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Introduction.

Let K be the cyclotomic field of m-th roots of unity and G the Galois group of I
over the rational number field. The stickelberger ideal Sk of K, which is an ideal of the
group ring Z[G], is a quite interesting object in number theory in view of the following
tow points, both of which are closely related. The first point is that Sk annihilates
the ideal class group of K (Stickelberger’s theorem). If we denote by Ay the set of
elements n € Z[G] such that (1 + j)y € s(G)Z, where j is the complex conjugation
and s(G) denotes the sum in Z[G] of the elements of G, then Sk is contained in
Ag. One may expect that the index [Ag : Sk] carries some information of the class
number of K. In fact, when m is a power of a prime number, Iwasawa [I1] showed
that [Ax : Sk| is precisely equal to h, the relative class number of K/K*, where
K denotes the maximal real subfield of K. Later, Sinnott [Sinl] extended [wasawa’s
results to general cyclotomic fields. In [I2] Iwasawa defined the Stickelberger ideal Sk
for arbitrary abelian field k, and Sinnott [Sin2] and Kimura-Horie [K-H] calculated
the index [Ax : Si] in some cases.(See Theorem 1.1.) However, the precise formula

of the index for general cases is not known. Our first result (Theorem 3.1) gives an



explicit formula for the index when k is a composite field of some quadratic fields.
The second point is that every element of Sk appears as the infinity type of a
Jacobi sum Hecke character of K. In §2 we define an index v(¢) = [Z¢ : S N Z¢E] for
each element £ of Ay . It follows easily from the Iwasawa’s finiteness theorem for the
index [Ak : Sk] (see Theorem 1.1) that () is also finite. By definition v = v(§)
is the smallest positive integer such that, for any algebraic Hecke character x of a
finite extension of K of infinity type &, x¥ is a twist of a Jacobi surn Hecke character
of K. Our second result (Theorem 4.5) gives a formula for v(£) for any clement of
(A )GolU/ko) where kg is the composite field of all quadratic fields contained in K.
The contents of this paper is as follows. In §1 we will briefly review some funda-
mental properties of the Stickelberger ideal of abelian fields. In §2 we will review
algebraic Hecke characters and Jacobi sum Hecke characters and study a certain re-
lation between v(€) and those characters. §3 and §4 will be devoted to the proof of

Theorem 3.1 and 4.5 respectively.



§1. The Stickelberger ideal.

In this section we recall mainly from [Sinl] and [Sin2] the definition and some
fundamental properties of tile Stickelberger ideal of an abelian field. Let K = @((x)
be the cyclotomic field of m-th roots of unity and G the Galois group Gal(K/Q).
For any t € (Z/mZ)*, we denote by o, the element of G characterized by {Z = (f,.
We identify G with (Z/mZ)> via this correspondence.

Let R' be a free abelian group generated by the elements of Z/mZ \ {0}:
R' =Z[Z/mZ\ {0}].

Then R' is a G-module via the natural action of (Z/mZ)* on Z/mZ \ {0}. Moreover
we can regard it as a commutative ring: For any a,b € Z/mZ \ 0, define [a][b] to be
[ab) if ab # 0, and O otherwise. If we extend linearly this multiplication law to R,

then it becomes a commutative ring. Define

R= {Z cqla] € R'| ana =0}.

Then R is a subring of R' and stable under the action of G.
For any element a € Z \ {0}, we define a Stickelberger element 6(a) € Q[G] by
Ba)= ) (ta/m)o;,
te(X/mI)X
where (ta/m) denotes the element of 7 such that 0 < (ta/m) < 1 and m{ta/m) = ta

(mod m). If & =}~ ¢4[a] is an element of R, we set

6(a) = cab(a).

Then 8 is a G-homomorphism from R’ to Q[G]. Let S}, = 6(R'). The Stickelberger
ideal Sk of K is defined by
Sk = S NZ[G].
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It is easy to see that Sx = O(R). Let k be a subfield of I and I its Galois group

over Q. In [I2] Iwasawa defined the Stickelberger ideal Si of & by

Sk =resg/x(Sk),

where resy/ : Z[G] — Z[I'] denotes the restriction map. If we set

Sk = resk/i(Sk),

then it is easy to see that Sy = S} NZ[I']. Moreover the definition of Sx and S do
not depnd on the choice of the cyclotomic field K. The ideal Si has the following
remarkable property which is often called Stickelberger’s relation. (See [L1], [We2]

and [Sin2].)

Theorem 1.1. The Stickelberger ideal Sy annihilates the ideal class group of k.
That is, for any ideal a of k and for any element n of S, the ideal a" is a principal
ideal.

For any finite Galois extension L of Q, we denote by Ap the set of element
£ € Z[Gal(L/Q)] such that (1 + j)§ = ws(Gal(L/Q)) with an integer w, where
s(Gal(L/Q)) is the summation in Z[Gal(L/Q)] of all the elements 6f Gal(L/Q) and
j denotes the complex conjugation. It is known that S; is a G-submodule of Ay
([Sin2], Lemma 2.1). The integer w is called the weight of {. In {I1], Iwasawa
calculated the index [Ax : Sk|] when m is a power of a prime number. Sinnott
([Sin1],[Sin2] and [Sin3]) extended Iwasawa’s results to more general cases. (See
also [K-H].) To state the results we need some notation. Let E; and Wy be the
group of units of k¥ and the group of roots of unity in k respectively. Let k* be the
maximal real field in k, and set E}f = EyNkt. Let Q = [Ey : Wi E{], and let k) be
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the relative class number of k/k*. Then their results may be sammerized as follows.

(For more precise statements and further results, see the references in the theorem.)

Theorem 1.2. The index [Aj : Si| is finite and of the following form:

=
A Si)= =% . =
[Ar : Sk O Cr

where ¢ Is a positive integer divisible by only the primes dividing the order |T'| of
I. Let r be the number of primes which ramifies in k. Then the following assertions

hold.
(1) If k = K and r < 2, then ¢x = Q. (Iwsawa[Il])
(2) If k= K and r > 2, then ¢, = 22", (Sinnott (Sinl))
(3) If r <2, then cx = 1 or 2. (Sinnott [Sin2], Kimura-Horie [K-H])
(4) If r =3, then ¢ = 2" for some n > 0. (Kimura-Horie [K-H], Sinnott [Sin3])
(8) IfT is cyclic, then ¢ = 1. (Sinnott [Sin2])
(6) If T is the direct product of its inertia groups, then ¢ = 2" for some n > 0.

(Sinnott [Sin2])

Remark 1.3. Although c¢i is a power of 2 in all cases listed above, this is in

general not the case. For detail, see [Sin2, Sin3], [K-H].



§2. Algebraic Hecke characters and Jacobi sum Hecke characters.

In this section we recall some basic facts about algebraic Hecke characters and
Jacobi sum Hecke characters. For the detail, see [D], [L2] or [Scha]. Let L and E
be two number fields and f a non-zero integral ideal of L. Let Hom(L, E) be the set

of embeddins of L into a fixed algebraic closure E of E. A group homomomrphism
x:IL(f) — E*

from the group I (f) of the ideals of L prime to f to the multiplicative group of E is

called an Algebraic Hecke character of L with values in E| if

x(e)=" [ (@)™,

g€Hom(L,E)
for any @ € K* with @ = 1(mod.f). The elemnt £ = Y n,o of Z[Hom(L, E)] is

called the infinity type of x and will be denoted by u(x) in this paper. We denote by
GL(E) the group of algebraic Hecke characters of L with values in E.

In what follows we assume that £ = K and L is a finite Galois extension of @
containing I¢. In this case we have a isomorphism Z[Hom(L, E)] & Z[Gal(L/Q)].
Let AL be the set of element £ € Z[Gal(L/Q)] such that (1 4 j)¢ € s(Gal(L/Q))L.
It is well known that u(x) lies in Ay for any algebraic Hecke character of L. The

correspondence u which associates x with u(x) defines a homomorphism
u:GL(K)— ApL.

If ¢ € Hom(G(La/L),C*), then by class field theory € can be regarded as an

algebraic Hecke character of L with the trivial infinity type. Conversely we have

Proposition 2.1. Ker(u) = Hom(G(Lsw/L),C*).

Proof: See [Iw2], [Schm)].



Among algebraic Hecke characters of K there are specially interesting characters,
called Jacobt sum Hecke cheracters. We recall the definition in what follows. Let p
be a prime number which does not divide m. Let p be a prime ideal of I{ lying above
p, and let F, be the residue field at p. Let x, be the character of F, with values in

the group of m-th roots of unity, characterized by

|l S

xp(z) =<2 = (mod p), z € F.

For any element ay,...,a, € Z/mZ \ {0} such that a; + ... + a, = 0, we set
Tagyan(P) = (1) 3 xp(@1) exp(@ams) ™"

where the summation runs over (n-1)-tuples (z1,...,2p—1) € ([F;r‘)"“l such that 1 +
zi+...+z,-1 = 0. If & € R, then there exist elements ay, ..., a.,b1,..., 0, € Z/mZ\ {0}

such that a3 + ...+ ar =by + ... + b, =0 and a = 3_[a;] — D [b;]. We set

Ja(p) = Jal,...,a,(p)/Jbl,...,b. (P),

and extend it multiplicatively to get a homomorphism from Iz to K. This definition

depends only on a but not on the expression of a.

Theorem 2.2. (Weil [We2]) For any « € R, J, is an algebraic Hecke character of

K. Moreover the infinity type of J, is given by 6(«).

Now for any element £ of Ax we set

v(€) = [Z€ : Sk NLE).

This index is finite since the inclusion map Z{ — Ay induces an injection Z£/(Sk N
1{) — Ak /Sk. In particular v(£) divides the index [Ay : Sk]. I x € Gr(JK) and
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u(x) = corp k(£), then u(x*®) = corr i (v(€)€) € cory k(Si) by definition, hence
x"®) = eJ, 0 Ny for a character ¢ € Hom(Gal(L*/L),C*) by Prposition 2.2 .
Thus v(¢) measures the difference between x and Jacobi sum Hecke characters.

Fix an element £ of Ax. By the general theory of algebraic Hecke chracters there

exists a finite extension L of K for which the following condition holds:

u(x) = corpx(€) for some x € GL(K).

Let L¢ be the smallest field among such L's. Then the theory of complex multiplica-
tion for CM-motives (see [D], [DMOS], [Schal, [B]), which genererlize the complex
multiplication theory of abelian varieties of CM-type due to Shimura and Taniyama
([S-T)), says that L is the unramified abelian extension of I{ corresponding via class

field theory to the following subgroup
Pe(§)={a €Ik |a* = (), N)¥ = pug for some uec K>}

of the ideal group Ix of K, where a® =[] (a%)" if £ = 3 n,0 and w is the weight

of £&. We define the annihilator of the ideal class group Cly of K by
S'K ={n€Ag |a"~1 forany a € Ix}.

Then, by the Stickelberger’s relation (Theorem 1.1), Sk is contained in Sgk. In

general, the structure of Sk /Sk is not known. Let
5(€) = [Z€ : Sk N ZE).

Obviously #(§) is a divisor of »(€). The following proposition is not difficult, and we

leave it to the reader.



Proposition 2.3. The quotient group Sk/Sk contains a cyclic group of order

v(€)/¥(£)-

Recall that the exponent of a finite abelian group X is defined to be the smallest

integer n such that nz =0 forall z € X.

Proposition 2.4. The exponent of I[Py () is #(§). In particular 7(€) divides

(Le : K.

Proof: We consider a paring
Iy x 26 — I, (a,n€)—s a™,
where I, = {af|a € Ix}. This pairing induces a non-degenerate pairing
I/ Prc(€) x ZE[(Sk NZE) — I
Since I5, & I /Pk(¢) and Z€/(Sx N Z¢) = Z/i(€)Z, we get an isomorphism
Ik [Py(&) 2 Hom(Z/0(&)X, I [Py (£)).

This proves the first statement. The second statement follows from this and the

isomorphism Ix /Pg(€) = Gal(L¢/K). Q.E.D.

As an illustration of the above proposition, we consider the case where K contains
an imaginary qudratic field ¥ = Q(y/—m) with the discriminant —m. Let H =
G(K/k) and £ = s(H) € Ak the sum of elements of H. Then the above proposition
says that #(£) divides hg /277!, where Ay denotes the class number of k and 7 is the

number of prime number dividing m. Indeed, if we denotes by Clj and Clj the ideal
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class group of K and k respectively, then the subgroup of Cly which corresponds to

L, is the kernel of the norm map N : Clg — Cli. Therefore we have
[Le : K] = |Ngyu(Clic)| = [k : E*" N K],

where k%" denotes the Hilbert class field of k. The genus theory of quadratic fields

implies that the last index is hy /2771
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§3. The structure of Sy and the index [A : Sk].

In this section and next section we will assume that ord;(m) = 0,2 or 3 and
ordy(m) = 0 or 1 for any odd prime number p. Let ko be the composite field of all
quadratic fields in K and put Hyp = Gal(K/ko). Let k be a subfield of kg, which will
be assumed to be imaginary throughout this section. Thus the degree [k : Q] = 2" for
an integer n such that 1 < n < r, where r is the number of prime factors of m. We
denote by &k the maximal real subfield of k. Let Dy and D+ be the discriminants

of k and k% respectively. We set
Df = Di/Dys.

Let I' = Gal(k/Q) and I' the character group of I'. We denote by I'~ the set of odd

characters of T, i.e.

™ ={xel'|x()=-1},
which is non-empty since k is imaginary. For each character x € f, let d, be the
conductor of x. Then ord;(d,) = 0,2 or 3, and ord,(dy) = 0 or 1 for any odd prime
p. By the conductor-discriminant formula (see [Wa], Theorem 3.11), we find
(1) Dy =+ ] 4«

x€lr-

If a is an integer, we define a non-negative intger v(a) by

v(a) =Y ordy(a).

pla

Now the main theorem in this section can be stated as follows.

Theorem 3.1. Let h} be the relative class number of k/k% and Qi the unit index

of k defined in §1. Let aj be the number of odd character with odd conductor if m
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is even, and a; = 0 otherwise. Then

[Ak : Sk] = E . 2(2v(m)+1_")2"—2—v(D:)—ak.
k

Let A = @, ¢p- Z, then we have a ring homomrphism

Pe: QI — A @ Q

which sends [o] to (..., x(o), "')xef‘ € A forany o € T. Let e~ = (1 —5)/2 € Q[T].

Then 3 induces an injection from e~ Q[I'] into A @ Q.

Proposition 3.2. The image ¥y(e™ Ax) of e~ Ay is a sublattice of Ax. The index is
given by

Ak : r(e” Ar)] = o(n—1)2("=2)

Proof: The first statement is clear since x(e™) = 1 for any x € I'~. To compute the

index we define a integral matrix M of size 2"~! by

M = (x(0))yer- oer/<ji> -

Then it follows immediately from the definition of 1 that (e~ Ag) = M Ay. There-
fore the index [Ax : ¥r(e™ Ax)] equals |det(M)|. Since M*M = 2" 'I, we have

det(M) = +2(n=12""1 g completes the proof. Q.E.D.

Recall that Si is an ideal of Ay, hence ¢Sy C e~ A;. We want to know the
image of e~ Sk by 1. For each x € ', we denote by By, the generelized Bernoulli

number. Then it is well known that B; , equals the class number of the quadratic
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field corresponding to x if x € I'=. The following proposition is fundamental in the

proof of Therem 3.1.

Proposition 3.3. For each x € ['~, let e, = 1 if m is even and d,, is odd, and
€y = 0 othewise. Then

(2) Yr(e”Si) = @ 2v(m/d)=exp, T
x€r-

Proof: If we denote by proji the projection map from Ax, ® @ to A ® Q, then
Yi(e”Sk) = proji(vr,(e”Sk,)). It therefore suffices to show the proposition for
k = kqg. The idea of the proof is to construct an element «, of R'Ho for each x € T,
which satisfies the following condition.

|H0|2U(m/dx)-5xBl’x, if ¥' =x,

(3) X'(6(ery)) = { 0 otherwise.

Ifye f‘, then y has the decomposition x = X1...Xs, Where xi’s € I are the characters

uniquely determined by the following property:

dy; = 4,8 or an odd prime,
(dxndx,') =1, 1 76.7
For each y € I, we define a subgroup H, of (Z/mZ)* by

H, = {t € H, It = 1(mod.m/d,), and }’

xi(t) = 1for all ¢

and set

Ix = Z [t].

tEH,

Then v, is an element of R', and clearly [m/d,]vy, € R'He For any divisor d of m,
we denote by Qu (resp. QF) the submodule of R'fo generated by {m/d,]v, for all

x € I with d,|d (resp. d,|d and d,, < d).
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‘We now need two lemmas below.

Lemma 3.4. Let d be any divisor of m and t any element of (Z/mZ)*. Let x be
any character of I'. Then we have x(6([m/d][t])) = 0 unless d|d, and x € I'-, in
which case we have

X651 = £ TT a=x)-Bu

pldy/d
Proof: See for example [L1] or [A].

Lemma 3.5. Let o € ' be any character with an odd conductor d := dy,. Let p
be any element of R’ such that, for any x € T, x(6(8)) = 0 if d,, ¥ d and x(8(a)) €
|Ho [2”(m/dx)_‘Bl,xZ if dy|d, where ¢ = 1 if m is even, and 0 otherwise. Then there

exists an element v € Q such that

(4) x(6(B+7))=0

for any x # Xo.

Proof: Put

m

X €
dx: |d dx; <d

We want to show that we can take integers c,.’s so that g has the property (4). It
follows from Lemma 3.4 that x(6(y)) = 0 if dy, t d, hence (4) holds in this case. If

dy|d, then by the same lemma

5) XO) = Y ee BT me T (- xe)- Bu
By P

14



Since |Hy| = @(dy)/2%") and |Hy| = p(m)/2*™)~¢, we have

(P(m) vim/d, )—e
PURL || = [Ho|200m /%0,
EEmich

hence the right hand side of (&) is equal to

1—
d,)—c ) x(p)
IHOI?-'U(m/ x) B],x CX' H __.__2_, i
x'er pld, /dy
dxldxr|d

Hence (4) is equivalent to the following equality
1-x(p) _
by +cy + Z Cyt H —————2————0,
x'er Pldx’ /dy

dyld,|d
dy<d, <d

where b, is an integer determined by x(8(8)) = {H,|2*(™/4x)=¢B; _b,. Since ¢, and
(1 — x'(p))/2 are integers, we can take integers ¢,s inductively. Q.E.D.
We continue the proof of Proposition 3.3. Take a character x and fix it. First

suppose that d := d, is odd. Put

=[]

Then one can easily check that 3 satisfies the condition in Lemma 3.5. Let v € QF

be the element obtained by applying that lemma to 8, and put
oy = /9 +y

Then x(8(ay)) = x((6(8))) = |Ho|2°(™/D=*x and x'(8(cy)) = 0 for any X' # x,
hence «, satisfies (3).
Next consider the case where d is even, say e = 2°7%(4) = 4 or 8. Let y; be the

unique element of I'~ with dy, = d/e. We put
. { (%] % if x1(2) =1
[%] 7X+ [_ﬁ:] Txto ifX1(2)= -1
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Then it is easy to see that x(6(8')) = |Ho|2°(™/¥ and x'(6(8')) = 0 if £|é|d and
§<d Let 4 € Q;/e be the element obtained by applying Lemma 3.5 to 8'. If we
put

ay=p+4,
then «a, satisfies the condition (3).

Now we note that there exists an element 7, € S} such that cor /i, (ny) = 8(ay).

Indeed this follows from the fact that o, € R'He and the relation

(6) cor ki /ko(Sky) = €OT i ko (T€S /1o (SK)) = ( R'Fio),

Since cor i, is a G-module homomorphism, we find [Ho]x'(ny) = x'(8(ay)), hence

2v(m/dx)_£xBl,x, if Xr =y

0, otherwise.

X (ny) = {

The proof of Proposition 3.3 is complete if we show that 7,’s generate S} asa G/Ho-

module. But this is clear from (6) since R'Ho ig generated by o, ’s as a G/ Hy-module.

Q.E.D.

Let Uy a the submodule of Q[I'] defined in [Sin2], Corollarly to Proposition 2.2.
We do not give the definition in this paper. What we need here is the following

relation between S} and Uy:
X(St) = x(Ue)B1xZ forany y €T
From this and Proposition 3.3 we have

Corollarly 3.6. Notation being as above, we have

Yr(e Ur) = @ 2°0m/4)-exZ.
x€fl-
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Proof of Theorem 3.1: For any two submodules X,Y of Ay we denote by (X : Y)
the generalized index. (See [Sinl] for the definition.) By [Sin2], Theorem 2.2, we
have

hi

) [Ax : Sk} = Ox

(eT A 1 e7Uy).

If we recall that the map 3y is injective on e™Q[I], we can easily see that

[Ak . l/)k(e—Uk)]
[Ak : gbk(e‘Ak)] )

(eTAg:e"Uy) =

In Proposition 3.3 we have already calculated the denominator. As for the numerator,

by Corollarly 3.6, we have

[Ak :’l,bk(e_Uk)] = H gv(m/dy)—ex _ 2”("‘)2"_1"1’(9;)—0&_
x€r-

Here we have used the following relation:

> vldy) =v(Dy),

x€l-

which is clear from (1). Hence

(C_Ak . C_Uk) o 2(2v(m)_n+1)2"-2—-v(D:)—a.,..

Combining this and (7), we obtain the desired formula. Q.E.D.
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§4. Calculation of v(£).

Let K and ko be as in §3. We denote by T'y the Galois group Gal(ky/Q). For each
a € Z/mZ, define §(a) € Q[G] by

W= ¥ ()-geit

tE(Z/mE)X
Note that §(—a) = —g(a), hence.f(a) € e~ S}.. Extending it linearly, we obtain a
G-module homomorphism
f:R — e Si.
Clearly 6 is surjective. Let B be the kernel of §. Thus we have the following short

exact sequence of G-modules
0— B — R -2 e85, — 0.
Taking the cohomology groups H*(Hp, —), we obtain a long exact sequence
0— BHo — RiHle P, (=gl \Ho °, gY(gy BY s H'(Hy, R') — .
From this and the next lemma we obtain the following exact sequence

(1) 0 — §(R'Mo) —s (7S )Mo — H'(Ho, B) — 0.

Lemma 4.1. H'(H,,R')=0.

Proof: For each divisor d of m, let Gg = Gal(K/Q(¢4)). Then R’ is isomorphic to

P zic1°-

d|m
d<m

as a G-module, hence

H'(Ho,R') = (B H'(H,,2[G]%).

dlm
d<m

18



The inflation-restriction exact sequence shows that the sequence
0 — HY(Hy/HoNGy4,2[G]%) — H(H,,2[G]%¢) — H'(Hy N G4,2{G)%?)

is exact. The first group is trivial since Z[G]%¢ is a free Ho/Hy N Gg-module,
and the last one is also trivial since Ho N G4 acts trivially on Z[G]Gd. Therefore

H'(H,,Z{G]%¢) = 0 for any d. This proves the lemma. Q.E.D.

Now, for any £ € AT® with weight w, let Ve be the image of (e~ S} )#° NZ¢'" under
the map 6 in (1), where ¢’ = £ — $5(G). We then have an exact sequence with

ovbious maps
0 — Ve — ZE'J(B(R'PYNZE) — IE' [(e~ S NZE') — 0.

Since Z¢' /(e S), NZE') = EZ/(Sk NZE), we have

[Z¢'  f(rM)nz¢)

v(§) = Vi

Proposition 4.2. Let €, be as in Proposition 3.3. Let £ be an element of Z[T'o]

such that £ = cor /i, (). Then

[Z¢': 6(R'TYNZE = L.C.M. {

gu(m/d)=ex B, }
x€l 5 ,x(£0)#0

(2v(m/dx)—°x31,x, X(SU))

Before going into the proof of the proposition, we state an elementary lemma. We

leave the proof to the reader.
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Lemma 4.3. Let aq,...,an,b1,...,b, be positive integers and put a = (ay,...,an) €

I". Let X =2 andY =028 ... ® b,Z. Then

by b, }
X:XNY]=L.CM. oo .
| ] {(al,bl) (@n, bn)
Proof of Proposition 4.2: For any element 7 of Z[G]° = cor ko (Z[To]), take
any element 7o of Z[I'g] such that n = corg i, (m0). Let ¥o(n) = ¥iy(n0), where 1y,
is the map defined in §3. Then g defines an injection
Yo:e QG — P Q.
x€ly
Note that both g(R'H") and Z¢' are contained in e~ Q[G]}"°. Hence 1, induces the
isomorphism*

B(RHYNZE =5 ho(RHo) N Zeho(€").

By Proposition 3.3 we have
Po(BR) = $o(Si,) = (P 2°/ 7By 4T
 x€l'y

On the other hand, by definition, we have

N

V,bo(f') = (--'aX(EO)a ---)xef‘o"

Then, by applying Lemma 4.3 to X = 3o(Z¢'),Y = ;bo(é(R’H")), we get the desired
formula. Q.E.D.

It seems difficult to determine the order |Vg| exactly in general. In what follows

we consider the following condition on m.

(2) p =3 (mod.4) for any odd prime divisor p of m.
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Proposition 4.4. If m satisfles the condition (2), then H'(Hy,B) = 0. In paﬂicu—

lar, Ve = 0.

Proof: Clearly it suffices to show the first statement. Let B* be the submodule of

B generated by "standard elements”:

r—1

o 2+ -pal, phm, p=odd, pa £0,
[a] + fa+ Z]+[-2a) +[F],  2lm, 2a #0.

and [a] + [—a] for all a € Z/mZ \ {0}. Then it is known that B/B* is an elementary

abelian group of exponent 2. (See [Y], [Ku] or [A].) From the exact sequence
0 — B*— B— B/B* — 0,
we have an exact sequence
H'(Hy,B*) — H'(Hy,B) — H'(H,,B/B*)

The last group is zero since the order of Hp is prime to 2 by our assumption and
B/B* is a 2-group. We must show that the first group is also zero. For that purpose
let D be the submodule of B generated by elements of the form [a]+{—a]. Then it can
be shown without difficulty that B*/D is a free Hy-module and so H!(H,, D) = 0.

Hence from the exact sequence
HI(H(),D) — HI(H(),B*) — HI(H(),B*/D),

we find that H*(Hy, B*) = 0. This completes the proof. Q.E.D.

Combining the results obtained so far, we have
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Theorem 4.5. For any { € Ak such that £ = corgy,(€o) for some § € Z[['o}, we

have

1 ov(m/dy)—ex B,
WE) = — . L.C.M. { X }
O TV el itterno \ BTy, x(Eo)

Moreover, if m satisfies the condition (2), then

(¢)= LCM { s }
b7 = - - . ’ '
XEl> €0y L (2°(M/4)=ex By . x(&))

Remark 4.6. If £ = Q(y/—m) is an imaginary quadratic field and ¢ = s(H), then

the first statement of Theorem 4.4 implies that

1 h _ h
Vel (hi,x(&0)) 2771 | Vel

(&) =

since x(&) = 27! for the unique nontrivial character x € I’ and hy is divisible by
271, In particular v(£) divides h;/2"~!. This is also a consequence of Proposition
2.4 if v(€) = (). (See the discussion at the end of §2.) Moreover, if m satisfies the
condition (2), then v(€) = hy/27"!. But, if m does not satisfy (2), then V; is not

necessarily zero. For example suppose that m is of the form
m=p1..pr—1¢, pi=3 (mod4), ¢g=5 (mod8).

Then we can show that v(£) = hi/2", hence |V¢| = 2. This, in particular, implies

that Ny /x(Clk) is not a cyclic group.(See Proposition 2.4.)
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