
Existence of Irreducible
Representations for Homology Knot

Complements with Nonconstant
Equivariant Signature

Christopher M. Herald

Department oi Mathematics and Statistics Max-Planck-Institut für Mathematik

McMaster University Gottfried-Claren-Str. 26

Hamilton, Ontario L8S 4Kl 53225 Bonn

Canada Germany

MPI/95-24



1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1



Existence of Irreducible Representations for Homology l(not
COlnplenlents with Nonconstant Equivariant Signature

Christopher M. Herald*

March 15, 1995

1 Introduction

The purpose of this paper is to show the existence of irreducible SU(2) representations
of homology knot complcment fundamental groups near abelian representations where the
equivariant knot signature changes. In [FK], Charles Frohman and Eric Klassen showed the
existence of irreducible representations near abelian corresponding to square roots of simple
roots of the Alexander polynomial, and they raised the question whether an analogous
result holds for multiple roots. Our result shows existence of irreducibles for any knot
whose equivariant signature is nonzero off of the square roots of roots of the Alexander
polynomial.

The equivariant signature or a knot complement is defined as folIows. Let Y bc a ho­
mology knot complement, that is, a compact 3-manifold with torus boundary with the
property that H*(Y; Z) = H*(Sl; Z). We choose a simple closed curve in 8Y which repre­
sents a primi tive element of H 1(8Y; Z) in the kernel of the map i* : Ii1 (DY; Z) ---+ H I (Y; Z).
We will call this curve the longitude for Y and denote it by "\. We also choose a meridian
J-L, a simple closed curve in 8Y which generates HdY; Z).

Let F be a Seifert surface, i.e., a surface in Y whose boundary is,,\. Choose an orientation
of the normal bundle of F in Y. If {Xdl~i~g is a basis for HI(F; Z), let xt denote thc
pushoff of Xi in the positive direction. FinallYl let \I be the linking matrix whose entries
are Vij = fk(Xi, xj).

1 1 T
The symmetrized Alexander matrix for Y is the matrix A(t) = t2'V - t-2'lf . Vve define

T 1 1
B(t) = (1 - t)lf + (1 - t-I)lf . Note that B(t) = (t-2' - t2")A(t), so the complex values
of t f;. ±1 for which B(t) is singular are exactly the roots of the Alexander polynomial
ß(t) = detA (t).

Ir t is a unit complex number , then B(t) is a skew hermitian matrix, and hence has only
real eigenvallles. The eqllivariant knot signature of Y is the number of positive eigenvalues

·The authür was partly suppürted by NSERC Grants and the Max Planck Institute für Mathematics
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minus the number of negative eigenvalues for B(t2 ), counted with multiplicity. (See [KKR]
or [H2] for details.) By the above comment , this signature is a map [rom U(l) to Z which is
continuous in t E U(l) except possibly at square roots of roots of the Alexander polynomial.

Furthermorc, SiguB(l) = O.

Let i, j, k denote the standard orthonormal basis for su(2) corresponding to the identi­

fication of 5U(2) with the space of unit quaternions. We will consider U(l) = {exp(iB)} C

5U(2), and we mako the identifications span(i) = Rand span(j, k) = C.
We now state the main result in this paper.

Theorem 1 lf the function SignB(t) : U(l) -+ Z does not vanish on the complement
of the set of unit roots of 6(t), then there are irreducible representations p : 7rdY) -+
5U(2). Furthermore, for any unit root ei2Q of ..6.(t) where the right and left hand limits
limß-+a± SignB(eiß) do not agree, there is a continuous family of irreducible representations
limiting to the abelian one which takes J1, to exp(ia).

ln the course of proving this we will also prove the following facts.

Corollary 2 5uppose for some 0 < B < 7r the matrix B(ei20 ) has nontrivial kernel, and
suppose that as t E U(l) moves through the value to = eiD, all eigenvalues of B(t2 ) crossing
zero do so transversely, and all do so in the same direction. Then all the irreducible repre­

sentations near the abelian one taking Jt to exp(iB) send.-\ to exp(ia) for some small a "# 0,
where the 8ign 01 a corresponds to the direction the eigenvalues go through O.

Corollary 3 1f K, is a knot and there exists any value 0 < B < 7r satisfying the above
hypotheses, then for n sufficiently large, the homology spheres obtained by ~ and - ~ surgery
on t\. have non trivial S U (2) represen tations.

Corollary 4 Suppose K, is a knot in 53 with only simple roots of the Alexander polynomial
and suppose that the irreducible part of the character variety consists only of ares (non­
closed components) wh08e images in the chamcter variety of the boundary torus all wmp

monotonically around it. All torus knots, for example, satisfy this hypothesis. 1f jY is the
homology 3-sphere obtained by ~-surgery on 1'\., then the absolute value 01 Casson's invariant
for X is equal to twice the number of irreducible points in the character variety for j"(. That
is to say, all these points count with the same sign when added to give the Casson invariant

The proof of thc main theorem has the following outline. We begin by identifying the
set of representations of /Tl (Y) into SU(2) modulo conjugation with the moduli space of
flat SU(2) connections on Y X SU(2) modulo gauge equivalence by taking a representation

p to the flat orbit which has p as its holonomy representation. We next show that therc
are arbitrarily smaJI perturbations of the flatness equation for which thera are irreduciblc
orbits in the perturbed fiat moduli space. Finally we make a limiting argument to show
this property holds for the unperturbed fiat moduli space.
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The paper is organized as follows. Section 2 contains basic results about perturbing the
f1atness equation and the perturbed ftat moduli space for 3-manifolds with torus boundary.
Subsection 3.1 contains a statement of the basic existence theorem for irreducibles under
certain assumptions of nondegeneracy. Subsection 3.2 provides a proof of this result. A
proof of Corollary ?? is also given in this subsection. Section 4 then gives proofs of our
main result along with Corollaries 3 and 4.

Aknowledgements: The author wishes to express his gratitude to Michael Heusener, Paul
Kirk, Eric Klassen, Tomils Mrowkal and Andrew Nicas for helpful discussions on subjects
related to this paper.

2 The Structure of the Flat Moduli Space

We begin by describing SU(2) gauge theory on 3-manifolds with torus boundarYl recalling
results from [ll1].

Let Adenote the space of connections on Y X SU(2). Given a fixed trivialization of
this principle bundle, we may identify A with the space of su(2) valued 1-forms on Y,
n1(Yj su(2)). We complete this space using the L~ Sobolev norm. Let 9 = Aut(Y X

SU(2)) be the gauge group, with the L5 completion. To each eonnection A is associated
its curvature 2-forml F(A) = dA + A /\ Al and A is said to be flat if F(A) = Q.

The flat moduli space is the quotient M = p-l (0)/9. There is a standard method of
perturbing the flatness equation in order to obtain a moduli space which is nondegenerate
(nondegenerate will be given a precise definition below)l given by Taubes [T] and Floer [F].
We sketch it below; see [H1] for more details.

Let {-Yi : 51 x D 2 --+ Yh<i<n be a colleetion of embeddings of the solid torus into Y
whose images are disjoint. Let-.,.,-be a radially symmetrie bump function on D2 with support
in the interior of D 2 l multiplicd by the standard volume form. Let {hi : R --+ R h~i~n

be a collection of smooth functions. Let tr hoL)Jx, A) be the trace of the holonomy of the
connection A around the eurve ii (SI X {x}). We dcfine a function h : A --+ R by the
formula

h(A) = tk. h;(tr hol'l'i(X, A))7J(x).

We call fllnctions h constructed in this way admissible pertu rbation fllnctions.
Now fix a Riemannian metric on Y land let * denote the Hodge star operator on su(2)

valued forms. Given an admissible perturbation function h, we call a connection perturbed
f1at if it satisfies the equation

(h(A) d~ *~F(A) + \7h(A) = 0,
21T

where \7 denotes the L 2 gradient of h. We can now define the perturbed ftat moduli space
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by

Mh = (h 1(0)/9.

The structure of the perturbed flat moduli space for a 3-manifold with boundary was

described in (Hl]. Wc summarize the results below. Let *dA,h d;j *2~dA + Hessh(A). Let
1l~ h(Y; su(2)) and 1l~ h(Y' aYj su(2)) be (the harmonie spaces representing) the first and
sec~nd cohomology gro~ps ofthc following elliptic complcx (where the grading goes 0,1,2,3):

o --7 nO(y; su(2)) 4 n t (Y j su(2)) *~,h n 1(Y; S1t(2)) ~ nO(y; su(2)) --7 O.

Let M h,M~(1), and M~U(2) denote the portions of Mh consisting ofirrcducible, abelian
(noncentral), and central orbits, respectively. We will say that Mh is nondegenerate if it
satisfies the following 5 properties (and otherwise degenerate):

(a) The only orbits in A1h which are central when restricted to 8Y are central on Y.

(b) At every (A] E M~U(2), 1l~,h (Y, 8Y j su(2)) = O.

(c) At aB but finitely many orbits (A] E M~(1), dim1l~,h(Y,8Y;su(2))
remaining abelian orbits dim1l~ h(V, ay; su(2)) = 2.,

0, and the

(cl) At each abelian orbit where there is nontrivial relative first cohomology thc family of
symmetrie matrices 1It (dcllned below) has transverse spectral flow.

(e) For each [A] E M hl dim 1l~,h(V,aYj su(2)) = 1.

To define the matrix 1ft in condition (d) we first choose a family of connections [At] E

M~(I) with 1l~o,h(Y, aYj su(2)) nonzero. For the moment let V denote the orthogonal

com piement of T[AolM~(l} in 1l~o ,h (Yi su(2)). Then we define aI-parameter family of
bilinear forms on V by thc formula

Ht is symmetrie and U(I) invariant.
When h = 0, a jump in 1i~ (Y; su(2)) occurs (for abelian connections) exactly at con­

nections where, up to gauge, holiLA =exp(iB) and hol'\A =1 where B,..(ei 2B) is degenerate,
and Propositions 9 and 11 of [H2] imply that the spectral flows of Ht and B,..(e i 2B) through
such points are equaL

Theorem 5 (Theorem 15, (Hl})

11 Mh is nondegenerate, then Mh is compact. M~U(2) consists 0/ 2 points. M~(I) is a
smooth i-dimensional manifoldJ compact except for one open end limiting to each cenirnl
orbit. Mi: is al-dimensional manifold, compact except for open ends which limit to distinct

points on M ~ (I), i. e. poin ts where dim 1l~ ,h (V, 8Y; su (2)) = 2. Each such abelian orbit
where the relative cohomology jumps is the limit of exactly one such irreducible end.
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Remark: The last claim is the foundation of our existence result. There is a gap in the proof
of this in [Hl), so after describing some more background, we state this claim as Theorem
11 and provide a complete proof of this in Section 3.

The flat moduli space for the torus is equal to M T 2 = TZ /Zz, known as the pillowcase.
It is topologically a 2-spherc, but has 4 "corners" eorresponding to the eentral orbits, i.e.,
the fixed points under the involution. There is a restrietion map l' : Mh ---7 M T 2.

Theorem 6 (Theorem 15, [Ili}) Suppose Mh is nondegenerate. Then r is an immersion
on each stratum. Then there is a double cover Nh 0/ M hand a map to the double cover
M T 2 = 'Tz 0/ Mp, where both are b1Yznched over the centrni orbits. Furthermore, given
an orientation on H 1(Y; R) there is a canonical orientation on the i-dimensional strata 0/
Mh. The Zz action is onentation reversing on Mh (but onentation preserving on M T 2).

Remark: By Proposition 17 of [H2), the absolute value of the Casson invariant of the ~­

surgery on K, may be eomputed in terms of an oriented intersection number of Mh with a
particular oriented eurve in MT2. This fact is used in the proof of Corollary 4.

Given a flat abelian conncction Al let SymA denote the set of symmetrie bilinear forms
on 1l~ (Yl ßY; su(2)) whieh are StabA invariant. For any loop e in Y, let HessA tr holt be
thc element of SymA given by thc Hessian of tr holt{A) restrieted to V.

Proposition 7 (Lemma 38, Lemma 60, and Theorem 15, [/l1}) There is a finite collection
0/ embedded loops {ed l$i$n with the /ollowing properties:

1. For all flat connections A the map D tr holll : Rn ---7 Hom(1l~ (Y; su(2)LR) gzven
by

n

D tr holll (A )(b1l ... , bn)(a) = L bi D( tr haiti (A)) (a)
i=1

is surjective.

2. For all abelian flat connections A the map D tr holll EB HessA tr hollI : Rn ---7

Hom(1l~ (Y; 8u(2)), R)EBSymA is surjective, whe1'€ the second component takes (bI, ... , bn)

to L:i=1 biHessAlr holtJA).

Choose a collectian of laaps {ed aB in the previous proposition l and let {/d be a
eorresponding eolleetion of maps of solid tori onto disjoint tubular neighborhoods of the
loops. Let "[ = CZ(R, R). Let [ = r, and let [1 C [ be thc su bset consisting of n-tuples
ChI, ... ,hn ) whieh give rise admissible perturbations h for whieh the perturbed flat moduli
space is degenerate.

Theorem 8 (Theorem 15, [B1}) There is a neighborhood U 0/ (0, ... ,0) E WO such that
U1 = [1 n U has codimension i.

For any path h t : [0, €] ---7 U, define

M{h t } = {([ALt) E A/9 X [O,€]I (ht(A) = O}.

Proposition 9 (Proposition 49, [1l1}) M{ht } is compact.
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3 Existence ofIrreducible Orbits in the Nondegenerate Case

3.1 Statement of the theorem and some comments

Let h be aperturbation with Mh nondegeneratc. Assurne that the abelian stratum of Mh
is as in Theorem 5. Let [At] E M~(l) be a path with [Ao] a point with 1l~ h(Y,8Y; su(2))

0,

nonzero. We define a path llt in SymAo as folIows.

Proposition 10 (Proposition 6 of [H2}) For each t the matrix 1It is equal to areal valued
function .-\(t) multiplied by the identity matrix.

Our nondegeneracy requirement (d) insures that the .-\(t) has a transverse zero at t = O.
The existence theorem for irreducibles in the nondegenerate situation is the following.

Theorem 11 Suppose that Mh satisfies nondegeneracy conditions (c) and (d). Then there
is a neighborhood U C B (Y) 0f [Ao] such thatUn M h(Y) is a smooth a rc with one open
end limiting to [Ao].

A proof of this theorem by a somewhat indirect route is the content of the next sub­
section. We conclude this subsection by mentioning the subtlety standing in the way of a
more direct proof.

The perturbed flat moduli space near [Ao] is homeomorphic to the zero set of the
Kuranishi map <P: 1l~ h(Y;su(2)) ~ RE&C ~ 1l~ h(Y,8Y;su(2)) ~ C. <P is defined as0, 0,

follows (see [H1], Section 6.4, for details). The implicit function theorem gives a map 7f; :
1l~o,h (Y; su(2)) ~ *dAo,hn~ (Y; su(2)) (here v denotes the Neumann boundary eonditions)

with the property that TIkerd· (h(A + a +7f;(a)) E 1l~ h (Y, 8Yj su(2)). The map <P is
AO 0,

defined by <p(a) = nkerd· o(h(A+a+1f'(a)). These maps are StabAo ~ U(1) cquivariant.
Ao

The linearization of <t> at (t,O) in the C direction , composed with inclusion of relative
cohomology into absolute, is equal to Hf. One would like to argue that <I> is al-parameter
family of gradient vector fields on C (here we identify the relative and absolute C valued
cohomology through the inclusion of relative iuto absolute) and hence must look, up to
change of coordinates, like the family of gradient vector fjelds coming from the function

f(t, z) = tlzl 2
•

The situation is complicated by the fact that we don 't know that cI>(t, z) is really be a
gradient vector field on C. Recall from [Hl] that 2

1
1( *F(A)+\7h(A) is not the L2 gradient of

a funetion on A, but rather the gradient of a section of a U(I) bundle defined with respect
to a connection on that bundle. This connection (restricted to the graph of the funetion

7f; : H1
0
,h(Yj s'lt(2)) -7 *dAo,h~l;(Yjs'lt(2))) may not be flat, and henee the gradient with

respect to this connection may not in fact be a conservativc vector field.
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The problem is to rule out a family of vector fields on C Iike

which has the same linearization along R EB {O}, and is U(l) equivariant, but has no zeros
off of R EB {O}. The existence of such functions was pointed out to me by Eric Klassen.

Although we certainly expect there to be a direct proof, we avoid this difficulty by
using a somewhat different argument. We consider the c10sed manifold obtained by 0­
surgery on the knot whose complement is Y. We then demonstrate in this setting, where
2~ *F(A) +\7h(A) is truly the L2 gradient of cs(A) +h(A) : A -t R, a family of irrooucible
connections whose restrictions to the knot complement Y are flat and limit to the orbit
[Ao] as required. This approach has the added benefit that wo learn something about the
image of the nearby irreducibles in the pillowcase.

3.2 The picture on Yo

In this subsection we consider connections on a c10sed manifold Yo. We will begin with
a completely general description of the perturbed flat moduli space near a flat connection
(with no assumptions of nondegenenicy), and then add three assumptions, one at a time,
in the course of the subsection. ln particular, we wait as long as possible to imposc thc
assumption that the second part of nondegeneracy condition (c) is satisfied, in order to
prove Corollary 19. This corollary is an ingredient in the proofs of Corollaries 3 and 4.

As before when we considered manifolds with boundary, let eh (A) denote 211l"F(A) +
\7h(A), and let ---\'"A = {Ao +al d:4oa = O}. For any closed subspace ~1' C n1 (Y; su(2)) wo
let TIw denote the orthogonal projection onto W. The next lemma describes the Kuranishi
picture for the perturbed flat moduli space near (Ao]. For a proof see (Hl], Section 6.4, or
(MMR], Section 12.1.

Lemma 12 Let Ao be a smooth perturbed ftat connection. There exist:

a Stab(Ao) equivariant neighborhood VAo 0/0 in 1l~ h (Yo; su(2)),
0,

a 9 equivariant neighborhood UAo 0/ Ao in A,

a Stab(Ao) equivariant real analytic embedding

<P : VAo --+ XA

whose differential at 0 JS just the inclusion oJ 1l~o ,h (Yo; su(2)) into
kerd:4o nf21 (Yo;su(2)),

(cl) and a Stab(Ao) equivariant map

(a)

(b)

(c)

<I> : \fAo --+ 1l~o,h(YO; su(2))

such that <p maps cI>-1 (0) homeomorphically onto the zero set 01 (hlxAnuA.

7



An important point for us will bc that the map cP is dcfined by cP(o:) = Ao+ 0' + 'IjJ(o:)
where 1/;(0') E *dAorl l (Ya; su(2)) solves

1
n.dAonl(Yo;.!U(2))(*dAo~(a) +*2[0' + ~(a) /\ a +1/;(a)]) = O.

In other words, the graph of 1jJ has the propcrty that for any a E VAo'

(h(Ao+ Q +1/;(0')) 1.. *dAo,hnl(yo; su(2)).

Proposition 13 For any a E VAo J (h (Ao+o:+1/; (a)) = 0 i/ and only iff \7 (cs+h) 14J(vAo )(Ao+
0' +1/;(0')) = O. Here \7 denotes the L2 gradient, 0/ course.

Proo/: By a standard argument, the first eondition is equivalent to TI1l1 (l'" '"u(2)) (\7 (es +
Ao,h 0,

h)(Aa + 0' + 1/;(a))) = o. The lemma now follows from the faet that the tangent spaee to
the graph of 1jJ projects onto the tangent space of its domain. 0

Assumption 1: Assume that Ya is the zero framed surgery on the knot complement Y. Let

[Aal E M~(l) and assurne that 1l~0,h(YjR) ~ R, which guarantees that M~(l)(y) mcets

nondegeneracy eondition (c) near [Aa]. Finally, asslllTIe that 1l~ h(Yj C) is nonempty, and
0,

the graphs of the eigenvalues of the family of bilinear forms Ht defined carlier are transverse
to zero at t = 0 and all cross it in the same direetion.

Proposition 14 There is an additional perturbation which does not change the topological
structure 0/ Mh(Y) near [Aa], but changes its image in the pillowcase by a diffeomorphism
0/ the pillowcase (minus the corners) in such a way that the new abelian are lines up
with the flat connections on the Dehn jilling in Yo. That is to say, we may ussume after
this perturbation that all the perturbed flat abelian connections on Y near [A a] extend as
perturbed flat connections over Ya.

Proo/: The proof is not hard using thc description of perturbed ftat connections in Lemma
61, [BI]. We outIine it below. Ir the abelian stratum around [Aa] maps illto thc pillowcase
to a curve which is transverse to the circles {holti = eonstant}, then by doing an additional
perturbation using aperturbation eurve in a tubular neighborhood of the boundary torus
8Y with trivial framing we can make this piece of the abelian stratum lie on the {hob = id}
are in the pillow case. Specifically, let the core of the perturbation curve be a meridian and
a framing curve is a parallel meridian in thc same T 2 C T 2 X [0,1], alld choose the function
of trace appropriately.

If the tangent direction to the abelian stratum at [Aa] is vertical, then first do a per­
turbation using a trivially framed longitude to tip it slightly so that it satisfies the former
hypothesis. Then perturb as above. The crucial fact is that perturbations using trivially
framed longitudes anel meridians change the picture of r : Mh --+ MT:! by diffeomorphisms
of M T2 \ {centrals}, so this doesn 't affect the existence or nonexistenec of an arc of irre­
ducibles limiting to [Aa], nor does it affect whether the image of these irreducibles coincides
with the image of the abelians. D
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Proposition 15 The additional perturbation in the Proposition 14 does not alter the co­
homology at Aa n01' does it affect the transversality condition 011 the eigenvalues of 1ft •

Proof: We may identify Y with the additional perturbation, (Y, h + h'), with the union
(Y, h) U~ x {o} (T2

X [0, 1], h') .
We sketch the proof, leaving the details as an exercise for the reader. Ao extends

uniquely (up to gauge) over Y U (T 2 X [0,1]) to a perturbed flat connection. We will use
the same notation for this extension.

1l~o,h,(y2 X [0,1]; su(2)) is two dimensional, and the restriction map to the cohomol­
ogy of either boundary component is a surjection, The way to see this (in the harder
case, when h' consists of two pertu rbation curves) is to consider first 1l~o ,h' (T2 X [0, 1] \
{the two perturbation curvcs}; su(2)), which equals thc ordinary real cohomology of this
space with R coeffients (4-dimensional). Then use the Mayer Vietoris argument to check
that the subspace consisting of cohomology classes whose restrictions to the boundaries of
the perturbation curves He in the image of the (perturbcd) cohomology on the solid tori
has the required properties. (Note that the second claim does not contradict the fact that
the image of 1l~o,h,(T2X [0,1]; su(2)) must map to a Lagrangian subspace of thc direct sum

1l~O,hf(T2 X {O} U T2 X {I}; su(2)) with its symplectic structure. Recall that this symplcctic
structure will be the difference of the puB backs of the two pillowcase symplectic structures
becausc the orientations on the tori differ, and then this Lagrangian property is also easily
verified .)

Thc Mayer Vietoris sequcnce applied to Y U T 2 X [0,1] now implies that 1l~o,h+hl(YU

T 2 X [0, 1]; su(2)) ~ 1l~o ,h (Y j su(2)), and similarly for relative first cohomology. In add ition,
it implies that relative I-dimensional classes on the union are represented by forms which
are exact on T 2 X [0,1]. The signs of the derivatives of the eigenvalues of H t as they pass
through 0 is detected by a cohomology pairing on 1l~o,h+h'(YUT2

X [0,1]) (see [1-12], Section

5, for a similar argument), which then must agree for Y and Y U T 2 X [0,1]. 0
By Propositions 14 and 15, from the point of view of studying irreducibles near [Aa],

we can without any loss add the foBowing condition to our first assumption.
Assumptioll 2: The abelian perturbed flat connections on Y in the arc through [Ao] extend
over the O-surgery Ya. Furthermore, H t (Yo) has transverse spectral flow at t = 0, aB in the
same direction.
Remark: This is not a generic situation; reducible and irreducible orbits on Ya are isolated
for generic perturbations. \Ve are deliberately 'putting ourselves in this degenerate situa­
tion. Also, there is nothing special about the O-surgery. We choose this particular Dehn
filling simply because in the unperturbed case, there is no perturbation required for the
abelians on Y to extend over this closed 3-manifold.

For the remainder of this su bsection we will work on Yo, and the connections, Chern­
Simons function, etc., are on this closed 3-manifold unless othcrwise specified. For per­
turbed abelian flat connections, for example Ao, we will use thc same notation to denote

9



the connection on Yo and its restriction to Y.
We can assume after gauge transformation that Ao takes values in the a fixed 1­

dimensional subspace R C su(2), and then the stabilizer U(1) action on su(2) is eompatible
with our deeomposition su(2) = REB C. The space of su(2) valued forms, and in partieular
the perturbed ftat de Rham eohomology, deeompose aeeordingly. That is, 1lA

I h (Yo; su(2))
0,

reduees under the action of Stab(Ao) ~ U(1) to 1lA
l h(YO; R) EB 1l~ h(YO; C).

0, 0,

Proposition 16 A ny perturbed flat abelian eonnection on any 3-manifold is gewge equiva­

lent to a smooth eonneetion.

Proof: First assume that h = 0. Then we can assume, after gauge transformation that
A E 0 1(Y j R). Sinee dA = 0, A = Q + da for some harmonie form Q (smooth by elliptie
regularity) and a O-form a. Let 9 be the gauge transformation 9 = exp( -a). Then gA =
9- 1 Ag + g-ldg = A - da = Q ..

If h =j:. O} then A is still gauge equivalent to a smooth connection off the perturbation
solid tori. On the solid tori} A ean be put into the canonieal form deseribed in Corollary
62, [H1], which is smooth. 0

Assurne Ao is smooth anel consider thc Kuranishi picture near Ao. Let t be areal
eoordinate on 1l~ h(YO; R). Then the abelian stratum near [Ao] is parameterized by At =

0,

Ao+ t + 1fJ(t} 0).
Let IIt(Yo) denote the symmetrie bilinear form on 1l~o,h(YO;C) given by

By a similar argument to the proof of Proposition same hess after realign} the speetral ftow
of this bilinear form eoncides with the one on Y.

Let M ~ 4>(VAo )' Rather than work with (hiM directly, we eonsider the gradient vector
field € : 1l~o ,h (Yoj su (2)) -+ 1l~o ,h (Yoj su (2)) of the function (cs+ h) 04> : 1l~o ,h (Yoj su (2)) -+
R given by a f-t (es + h)(Ao+ 0' + 1fJ(a)).

Proposition 17 The linearization of € at (t) 0, ... ,0) in the C n direction agrees with 1It to

the order of Ilt112L2. In partieular', these two symmetrie bilinear forms on 1l~ h (Yo; C) haue
2 0,

the same spectral flow and the tmnsversality requirement on the eigenvalues of IIt implies
the same for the Hessian 0 f (es +h) 0 </>.

Proof: For any 0' E 1l~o,h (Yo;su(2)), ~(O') = IITM <I> (0'). Recall that

1
~(Q') = nkerdÄ

o
(*dAo ,h1/J(O') + *2"[0' +1fJ(a) 1\ a +1fJ(0')]).

The linearization of <I> at 0' = (t,O) is

<I>.(t} 0) (0') = flkerdÄ
o
(*dAo ,h1fJ.(t) 0) (0') +*[(t, 0) + 1/J(t, 0) 1\ Q' +1fJ.(t, 0)(0')]),

10



and €.(O' + 'l/J.(t, 0)(0')) = flTM<P.(t, 0)(0'). Thus we can compute

(~.(O'+ 'l/J. (t, 0) (0')), ß +7/1. (t, O)(ß)) = (*[(t, 0) +7/1(t, 0) 1\ 0'], ß) +

(*[(l, 0) +7/;(t, 0) 1\ 'l/J.(t, 0) (0')], ß)
+(*[(t, 0) + 7/;(t, O)!\ 0'], 7/1.(t, O)(ß))

+(*[(t, 0) + 7/1(t, 0) 1\ 7/;.(t, 0)(0')], 1/J.(t, O)(ß)).

The first term is exactly Ht(O', ß).
Since 7/1 is areal analytic map and 7/;(0,0) = 0 and 7/1.(0,0) = 0, thcre is a constant C

slIch that whenever I!tllq ::; 1,

117/; (t, 0) 11 L~ ::; eil t 11 i~

and

In the following we will use the same letter C to denote any constant which only depends
on Aa. By the Multiplication Theorem for Sobolev spaces,

11 * [t + 7/1(t, 0) 1\ a]IIL2 ::; CUltllq + lI1/J(t, O)llq)llallq ::; Clltlli~ Ilallq·

Similarly,

11 * [t +1/J(t, 0) 1\ 'l/J.(t, 0)(a)]IlL2 ::; Clltlli~llaIIL~'

Arguing in this manner gives the necessary bounds on the remaining terms. D

Proposition 18 Under assumptions (1) and (2), there are no irreducibles on Ya near [Aa].

Proof: Let Ai (t), i = 1, ... , n, be the eigenvalues of fIt (Ya). In terms of the coordinates
above

Let (Xl(t),YI(t), ... ,xn(t),Yn(t)) be I-paramcterfamily ofreal coordinates on 1l~ h(YO;C)
0,

corresponding to a basis of eigenvectors (depending on t, but we suppress this from the no-
tation) {XI, fh, ... ,:in, iin} such that JXi = Yi and Xi and Yi are Ai(t) eigenvectors of Ht(Ya).

This gives a set of coordinates (t, XI, YI," ., Xn,Yn) on 1l~ h(Ya; su(2)). Let0,

( ) _ (2 2 2 2) ~r t,XI,Yl, ... ,Xn,Yn - XI +Yl +"'+Xn+Yn .

Then
~ Ai(t) 2 2 3

cSOt/JU,XI,YI, ... ,Xn,Yn) = ~-2-(Xi +yd+O(r).
1=1

Th us the t com ponent of the gradient € is Li= I >':it ) (Xf +U[) +0 (r3), which has HO zeros
for r > 0 very small. D
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Corollary 19 Unde1' the assumption (1), [A a] (on Y) has a neighbo1'hood U in Mh(Y)
such that 1'(U n M~(l)(y)) and 1'(U n M h) are disjoint in M T 2.

Remark: The assumption of transverse spectral flow is necessary. In fact, if Y is thc com­
plement of the connect sum of a right handed trefoil and a left handed trefoil, for example,
then there are eomponents of M*(Y) which limit to orbits in MU(l)(y) and whose image
in M T 2 coincides with that of (part of) MU(1)(y). In this example, the total spectral flow
of Ht through these abelian limit points is zero. By taking a sum of two right Ilanded and
one lcft handed trefoils, however, we get an example of this behavior where the spectral
flow is algebraieally nonzero.

V\je now make our final assumption to prove Theorem 11.

Assumption 8: Suppose now, in addition , ?-lAI h(Y, 8Y; su(2)) has complex dimension l.
0,

By Theorem 5 this is the case at each abelian orbit where this eohomülogy is nonempty for
generie h.

Proof of Theorem 5: When the extra cohomology at Aa is only of eomplex dimension 1,
the U(l) invariance of the functions becomes a mueh stronger eondition on the funetion
(cs+h) 04>, namely that it depends only on t and 1'. Specifically, (cs+h) 04>( t, l' COS 0, r sin 0) =

(es + h) 0 </>(t , 1',0) d:j f(t , r).
Ta complete thc proof, we perturb slightly onee again, so that the abelian parts of

Mh(Y) and Ms! XD2 no lünger match up. For simplicity, we leave the existing perturbation
on Y alone and add a new funetion of trace of holonomy around the Dehn filling core to
es + h. Basically, we want to grad ually perturb M (SI X D2 ) across the pillowcasc to deteet

what irreducibles there are in Mh(Y) whose images He on cither side of r(M~(1)(y)).
Choüse an admissible funetion h' : A(Ya) -7 R defined using the eore of the Dehn filling,

in such a way that (\7 (h' 04» (t, 0), i) = 1 and h' 04>(0,0) = O. The crueial observation is that
any eonnection on Ya which is h + h' perturbed flat restriets to Y to give an h pcrturbed
flat connection.

We will abuse the notation and let h' also denote the corresponding fu netion of t and
1'. Consider the function f(.(t, 1') = (/ + fh')(t, r). Then f(.(t· l 0) = ä + 1(0,0) and

The lower order terms depend not only on t and l' but on (.
A loeal model for thc flat moduli space of Y ncar [Aa] is the quotient under the Z2

symmetry (1' f-+ -1') of the set

{( )I
af(. (t, 1') af(. (t, 1') 0 C }

t, l' {)t = 81' = lor some f .

12



This set is the union of {(t, O)} and the image under projection onto the (t, r) coordinate
plane of

N = {(I, r,E)1 r'" 0, 8f,~~,r) = ~ 8f~:.'r) = O} U{(O,On.

Let P = (Pt, P2 ) : R 3 -+ R2 where Pdt, r, () = 8/(j:,r) and

{
0 r = 0

P2(t, 1', €) = ~ 8/a<:.r) l' i- 0

The linearization of P at (0,0,0) is

[ 1 ° ° ]DP(O, 0, 0) = ° * ),'(0) .

The implicit function theorem now implies that there are smooth functions f(1') and t(1')
such that for l' smalI, (t(r), r, f(1')) parameterizcs N near (0,0,0). This shows that up to
gauge equivalence there is a smooth I-dimensional family of irreducible connections on Y
limiting to [Ao]. 0

Corollary 20 Given assumptions (1)-(3), if holJ.1Ao = exp(iO) for °< () < 11", then the
nearby irl'cducibles have hol,\A = exp(ia) where a i- 0 is small and eilher positive 01'

negative, according to whether )"(0) > °01' >/(0) < O.

Remark: The sign of >.'(0) also determines the orientation of the irreducible are cmanating
from [Ao] in Mh. Therefore this orientation depends on whether the are leaves the irre-­
ducibles pointing up the front or back of the pillowcase. Corollary 4 follows [rom this fact
and Proposition 17 of [H2], which relate the Casson invariant to the oriented intersection
number of Nt>!< with a circle in MT 2.

4 General Existence Theorem

In this section we use Theorem 11 to prove the main theorem ofthis paper, which we restate
below.

Theorem 21 Let Y be the complement 0/ a tubular neighborhood 0/ a knot K. in a homology
3-sphere. I/ the function SignB,. (t) : U (1) -+ Z does not vanish on the complemenl 0/ the set
0/ unit roots 0/ ~(t), then there are irreducible representations p : 11"dY) --+ 5U(2). Further­

more, /01' any unit root ei2a 0/ ~(t) where the righl and left hand limits limß-to± SignB(e iß )

do not agree, there is a continuous /amily 0/ ir'reducible represenlations limiting to the
abelian one which takes J-l to exp(ia).

13



Proo/: Find a collection of curves in Y which meets the criterion described in Proposition
7} and let V and VI be as in Theorem 8. Choose a path hs : [-€, €] -+ U with ho = 0
which is transverse to VI. We can take € small enough that Mh, is nondegenerate when
0<8~('

There is a 2-parameter family of abelian connections A" t near the one Ao0 which has

holonomy J-L.-4 exp(ia), ..\.-4 1 such that [A."t] E M~,(l). Le~ ,

ll."t (a, ß) = (*d A $,t,h 3 a) ß)

be the corresponding 2-parameter family of bilinear forms on 1l~ (Y; C).
0,0

Let B be an arbitrarily small ball in M Y 2. By shrinking Band f if necessary, we can
assurne there is a <5 > 0 such that

1. det H",t = 0 implies r[A."d E B if (8) t) E [O} €] X [-o} 0].

2. r[A.,,±s] r{. B if s E [0,8].

3. Each eurve {r[A",t]1 tE [-O,O]} for s E [O,E] interseets B.

Let M~3 denote the c10sure of the irreducible stratum of Mh" Le. thc irredueible

stratum eompaetified by adding the abelian limit points. For all 0 < s ::; €, r(M~,) consists
of an immersed compact 1 manifold with an odd number of endpoints in the interior of B.
Therefore r(M~,) n aB =I- 0 for aII 0 < s ::; €.

By Proposition 9, r(M{h,}) n aB (where 8 ranges over [0, €]) is compact, and henee

r(M~o) n aB = ,'(M*) n oB f:. 0. Since the same is true for arbitrarily small B} [Ao,o]
is in M*. If there were no continuous path in r(M*) connecting [Ao] to aB, then we
eould separate [Ao] and r(M*) n aB by a eontinuous loop r : Si -+ (B \ r(M*). The
above argument showing that r(M*) n aB :j:. 0 may bc applied to r(M*) n 1'(51) to give a
eontradiction. 0

Corollary 22 Let K, be a knot in a homology sphere .X. TJ /07' some t f:. ±l in U(1) the
matrix B,.. (t) is degenerate and all eigenvalues due so transversely and in the same di rection,

for Inllarge enough lhe homology sphere oblained by ~ surgery on K has irreducible 8U(2)
representa tions.

ProoJ: Suppose such a t = ei2B exists. Then} since BKCD = BK(t)T, the eigenvalues of
BK (t) are invariant under t J-t t- I

, and so there is a corresponding point t' = -e-i20 E
V(1) where there are the same number of eigenvalues crossing zero but in the opposite
direction (as t' moves in the positive direction around U(1)). Theorem 21 then says that
there are eontinuous families of irreducibles near the corresponding abelian representations
f-L t-7 exp(iO) and IL .-4 exp(i(1r - 0)). By Corollary 19 these do not lie along the are
hol), = id in the pilloweas~. By the observation in the proof of Theorem 11 that there
are no solutions when the sign of the spectral flow and the sign of € agree, we see that
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the image of thc irreducible families near the abelian points eorresponding to exp(iB) and
exp(i(7r - B)) are on opposite sides of the abelian are. This mayaiso be seen by noting
that f'(M (Y)) is symmetrie uneler thc involution (hol>., hol~) 1-4 (ho!>., -hol~). Thus for Inl
large enough, this farnily of irreducibles of Jr) Y will interseet the eurve of slope ±~ in thc
pillowease, which corresponds to the set of representations of Jr 1T 2 which extend over the
eorresponding Dehn surgeries. D
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