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0. In [K2], one class of groups, so called C-groups, was introduced (see the def-
inition of a C-group in n.2). This class contains naturally the class of knot and
link groups (with the Wirtinger corepresentation) and the class of the fundamental
groups of the complements of algebraic curves in C* (with the corepresentation
from [K1]).

Denote by C the class of C-groups, and let £ be the class of knot and link groups,
A the class of the fundamental groups of the complement of algebraic curves in CZ.
It was shown in [K2] that

AgL, L g A, AULGC.

It follows from [L], that there exists an irreducible C-group G such that G can not
be a group of a 2-knot, i.e. G can not be the fundamental group of the complement
of a sphere $% imbedded in R*.

The purpose of this note is to prove the following

Theorem. For each C-group G, there exists a smooth orientable compact Rie-
mannian surface S C R* such that

mn(R*\ S) ~ G.

Acknowledgement. I would like to thank Max-Planck-Institut fiir Mathematik
(Bonn) for hospitalily and support during the preparation of this paper.

1.1. Let S C R* be a smooth orientable compact Riemannian surface. Choose a
point o ¢ S. Let K C R* be the cone over § with the vertex o. The cone K is a
singular real hypersurface, dim K = 3. Denote by SingK the set of singular points
of K, and let K(2) be its double locus, i.e. K(2) is a subset of K such that at
each point ¢ € K(2), K is locally a union of two nonsingular hypersurfaces meeting
transversally at z.

Let us choose o € R? in general position with respect to S. In this case SingK \
K(2) is a set of a finite number of straight lines {L,,...,Ly}. Moreover we can
assume that the following conditions are satisfied:

(i) If L; touches S at a point z, then L; N § = {z}.

(i1) If L; meets S at more than two distinct points, then L; N S = {z1,22,23}
and the tangent spaces T, S, T,,S, T;,S are in general position.
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1.2. We fix a point o € R*, which is in general position with respect to S, and
choose a coordinate system in R* such that o is the origin of this system. Denote
by I, the ray begining at o and passing throuth z.
We shall say that a point z € S is invisible, if there exists t € R,0 < t < 1, such
that the point tz also belongs to S, where tz = (tzy,...,tz4) for z = (z1, ..., z4).
Let IS be the closure of the set of invisible points. The set

SS={z €S|tz € S for some t > 1}

is called a screen.
The surface S divides K into two parts. Let

ES={z€eR* |tz € Sforsomet, 0<t<1}

be the part of K \ S, which does not contain the origin 0. ES is called a shade of
S (or the ezternal part of K).

Let S\ IS = S, U...US, be the decomposition into the connected components.
Denote by ES; the shade of S; and let EIS be the shade of the set of invisible
points. The open hypersurface K; = ES; \ EIS will be called a wall.

1.3. Fix an orientation on S and on R*. The orientation on S induces an orienta-
tion on each wall K, because ES; ~ S; x {t € R|0 < t < 1}. Thus the orientations
on K; and on R? allow us to consider each K; as a two-sided hypersurface each
side of which is coloured: one of the sides-is painted into ”positive” colour and the
other side into "negative” colour.

1.4. Consider a point z € ES N K(2). In a small neighborhood U, of the point z,
we have that K NU, = K' U K", where K' and K" are nonsingular hypersurfaces
intersecting transversally along nonsingular surface K' N K".

The ray [, intersects S in two points a and b, where a € SSand be IS. Ina
neighborhood of the points a and b, the surface S splits into two disjoint connected
components S’ and §” (a € §’' and b € §”) so that K' is the shade of S’ and K"
is the shade of S".

In the neighborhood U, the intersection K' N K" divides each K' and K" into
two parts Ki, K3, K{, KJ. The parts K{ and K} belong to some walls, say K,
and K, (it is possible that K, = K, ). In U,, the set K’ is divided by K' N K" into
two parts Kj and Kj. But it is easy to see that these parts belong to the same
wall. Denote by K, this wall. The walls K, K;, K, will be called adjacent walls
at the point z.

The hypersurfaces K' and K" divide U, into four parts E;, E;, E;, E4. Let E4
be the part whose internal boundary is coloured into positive colour.

We shall say that the triple K,, K,, K, is well-ordered if the boundary of E;
consists of K, and K, (and not K, and K,). Of course, it is possible that the walls
K,, K4, K, are the adjacent walls at some other point 2; and for this point, the
triple K,, K,, K, is well-ordered. I

1.5. We associate a group I's to the surface S. The generators of I's are the walls
K; and the complete set of relations are

for each z € ES N K(2), where K,, K,, K,jare well-ordered adjacent walls at z.
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Theorem 1. Let S C R* be a smooth orientable compact Riemannian surface.

- Then
m(R'\ S,0) ~ Ts.

Proof. The same as the proof of Theorem 3.1 in [K1].

Remark 1. It is easy to see that I's is a finitely generated group, because S is
compact.

2. In this section we shall recall the definition and some simple properties of C-
groups.

2.1. Let I, = {1,2,...,q} be a segment of N, M C I} = I, x I, x I, a subset and
|M| = #M the cardinality of M.

Deflnition. A group G together with a corepresentation

2) G =< 21,7 | {Ra(®)} gers >

is called a C-group of type M, where for a = (a;, az,a3) the relation

Ro(2) = oy Tay 25, Toy -
is a conjugation (the letter ”C” in ”C-group” is the first letter of the word ”conju-
gation” ).
A homomorphism f : G — G3 is a homomorphism of C-groups if for each
generator z; of the C-group Gy, f(z;) is conjugated to some generator of the C-
group Gs.

Remark 2. If we add one more generator, say y, and one more relation a:,-yzi_lz_;l

to the corepresantation (2), then we obtain the group which is isomorphic to G as
a C-group.

2.2. To any C-corepresentation of type M we can associate an oriented graph I'ps
with vertices vy, ..., vy, and with edges eq,a € M. The edge e, connects the vertex
Va, With va, , where a = (a3, @2, a3) .

It is easy to prove the following

Lemma 1. (cf. [K2]) Let G be a C-group of type M , and G' = [G,G]. Then
G/G' = Z", where n is the number of connected components of the graph I' .

A C-group G of type M is called an irreducible C-group if its graph Ty is
connected.

Let Tps =TI'; U...UT, be the decomposition into connected components. For
each I';, put I(j) = {i € I;|vi ¢ T';}. The group

GJ =< ﬂ:l,..., :'Bq | {RQ}GEM U {zl}'e}'(]) >

is called an trreducible component of a C-group G of type M, and we shall say that
the C-group G is composed of n irreducible components G;.
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Remark 3. It is easy to see from Theorem 1 that for each smooth orientable
compact Riemannian surface S C RY, =;(R*\ S) is a C-group composed of n
irreducible components, where n is the number of connected components of S.

2.3. Denote by i : I] — I the involution defined by

i: (a1, @, 03) — (a1, 03, a3),
and let M* = i(M) be the image of M C I3.
The C-group G* of type M* is called conjugate to a C-group G of type M.

Lemma 2. Let G and G* be conjugated C-groups. Then G and G* are isomorphic
groups.

Proof. Indeed, if in the group

G =<7y, 2q | {Ra(2)}oep >

we shall take the generators y; = a:l—l,...,yq = :z:q‘1 instead of the generators

Ty,..., 24, then the group G will have the following corepresentation

G =<y1,.Y | {Ra(¥)}oer > -

2.4. Let G be a C-group. Denote by Mg the collection of the sets M; C I 3‘_ such
that the C-groups Gy, of type M; are isomorphic to G as C-groups. The number

r(G) = Woin rkmi(T )

is called the rank of the C-group G, where rk n1(I'as) is the rank of a free group
m (PM)

3.1. We shall say that § C R* is a tamely imbedding of the simplest kind, if for S,
there exists a projection p : R* — R? from a point o € R* such that the image p(S)
satisfies the following condition:

(s) Locally at each point z € p(S) either p(S) is smooth, or p(S) is a union of
two smooth surfaces meeting transversally.

The main theorem follows from

Theorem 2. For each C-group G, there exists a tamely imbedding of the simplest
kind S C R* of a smooth orientable compact Riemannian surface § such that

W](R4 \ S) ~ G.

Proof. Fix a C-group
G=<21,.,2¢ | {Ra(T)}aep >
At the beginning, we shall construct the image p(S) of the projection p : R* — R?

from the point o, where S is a desired surface. The surface p(S) will be glued from
standart pieces step by step. Now we shall describe these standart pieces.
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For this, let n() be the number of all edges of I ps either starting or ending at the
vertex ¢;, 1 <1 < q. Let r(i) be the number of the relations R, with a = (3,-,-).
Put n; = n(i) + r(z).

The standart piece A;(n;) = S? \U1<j<n.'A"-J" 1<1i<gq,is asphere S? C R®
from which n; non-intersecting disks Aij C S? are cut out. We assume that
SINS? =g for i # j. Let z; ; be the center of A, j.

The standart pieces Co, @« € M and Cy N Con = @ for o' # o', are the unions

Car = Ua,l U Car,Z U Aa

for each @ € M, such that there exists a neighborhood U, of C, which is diffeo-
morphic (orientation being preserved) to

P ={(z1,22,23) €R® | |z;| L 1fori =1,2,3}

and such that C, is diffeomorphic (via the same diffeomorphism) to C; UC; U A,
where

Ci={(z1,z2,z3) e * |2+ 23 =R* R« 1},
C2={(Ily$2,I3)€I3|I§+$§=r2,r<R},
A={(a:1,,1;2’ 33)€I3|$?+I§SR2’:53=_1 }

Put y; = (0,0,1), y2 = (-1,0,0), y3 = (1,0,0), and let y; o, t = 1, 2, 3, be the
corresponding points in U,.

Let us connect for & = (a1, az, as), the point y; o with a free (that is not used
at previous steps) point z,,,;, by a smooth path v; o which does not intersect the
standart pieces. One connects the points y2 o and y3 o with free points z,, ;, and
Zag,js DY smooth paths v2 o and 73 o, respectively. Let B;, be the boundaries
of tubular neighborhoods of the paths 7;,. Each B, , is diffeomorphic to S! x
[0,1]. We choose the tubular neighborhoods of the paths «; o so that one of the
connected components of the boundary of B;, would coinside with one of the
components of the boundary of A4,(n;) and the other one would coinside with one
of the components of the boundary of C,. We glue each B; o with A,;(n;) and Cq
along these boundaries (see Fig.1). After these glueing, we obtain p(S) which is
immersed into R3.

Now we construct the surface S. For this let R®, considered above, be defined
in R* by the equation z4 = 0 and let 0 = (0, ...,04) be coordinates of the center of
the projection p, where o4 3> 0. We shall say that the point o lies higher than the
hypersurface R3.

For each standart piece C,, the intersection Cy 3 N Cq 2 is the disjoint union of
two loops v, 4+ and v, ., where v, 4 corresponds to the circle

vy ={2? +22 = R? z+:}=r% z, >0}



Fig.1l

Let Ua,+ and Uy, — be small open subsets of RY, Uy 4+ N Uy~ = @, and let
Va,+ C Uqa,+, Va,— C Ua,— be compactly imbedded neighborhoods of v, 4+ and
Va,—, respectively. We make a small shift up of the intersection Cq 3 NV, 4+ and
glue the shifted surface with Cq 3 \ U, 4+ using smoothing functions. Similarly, we
make a small shift down of the intersection Cy 2 NV, — and glue the shifted surface
with Cq,2 \ Uq,--

After these shifts, we shall obtain a surface S. For this surface, the loop v, 4+ C
Cq,1 and the shifted loop v, —, which belongs to the shifted down surface C, ;, are
the subsets of the set of invisible points.

The loop vq,+ divides Cq 1 into two parts. One of them is homeomorphic to a
disk. Denote this disk by yq.

We identify each standart piece A;(n;) with the generator z; of the C-group G.
Then S\ IS is the disjoint union of the connected compenents z;, i = 1,...,q, and
Yo, @ € M. '

The relations in 7, (R* \ 5, 0) between z’es are either the relations {Ra(z)}aem
or the relations {Ra(z)}aer, and it depends on a choice of orientations on R* and
S. If it is necessary, we change the orientation on S such that these relations will
be {Ra(z)}aem- :

The relations in 7 (R* \ S,0) between z’es and y,'s are the added relations as
in Remark 2. Thus m(R*\ S,0) ~ G and Theorem 2 is proven.



Remark 4. It is easy to see that the genus g(S) of the surface S constructed in
the proof of Theorem 2 is equal to

g(S) =rk TT]_(FM).

4. Ezample. The simplest (non-trivial) irreducible C-group has at least three gen-
erators and two relations. There exist unique C-groups G, and G; of types M, C I3,
and M, C I}, respectively, #M;, = #M, = 2. Their graphs I'ps, and 'y, are pre-
sented on Fig.2.

Fig.2
The group G is the clover-leaf knot group.

Fig.3



The groups G and G; are not isomorphic C-groups, because the Alexander
polynomial Ag,(t) of G; is Ag,(t) = t2 — ¢ + 1 and the Alexander polynomial
Ag,(t) of Go is8 Ag,(t) =t —2.

The group G; can be realized as the fundamental group of the complement of a
surface S; in R* whose image p(S) is pictured on Fig.3.

To obtain S} from p(S) we must shift up C 2 and C; 3 in neighborhoods of v3 4
and vy 4, respectively, and then shift down C} 2 and C; 3 in neighborhoods of v3 _
and vy _, respectively.

The group G3 can be realized as the fundamental group of the complement of
a surface Sz in R*. To construct 53, one can use the same image p{S). Only it is
necessary to make shifts in the another directions. One must shift up C; 2 and Cs 3
in neighborhoods of v3 ; and v; _ and shift down C; ; and C; 3 in neighborhoods
of v3 . and vy 4, respectively.

5. Fix an irreducible C-group G. Let Sg-be the set of smooth connected compact
orientable Riemannien surfaces S C R* such that G is isomorphic to m;{R* \ S) as
a C-group.
We shall call
9(G) = min ¢(5)

the genus of the irreducible C-group G, where ¢(5) is the genus of a Riemannian
surface S.

Let S, ¢ be the set of tamely imbeddings of the simplest kind of smooth con-
nected orientable compact Riemannian surface S C R* such that = (R* \ S) is
isomorphic to G.

We shall call

9:(G) = gmin_g(S)
the s-genus of a irreducible C-group G.

Theorem 3. Let G be an irreducible C-group. Then
(Q) = ¢4(G).

Proof. 1t follows from Remark 4.
Corollary. Let G be an irreducible C-group. Then

9(G) < (G).

Remark 4. It follows from [L], that there exists an irreducible C-group such that
its genus ¢(G) > 0.
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