negative" colour.

1.4. Consider a point z E ES n K(2). In a small neighborhood Uz of the point z,
we have that K n Uz = K' U K", where K' and K" are nonsingular hypersurfaces
intersecting transversally along nonsingular surface K' n K".

The ray lz intersects S in two points a and b, where a E SS and b EIS. In a
neighborhood of the points a and b, the surface S splits into two disjoint connected
components S' and S" (a E S' and bEB") so that K' is the shade of S' and K"
is the shade of S".

In the neighborhood Uz the intersection K' n K" divides each K' and K" into
two parts KL K~, K~', K~'. The parts K~' and K~' belang to Borne walls, say K q

and Kr (it is possible that K q = Kr)' In Uz, the set K' is divided by K' n KU into
two parts K~ and K~. But it is easy to see that these parts belong to the same
wall. Denote by K p this wall. The walls K p , K q , Kr will be called adjacent wal13
at the point z.

The hyperBurfaces K' and K" divide Uz linto four parts EI, E 2 , E 3 , E 4 . Let EI
be the part whose internal boundary is coloured into positive colour.

We shall say that the tripie K p , K q , Kr, is well·ordered if the boundary of EI
consists of K p and K q (and not K p and Kr)'. Gf course, it is possible that the walls
K p , K q , Kr are the adjacent walls at some other point ZI and for thiB point, the
tripie K p , K n K q is well-ordered. I

1.5. We associate a group r s to the surface S. The generators of r s are the walls
I

K i and the complete set of relations are

(1) KqKp = l;(pKr

for each z E ES n K(2), where K p , K q , Kr ,are well-ordered adjacent walls at z.
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Theorem 1. Let S C R4 be a smooth orientable eompaet Riemannian surface.
. Then

Proof. The same as the proof of Theorem 3.1 in [KIl.

Remark 1. It is easy to see that rs is a finite1y generated group, beeause S is
eompaet.

2. In this section we shall recall the definition and some simple properties of C­
groups.

2.1. Let Iq = {I, 2, ... , q} be a segment of N, M c I; = Iq x Iq x I q a subset and
IMI = #M the cardinality of M.

Definition. A group G together with a corepresentation

(2)

is ca1led a C -group oI type M, wbere for 0' = (0'1, 0'2,0'3) tbe relation

is a conjugation (the letter "C" in "C-group" is the :first letter of tbe word "eonju­
gation").

A homomorphism f : GI -+ G2 is a' homomorphism oE C -groups iE for eacb
generator Xi oE the C-group GI , f(Xi) is conjugated to same generator oE the C­
group G2 •

Remark 2. Hwe add one more generator, say y, and one more relation xiyxilxjl
to the corepresantation (2), then we obtain the group w1llcb is isomorphie to G as
a C-group.

2.2. To any C-corepresentation of type M we can assodate an oriented graph r M

with vertices VI, ... , Vq, and with edges en , 0' E M. The edge eo connects the vertex
V 02 with V O ! , where 0' = (0'1,0'2, aa) .

It is easy to prove the following

Lemma 1. (cf. (K2J) Let G be a C-group oE type M , and G' = [G, Gl. Tben
G/ G' = zn, where n is the number of connected components oI the graph r M .

A C -group G of type M is called an irreducible C -group if its graph rAt 1S

connected.
Let r M = r 1 U ... urn be the decomposition into connected components. For

each rj, put I(j) = {i E Iqlvi rt rj}. The group

is called an irreducible component of a C-group G of type M, and we shall say that
the C-group G is composed of n irreducible components G j .
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Remark 3. It is easy to see from Theorem 1 tbat for eaeb smooth orientable
eompaet Riemanman surfaee S C IR.4, 1f1 (}R4 \ S) is a C -group eomposed of n
irreducible eomponents, wbere n is the number of eonneeted eomponents of S.

2.3. Denote by i : I; ~ I; the involution defined by

and let M* = i(M) be the image of M C I:.
The C-group C* of type M* is called conjugate to a C-group C of type M.

Lemma 2. Let G and C* be eonjugated C-groups. Then C and C* are isomorphie
groups.

Proof. Indeed, if in the group

we shall take the generators YI = xII, ... ,Yq = x;l instead of the generators
Xl, ... , X q , then the group G will have the following corepresentation

2.4. Let G be a C-group. Denote by MG the colleetion of the sets Mi C I:
i

such
that the C-groups GMi of type Mi are isomorphie to G as C-groups. The number

is called the rank of the C-group G, where rk 1f1 (rM) is the rank of a free group
1f1(rM).

3.1. We shall say that S C R4 is a tamely imbedding of the ...imple.5t kind, if for S,
there exists a projection p : R4 ~ R3 from a point 0 E R4 such that the image peS)
satisfies the following condition:

(s) Locally at each point z E peS) either peS) is smooth, or peS) is a union of
two smooth surfaces meeting transversally.

The main theorem follows from

Theorem 2. For each C-group G, there exists a tamely imbedding of the simplest
kind S C 1R4 of a smooth orientable compact Riemannian surfaee S such that

Proof. Fix a C-group

At the beginning, we shall eonstruet the image peS) of the projeetion p : R,4 ~ }R3
from the point 0, where S is a desired surface. The surface peS) will be glued from
standart pieees step by step. Now we shall deseribe these standart pieces.
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For this, let n(i) be the number of all edges of r M either starting or ending at the
vertex ei, 1 :5 i :::; q. Let r(i) be the number of the relations Ra with 0 = (i,·,·).
Put ni = n(i) + r(i).

The standart piece Ai(nä) = Sr \U1::;j::;nißi,j, 1 ~ i ~ q, is a sphere Sr c R3

from which ni non-intersecting disks ßi, j c S~ are cut out. We Msume that
S; n S1 = 0 for i f j. Let Zi,j be the center of ßi, j.

The standart pieces Ca' 0 E M and C (XI n Ca" = 0 for 0' f 0", are the unions

for each 0 E M, such that there exists a neighborhood U01 of Ca which is di:ffeo­
morphic (orientation being preserved) to

and such that Ca ia diffeomorphic (via the same diffeomorphism) to Cl U C2 U ß,
where

Cl = {(XI, X2, X3) E [3 I x~ +x~ =R2, R<e:: 1},

C2 = {(Xl, X2, X3) E [3 I x~ +X~ =r2, r < R},

6. = {(Xl, x 2, X3) E [3 I X~ + X~ ~ R2, x 3 = -1 }.

Put Y1 = (0,0,1), Y2 = (-1,0,0), Y3 = (1,0,0), and let Yi,OI' i = 1, 2, 3, be the
corresponding points in U01'

Let us connect for 0' = (al, 02, 03), the point Y1,0 with a. free (that is not used
at previous steps) point Zo} ,it by a smooth path 11,0 which does not intersect the
standart pieces. One connects the points Y2,a and Y3,a with free points za'J,j'J and
zas,is by smooth paths, 12,01 and 13,01' respectively. Let Bi,a be the boundaries
of tubular neighborhoods of the paths li,a' Each Bi,o is diffeomorphic to SI X

[0,1]. We choose the tubular neighborhoods of the paths /'i,a so that one of the
connected components of the boundary of Bi,a would coinside with one of the
components of the boundary of Aai(ni) and the other one would coinside with one
of the components of the bOWldary of Ca. We glue each Bi,o with Aai(nä) and Ca
along these boundaries (see Fig.l). After these glueing, we obtain p(S) which is
immersed iota R3

.

Now we canstruct the surface S. For this let R3
, coosidered above, be defined

in R4 by the equation X4 = 0 and let 0 = (OI, ... ,04) be coordinates of the center of
the projection p, where 04 »0. We shall say that the point 0 lies higher than the
hypersurface R3 •

For each standart piece Co, the intersection Ca 1 n Ca 2 is the disjoint union of, ,
two loops va ,+ and 110 ,_, where va ,+ corresponds to the circ1e

{ 2 2 R2 2 2 2 O}
11+ = Xl + X2 = 'X2 + X3 = r , Xl > .
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Fig.l

Let Uo ,+ and Ua ,- be small open subsets of R\ Uo ,+ n Uo .- = 0, and let
Vo ,+ C Uo .+, Vo ,- C Uo ,- be compactly imbedded neighborhoods of V o ,+ and
V o .-, respectively. We make a small shift up of the intersection Co,'J n Vo ,+ and
glue the shifted surface with Ca ,2 \ Ua .+ using smoothing functions. Similarly, we
make a small shift down of the intersection Ca ,2 nVo ,- and glue the shifted surface
with Co.2 \ Uo ,_.

After these shifts, we shall obtain a surface 5. For this surface, the loop V o ,+ C
Co,t and the shifted loop V o ,-, which belongs to the shifted down surface Ca ,2, are
the subsets of the set of invisible points.

The loop V o .+ divides Co ,1 into two parts. One of them is homeomorphic to a
disko Denote this disk by Yo.

\Ve identify each standart piece Ai(ni) with the generator Xi of the C-group G.
Then 5 \ 15 is the disjoint union of the connected components Xi, i = 1, ... , q, and
Yo, a E M.

The relations in 1T1(R4 \ 5,0) between x'es are either the relations {Ro(X)}aEM
or the relations {Ro ( x)} oEM. , aod it depends on a choice of orientations on R4 and
5. If it is necessary, we change the orientation on 5 such that these relations will
be {Ro(x)}OEM.

The relations in 7t"1 (R4 \ 5,0) between x'es and Yo '8 are the added relations as
in Remark 2. Thus 7t"t (R.4 \ 5,0) ~ G and Theorem 2 is proven.
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Remark 4. It is easy to see that the genus g(5) oE the surface S constructed in
the prooE oE Theorem 2 is equal to

.3
•

2.....
3

J
•3...

J

2­...
3

4. Example. The simplest (non-trivial) irreducible C-group has at least three gen~

erators and two relations. There exist unique C-groups GI and G2 of types MI C 1; ,
and M 2 C 1;, respectively, #MI = #M2 = 2. Their graphs r M l and r M 2 are pre­
sented on Fig.2.

:1
•

Fig.2

The group GI is the c1over-Ieaf knot group.

Fig.3
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The groups GI and G'}, are not isomorphie C-groups, because the Alexander
polynomial ßa l (t) of GI is ßa l (t) = t2

- t + 1 and the Alexander polynomial
ßa2 (t) of G'}, is ßa2 (t) = t - 2.

The group GI can be realized as the fundamental group of the eomplement of a
surfaee SI in Rot whose image P(S) is pietured on Fig.3.

To obtain SI from peS) we must shift up Cl ,2 and C2 ,3 in neighborhoods of 1I3,+

and vl,+, respeetively, and then shift down Cl ,2 and C2 ,3 in neighborhoods of va,­
and Vl,-, respeetively.

The group G2 ean be realized as the ftmdamental group of the eomplement of
a surfaee S'}, in Rot. To eonstruet S'}" one can use the same image P(S). Only it is
neeessary to make shifts in the another direetions. One must shift up Cl ,2 and C2 ,a
in neighborhoods of va.+ and vl,- and shift down Cl,'}, and C2 ,a in neighborhoods
of V3,- and vl,+, respeetively.

5. Fix an irredueible C-group G. Let Sa"be the set of smooth conneeted compaet
orientable Riemannien surfaees 5 C R4 such that G is isomorphie to ""'1 (Rot \ S) as
a C-group.

We shall call
g(G) = min g(S)

SESa

the genw of the irreducible C-group G, where g(S) is the genus of a Riemannian
surfaee S.

Let Sß,a be the set of tamely imbeddings of the simplest ~nd of smooth eon­
nected orientable compaet Riemannian surfaee S C Rot such that ""'1 (lR4 \ S) is
isomorphie to G.

We shall eall
gß(G) = min g(5)

SES.,G

the s-gentu of a irreducible C-group G.

Theorem 3. Let G be an irreducible C-group. Tben

r(G) = gß(G).

Proof. It follows from Remark 4.

Corollary. Let G be an irreducible C -group. Then

g(G) ::; r(G).

Remark 4. It follows from {L}, tbat tbere exists an irreducible C-group such tbat
its genus g(G) > O.
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