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1 Introduction

The purpose of this paper is to show the existence of irreducible SU(2) representations
of homology knot complement fundamental groups near abelian representations where the
equivariant knot signature changes. In [FK]J, Charles Frohman and Eric Klassen showed the
existence of irreducible representations near abelian corresponding to square roots of simple
roots of the Alexander polynomial, and they raised the question whether an analogous
result holds for multiple roots. Our result shows existence of irreducibles for any knot
whose equivariant signature is nonzero off of the square roots of roots of the Alexander
polynomial.

The equivariant signature of a knot complement is defined as follows. Let Y be a ho-
mology knot complement, that is, a compact 3-manifold with torus boundary with the
property that H.(Y;Z) = H.(S';Z). We choose a simple closed curve in Y which repre-
sents a primitive element of H,(3Y; Z) in the kernel of the map i, : H,(0Y;Z) - H,(Y; Z).
We will call this curve the longitude for Y and denote it by A. We also choose a meridian
i, a simple closed curve in @Y which generates H,(Y; Z).

Let F be a Seifert surface, i.e., asurfacein Y whose boundary is A. Choose an orientation
of the normal bundle of /7 in Y. If {z;}1<ic, is a basis for H;(F;Z), let 27 denote the
pushoff of z; in the positive direction. Finaﬁy, let V be the linking matrix whose entries
are Vj; = £k(m;,zj).

The symmetrized Alexander matrix for ¥ is the matrix A(t) = 13V —t5VT. We define
B(t) = 1=V + (1 -t=)VT, Note that B(t) = (!,_% - t%)A(t), so the complex values
of t # 41 for which B(t) is singular are exactly the roots of the Alexander polynomial
A(t) = detA(?).

If ¢t is a unit complex number, then B(¢) is a skew hermitian matrix, and hence has only
real eigenvalues. The equivariant knot signature of Y is the number of positive eigenvalues

*The author was partly supported by NSERC Grants and the Max Planck Institute for Mathematics



minus the number of negative eigenvalues for B(t?), counted with multiplicity. (See [KKR}
or [H2] for details.) By the above comment, this signature is a map from U(1) to Z which is
continuous in ¢t € U(1) except possibly at square roots of roots of the Alexander polynomial.
Furthermore, SignB(1) = 0.

Let 1, J, k denote the standard orthonormal basis for su(2) corresponding to the identi-
fication of SU(2) with the space of unit quaternions. We will consider U(1) = {exp(if)} C
SU(2), and we make the identifications span(i) = R and span(j, k) = C.

We now state the main result in this paper.

Theorem 1 If the function SignB(t) : U(1l) — Z does not vanish on the complement
of the set of unit roots of A(t), then there are irreducible representations p : m(Y) —
SU(2). Furthermore, for any unit root €@ of A(t) where the right and left hand limils
limg_;qt SignB(e*ﬂ) do not agree, there is a continuous family of irreducible representations
limiting to the abelian one which takes it to exp(ic).

In the course of proving this we will also prove the following facts.

Corollary 2 Suppose for some 0 < 6 < 7 the matriz B(e'?®) has nontrivial kernel, and
suppose that as t € U(1) moves through the value to = €', all eigenvalues of B(t?) crossing
zero do so transversely, and all do so in the same direction. Then all the irreducible repre-
sentations near the abelian one taking p to exp(i) send A to ezp(io) for some small o # 0,
where the sign of o corresponds to the direction the eigenvalues go through 0.

Corollary 3 If x is a knot and there exists any value 0 < 8 < © satisfying the above
hypotheses, then for n sufficiently large, the homology spheres obtained by % and —% surgery
on K have nontrivial SU(2) representations.

Corollary 4 Suppose & is a knot in S° with only simple roots of the Alezander polynomial
and suppose that the irreducible part of the character variety consists only of arcs (non-
closed components) whose images in the character variety of the boundary torus all wrap
monotonically around it. All torus knots, for ezample, satisfy this hypothesis. If X is the
homology S-sphere obtained by %-surgery on K, then the absolute value of Casson’s invariant
for X is equal to twice the number of irreducible points in the character variety for X. That
is to say, all these potnts count with the same sign when added to give the Casson tnvariant.

The proof of the main theorem has the following outline. We begin by identifying the
set of representations of 7, (Y} into SU(2) modulo conjugation with the moduli space of
flat SU(2) connections on Y x SU(2) modulo gauge equivalence by taking a representation
p to the flat orbit which has p as its holonomy representation. We next show that there
are arbitrarily small perturbations of the flatness equation for which there are irreducible
orbits in the perturbed flat moduli space. Finally we make a limiting argument to show
this property holds for the unperturbed flat moduli space.



The paper is organized as follows. Section 2 contains basic results about perturbing the
flatness equation and the perturbed flat moduli space for 3-manifolds with torus boundary.
Subsection 3.1 contains a statement of the basic existence theorem for irreducibles under
certain assumptions of nondegeneracy. Subsection 3.2 provides a proof of this result. A
proof of Corollary ?7 is also given in this subsection. Section 4 then gives proofs of our
main result along with Corollaries 3 and 4.

Aknowledgements: The author wishes to express his gratitude to Michael Heusener, Paul
Kirk, Eric Klassen, Tomas Mrowka, and Andrew Nicas for helpful discussions on subjects
related to this paper.

2 The Structure of the Flat Moduli Space

We begin by describing SU(2) gauge theory on 3-manifolds with torus boundary, recalling
results from [H1].

Let A denote the space of connections on Y x SU(2). Given a fixed trivialization of
this principle bundle, we may identify .4 with the space of su(2) valued 1-forms on Y,
Q'(Y;su(2)). We complete this space using the L% Sobolev norm. Let ¢ = Aut(Y x
SU(2)) be the gauge group, with the L% completion. To each connection A is associated
its curvature 2-form, F(A) = dA+ A A A and A is said to be flat if F(A4) = 0.

The flat moduli space is the quotient .M F~1(0)/G. There is a standard method of
perturbing the flatness equation in order to obtain a moduli space which is nondegenerate
(nondegenerate will be given a precise definition below), given by Taubes [T] and Floer [F].
We sketch it below; see [H1] for more details.

Let {y; : S x D?* —» Y }1<i<n be a collection of embeddings of the solid torus into Y
whose images are disjoint. Let 7 be a radially symmetric bump function on D? with support
in the interior of D?, multiplied by the standard volume form. Let {h; : R = R}i<i<n
be a collection of smooth functions. Let tr holy,(z, A) be the trace of the holonomy of the
connection A around the curve (5! x {z}). We define a function A : A — R by the

formula
Z/ (tr holy, (z, A))n(z).

We call functions h constructed in this way admissible perturbation functions.

Now fix a Riemannian metric on Y, and let = denote the Hodge star operator on su(2)
valued forms. Given an admissible perturbation function h, we call a connection perturbed
flat if it satisfies the equation

def 1 _
Gu(A) & v F(A) + Vh(4) =

where V denotes the L? gradient of k. We can now define the perturbed flat moduli space



by
Ma = (0)/6.

The structure of the perturbed flat moduli space for a 3-manifold with boundary was
described in [H1]. We summarize the results below. Let xda 4 def x5-d4 + Hessh(A). Let
Hiy p(Y;5u(2)) and HYy (Y, 0Y 5 su(2)) be (the harmonic spaces representing) the first and
second cohomology groups of the following elliptic complex (where the grading goes 0,1,2,3):

0 — Q°(Y;su(2)) 4 Q' (V; su(2)) 4" Q1 (Y; su(2) 2 Q0 su(2)) = 0.

Let M3, Mg(l), and MiU@) denote the portions of My, consisting of irreducible, abelian
(noncentral), and central orbits, respectively. We will say that M}, is nondegenerate if it
satisfies the following 5 properties (and otherwise degenerate):

(a) The only orbits in My, which are central when restricted to Y are central on Y.

(b) Atevery [A] € Mfum, Hyn(Y,0Y;su(2)) = 0.

(c) At all but finitely many orbits [A] € Mf(l), dim’HL_,h(Y, dY;su(2)) = 0, and the

remaining abelian orbits dim#}, , (Y, 8Y;su(2)) = 2.

(d) At each abelian orbit where there is nontrivial relative first cohomology the family of
symmetric matrices H; (defined below) has transverse spectral flow.

(e) For each {A] € M7, dim 'HL‘h(Y, 9Y;su(2)) = 1.

To define the matrix H; in condition {d) we first choose a family of connections [A,] €

Mfm with H}y, ,(Y,0Y;su(2)) nonzero. For the moment let V' denote the orthogonal

complement of T[AO]Mg(l) in ’Hho,h()’;su(Q)). Then we define a 1-parameter family of

bilinear forms on V by the formula

Hi{e, B) = (xda, pev, B).

H, is symmetric and U(1) invariant.

When h = 0, a jump in HL(Y;su(2)) occurs (for abelian connections) exactly at con-
nections where, up to gauge, hol,A = exp(19) and holyA = 1 where B, (e'28) is degenerate,
and Propositions 9 and 11 of [H2] imply that the spectral flows of H; and B,(e'26) through
such points are equal.

Theorem 5 (Theorem 15, [H1])

If My, is nondegenerate, then My ts compact. Mfu(z) consists of 2 poinis. Mg(l) s a
smooth I-dimensional manifold, compact except for one open end limiting to each central
orbit. M3, is a 1-dimensional manifold, compact except for open ends which limit to distinct
points on Mg(l), i.c. points where dim H)y ; (Y,0Y;su(2)) = 2. Each such abelian orbit
where the relative cohomology jumps is the limit of ezactly one such irreducible end.



Remark: The last claim is the foundation of our existence result. There is a gap in the proof
of this in [H1], so after describing some more background, we state this claim as Theorem
11 and provide a complete proof of this in Section 3.

The flat moduli space for the torus is equal to M2 = T?/Z,, known as the pillowcase.
It is topologically a 2-sphere, but has 4 “corners” corresponding to the central orbits, i.e.,
the fixed points under the involution. There is a restriction map r : My = Mra.

Theorem 6 (Theorem 15, [H1]) Suppose M, is nondegenerate. Then r is an immersion
on each stratum. Then there is a double cover My, of My and a map to the double cover
Mypz = T? of M, where both are branched over the central orbits. Furthermore, given
an orientation on H (Y ;R) there is a canonical orientation on the 1-dimensional strata of
M. The Zy action is orientation reversing on My, (but orientation preserving on Moz ).

Remark: By Proposition 17 of [H2], the absolute value of the Casson invariant of the 1 o
surgery on K may be computed in terms of an oriented intersection number of /\;i}', with a
particular oriented curve in Mq2. This fact is used in the proof of Corollary 4.

Given a flat abelian connection A, let Sym, denote the set of symmetric bilinear forms
on HY (Y,8Y;su(2)) which are StabA invariant. For any loop £ in Y, let Hess4tr hol, be
the element of Sym 4 given by the Hessian of tr hol,(A) restricted to V.

Proposition 7 (Lemma 88, Lemmma 60, and Theorem 15, [H1]) There is a finite collection
of embedded loops {€;}1<i<n with the following properties:
1. For all flat connections A the map D tr holy, : R* = Hom(M, (Y ;su(2)),R) given
by

D tr holg, (A)(by, ..., bn)(a) = ib,— D(tr holy, (A)) ()

is surjective,

2. For all abelian flat connections A the map D (r holy, & Hessgtr holy, : R* —
Hom(HY (Y; su(2)), R)®Sym, is surjective, where the second component takes (by, ..., by)
to Y7, b;Hessalr holg, (A).

Choose a collection of loops {¢;} as in the previous proposition, and let {v;} be a
corresponding collection of maps of solid tori onto disjoint tubular neighborhoods of the
loops. Let £ = C*(R,R). Let £ = £", and let £ C & be the subset consisting of n-tuples
(Ry, ..., R,) which give rise admissible perturbations h for which the perturbed flat moduli
space is degenerate,

Theorem 8 (Theorem 15, [H1]) There is a neighborhood U of (0,...,0) € H" such that
= & NU has codimension 1.

For any path h; : [0,¢] = U, define
Mgy = {([4],2) € A/G x {0, €]| ¢n, (A) = 0}
Proposition 9 (Proposition 49, [H1]) M3} is compact.



3 Existence of Irreducible Orbits in the Nondegenerate Case

3.1 Statement of the theorem and some comments

Let h be a perturbation with M), nondegenerate. Assume that the abelian stratum of My
is as in Theorem 5. Let [A;] € M,L‘](l) be a path with [Ao] a point with H}, (Y, dY;su(2))
nonzero. We define a path [, in Sym 4, as follows.

Hy(o, B) 2 (xdp,por, B).

Proposition 10 (Proposition 6 of [H2]) For each t the matriz H; is equal lo a real valued
function A(t) multiplied by the identity matriz.

Our nondegeneracy requirement (d) insures that the A(¢) has a transverse zero at ¢t = 0.
The existence theorem for irreducibles in the nondegenerate situation is the following.

Theorem 11 Suppose that My, satisfies nondegeneracy conditions (c¢) and (d). Then there
is a neighborhood U C B(Y') of [A¢] such that UN M}(Y) is a smooth arc with one open
end limiting to [Ag].

A proof of this theorem by a somewhat indirect route is the content of the next sub-
section. We conclude this subsection by mentioning the subtlety standing in the way of a
more direct proof.

The perturbed flat moduli space near [Ag] is homeomorphic to the zero set of the
Kuranishi map @ : #} ,(Visu(2)) 2 RS C — H) ,(Y,0Y;5u(2)) = C. @ is defined as
follows (see [H1], Section 6.4, for details). The implicit function theorem gives a map ¥ :
?{}40',‘(}’; su(2)) = *da, 125 (Y ; 5u(2)) (here v denotes the Neumann boundary conditions)
with the property that errd;,AoCh(A + o+ (o)) € HY, ,(Y,0Y;5u(2)). The map & is
defined by ®(«) = Hk”d:&o oCh(A+ a+(@)). These maps are StabAg = U(1) equivariant.
The linearization of ® at (¢,0) in the C direction, composed with inclusion of relative
cohomology into absolute, is equal to H;. One would like to argue that ® is a l-parameter
family of gradient vector fields on C (here we identify the relative and absolute C valued
cohomology through the inclusion of relative into absolute) and hence must look, up to
change of coordinates, like the family of gradient vector fields coming from the function
£(t,2) =tz

The situation is complicated by the fact that we don’t know that ®(¢, 2) is really be a
gradient vector field on C. Recall from [H1] that 2= F(A)+VhA(A) is not the L? gradient of
a function on A, but rather the gradient of a section of a U(1) bundle defined with respect
to a connection on that bundle. This connection (restricted to the graph of the function
P H},m‘h(}";su@)) = xda, sQL(Y;su(2))) may not be flat, and hence the gradient with
respect to this connection may not in fact be a conservative vector field.



The problem is to rule out a family of vector fields on C like
(trz,y) = (tz = y(2® +y°)" ty — 2(2® + y*)"),

which has the same linearization along R @ {0}, and is U(1) equivariant, but has no zeros
off of R @ {0}. The existence of such functions was pointed out to me by Eric Klassen.

Although we certainly expect there to be a direct proof, we avoid this difficulty by
using a somewhat different argument. We consider the closed manifold obtained by 0-
surgery on the knot whose complement is Y. We then demonstrate in this setting, where
% F/(A)+ Vh(A) is truly the L? gradient of cs(A) +A(A4) : A — R, a family of irreducible
connections whose restrictions to the knot complement Y are flat and limit to the orbit
[Ao] as required. This approach has the added benefit that we learn something about the
image of the nearby irreducibles in the pillowcase.

3.2 The picture on Yj

In this subsection we consider connections on a closed manifold Yy. We will begin with
a completely general description of the perturbed flat moduli space near a flat connection
(with no assumptions of nondegeneracy), and then add three assumptions, one at a time,
in the course of the subsection. In particular, we wait as long as possible to impose the
assumption that the second part of nondegeneracy condition (c) is satisfied, in order to
prove Corollary 19. This corollary is an ingredient in the proofs of Corollaries 3 and 4.

As before when we considered manifolds with boundary, let (4(A) denote 5=F(A) +
Vh(A), and let X4 = {Ao + a| d%,a = 0}. For any closed subspace W C Q'(Y;su(2)) we
let Iy denote the orthogonal projection onto W. The next lemma describes the Kuranishi
picture for the perturbed flat moduli space near [Ag]. For a proof see [H1], Section 6.4, or
[MMR], Section 12.1.

Lemma 12 Let Ag be a smooth perturbed flat connection. There exist:
(a) @ Stab(Ao) equivariant neighborhood Va, of 0 in H}_ ,(Yo; su(2)),
(b) a G equivariant neighborhood Uy, of A in A,
(c) a Stab(Ag) equivariant real analytic embedding

¢ Va = X4

whose differential at 0 s just the inclusion of H} ,(Yo;su(2)) into
kerdy N QL(Yy; su(2)),

(d) and a Stab(Ag) equivariant map
O Vi, — Hho,h(Yg;su(Q))

such that ¢ maps ®~1(0) homeomorphically onto the zero set of Culx ;mu4-

7



An important point for us will be that the map ¢ is defined by ¢(a) = Ag + a + ¥(a)
where (o) € *d 4, (Yo; su(2)) solves

Mgy sty (4d10(@) + 500+ () A et (a)]) = 0.

In other words, the graph of 1 has the property that for any o € Vy,,
Ch(AO + a4+ 1/)(0/)) 1 *dAo'hQI(YQ; Sﬂ(?)).

Proposition 13 Foranya € V4, (p(Aota+¥(e)) = 0 if and only iﬁV(cs+h)|¢(vAo)(Ao+
a+ ¥(@)) = 0. Here V denotes the L? gradient, of course.

Proof: By a standard argument, the first condition is equivalent to Mg, h(yo.,u(z))(V(cs-i—
0. y

h)(Ao + o+ ¥(a))) = 0. The lemma now follows from the fact that the tangent space to
the graph of ¢ projects onto the tangent space of its domain. O

Assumption I: Assume that Y is the zero framed surgery on the knot complement Y. Let
[Ao) € Mf“) and assume that #}_,(Y;R) = R, which guarantees that Mf(l)(Y) meets
nondegeneracy condition (c) near [Ag]. Finally, assume that H},_ (Y5 C) is nonempty, and
the graphs of the cigenvalues of the family of bilinear forms H; defined earlier are transverse
to zero at ¢ = 0 and all cross it in the same direction.

Proposition 14 There is an additional perturbation which does not change the topological
structure of My(Y) near [Ag), but changes its image in the pillowcase by a diffeomorphism
of the pillowcase (minus the corners) in such a way that the new abelian arc lines up
with the flat connections on the Dehn filling in Yy. Thatl is to say, we may assume after
this perturbation that all the perturbed flat abelian connections on Y near [Ap] extend as
perturbed flat connections over Y.

Proof: The proof is not hard using the description of perturbed flat connections in Lemma
61, [I11]. We outline it below. If the abelian stratum around [Ag] maps into the pillowcase
to a curve which is transverse to the circles {hol, = constant}, then by doing an additional
perturbation using a perturbation curve in a tubular neighborhood of the boundary torus
dY with trivial framing we can make this piece of the abelian stratum lie on the {holy = id}
arc in the pillow case. Specifically, let the core of the perturbation curve be a meridian and
a framing curve is a parallel meridian in the same 7% C T2 x [0, 1], and choose the function
of trace appropriately.

If the tangent direction to the abelian stratum at [Ag] is vertical, then first do a per-
turbation using a trivially framed longitude to tip it slightly so that it satisfies the former
hypothesis. Then perturb as above. The crucial fact is that perturbations using trivially
framed longitudes and meridians change the picture of r : My, — M2 by diffeomorphisms
of M2 \ {centrals}, so this doesn’t affect the existence or nonexistence of an arc of irre-
ducibles limiting to [Ao], nor does it affect whether the image of these irreducibles coincides
with the image of the abelians. 0O



Proposition 15 The additional perturbation in the Proposition 14 does not alter the co-
homology at Ag nor does it affect the transversality condition on the eigenvalues of Hy.

Proof: We may identify Y with the additional perturbation, (Y, A 4 A'), with the union
(Y, h) Urax (o) (T% x [0, 1], &)

We sketch the proof, leaving the details as an exercise for the reader. Ay extends
uniquely (up to gauge) over Y U (T2 x [0, 1]) to a perturbed flat connection. We will use
the same notation for this extension.

'Hho,h,()” % [0,1]; su(2)) is two dimensional, and the restriction map to the cohomol-
ogy of either boundary component is a surjection. The way to see this {in the harder
case, when h' consists of two perturbation curves) is to consider first H} ., (72 x [0, 1]\
{the two perturbation curves}; su(2)), which equals the ordinary real cohomology of this
space with R coeflients (4-dimensional}. Then use the Mayer Vietoris argument to check
that the subspace consisting of cohomology classes whose restrictions to the boundaries of
the perturbation curves lie in the image of the (perturbed) cohomology on the solid tori
has the required properties. (Note that the second claim does not contradict the fact that
the image of #} ,h,(TZ x [0, 1]; su(2)) must map to a Lagrangian subspace of the direct sum
’Hf%'h;(T? x {0}UT? x {1}; su(2)) with its symplectic structure. Recall that this symplectic
structure will be the difference of the pull backs of the two pillowcase symplectic structures
because the orientations on the tori differ, and then this Lagrangian property is also casily
verified.)

The Mayer Vietoris sequence applied to Y UT? x [0, 1] now implies that #} (Y U
T?x[0,1]; su(2)) = M}, 4(Y;su(2)), and similarly for relative first cohomology. In addition,
it implies that relative 1-dimensional classes on the union are represented by forms which
are exact on T2 x [0,1]. The signs of the derivatives of the eigenvalues of H; as they pass
through 0 is detected by a cohomology pairing on Hly (Y UT? x[0,1]) (see [H2], Section
5, for a similar argument), which then must agree for Y and Y UT? x [0, 1]. O

By Propositions 14 and 15, from the point of view of studying irreducibles near [Ag],
we can without any loss add the following condition to our first assumption.

Assumption 2: The abelian perturbed flat connections on Y in the arc through [Ag] extend
over the O-surgery Yp. Furthermore, H,(Yo) has transverse spectral flow at ¢t = 0, all in the
same direction.

Remark: This is not a generic situation; reducible and irreducible orbits on Yj are isolated
for generic perturbations. We are deliberately ‘putting ourselves in this degenerate situa-
tion. Also, there is nothing special about the 0-surgery. We choose this particular Dehn
filling simply because in the unperturbed case, there is no perturbation required for the
abelians on Y to extend over this closed 3-manifold.

For the remainder of this subsection we will work on Yy, and the connections, Chern-
Simons function, etc., are on this closed 3-manifold unless otherwise specified. For per-
turbed abelian flat connections, for example Ag, we will use the same notation to denote



the connection on Yy and its restriction to Y.

We can assume after gauge transformation that Ay takes values in the a fixed 1-
dimensional subspace R C su(2}, and then the stabilizer U(1) action on sz(2) is compatible
with our decomposition su(2) = R&@ C. The space of su(2) valued forms, and in particular
the perturbed flat de Rham cohomology, decompose accordingly. That is, H}qo‘h(}’g; su(2))
reduces under the action of Stab(4y) = U(1) to 'H}qo'h(Yg; R) & ’Hitﬂ,h(},(); C).

Proposition 18 Any perturbed flat abelian connection on any 3-manifold is gauge equiva-
lent to a smooth connection.

Proof: First assume that A = 0. Then we can assume, after gauge transformation that
A € Q(Y;R). Since dA = 0, A = & + da for some harmonic form « (smooth by elliptic
regularity) and a 0-form a. Let ¢ be the gauge transformation g = exp(—a). Then gA =
g 'Ag+ g7 dg = A —da=a..

If h # 0, then A is still gauge equivalent to a smooth connection off the perturbation
solid tori. On the solid tori, A can be pul into the canonical form described in Corollary
62, [H1], which is smooth. O

Assume Ay is smooth and consider the Kuranishi picture near Ag. Let ¢ be a real
coordinate on 'Hhmh(Yg; R). Then the abelian stratum near [Ag] is parameterized by A; =
Ao+t + (t,0).

Let H,(Yp) denote the symmetric bilinear form on #}, ,(Yo; C) given by

Hi(Y0) (e, ﬁ) = (*dA:,haa ﬁ)fﬁ(}’o)'

By a similar argument to the proof of Proposition same hess after realign, the spectral flow
of this bilinear form concides with the one on Y.

Let M = ¢(Vy4,). Rather than work with y|a directly, we consider the gradient vector
field £ : Yy ,(Yo; su(2)) = Hly 4(Yo; su(2)) of the function (cs+h)o¢ : ’Hi‘o'h(}’g;su(Q)) —
R given by a = (es+ h)(Ag + o + ().

Proposition 17 The linearization of € at (1,0, ...,0) in the C™ direction agrees with H, to
the order of |[t||2,. In particular, these two symmetric bilinear forms on ‘HLO »(Yo; C) have
2 1

the same spectral flow and the transversalily requirement on the eigenvalues of Hy implies
the same for the Hessian of (cs + h) o ¢.

Proof: Yor any a € HYy ; (Yo; 5u(2)), £(@) = Orp®P(a). Recall that

1
&(a) = Meras (+daondh(a) +x5la+ Pla) A+ P(a)]).
The linearization of ® at o = (¢,0) is

¢, (t,0)(a) = errd:\o (xd ag P (t, 0) () + #[(£,0) + ¥ (1, 0) A o + (¢, 0) ()]),
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and &.(a + ¥.(t,0)(e)) = MrarP.(t, 0) (). Thus we can compute

(€alor+ (8, 0) (@), B+ ¥u(t,0)(8)) = (+[(t,0)+ (2,0} A a}, B) +
(+[(t,0) + (1, 0) A (2, 0) ()], B)

+{x[(t, 0) + $(t, 0) A o], (¢, 0)(8))

+(x[(¢,0) + (2, 0) A (2, 0) ()], a2, 0)(B)).

The first term is exactly H.(«, 8).

Since 9 is a real analytic map and %(0,0) = 0 and ,(0,0) = 0, there is a constant C
such that whenever |j¢[|;2 <1,

19, 0llzz < ClielE

and
9. (¢, 0} (@)l 22 < Cllellzzllevll 2

In the following we will use the same letter C to denote any constant which only depends
on Ap. By the Multiplication Theorem for Sobolev spaces,

[+ [t 4+ 92, 0) Acdlzs < Clllellzz + 192, 0)lIa)llell 2 < CllellZallenll -

Similarly,
[ [t + 9(t, 0) A (2, 0) (@)]llz2 < ClielZzllexl] za-

Arguing in this manner gives the necessary bounds on the remaining terms. O
Proposition 18 Under assumptions (1) and (2), there are no irreducibles on Yy near [Ap].

Proof: Let X;(t), 1 = 1,...,n, be the eigenvalues of H,(Yp). In terms of the coordinates
above
Let (z1(), 11 (1), . - ., a(t), ya(t)) be 1-parameter family of real coordinates on H}_, (Yo; C)
corresponding to a basis of eigenvectors (depending on ¢, but we suppress this from the no-
tation) {1, #1, ..., Tn, ¥} such that JZ; = i and Z; and F; are A;(t) eigenvectors of H(Yp).
This gives a set of coordinates (£, z1,¥1,...,2Zn, ¥n) ON 'HLD‘,‘(YO; su(2)). Let

1
r(tiwlaylaﬂ-axmyn)=($%+y3+"’+$121+y721)2'

Then
)\,(t
2

n
CSOQS(LaIl’yl!"'aznaJH Z I +y1 +O( )

t=1

Thus the ¢ component of the gradient £ is y_" (t)(:!‘ + y2) + O(r®), which has no zeros
for r > 0 very small. a
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Corollary 19 Under the assumption (1), [Ag] (on Y ) has a neighborhood U in M, (Y)
such that r(U N Mg(l)(}’)) and r(U N M3) are disjoint in Mra.

Remark: The assumption of transverse spectral flow is necessary. In fact, if ¥ is the com-
plement of the connect sum of a right handed trefoil and a left handed trefoil, for example,
then there are components of M*(Y) which limit to orbits in MY((Y) and whose image
in M2 coincides with that of (part of) MUYU(Y). In this example, the total spectral flow
of H; through these abelian limit points is zero. By taking a sum of two right handed and
one left handed trefoils, however, we get an example of this behavior where the spectral
flow is algebraically nonzero.

We now make our final assumption to prove Theorem 11.

Assumption 8: Suppose now, in addition, 7{.140,11(},' dY; su(2)) has complex dimension 1.
By Theorem 5 this is the case at each abelian orbit where this cohomology is nonempty for
generic h.

Proof of Theorem 5: When the extra cohomology at Ag is only of complex dimension 1,
the U(1) invariance of the functions becomes a much stronger condition on the function

(cs+h)og, namely that it depends only on ¢ and r. Specifically, (cs+h)od(t, rcos8, rsin ) =

(cs+h) o p(t,r,0) % f(t,r).

To complete the proof, we perturb slightly once again, so that the abelian parts of
Mp(Y) and Mg« p2 no longer match up. For simplicity, we leave the existing perturbation
on Y alone and add a new function of trace of holonomy around the Dehn filling core to
cs+ h. Basically, we want to gradually perturb M(S' x D?) across the pillowcase to detect
what irreducibles there are in My (Y) whose images lie on either side of r(Mg(l)(Y)).

Choose an admissible function £’ : A(Yy) — R defined using the core of the Dehn filling,
in such a way that (V(h'o¢)(t,0),#) = 1 and h'0¢(0,0) = 0. The crucial observation is that
any connection on Yy which is A + A’ perturbed flat restricts to Y to give an & perturbed
flat connection.

We will abuse the notation and let k' also denote the corresponding function of ¢ and
r. Consider the function f(t,r) = (f + ¢h')(t,r). Then f(¢,0) = et + f(0,0) and

Je(t,r) = £(0,0) + fo(t, 0) + A(O)r? + O(t*r?) + O ().

The lower order terms depend not only on ¢ and r but on ¢.
A local model for the flat moduli space of ¥ near [Ag] is the quotient under the Z,
symmetry (r — —r) of the set

() ) _ 24

= 0 for some €}.

12



This set is the union of {(¢,0)} and the image under projection onto the (¢,7) coordinate

plane of
N ={(t,r,e)| r#0, afﬁ(,g’;’ ") - %afféf_’ ") = 0}u {(0,0)}.

Let P = (P, P,) : R® — R? where Py(t,r,¢) = 8LLr) and

at
0 r=
})z(t) r, E) - { lafc tr r :’é 0
The linearization of P at (0,0,0) is
10 0
DP(0,0,0) = [ 0 . X(0) ] .

The implicit function theorem now implies that there are smooth functions €(r) and t(r)
such that for r small, (t(r),r, €(r)) parameterizes N near (0,0,0). This shows that up to
gauge equivalence there is a smooth 1-dimensional family of irreducible connections on ¥
limiting to [Ag). O

Corollary 20 Given assumptions (1)-(8), if hol,Ap = exp(if) for 0 < § < m, then the
nearby irreducibles have hol\A = exp(io) where ¢ # 0 is small and either positive or
negative, according to whether A'(0) > 0 or N'(0) < 0.

Remark: The sign of X'(0) also determines the orientation of the irreducible arc emanating
from [Ag] in M. Therefore this orientation depends on whether the arc leaves the irrc-
ducibles pointing up the front or back of the pillowcase. Corollary 4 follows from this fact
and Proposition 17 of [H2], which relate the Casson invariant to the oriented intersection
number of M* with a circle in M.

4 General Existence Theorem

In this section we use Theorem 11 to prove the main theorem of this paper, which we restate
below.

Theorem 21 LetY be the complement of a tubular neighborhood of a knot k in a homology
3-sphere. If the function SignBy(t) : U(1) — Z does not vanish on the complement of the set
of unit roots of A(t), then there are irreducible representations p : 7 (V) = SU(2). Further-
more, for any unit root €2% of A(t) where the right and left hand limits limg_, % SignB (e'?)
do not agree, there is a continuous family of irreducible representations limiting to the
abelian one which takes p to exp(ic).

13



e

Proof: Find a collection of curves in Y which meets the criterion described in Proposition
7, and let U and U; be as in Theorem 8. Choose a path h, : [—¢,¢] = U with hg = 0
which is transverse to U;. We can take e small enough that My, is nondegenerate when
0<s<e.

There is a 2-parameter family of abelian connections A, near the one Agg which has
holonomy g+ exp(iar), A+ 1 such that [4,] € .Mf‘(l). Let

Hy (e, B) = (xda, , n,, B)

be the corresponding 2-parameter family of bilinear forms on #} (Y;C).
Let B be an arbitrarily small ball in M2, By shrinking B and € if necessary, we can
assume there is a § > 0 such that

1. det H,, = 0 implies r{A, ] € B if (s,t) € [0,¢] x [-4, §].
2. r[A,15] ¢ Bif s €[0,s].
3. Each curve {r[A, ]| t € [<6, 48]} for s € [0, €] intersects B.

Let M, denote the closure of the irreducible stratum of My,, i.e. the irreducible
stratum compactified by adding the abelian limit points. For all 0 < s < ¢, r(M},) consists
of an immersed compact 1 manifold with an odd number of endpoints in the interior of B.
Therefore r(Mj,,) NGB £ forall 0 < s < e

By Proposition 9, r(mh'}) N dB (where s ranges over [0,€]) is compact, and hence
r(Mp,) N OB = r(M )N 9B # 0. Since the same is true for arbitrarily small B, [Ao]
is in M. If there were no continuous path in r(A1") connecting [Aq] to dB, then we
could separate [Ao] and r(AT )ﬂ OB by a continuous loop v : §' = (B\ r(M"). The
above argument showing that r(A") NGB # @ may be applied to r(A) N7(S!) to give a
contradiction. O

Corollary 22 Let & be a knot in a homology sphere X. If for some t # %1 in U(1) the
matriz B.(t) s degenerate and all eigenvalues due so transversely and in the same direction,
for |n| large enough the homology sphere obtained by 1 surgery on x has irreducible SU(2)
representations.

Proof: Suppose such a t = ¢'? exists. Then, since B.(f) = B.(t)T, the cigenvalues of
B(t) are invariant under ¢ — t~', and so there is a corresponding point t’ = —e—i26 €
U(1) where there are the same number of eigenvalues crossing zero but in the opposite
direction (as ¢’ moves in the positive direction around U(1)). Theorem 21 then says that
there are continuous families of irreducibles near the corresponding abelian representations
p — exp(if) and g — exp(i(r — #)). By Corollary 19 these do not lie along the arc
holy = id in the pillowcase. By the observation in the proof of Theorem 11 that there
are no solutions when the sign of the spectral flow and the sign of € agree, we see that

14



the image of the irreducible families near the abelian points corresponding to exp(if) and
exp(i(x — 8)) are on opposite sides of the abelian arc. This may also be seen by noting
that »(M(Y")) is symmetric under the involution (holy, hol,} — (holy, —hol,,). Thus for |n|
large enough, this family of irreducibles of 1Y will intersect the curve of slope :l:% in the
pillowcase, which corresponds to the set of representations of m;7% which extend over the
corresponding Dehn surgeries. O
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