On the Stickelberger Ideal of a Composite Field of Some Quadratic Fields

 by
Noboru Aoki

Max-Planck-Institut	and
für Mathematik	Department of Mathematics
Gottfried-Claren-Strasse 26	Rikkyo University
5300 Bonn 3, BRD	Nishi-Ikebukuro
	Tokyo 171, Japan

ON THE STICKELBERGER IDEAL OF A COMPOSITE FIELD OF SOME QUADRATIC FIELDS

by
Noboru Aoki
Max-Planck-Institut für Mathematik
and
Rikkyo University

Introduction.

Let K be the cyclotomic field of m-th roots of unity and G the Galois group of K over the rational number field. The stickelberger ideal S_{K} of K , which is an ideal of the group ring $\mathbf{Z}[G]$, is a quite interesting object in number theory in view of the following tow points, both of which are closely related. The first point is that S_{K} annihilates the ideal class group of K (Stickelberger's theorem). If we denote by A_{K} the set of elements $\eta \in \mathbf{Z}[G]$ such that $(1+j) \eta \in s(G) \mathbf{Z}$, where j is the complex conjugation and $s(G)$ denotes the sum in $\mathbf{Z}[G]$ of the elements of G, then S_{K} is contained in A_{K}. One may expect that the index $\left[A_{K}: S_{K}\right]$ carries some information of the class number of K. In fact, when m is a power of a prime number, Iwasawa [I1] showed that $\left[A_{K}: S_{K}\right.$] is precisely equal to h_{K}^{-}, the relative class number of K / K^{+}, where K^{+}denotes the maximal real subfield of K. Later, Sinnott [Sin1] extended Iwasawa's results to general cyclotomic fields. In [I2] Iwasawa defined the Stickelberger ideal S_{k} for arbitrary abelian field k, and Sinnott [Sin2] and Kimura-Horie $[\mathbf{K}-\mathbf{H}]$ calculated the index $\left[A_{k}: S_{k}\right]$ in some cases.(See Theorem 1.1.) However, the precise formula of the index for general cases is not known. Our first result (Theorem 3.1) gives an
explicit formula for the index when k is a composite field of some quadratic fields.
The second point is that every element of S_{K} appears as the infinity type of a Jacobi sum Hecke character of K. In §2 we define an index $\nu(\xi)=[\mathbf{Z} \xi: S \cap \mathbf{Z} \xi]$ for each element ξ of A_{K}. It follows easily from the Iwasawa's finiteness theorem for the index $\left[A_{K}: S_{K}\right.$] (see Theorem 1.1) that $\nu(\xi)$ is also finite. By definition $\nu=\nu(\xi)$ is the smallest positive integer such that, for any algebraic Hecke character χ of a finite extension of K of infinity type ξ, χ^{ν} is a twist of a Jacobi sum Hecke character of K. Our second result (Theorem 4.5) gives a formula for $\nu(\xi)$ for any element of $\left(A_{K}\right)^{G a l\left(K / k_{0}\right)}$, where k_{0} is the composite field of all quadratic fields contained in K.

The contents of this paper is as follows. In $\S 1$ we will briefly review some fundamental properties of the Stickelberger ideal of abelian fields. In $\S 2$ we will review algebraic Hecke characters and Jacobi sum Hecke characters and study a certain relation between $\nu(\xi)$ and those characters. $\S 3$ and $\S 4$ will be devoted to the proof of Theorem 3.1 and 4.5 respectively.

§1. The Stickelberger ideal.

In this section we recall mainly from [Sin1] and [Sin2] the definition and some fundamental properties of the Stickelberger ideal of an abelian field. Let $K=\mathbb{Q}\left(\zeta_{m}\right)$ be the cyclotomic field of m-th roots of unity and G the Galois group $G a l(K / \mathbb{Q})$. For any $t \in(\mathbf{Z} / m \mathbf{Z})^{\times}$, we denote by σ_{t} the element of G characterized by $\zeta_{m}^{\sigma_{t}}=\zeta_{m}^{t}$. We identify G with $(\mathbf{Z} / m \mathbf{Z})^{\times}$via this correspondence.

Let R^{\prime} be a free abelian group generated by the elements of $\mathbf{Z} / m \mathbf{Z} \backslash\{0\}$:

$$
R^{\prime}=\mathbf{Z}[\mathbf{Z} / m \mathbf{Z} \backslash\{0\}] .
$$

Then R^{\prime} is a G-module via the natural action of $(\mathbf{Z} / m \mathbf{Z})^{\times}$on $\mathbf{Z} / m \mathbf{Z} \backslash\{0\}$. Moreover we can regard it as a commutative ring: For any $a, b \in \mathbf{Z} / m \mathbf{Z} \backslash 0$, define $[a][b]$ to be $[a b]$ if $a b \neq 0$, and 0 otherwise. If we extend linearly this multiplication law to R^{\prime}, then it becomes a commutative ring. Define

$$
R=\left\{\sum c_{a}[a] \in R^{\prime} \mid \sum c_{a} a=0\right\} .
$$

Then R is a subring of R^{\prime} and stable under the action of G.
For any element $a \in \mathbf{Z} \backslash\{0\}$, we define a Stickelberger element $\theta(a) \in \mathbb{Q}[G]$ by

$$
\theta(a)=\sum_{t \in(\mathbf{x} / m \mathbf{Z})^{\times}}\langle t a / m\rangle \sigma_{t}^{-1}
$$

where $\langle t a / m\rangle$ denotes the element of $\frac{1}{m} \mathbf{Z}$ such that $0<\langle t a / m\rangle<1$ and $m\langle t a / m\rangle \equiv t a$ $(\bmod m)$. If $\alpha=\sum c_{a}[a]$ is an element of R^{\prime}, we set

$$
\theta(\alpha)=\sum c_{a} \theta(a)
$$

Then θ is a G-homomorphism from R^{\prime} to $\mathbb{Q}[G]$. Let $S_{K}^{\prime}=\theta\left(R^{\prime}\right)$. The Stickelberger ideal S_{K} of K is defined by

$$
S_{K}=S_{K}^{\prime} \cap \mathbf{Z}[G]
$$

It is easy to see that $S_{K}=\theta(R)$. Let k be a subfield of K and Γ its Galois group over Q. In [I2] Iwasawa defined the Stickelberger ideal S_{k} of k by

$$
S_{k}=r e s_{K / k}\left(S_{K}\right)
$$

where res $_{K / k}: \mathbf{Z}[G] \longrightarrow \mathbf{Z}[\Gamma]$ denotes the restriction map. If we set

$$
S_{k}^{\prime}=r e s_{K / k}\left(S_{K}^{\prime}\right)
$$

then it is easy to see that $S_{k}=S_{k}^{\prime} \cap \mathbf{Z}[\Gamma]$. Moreover the definition of S_{k} and S_{k}^{\prime} do not depnd on the choice of the cyclotomic field K. The ideal S_{k} has the following remarkable property which is often called Stickelberger's relation. (See [L1], [We2] and [Sin2].)

Theorem 1.1. The Stickelberger ideal S_{k} annihilates the ideal class group of k. That is, for any ideal \mathfrak{a} of k and for any element η of S_{k}, the ideal \mathfrak{a}^{η} is a principal ideal.

For any finite Galois extension L of \mathbb{Q}, we denote by A_{L} the set of element $\xi \in \mathbf{Z}[\operatorname{Gal}(L / \mathbb{Q})]$ such that $(1+j) \xi=w s(\operatorname{Gal}(L / \mathbb{Q}))$ with an integer w, where $s(\operatorname{Gal}(L / \mathrm{Q}))$ is the summation in $\mathbf{Z}[\operatorname{Gal}(L / \mathrm{Q})]$ of all the elements of $\operatorname{Gal}(L / \mathrm{Q})$ and j denotes the complex conjugation. It is known that S_{k} is a G-submodule of A_{k} ([Sin2], Lemma 2.1). The integer w is called the weight of ξ. In [I1], Iwasawa calculated the index $\left[A_{K}: S_{K}\right.$] when m is a power of a prime number. Sinnott ([Sin1],[Sin2] and [Sin3]) extended Iwasawa's results to more general cases. (See also $[\mathrm{K} \cdot \mathbf{H}]$.) To state the results we need some notation. Let E_{k} and W_{k} be the group of units of k and the group of roots of unity in k respectively. Let k^{+}be the maximal real field in k, and set $E_{k}^{+}=E_{k} \cap k^{+}$. Let $Q_{k}=\left[E_{k}: W_{k} E_{k}^{+}\right]$, and let h_{k}^{-}be
the relative class number of k / k^{+}. Then their results may be sammerized as follows. (For more precise statements and further results, see the references in the theorem.)

Theorem 1.2. The index $\left[A_{k}: S_{k}\right]$ is finite and of the following form:

$$
\left[A_{k}: S_{k}\right]=\frac{h_{k}^{-}}{Q_{k}} \cdot c_{k}
$$

where c_{k} is a positive integer divisible by only the primes dividing the order $\langle\Gamma\rangle$ of Γ. Let r be the number of primes which ramifies in k. Then the following assertions hold.
(1) If $k=K$ and $r \leq 2$, then $c_{k}=Q_{k}$. (Iwsawa/[I] $)$
(2) If $k=K$ and $r>2$, then $c_{k}=2^{2^{r-2}}$. (Sinnott [Sin1])
(3) If $r \leq 2$, then $c_{k}=1$ or 2. (Sinnott [Sin2], Kimura-Horie [$\left.\mathrm{K}-\mathrm{H}\right]$)
(4) If $r=3$, then $c_{k}=2^{n}$ for some $n \geq 0$. (Kimura-Horie [K-H], Sinnott [Sin3])
(5) If Γ is cyclic, then $c_{k}=1$. (Sinnott [Sin2])
(6) If Γ is the direct product of its inertia groups, then $c_{k}=2^{n}$ for some $n \geq 0$. (Sinnott [Sin2])

Remark 1.3. Although c_{k} is a power of 2 in all cases listed above, this is in general not the case. For detail, see [Sin2, Sin3], $[\mathrm{K}-\mathrm{H}]$.

§2. Algebraic Hecke characters and Jacobi sum Hecke characters.

In this section we recall some basic facts about algebraic Hecke characters and Jacobi sum Hecke characters. For the detail, see [D], [L2] or [Scha]. Let L and E be two number fields and f a non-zero integral ideal of L. Let $\operatorname{Hom}(L, \bar{E})$ be the set of embeddins of L into a fixed algebraic closure \bar{E} of E. A group homomomrphism

$$
\chi: I_{L}(f) \longrightarrow E^{\times}
$$

from the group $I_{L}(f)$ of the ideals of L prime to f to the multiplicative group of E is called an Algebraic Hecke character of L with values in E, if

$$
\chi((\alpha))=\prod_{\sigma \in H o m(L, E)}\left(\alpha^{\sigma}\right)^{n_{\sigma}}
$$

for any $\alpha \in K^{\times}$with $\alpha \equiv 1$ (mod.f). The elemnt $\xi=\sum n_{\sigma} \sigma$ of $\mathbf{Z}[\operatorname{Hom}(L, \bar{E})]$ is called the infinity type of χ and will be denoted by $u(\chi)$ in this paper. We denote by $\mathcal{G}_{L}(E)$ the group of algebraic Hecke characters of L with values in E.

In what follows we assume that $E=K$ and L is a finite Galois extension of Q containing K. In this case we have a isomorphism $\mathbf{Z}[\operatorname{Hom}(L, \bar{E})] \cong \mathbf{Z}[\operatorname{Gal}(L / \mathbb{Q})]$. Let A_{L} be the set of element $\xi \in \mathbf{Z}[G a l(L / \mathbb{Q})]$ such that $(1+j) \xi \in s(\operatorname{Gal}(L / \mathbb{Q})) \mathbf{Z}$. It is well known that $u(\chi)$ lies in A_{L} for any algebraic Hecke character of L. The correspondence u which associates χ with $u(\chi)$ defines a homomorphism

$$
u: \mathcal{G}_{L}(K) \longrightarrow A_{L}
$$

If $\varepsilon \in \operatorname{Hom}\left(G\left(L_{a b} / L\right), \mathbb{C}^{\times}\right)$, then by class field theory ε can be regarded as an algebraic Hecke character of L with the trivial infinity type. Conversely we have

Proposition 2.1. $\operatorname{Ker}(u)=\operatorname{Hom}\left(G\left(L_{a b} / L\right), \mathbb{C}^{\times}\right)$.

Proof: See [Iw2], [Schm].

Among algebraic Hecke characters of K there are specially interesting characters, called Jacobi sum Hecke cheracters. We recall the definition in what follows. Let p be a prime number which does not divide m. Let \mathfrak{p} be a prime ideal of K lying above p, and let \boldsymbol{F}_{q} be the residue field at \mathfrak{p}. Let $\chi_{\boldsymbol{p}}$ be the character of \mathbb{F}_{q}^{\times}, with values in the group of m-th roots of unity, characterized by

$$
\chi_{\mathfrak{p}}(x) \equiv x^{\frac{q-1}{m}} \quad(\bmod \mathfrak{p}), x \in \mathbf{F}_{q}^{\times} .
$$

For any element $a_{1}, \ldots, a_{n} \in \mathbf{Z} / m \mathbf{Z} \backslash\{0\}$ such that $a_{1}+\ldots+a_{n}=0$, we set

$$
J_{a_{1}, \ldots, a_{n}}(\mathfrak{p})=(-1)^{n} \sum \chi_{p}\left(x_{1}\right)^{a_{1}} \ldots \chi_{p}\left(x_{n-1}\right)^{a_{n-1}}
$$

where the summation runs over (n-1)-tuples $\left(x_{1}, \ldots, x_{n-1}\right) \in\left(\mathbb{F}_{q}^{\times}\right)^{n-1}$ such that $1+$ $x_{1}+\ldots+x_{n-1}=0$. If $\alpha \in R$, then there exist elements $a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{s} \in \mathbf{Z} / m \mathbf{Z} \backslash\{0\}$ such that $a_{1}+\ldots+a_{r}=b_{1}+\ldots+b_{s}=0$ and $\alpha=\sum\left[a_{i}\right]-\sum\left[b_{j}\right]$. We set

$$
J_{\alpha}(\mathfrak{p})=J_{a_{1}, \ldots, a_{r}}(\mathfrak{p}) / J_{b_{1}, \ldots, b_{\mathbf{s}}}(\mathfrak{p})
$$

and extend it multiplicatively to get a homomorphism from I_{K} to K^{\times}. This definition depends only on α but not on the expression of α.

Theorem 2.2. (Weil [We2]) For any $\alpha \in R, J_{\alpha}$ is an algebraic Hecke character of K. Moreover the infinity type of J_{α} is given by $\theta(\alpha)$.

Now for any element ξ of A_{K} we set

$$
\nu(\xi)=\left[\mathbf{Z} \xi: S_{K} \cap \mathbf{Z} \xi\right]
$$

This index is finite since the inclusion map $\mathbf{Z} \xi \hookrightarrow A_{K}$ induces an injection $\mathbf{Z} \xi /\left(S_{K} \cap\right.$ $\mathbf{Z} \xi) \hookrightarrow A_{K} / S_{K}$. In particular $\nu(\xi)$ divides the index $\left[A_{K}: S_{K}\right]$. If $\chi \in \mathcal{G}_{L}(K)$ and
$u(\chi)=\operatorname{cor}_{L / K}(\xi)$, then $u\left(\chi^{\nu(\xi)}\right)=\operatorname{cor}_{L / K}(\nu(\xi) \xi) \in \operatorname{cor}_{L / K}\left(S_{K}\right)$ by definition, hence $\chi^{\nu(\xi)}=\varepsilon J_{\alpha} \circ N_{L / K}$ for a character $\varepsilon \in \operatorname{Hom}\left(\operatorname{Gal}\left(L^{a b} / L\right), \mathbb{C}^{\times}\right)$by Prposition 2.2. Thus $\nu(\xi)$ measures the difference between χ and Jacobi sum Hecke characters.

Fix an element ξ of A_{K}. By the general theory of algebraic Hecke chracters there exists a finite extension L of K for which the following condition holds:

$$
u(\chi)=\operatorname{cor}_{L / K}(\xi) \text { for some } \chi \in \mathcal{G}_{L}(K)
$$

Let L_{ξ} be the smallest field among such $L^{\prime} s$. Then the theory of complex multiplication for CM-motives (see [D], [DMOS], [Scha], [B]), which genererlize the complex multiplication theory of abelian varieties of CM-type due to Shimura and Taniyama ($[\mathrm{S}-\mathrm{T}]$), says that L_{ξ} is the unramified abelian extension of K corresponding via class field theory to the following subgroup

$$
P_{K}(\xi)=\left\{\mathfrak{a} \in I_{K} \mid \mathfrak{a}^{\xi}=(\mu), N(\mathfrak{a})^{w}=\mu \bar{\mu} \text { for some } \mu \in K^{\times}\right\}
$$

of the ideal group I_{K} of K, where $\mathfrak{a}^{\xi}=\prod_{\sigma}\left(\mathfrak{a}^{\sigma}\right)^{\boldsymbol{n}_{\sigma}}$ if $\xi=\sum n_{\sigma} \sigma$ and w is the weight of ξ. We define the annihilator of the ideal class group $C l_{K}$ of K by

$$
\tilde{S}_{K}=\left\{\eta \in A_{K} \mid \mathfrak{a}^{\eta} \sim 1 \text { for any } \mathfrak{a} \in I_{K}\right\}
$$

Then, by the Stickelberger's relation (Theorem 1.1), S_{K} is contained in \tilde{S}_{K}. In general, the structure of \tilde{S}_{K} / S_{K} is not known. Let

$$
\tilde{\nu}(\xi)=\left[\mathbf{Z} \xi: \tilde{S}_{K} \cap \mathbf{Z} \xi\right] .
$$

Obviously $\tilde{\nu}(\xi)$ is a divisor of $\nu(\xi)$. The following proposition is not difficult, and we leave it to the reader.

Proposition 2.3. The quotient group \tilde{S}_{K} / S_{K} contains a cyclic group of order $\nu(\xi) / \tilde{\nu}(\xi)$.

Recall that the exponent of a finite abelian group X is defined to be the smallest integer n such that $n x=0$ for all $x \in X$.

Proposition 2.4. The exponent of $I_{K} / P_{K}(\xi)$ is $\tilde{\nu}(\xi)$. In particular $\tilde{\nu}(\xi)$ divides $\left[L_{\xi}: K\right]$.

Proof: We consider a paring

$$
I_{K} \times \mathbf{Z} \xi \longrightarrow I_{K}^{\xi}, \quad(\mathfrak{a}, n \xi) \longmapsto \mathfrak{a}^{n \xi}
$$

where $I_{K}^{\xi}=\left\{\mathfrak{a}^{\xi} \mid \mathfrak{a} \in I_{K}\right\}$. This pairing induces a non-degenerate pairing

$$
I_{K} / P_{K}(\xi) \times \mathbf{Z} \xi /\left(\tilde{S}_{K} \cap \mathbf{Z} \xi\right) \longrightarrow I_{K}^{\xi}
$$

Since $I_{K}^{\xi} \cong I_{K} / P_{K}(\xi)$ and $\mathbf{Z} \xi /\left(\tilde{S}_{K} \cap \mathbf{Z} \xi\right) \cong \mathbf{Z} / \tilde{\nu}(\xi) \mathbf{Z}$, we get an isomorphism

$$
I_{K} / P_{K}(\xi) \cong \operatorname{Hom}\left(\mathbf{Z} / \tilde{\nu}(\xi) \mathbf{Z}, I_{K} / P_{K}(\xi)\right)
$$

This proves the first statement. The second statement follows from this and the isomorphism $I_{K} / P_{K}(\xi) \cong \operatorname{Gal}\left(L_{\xi} / K\right)$. Q.E.D.

As an illustration of the above proposition, we consider the case where K contains an imaginary qudratic field $k=\mathbb{Q}(\sqrt{-m})$ with the discriminant $-m$. Let $H=$ $G(K / k)$ and $\xi=s(H) \in A_{K}$ the sum of elements of H. Then the above proposition says that $\tilde{\nu}(\xi)$ divides $h_{k} / 2^{r-1}$, where h_{k} denotes the class number of k and r is the number of prime number dividing m. Indeed, if we denotes by $C l_{K}$ and $C l_{k}$ the ideal
class group of K and k respectively, then the subgroup of $C l_{K}$ which corresponds to L_{ξ} is the kernel of the norm map $N_{K / k}: C l_{K} \longrightarrow C l_{k}$. Therefore we have

$$
\left[L_{\xi}: K\right]=\left|N_{K / k}\left(C l_{K}\right)\right|=\left[k^{u r}: k^{u r} \cap K\right]
$$

where $k^{u r}$ denotes the Hilbert class field of k. The genus theory of quadratic fields implies that the last index is $h_{k} / 2^{r-1}$.

§3. The structure of S_{k} and the index $\left[A_{k}: S_{k}\right]$.

In this section and next section we will assume that $\operatorname{ord}_{2}(m)=0,2$ or 3 and or $d_{p}(m)=0$ or 1 for any odd prime number p. Let k_{0} be the composite field of all quadratic fields in K and put $H_{0}=\operatorname{Gal}\left(K / k_{0}\right)$. Let k be a subfield of k_{0}, which will be assumed to be imaginary throughout this section. Thus the degree $[k: \mathbb{Q}]=2^{n}$ for an integer n such that $1 \leq n \leq r$, where r is the number of prime factors of m. We denote by k^{+}the maximal real subfield of k. Let D_{k} and $D_{k^{+}}$be the discriminants of k and k^{+}respectively. We set

$$
D_{k}^{-}=D_{k} / D_{k+} .
$$

Let $\Gamma=G a l(k / Q)$ and $\hat{\Gamma}$ the character group of Γ. We denote by $\hat{\Gamma}^{-}$the set of odd characters of Γ, i.e.

$$
\hat{\Gamma}^{-}=\{\chi \in \hat{\Gamma} \mid \chi(j)=-1\}
$$

which is non-empty since k is imaginary. For each character $\chi \in \hat{\Gamma}$, let d_{χ} be the conductor of χ. Then $\operatorname{or} d_{2}\left(d_{\chi}\right)=0,2$ or 3 , and $\operatorname{or} d_{p}\left(d_{\chi}\right)=0$ or 1 for any odd prime p. By the conductor-discriminant formula (see [Wa], Theorem 3.11), we find

$$
\begin{equation*}
D_{k}^{-}= \pm \prod_{x \in \tilde{\Gamma}^{-}} d_{\chi} \tag{1}
\end{equation*}
$$

If a is an integer, we define a non-negative intger $v(a)$ by

$$
v(a)=\sum_{p \mid a} \operatorname{ord}_{p}(a) .
$$

Now the main theorem in this section can be stated as follows.

Theorem 3.1. Let h_{k}^{-}be the relative class number of k / k^{+}and Q_{k} the unit index of k defined in $\S 1$. Let a_{k} be the number of odd character with odd conductor if m
is even, and $a_{k}=0$ otherwise. Then

$$
\left[A_{k}: S_{k}\right]=\frac{h_{k}^{-}}{Q_{k}} \cdot 2^{(2 v(m)+1-n) 2^{n-2}-v\left(D_{k}^{-}\right)-a_{k}} .
$$

Let $\Lambda_{k}=\bigoplus_{\chi \in \hat{\Gamma}^{-}} \mathbf{Z}$, then we have a ring homomrphism

$$
\psi_{k}: \mathbb{Q}[\Gamma] \longrightarrow \Lambda_{k} \otimes \mathbb{Q}
$$

which sends $[\sigma]$ to $(\ldots, \chi(\sigma), \ldots)_{\chi \in \hat{\Gamma}} \in \Lambda_{k}$ for any $\sigma \in \Gamma$. Let $e^{-}=(1-j) / 2 \in \mathbb{Q}[\Gamma]$. Then ψ_{k} induces an injection from $e^{-} \mathbb{Q}[\Gamma]$ into $\Lambda_{k} \otimes \mathbb{Q}$.

Proposition 3.2. The image $\psi_{k}\left(e^{-} A_{k}\right)$ of $e^{-} A_{k}$ is a sublattice of Λ_{k}. The index is given by

$$
\left[\Lambda_{k}: \psi_{k}\left(e^{-} A_{k}\right)\right]=2^{(n-1) 2^{(n-2)}}
$$

Proof: The first statement is clear since $\chi\left(e^{-}\right)=1$ for any $\chi \in \hat{\Gamma}^{-}$. To compute the index we define a integral matrix M of size 2^{n-1} by

$$
M=(\chi(\sigma))_{\chi \in \hat{\Gamma}^{-}, \sigma \in \Gamma /<j>} .
$$

Then it follows immediately from the definition of ψ_{k} that $\psi_{k}\left(e^{-} A_{k}\right)=M \Lambda_{k}$. Therefore the index $\left[\Lambda_{k}: \psi_{k}\left(e^{-} A_{k}\right)\right]$ equals $|\operatorname{det}(M)|$. Since $M^{t} M=2^{n-1} I$, we have $\operatorname{det}(M)= \pm 2^{(n-1) 2^{(n-2)}}$. This completes the proof. Q.E.D.

Recall that S_{k} is an ideal of A_{k}, hence $e^{-} S_{k} \subset e^{-} A_{k}$. We want to know the image of $e^{-} S_{k}$ by ψ_{k}. For each $\chi \in \hat{\Gamma}$, we denote by $B_{1, \chi}$ the generelized Bernoulli number. Then it is well known that $B_{1, \chi}$ equals the class number of the quadratic
field corresponding to χ if $\chi \in \hat{\Gamma}^{-}$. The following proposition is fundamental in the proof of Therem 3.1.

Proposition 3.3. For each $\chi \in \hat{\Gamma}^{-}$, let $\varepsilon_{\chi}=1$ if m is even and d_{χ} is odd, and $\varepsilon_{X}=0$ othewise. Then

$$
\begin{equation*}
\psi_{k}\left(e^{-} S_{k}^{\prime}\right)=\bigoplus_{\chi \in \tilde{\Gamma}^{-}} 2^{v\left(m / d_{\chi}\right)-\varepsilon_{x}} B_{1}, \chi \tag{2}
\end{equation*}
$$

Proof: If we denote by proj_{k} the projection map from $\Lambda_{k_{0}} \otimes \mathbb{Q}$ to $\Lambda_{k} \otimes \mathbb{Q}$, then $\psi_{k}\left(e^{-} S_{k}\right)=\operatorname{proj}_{k}\left(\psi_{k_{0}}\left(e^{-} S_{k_{0}}\right)\right)$. It therefore suffices to show the proposition for $k=k_{0}$. The idea of the proof is to construct an element α_{χ} of $R^{\prime H_{0}}$ for each $\chi \in \hat{\Gamma}$, which satisfies the following condition.

$$
\chi^{\prime}\left(\theta\left(\alpha_{\chi}\right)\right)= \begin{cases}\left|H_{0}\right| 2^{v\left(m / d_{\chi}\right)-\varepsilon_{\chi}} B_{1, \chi}, & \text { if } \chi^{\prime}=\chi \tag{3}\\ 0, & \text { otherwise }\end{cases}
$$

If $\chi \in \hat{\Gamma}$, then χ has the decomposition $\chi=\chi_{1} \ldots \chi_{s}$, where χ_{i} 's $\in \hat{\Gamma}$ are the characters uniquely determined by the following property:

$$
\begin{aligned}
& d_{\chi_{i}}=4,8 \text { or an odd prime } \\
& \left(d_{x_{i}}, d_{\chi_{j}}\right)=1, \quad i \neq j
\end{aligned}
$$

For each $\chi \in \hat{\Gamma}$, we define a subgroup H_{χ} of $(\mathbf{Z} / m \mathbf{Z})^{\times}$by

$$
H_{\chi}=\left\{\left.t \in H_{0}\right|_{\chi_{i}(t)=1 \text { for all } i} ^{t \equiv 1\left(\bmod m / d_{\chi}\right), \text { and }} \begin{array}{l}
t
\end{array}\right\}
$$

and set

$$
\gamma_{X}=\sum_{t \in H_{x}}[t] .
$$

Then γ_{X} is an element of R^{\prime}, and clearly $\left[m / d_{\chi}\right] \gamma_{\chi} \in R^{\prime H_{0}}$. For any divisor d of m, we denote by Q_{d} (resp. Q_{d}°) the submodule of $R^{H_{0}}$ generated by $\left[m / d_{\chi}\right] \gamma_{X}$ for all $\chi \in \hat{\Gamma}$ with $d_{\chi} \mid d$ (resp. $d_{\chi} \mid d$ and $d_{\chi}<d$).

We now need two lemmas below.

Lemma 3.4. Let d be any divisor of m and t any element of $(\mathbf{Z} / m \mathbf{Z})^{\times}$. Let χ be any character of Γ. Then we have $\chi(\theta([m / d][t]))=0$ unless $d \mid d_{\chi}$ and $\chi \in \tilde{\Gamma}^{-}$, in which case we have

$$
\chi\left(\theta\left(\left[\frac{m}{d}\right][t]\right)\right)=\frac{\varphi(m)}{\varphi(d)} \chi(t) \prod_{p \mid d_{\chi} / d}(1-\chi(p)) \cdot B_{1, \chi}
$$

Proof: See for example [L1] or [A].

Lemma 3.5. Let $\chi_{0} \in \hat{\Gamma}$ be any character with an odd conductor $d:=d_{\chi_{0}}$. Let β be any element of R^{\prime} such that, for any $\chi \in \hat{\Gamma}, \chi(\theta(\beta))=0$ if $d_{\chi}+d$ and $\chi(\theta(\alpha)) \in$ $\left|H_{0}\right| 2^{v\left(m / d_{\chi}\right)-\varepsilon} B_{1, \chi} \mathbf{Z}$ if $d_{\chi} \mid d$, where $\varepsilon=1$ if m is even, and 0 otherwise. Then there exists an element $\gamma \in Q_{d}^{\circ}$ such that

$$
\begin{equation*}
\chi(\theta(\beta+\gamma))=0 \tag{4}
\end{equation*}
$$

for any $\chi \neq \chi_{0}$.

Proof: Put

$$
\gamma=\sum_{\substack{\chi^{\prime} \in \hat{\Gamma} \\ d_{x^{\prime}} \mid d, d_{x^{\prime}}<d}} c_{\chi^{\prime}}\left[\frac{m}{d_{\chi^{\prime}}}\right] \gamma_{\chi^{\prime}} \in Q_{d}^{\circ} .
$$

We want to show that we can take integers $c_{\chi^{\prime}}$'s so that γ has the property (4). It follows from Lemma 3.4 that $\chi(\theta(\gamma))=0$ if $d_{\chi}+d$, hence (4) holds in this case. If $d_{\chi} \mid d$, then by the same lemma

$$
\begin{equation*}
\chi(\theta(\gamma))=\sum_{\substack{\chi^{\prime} \in f \\ d_{\chi}\left|d_{\chi^{\prime}}\right| d}} c_{\chi^{\prime}} \frac{\varphi(m)}{\varphi\left(d_{\chi^{\prime}}\right)}\left|H_{\chi^{\prime}}\right| \prod_{p \mid d_{\chi^{\prime}} / d_{\chi}}(1-\chi(p)) \cdot B_{1, \chi} \tag{5}
\end{equation*}
$$

Since $\left|H_{\chi^{\prime}}\right|=\varphi\left(d_{\chi^{\prime}}\right) / 2^{v\left(d_{\chi^{\prime}}\right)}$ and $\left|H_{0}\right|=\varphi(m) / 2^{v(m)-\varepsilon}$, we have

$$
\frac{\varphi(m)}{\varphi\left(d_{\chi^{\prime}}\right)}\left|H_{\chi^{\prime}}\right|=\left|H_{0}\right| 2^{v\left(m / d_{x}\right)-\varepsilon}
$$

hence the right hand side of (5) is equal to

$$
\left|H_{0}\right| 2^{v\left(m / d_{\chi}\right)-\varepsilon} B_{1, \chi} \sum_{\substack{\chi^{\prime} \in \hat{\Gamma} \\ d_{x}\left|d_{x^{\prime}}\right| d}} c_{\chi^{\prime}} \prod_{p \mid d_{x^{\prime}} / d_{x}} \frac{1-\chi(p)}{2} .
$$

Hence (4) is equivalent to the following equality

$$
b_{\chi}+c_{\chi}+\sum_{\substack{\chi^{\prime} \in \tilde{\Gamma} \\ d_{\chi}\left|d_{x^{\prime}}\right| d \\ d_{\chi}<d_{\chi^{\prime}}<d}} c_{\chi^{\prime}} \prod_{\substack{p \mid d_{x^{\prime}} / d_{\chi}}} \frac{1-\chi(p)}{2}=0,
$$

where b_{χ} is an integer determined by $\chi(\theta(\beta))=\left|H_{0}\right| 2^{v\left(m / d_{X}\right)-\varepsilon} B_{1, \chi} b_{\chi}$. Since $c_{\chi^{\prime}}$ and $\left(1-\chi^{\prime}(p)\right) / 2$ are integers, we can take integers $c_{\chi^{\prime}}$ inductively. Q.E.D.

We continue the proof of Proposition 3.3. Take a character χ and fix it. First suppose that $d:=d_{\chi}$ is odd. Put

$$
\beta=\left[\frac{m}{d}\right] \gamma_{\chi}
$$

Then one can easily check that β satisfies the condition in Lemma 3.5. Let $\gamma \in Q_{d}^{\circ}$ be the element obtained by applying that lemma to β, and put

$$
\alpha_{\chi}=\beta+\gamma
$$

Then $\chi\left(\theta\left(\alpha_{\chi}\right)\right)=\chi((\theta(\beta)))=\left|H_{0}\right| 2^{v(m / d)-\varepsilon_{\chi}}$ and $\chi^{\prime}\left(\theta\left(\alpha_{\chi}\right)\right)=0$ for any $\chi^{\prime} \neq \chi$, hence α_{χ} satisfies (3).

Next consider the case where d is even, say $e=2^{o r d_{2}(d)}=4$ or 8 . Let χ_{1} be the unique element of $\hat{\Gamma}^{-}$with $d_{x_{1}}=d / e$. We put

$$
\beta^{\prime}= \begin{cases}{\left[\frac{m}{d}\right] \gamma_{X},} & \text { if } \chi_{1}(2)=1 \\ {\left[\frac{m}{d}\right] \gamma_{X}+\left[-\frac{m}{d / e}\right] \gamma_{\chi_{1}},} & \text { if } \chi_{1}(2)=-1\end{cases}
$$

Then it is easy to see that $\chi\left(\theta\left(\beta^{\prime}\right)\right)=\left|H_{0}\right| 2^{v(m / d)}$ and $\chi^{\prime}\left(\theta\left(\beta^{\prime}\right)\right)=0$ if $\frac{d}{e}|\delta| d$ and $\delta<d$. Let $\gamma^{\prime} \in Q_{d / e}^{\circ}$ be the element obtained by applying Lemma 3.5 to β^{\prime}. If we put

$$
\alpha_{\chi}=\beta^{\prime}+\gamma^{\prime},
$$

then α_{χ} satisfies the condition (3).
Now we note that there exists an element $\eta_{\chi} \in S_{k_{0}}^{\prime}$ such that $\operatorname{cor}_{K / k_{0}}\left(\eta_{\chi}\right)=\theta\left(\alpha_{\chi}\right)$. Indeed this follows from the fact that $\alpha_{\chi} \in R^{\prime H_{0}}$ and the relation

$$
\begin{equation*}
\operatorname{cor}_{K / k_{0}}\left(S_{k_{0}}^{\prime}\right)=\operatorname{cor}_{K / k_{0}}\left(r e s_{K / k_{0}}\left(S_{K}^{\prime}\right)\right)=\theta\left(R^{\prime H_{0}}\right) \tag{6}
\end{equation*}
$$

Since $\operatorname{cor}_{K / k_{0}}$ is a G-module homomorphism, we find $\left[H_{0}\right] \chi^{\prime}\left(\eta_{\chi}\right)=\chi^{\prime}\left(\theta\left(\alpha_{\chi}\right)\right)$, hence

$$
\chi^{\prime}\left(\eta_{\chi}\right)= \begin{cases}2^{v\left(m / d_{\chi}\right)-\varepsilon_{x}} B_{1, \chi}, & \text { if } \chi^{\prime}=\chi \\ 0, & \text { otherwise }\end{cases}
$$

The proof of Proposition 3.3 is complete if we show that η_{χ} 's generate $S_{k_{0}}^{\prime}$ as a $G / H_{0^{-}}$ module. But this is clear from (6) since $R^{\prime H_{0}}$ is generated by α_{χ} 's as a G / H_{0}-module. Q.E.D.

Let U_{k} a the submodule of $\mathbb{Q}[\Gamma]$ defined in [Sin2], Corollarly to Proposition 2.2. We do not give the definition in this paper. What we need here is the following relation between S_{k}^{\prime} and U_{k} :

$$
\chi\left(S_{k}^{\prime}\right)=\chi\left(U_{k}\right) B_{1, \chi} \mathbf{Z} \text { for any } \chi \in \hat{\Gamma} .
$$

From this and Proposition 3.3 we have

Corollarly 3.6. Notation being as above, we have

$$
\psi_{k}\left(e^{-} U_{k}\right)=\bigoplus_{x \in \hat{\Gamma}^{-}} 2^{v\left(m / d_{x}\right)-\varepsilon_{x}} \mathbf{Z}
$$

Proof of Theorem 3.1: For any two submodules X, Y of A_{k} we denote by ($X: Y$) the generalized index. (See $[\operatorname{Sin} 1]$ for the definition.) By $[\operatorname{Sin} 2]$, Theorem 2.2, we have

$$
\begin{equation*}
\left[A_{k}: S_{k}\right]=\frac{h_{k}^{-}}{Q_{k}} \cdot\left(e^{-} A_{k}: e^{-} U_{k}\right) \tag{7}
\end{equation*}
$$

If we recall that the map ψ_{k} is injective on $e^{-} Q[\Gamma]$, we can easily see that

$$
\left(e^{-} A_{k}: e^{-} U_{k}\right)=\frac{\left[\Lambda_{k}: \psi_{k}\left(e^{-} U_{k}\right)\right]}{\left[\Lambda_{k}: \psi_{k}\left(e^{-} A_{k}\right)\right]}
$$

In Proposition 3.3 we have already calculated the denominator. As for the numerator, by Corollarly 3.6 , we have

$$
\left[\Lambda_{k}: \psi_{k}\left(e^{-} U_{k}\right)\right]=\prod_{\chi \in \hat{\Gamma}^{-}} 2^{v\left(m / d_{x}\right)-\varepsilon_{X}}=2^{v(m) 2^{n-1}-v\left(D_{k}^{-}\right)-a_{k}}
$$

Here we have used the following relation:

$$
\sum_{\chi \in \hat{\Gamma}^{-}} v\left(d_{\chi}\right)=v\left(D_{k}^{-}\right)
$$

which is clear from (1). Hence

$$
\left(e^{-} A_{k}: e^{-} U_{k}\right)=2^{(2 v(m)-n+1) 2^{n-2}-v\left(D_{k}^{-}\right)-a_{k}}
$$

Combining this and (7), we obtain the desired formula. Q.E.D.

§4. Calculation of $\nu(\xi)$.

Let K and k_{0} be as in $\S 3$. We denote by Γ_{0} the Galois group $\operatorname{Gal}\left(k_{0} / \mathbb{Q}\right)$. For each $a \in \mathbf{Z} / m \mathbf{Z}$, define $\tilde{\theta}(a) \in \mathbb{Q}[G]$ by

$$
\tilde{\theta}(a)=\sum_{t \in(\mathbf{z} / m \mathbf{Z})^{\times}}\left(\left\langle\frac{t a}{m}\right\rangle-\frac{1}{2}\right) \sigma_{t}^{-1} .
$$

Note that $\tilde{\theta}(-a)=-\tilde{\theta}(a)$, hence. $\tilde{\theta}(a) \in e^{-} S_{K}^{\prime}$. Extending it linearly, we obtain a G-module homomorphism

$$
\tilde{\theta}: R^{\prime} \longrightarrow e^{-} S_{K}^{\prime}
$$

Clearly $\tilde{\theta}$ is surjective. Let B be the kernel of $\tilde{\theta}$. Thus we have the following short exact sequence of G-modules

$$
0 \longrightarrow B \longrightarrow R^{\prime} \xrightarrow{\bar{\theta}} e^{-} S_{K}^{\prime} \longrightarrow 0
$$

Taking the cohomology groups $H^{*}\left(H_{0},-\right)$, we obtain a long exact sequence

$$
0 \longrightarrow B^{H_{0}} \longrightarrow R^{H_{0}} \xrightarrow{\bar{\theta}}\left(e^{-} S_{K}^{\prime}\right)^{H_{0}} \xrightarrow{\delta} H^{1}\left(H_{0}, B\right) \longrightarrow H^{1}\left(H_{0}, R^{\prime}\right) \longrightarrow .
$$

From this and the next lemma we obtain the following exact sequence

$$
\begin{equation*}
0 \longrightarrow \tilde{\theta}\left(R^{H_{0}}\right) \longrightarrow\left(e^{-} S_{K}^{\prime}\right)^{H_{0}} \xrightarrow{\delta} H^{1}\left(H_{0}, B\right) \longrightarrow 0 . \tag{1}
\end{equation*}
$$

Lemma 4.1. $H^{1}\left(H_{0}, R^{\prime}\right)=0$.
Proof: For each divisor d of m, let $G_{d}=\operatorname{Gal}\left(K / Q\left(\zeta_{d}\right)\right)$. Then R^{\prime} is isomorphic to

$$
\bigoplus_{\substack{d \mid m \\ d<m}} \mathbf{Z}[G]^{G_{d}}
$$

as a G-module, hence

$$
H^{1}\left(H_{0}, R^{\prime}\right) \cong \bigoplus_{\substack{d \mid m \\ d<m}} H^{1}\left(H_{0}, \mathbf{Z}[G]^{G_{d}}\right)
$$

The inflation-restriction exact sequence shows that the sequence

$$
0 \longrightarrow H^{1}\left(H_{0} / H_{0} \cap G_{d}, \mathbf{Z}[G]^{G_{d}}\right) \longrightarrow H^{1}\left(H_{0}, \mathbf{Z}[G]^{G_{d}}\right) \longrightarrow H^{1}\left(H_{0} \cap G_{d}, \mathbf{Z}[G]^{G_{d}}\right)
$$

is exact. The first group is trivial since $\mathbf{Z}[G]^{G_{d}}$ is a free $H_{0} / H_{0} \cap G_{d}$-module, and the last one is also trivial since $H_{0} \cap G_{d}$ acts trivially on $\mathbf{Z}[G]^{G_{d}}$. Therefore $H^{1}\left(H_{0}, \mathbf{Z}[G]^{G_{d}}\right)=0$ for any d. This proves the lemma. Q.E.D.

Now, for any $\xi \in A_{K}^{H_{0}}$ with weight w, let V_{ξ} be the image of $\left(e^{-} S_{K}^{\prime}\right)^{H_{0}} \cap \mathbf{Z} \xi^{\prime}$ under the map δ in (1), where $\xi^{\prime}=\xi-\frac{w}{2} s(G)$. We then have an exact sequence with ovbious maps

$$
0 \longrightarrow V_{\xi} \longrightarrow \mathbf{Z} \xi^{\prime} /\left(\tilde{\theta}\left(R^{\prime H_{0}}\right) \cap \mathbf{Z} \xi\right) \longrightarrow \mathbf{Z} \xi^{\prime} /\left(e^{-} S_{K}^{\prime} \cap \mathbf{Z} \xi^{\prime}\right) \longrightarrow 0 .
$$

Since $\mathbf{Z} \xi^{\prime} /\left(e^{-} S_{K}^{\prime} \cap \mathbf{Z} \xi^{\prime}\right) \cong \xi \mathbf{Z} /\left(S_{K} \cap \mathbf{Z} \xi\right)$, we have

$$
\nu(\xi)=\frac{\left[\mathbf{Z} \xi^{\prime}: \tilde{\theta}\left(R^{\prime H_{0}}\right) \cap \mathbf{Z} \xi^{\prime}\right]}{\left|V_{\xi}\right|} .
$$

Proposition 4.2. Let ε_{χ} be as in Proposition 3.3. Let ξ_{0} be an element of $\mathbf{Z}\left[\Gamma_{0}\right]$ such that $\xi=\operatorname{cor}_{K / k_{0}}\left(\xi_{0}\right)$. Then

$$
\left[\mathbf{Z} \xi^{\prime}: \tilde{\theta}\left(R^{\prime H_{0}}\right) \cap \mathbf{Z} \xi^{\prime}\right]=\underset{\chi \in \hat{\Gamma}_{0}^{-}, \chi\left(\xi_{0}\right) \neq 0}{L . C . M .}\left\{\frac{2^{v\left(m / d_{x}\right)-\varepsilon_{x}} B_{1, \chi}}{\left(2^{v\left(m / d_{x}\right)-\varepsilon_{x}} B_{1, \chi}, \quad \chi\left(\xi_{0}\right)\right)}\right\} .
$$

Before going into the proof of the proposition, we state an elementary lemma. We leave the proof to the reader.

Lemma 4.3. Let $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ be positive integers and put $\alpha=\left(a_{1}, \ldots, a_{n}\right) \in$ \mathbf{Z}^{n}. Let $X=\mathbf{Z} \alpha$ and $Y=b_{1} \mathbf{Z} \oplus \ldots \oplus b_{n} \mathbf{Z}$. Then

$$
[X: X \cap Y]=L . C . M .\left\{\frac{b_{1}}{\left(a_{1}, b_{1}\right)}, \ldots, \frac{b_{n}}{\left(a_{n}, b_{n}\right)}\right\} .
$$

Proof of Proposition 4.2: For any element η of $\mathbf{Z}[G]^{H_{0}}=\operatorname{cor}_{K / k_{0}}\left(\mathbf{Z}\left[\Gamma_{0}\right]\right)$, take any element η_{0} of $\mathbf{Z}\left[\Gamma_{0}\right]$ such that $\eta=\operatorname{cor}_{K / k_{0}}\left(\eta_{0}\right)$. Let $\psi_{0}(\eta)=\psi_{k_{0}}\left(\eta_{0}\right)$, where $\psi_{k_{0}}$ is the map defined in $\S 3$. Then ψ_{0} defines an injection

$$
\psi_{0}: e^{-} \mathbb{Q}[G]^{H_{0}} \hookrightarrow \bigoplus_{x \in \Gamma_{0}^{-}} \mathbb{Q} .
$$

Note that both $\tilde{\theta}\left(R^{\prime H_{0}}\right)$ and $\mathbf{Z} \xi^{\prime}$ are contained in $e^{-} \mathbf{Q}[G]^{H_{0}}$. Hence ψ_{0} induces the isomorphism

$$
\tilde{\theta}\left(R^{\prime H_{0}}\right) \cap \mathbf{Z} \xi^{\prime} \xrightarrow{\sim} \psi_{0}\left(R^{\prime H_{0}}\right) \cap \mathbf{Z} \psi_{0}\left(\xi^{\prime}\right) .
$$

By Proposition 3.3 we have

$$
\psi_{0}\left(\tilde{\theta} R^{\prime H_{0}}\right)=\psi_{0}\left(S_{k_{0}}^{\prime}\right)=\bigoplus_{x \in \hat{\Gamma}_{0}^{-}} 2^{v\left(m / d_{\chi}\right)-\varepsilon_{x}} B_{1, \chi} \mathbf{Z}
$$

On the other hand, by definition, we have

$$
\psi_{0}\left(\xi^{\prime}\right)=\left(\ldots, \chi\left(\xi_{0}\right), \ldots\right)_{\chi \in \hat{\Gamma}_{0}^{-}}
$$

Then, by applying Lemma 4.3 to $X=\psi_{0}\left(\mathbf{Z} \xi^{\prime}\right), Y=\psi_{0}\left(\tilde{\theta}\left(R^{H_{0}}\right)\right)$, we get the desired formula. Q.E.D.

It seems difficult to determine the order $\left|V_{\xi}\right|$ exactly in general. In what follows we consider the following condition on m.

$$
\begin{equation*}
p \equiv 3(\bmod .4) \text { for any odd prime divisor } p \text { of } m . \tag{2}
\end{equation*}
$$

Proposition 4.4. If m satisfies the condition (2), then $H^{1}\left(H_{0}, B\right)=0$. In particular, $V_{\xi}=0$.

Proof: Clearly it suffices to show the first statement. Let B^{*} be the submodule of B generated by "standard elements":

$$
\begin{array}{ll}
\sum_{i=0}^{p-1}\left[a+\frac{i m}{p}\right]+[-p a], & p \mid m, p=\text { odd }, p a \neq 0 \\
{[a]+\left[a+\frac{m}{2}\right]+[-2 a]+\left[\frac{m}{2}\right],} & 2 \mid m, 2 a \neq 0
\end{array}
$$

and $[a]+[-a]$ for all $a \in \mathbf{Z} / m \mathbf{Z} \backslash\{0\}$. Then it is known that B / B^{*} is an elementary abelian group of exponent 2. (See $[\mathbf{Y}],[\mathbf{K u}]$ or $[\mathbf{A}]$.) From the exact sequence

$$
0 \longrightarrow B^{*} \longrightarrow B \longrightarrow B / B^{*} \longrightarrow 0
$$

we have an exact sequence

$$
H^{1}\left(H_{0}, B^{*}\right) \longrightarrow H^{1}\left(H_{0}, B\right) \longrightarrow H^{1}\left(H_{0}, B / B^{*}\right)
$$

The last group is zero since the order of H_{0} is prime to 2 by our assumption and B / B^{*} is a 2 -group. We must show that the first group is also zero. For that purpose let D be the submodule of B generated by elements of the form $[a]+[-a]$. Then it can be shown without difficulty that B^{*} / D is a free H_{0}-module and so $H^{1}\left(H_{0}, D\right)=0$. Hence from the exact sequence

$$
H^{1}\left(H_{0}, D\right) \longrightarrow H^{1}\left(H_{0}, B^{*}\right) \longrightarrow H^{1}\left(H_{0}, B^{*} / D\right)
$$

we find that $H^{1}\left(H_{0}, B^{*}\right)=0$. This completes the proof. Q.E.D.

Combining the results obtained so far, we have

Theorem 4.5. For any $\xi \in A_{K}$ such that $\xi=\operatorname{cor}_{K / k_{0}}\left(\xi_{0}\right)$ for some $\xi_{0} \in \mathbb{Z}\left[\Gamma_{0}\right]$, we have

$$
\nu(\xi)=\frac{1}{\left|V_{\xi}\right|} \cdot \underset{\chi \in \dot{\Gamma_{0}^{-}}, \chi\left(\xi_{0}\right) \neq 0}{L . C . M .}\left\{\frac{2^{v\left(m / d_{\chi}\right)-\varepsilon_{x} B_{1, \chi}}}{\left(2^{\left.v\left(m / d_{x}\right)-\varepsilon_{x} B_{1, \chi}, \quad \chi\left(\xi_{0}\right)\right)}\right.}\right\} .
$$

Moreover, if m satisfies the condition (2), then

$$
\nu(\xi)=\underset{\chi \in \dot{\Gamma_{\Gamma}^{\prime}} . C . M_{0}^{-}\left(\xi_{0}\right) \neq 0}{L . C}\left\{\frac{2^{v\left(m / d_{x}\right)-\varepsilon_{x}} B_{1, \chi}}{\left(2^{v\left(m / d_{\chi}\right)-\varepsilon_{x}} B_{1, \chi}, \quad \chi\left(\xi_{0}\right)\right)}\right\} .
$$

Remark 4.6. If $k=\mathbb{Q}(\sqrt{-m})$ is an imaginary quadratic field and $\xi=s(H)$, then the first statement of Theorem 4.4 implies that

$$
\nu(\xi)=\frac{1}{\left|V_{\xi}\right|} \cdot \frac{h_{k}}{\left(h_{k}, \chi\left(\xi_{0}\right)\right)}=\frac{h_{k}}{2^{r-1}\left|V_{\xi}\right|}
$$

since $\chi\left(\xi_{0}\right)=2^{r-1}$ for the unique nontrivial character $\chi \in \hat{\Gamma}$ and h_{k} is divisible by 2^{r-1}. In particular $\nu(\xi)$ divides $h_{k} / 2^{r-1}$. This is also a consequence of Proposition 2.4 if $\nu(\xi)=\tilde{\nu}(\xi)$. (See the discussion at the end of §2.) Moreover, if m satisfies the condition (2), then $\nu(\xi)=h_{k} / 2^{r-1}$. But, if m does not satisfy (2), then V_{ξ} is not necessarily zero. For example suppose that m is of the form

$$
m=p_{1} \ldots p_{r-1} q, \quad p_{i} \equiv 3 \quad(\bmod 4), q \equiv 5 \quad(\bmod 8)
$$

Then we can show that $\nu(\xi)=h_{k} / 2^{r}$, hence $\left|V_{\xi}\right|=2$. This, in particular, implies that $N_{K / k}\left(C l_{K}\right)$ is not a cyclic group.(See Proposition 2.4.)

References.

[A] Aoki, N., On Some Arithmetic Problems Related to the Hodge Cycles on the Fermat Varieties, Math. Ann 266 (1983), 23-54. (Erratum : Math. Ann. 267, 572 (1984)).
[B] Blasius, D., On the critical values of Hecke L-series, Ann. of Math 124 (1986), 23-63.
[D] Deligne, P., Valeurs de Fonction L et périodes d'intégrales, Proc. Sym. Pure Math. 33 (1979), 313-346.
[DMOS] Deligne, P., Milne, J., Ogus, A., Shih, K., "Hodge Cycles, Motives and Shimura Varieties," Springer Lect. Notes in Math, 900, 1982.
[I1] Iwasawa, K., A class number formula for cyclotomic fields, Ann. of Math. 76 (1962), 171-179.
[I2] \qquad Some remarks on Hecke characters, Algebraic Number Theory (Kyoto Int. Sympos.,1976) (1977), 99-108.
[K-H] Kimura, T. and Horie, K., On the Stickelberger Ideal and Relative Class Number, Trans. Amer. Math. Soc. 302 (1987), 727-739.
[Ku] Kubert, D., The universal ordinary distribution, Bull. Soc. Math. France 107 (1979), 179-202.
[L1] Lang, S., "Cyclotomic fields," Springer, 1978.
[L2] \qquad , "Complex Multiplication," Springer, 1983.
[Scha] Schappacher, N., "Periods of Hecke characters," Springer Lect. Notes in Math, 1031, 1988.
[Schm] Schmidt, C.-G., "Zur Arithmetik abelscher Varietäten mit komplexer Multiplikation," Springer Lect. Notes in Math, 1082, 1984.
[S-T] Shimura, G. and Taniyama, Y., "Complex Multiplication of Abelian Varieties and its Applications to Number Theory," Publ. Math. Soc. Japan, 1961.
[Si1] Sinnott, W., On the Stickelberger ideal and the circular units of a cyclotomic field, Ann. of Math. 108 (1978), 107-134.
[Si2] , On the Stickelberger ideal and the circular units of an abelian field, Inv. Math 62 (1980), 181-234.
[Si3] \qquad , On the Stickelberger ideal and the circular units of an abclian field, Séminaire de Théorie des Nombres, Paris (1981), 277-286.
[Wa] Wsahington, W., "Introduction to Cyclotomic Fields," Springer, 1982.
[We1] Weil, A., Jacobi sums as "Grössencharactere", Trans. Amer. Math. Soc. 73 (1952), 487-495.
[We2] _, Sommes de Jacobi et caractères de Hecke, Nachr. Akad. Wiss. Göttingen, Math.-Phys.Kl (1974), 1-14.
[Y] Yamamoto, K., The gap group of multiplicative relationship of Gaussian sums, Symp. Math. XV (1975), 427-440.

Max-Planck-Institut für Mathematik
Gottfried-Claren-strasse 26
5300 Bonn 3, BRD
and
Department of Mathematics
Rikkyo University
Nishi-ikebukuro, Tokyo, 171 Japan

