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~arge integral points on e11iptie curves

Don Zagier

In this note we will diseuss two questions:

i) given an elliptic eurve E over ~, say in Weierstrass form
2 3Y z:::x +ax+b

( a, b E ~), how to seareh efficiently for large integral solutions (x ,y), and

ii) how to construct elliptie curves whieh possess a large integral point.

Problem i) is usually handled by Skolem's p-adic method, or, in the ease

a=O, by factoring 2
Y -b in lQ (Ib) and applying results on linear forms in

logarithms [6,9]. We will describe three other methods. The first, whieh

is certainly not new, works if the curve E has all its 2-torsion points

defined over ~ (i.e., if the eubie polynomial x 3+ax+b' faetors completely

over Q). The second needs only one 2-torsion point to be rational (i.e.,

3x +ax+b =0 should have at least one rational root) but requires knowing

generators of the Mordell-Weil group E(~). The third method makes no

assumptions about the 2-torsion hut again requires knowing a basis of E(~).

This mcthod is known in principle und has been used for theoretical pllrposes,

but not, apparently, as an algorithm for actually finding integral points.

All three methods depend eventuallyon the fact that approximate solutions

of the equations

( 1) ar - ßs R1 ° or ar - ßs R1 Y (r,sE Z)

(a,ß,y given real numbers) cau be found rapidly by continued-fraction or

related algorithms, and all three require a search time of the order of

log log B to find solutions with lxi, Iyl ~ B .

For question ii) there seems to be no Reneral procedure. We will describe some

rather ad hoc' methods' and·-·give a list of equations 2 3y =x +ax+b having fairly
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large integral solutions relative to the size of the coefficients a and b .

§1. Searching for large integral.points

Method 1: Multiple Pell's equations

If an elliptic eurve over ~ has all its 2-torsion rational, it ean be

defined by an equation 2
Y =(x-a ) (x-a ) (x-a )123 with a. E Z, and Fermat descen t

1.

leads to a finite list of tripies (c
1
,c

2
,c

3
) such that any integral solution

these equations gives a Pell-type equation

Combining any two ofhas the form 2x-a. C c.n.
1. 1. 1.

( i = 1 ,2 ,3) f or some n . E 7l •
1.

2 2
c.n .. -c.n. =

1. 1. J J
a.-a. whose solutions

J 1.

belong to finitely many sequences of exponential growth, and this means that

log x is exponentia11y elose to a member of an arithmetie sequence {Clr+ß I rE~}

with Cl, ß ElR. Combining any two of these formulas for log x gives an equation

I' , + O(e-er)ar + ß =a r + ß (e > 0) of the form (1), and this can be solved in

time raughly O(log r) "" O(log log x).

As an example we take the old chestnut: when is the surn of the first TI

squares aperfeet square? This problem, often known as the "cannonbal1 problem"

because it appears in puzzle books (e.g. [5], #138) in terms of stacking cannon-.:

balls into a square pyramid, has been solved lang aga; the unique non-trivial.

solution 2 2 2 21 +2 +..• +24 = 70 .is connected with the eonstruc tion of the Leech

lattice [4] and hence has a certain importance in modern physics. The equation

2221 +... +n = m can be written

that any solution has the form

6m2
= n(n+1) (2n+1), and an easy cansidera tion shows

or

(2)

2
n = a ,

2
n "" 6a ,

2n+1 = 2b Zn+1 = 3c 2

20+1 = e 2

the two being exemplified by n=l and n=24, respectively. We eonsider only (2).

It leads to three Pell equations

2 2c - 12a = 1 ,

with solutions given by

2 2
b - 6a "" 1 (a,b,c >0)
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s
c + bl2 ::: (1 +12) , b +al6

. t
= (5+216) (r,s,t > 0, s acid).

n :::

and

(7+/48) 2r_2+( 7-/48) 2r
8

( 1+12) 2s-6 + ( 1-12) 2s
= ....;....-.....;;....----.,;,--~-

8

(5+/24) 2r-2+( 5+124).2 t
4

log n 2r log ( 7 + 148) - log 8 + 0(.1.)
n

(3) = 2s log ( 1 + 12) - log 8 + O(..!.)
n

= Zt log ( 5 + 124") - log 4 + o(..!.)
n

with exp1icit o( )-constants. Cambining any two of these leads to an approximate

equation of the form (1). The most convenient twa are the first twe, since the

terms log 8 drop out and we are 1eft with the homogeneous equatien

(4) r log ( 7 + 148) s log ( r + 12)

Any solution of this wou1d correspond to a very good rational approximation

s
r

(with s odd) of the real number

A = log ( 7 + 148)
log ( 1 + 12) = 2.9884215191386608004806174839497371923153521213522 ...

and cou1d be recognized by a very 1arge partial quotient in the continued fraction

expansion af A. This expansion begins [2,1,85,2,1,2,1,1,1, •.. ]. The 1arge

partial quotient 85 at the beginning corresponds to the rational approximation

3
T of and the the solution n = 24 o~ our original problem. Computing the

expansion further to as many terms as justified by the above.50 digits of A, we

find no further 1arge partial quotients, and this shows that (4) has no solution

25 10 25
under about 10 and consequently (2) no further solution under about 10 .

This bound wou1d be even 1arger if we had used a more accurate value of A, e.g.

10
100

10 if we had 200 rather than 50 digits; the time needed·for the computation

(of the decimal and then of the continued fraction expansion of A) is negligible

on even a modest computer. If we had taken a different pair of the equations (3)

or were looking at a different examp1e, then we wou1d have had to look at an

equation 1ike (4) but with an extra additive constant, i.e., an equarion 1ike

the second one in (1). A modification of the continued fraction algorithm permits
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one to salve such equations almost as fast as their homogeneous counterparts.

Method 2: Pell's equation and canonical height

Now suppose that our elliptic curve has only one rational 2-torsion point,

but that its Mordell-Weil group is known. As an example we take the curve

(5) E
2(x+ 7) (x -7x+ 19)

which by inspection has the small integral solutions

T = (-7,0), ±P """ (6,±13), tP + T ::::t (2, ~9) , ±2P = (-3,t14)

with 2T cO. By descent one shows easily that E(~) E;; Z $Z/Lll. with

generators P and T (a 2-descent over ~ can be carried out for any elliptic

curve having at least one rational 2-torsion point; see [8], pp. 301-304). If

(x,y) is an integer solution of (5), then x+7 is positive and the g.c.d. of

x+7 and x 2 -7x+19 is a divisor of 117=3 2.13, so x+7=da 2 , x 2-7x+19"""db 2 for

d E {1 ,3, 13,39}. The values d=3 and d=39 lead to a contradiction (if

x 2-7x+19 = (x+1)2_9 (x+1)+27 is divisible by an odd power of 3 then x+1 =0

mod 9 and (x+7)/3 cannot be a square or 13 times a square) and the value

d=l to the factorizable equation (2b)2_(2x-7)2"""27 whose only solutions

wi th x+ 7 a square are x = -3, x=2. We are left with

2x+7 = 13a 2
x - 7x + 19 =

The second of these equations can be written (2x-7)2_52b 2=-27 and has the

general solution

2x-7 + b/52 = or (±21 +3152) (649 +90152) .t

The solutions with -5+/52 and +21 +3/52 lead to x congruent to 1 or 5

(mod 9), incompatible with x+7=13a 2
• Also, from x == -7 (mod 13) we find that

.t must be even, so in fact

(6) 2x-7+b/52 """ (5+/5"2) (842401+116820/52) r or (-21+3f2s) (842401+116820152) r'

for same r, r' ~ o. The values r=O, r I =0 lead to the smail sol u tions x = 6

and x = -7, while r = 1 leads to the "Iarge" solution
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(x,y), = (5143326, ±11664498677) ( = ±5P ) .

But now we seem to have reaehed an impasse, for simply searehing through srnall

values of rand r t looking for x in (6) with (x~7)/13 aperfeet square

would first of all require huge aecuraey (sinee x grows very rapidly and one

eannot use an approximate value of an>integer to test whether it is a square)

and also would be ooly exponentially rather than doubly exponentially fast (i.e.,

wou1d require eomputing time of the order of log x rather than log log x). So

we need a seeond eondition on x to replaee the seeond Pell I s equation of

Hethod 1.

This seeond eondition is provided by the eanoniea1 height funetion. We do

not review the theory of the height (see, for instanee, Chapter VIII cf [S]),

but only reeall that it is a positive definite quadratie form

h: E(~)/(torsion) ----+ lR+

which is effeetive1y and rapidly eomputable (cf. [3] for an example of a high

aceuraeyeomputation). Suppose we have a 1arge solution (x,y) of (5) and

write it as mP or mP+T with mEZ. Then on the one hand

h«x,y))

sinee h is quadratie, and on the other hand by the definition of the height

h«x,y)) log x + e + ·o(..!.)
x

with e and the o( )-eonstant effeetively eomputab1e. (Again we refer to the

above sourees; observe that for an integral point on an el1iptic curve one wou1d

in general have h«x,y)) = log x +c.+O(x- 1 )
1

for one of a finite co11ection of

constants c., depending on congruence conditions on x modulo the various
1

primes of bad reduction of the curve.) Combining these two formu1as and our

Pell-type equation (6) gives the pair of equations

log x = rn + ß + o(..!.) or
x

m2h(P) - c + Q(..!.)
x

with a = 10g(842401+116820152), ß r= log 5+;5'2 1
-21 +3152

ß' = og 2 If we
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1S a square and write s instead of

we are left with a non-homogeneous approximate linear equation like the seeond

one in (1) which again ean be solved in roughly logarithm~e time with respect to

r er sand hence doubly legari thmic time with respee t to x, with only moderate

accuraey required. We omit the aetual computational details sinee our third

method will be superior anyway. Observe that the present method would also werk,

though not quite as w~ll, if the rank of E(~) were larg~r.than 1,. If, for: i~stance,

E(~) had two (known) generators P1 and P2' then the fact that the height is a

quadratie form would mean that the height of an unknewn large integral point

would be a quadratic form Tf we

and

we would

2then wri te s l' s2 and s 3 for the three unknown in tegers ID1 , ffi1m2
Z

(thus forgetting that s 1 and s3 are squares and 8 2 _= s 183 ) ,

have an equation of the form rcx +h 1s 1 +hZs Z +h3s
3

+ ßR:fQ, i.e. like (1) but

with more variables. This ean be solved reasonably quiekly by using the

algorithm of [7] instead of continued fractions.

Method 3: Group law on EQR)

The third method is based on the fact that the Mordell-Weil group E(~) is

a subgroup of E(R), whieh is isomorphie to the eircle group R~ or to two

eopies of the eirele group. We need only eonsider the identity component E(~)O

c.p( 0) ::z 0 = 1o
E(R)O

1
<o(T) ~ 2"

Figure 1

of E(R) sinee 1n the Weierstrass model Z 3Y =x +ax+b the other eomponent, if

there is oue, is compact and oue ean find all integral points on it by direct
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search. The isomorphism R/Z is given explicitly by

( y~ o·larges t real root of x 3 +ax+bcO) is the real per iod of E.

2 foo dx
Ix 3 +ax+b

y
here 11

(mod 1)
1
11

<.p(P) .(8)
co

f dx
~ Ix.3 +ax+b

if P = (E;tn) with n>O and by <,p(-P) = -<.pCp) if n<O

As an example we again take the curve (5). Here E(~) ~<PtT> with 2T=O·

and P =' (6 t 13) of infinite order. If P' = (l;, n) is a large integral solution
_1

of (5)t then ~(P') = O(~ 2) by (8)t the O( )-constant being kno~ explicitly.

On the other hand, pi =rP or rP +T for some r EZ so 'O(p') == np(P) or

1 cr 2

np(P) +"2 (mod 1). Also, l; > e for some c > 0 by the height considerations

discussed under "Method 2 t
ll sO q>(PI) = O(e-

cr2
/ 2). We thus have an approximate

equation of the form

e9) s = ( r t S € 7l ) ,

and this is an equation of the Ceasier, homogeneous) form (1) which can be solved

as usual by a continued fraction algorithm once we know ~(P) accurately.

Numerical integration on a pocket calculator gives <.pep) ~ 0.Z00041344203; this

has the obvious rational approximation ~t corresponding to the large integral

point (7), and no other good approximations (in the sense of (9)) with numerator

and denominator under around 106 , showing that (5) has no further integral

10
2.SX1011.

solution under about To go further t we need a more accurate value

of q>(P). Numerical integration would work t but there are better ways. The

denominator n in (8), a complete elliptic integral, can be calculated very

rapidly by Gauss's arithmetic-geometric mean, and the method can be extended

to cover also the incomplete elliptic integral in the numerator (Landen's'

transformation). This method is doubly exponential t i.e. t in n steps ,one gets

about Zn digits of accuracYt but requires evaluating a transcendental function

(see below). There is a simpler method which is only simply exponential but

requires only elementary arithmetic operations. NamelYt it is obvious from

equation (8), or from Figure l t that

y-coordinate and if y (Q) < O. since

for a point Q with positive

i i
<.p(Z Q) e 2 q>(Q) (mod 1) t we
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immediately obtain the binary expansion
. co

a' {~
if y(2 i p) > 0

(10) <c(p)- L
~

= -r a. i .
i=O 2~ 1 if y(2P)<0

Since doubling a point on 2 3 is given by the simple formulay = x +ax+b

Q c (x, y) a> 2 Q = ( A2 - 2x, A(3x - A2) - Y ) ( A = 3x
2

+a )
2y ,

this gives an easy way to compute tp(P) one binary digit at a time. Taking

167 terms of (10) gives the 50-digit value

~(P) ~ 0.20004134420460575588311129477140424985602364831619,

and this is enough (since its continued fraction has no very large partial

quotients after the initial [4,1,966,1, .•. ]) to show that (5) has no further

10
50

integral solutions after (7) under about 10 Again, we could push this

bound up further in negligible computer time if we had more than 50 digits cf

accuracy available. If we used Landen 1 s transformation mentioned above, then

(10) would be replaced by a formula of the form

( 11 ) tp(P) = a1 + 82 +
""2 4 + En

( 0< arctan(b ) < TI )
n

where b is a certain inductively computed algebraic number and
n

2
8 1 = 0(8 )n+ n

Then 10 terms (rather than 167) would suffice to give the above 50-digit value

of tp(p), and 12 (rather than.665) to give 200 digits. However, since the

problem of computing tp(P) is primarily on~ of accuracy,rather than time, anyway,

this more complicated method is not worth applying and we omit the formulas for

computing bn in (11).

As in Method 2, we could deal with curves of rank >1 by using the algorithm

of [7] rather than the continued fraction algorithm. Also, it is perhaps noting

tha t the func tion <.p is so easy to compu te us ing (10) tha t i t i s ac tually the

most convenient way to look for small linear dependences among rational or integral

points on elliptic curves.

~he integral points

For instance, the curve 2 3
Y = x +17 of rank 2 has

P1 (-2,3), P
2

= (-1,4), P3 c (2,S), P4 c (4,9), Ps

P6 = (43,282), P7 = (S2,375), P8 c (S234,378661)

(8,23),
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(and their negatives). Using (10) we find

tP(P 1) c . 432771019602809 ... <.p(P2) = .379909003461601 •..

<.p(P ~). = . 245451042667221 ... <.p(P
4

) = .187319976935588 ..•

<.p(P 5) = . 134457960794380 ... <.p(P 6 ) = .058131065731633 ...

<.p(P 7) = . 052862016141208 ... <.p(P s ) c .005269049590425 ...

and looking for smal1 linear dependencies (mod 1) by hand or by the algorithm.

of [7] we innnediately find the representations of P3 ,···, P8 as 2P 1+P Z'

-P 1-P 2 , -2P
1

, 3P
1
+2P 2 , P1-P 2 and 2P 1+3P 2 , respectively, the work involved

being probably 1ess than that needed to actually carry out the additions on

the e11iptic curve.

Remarks on finding all integral points

We have described three methods, each of which is doub1y exponentia1 and

in favorable circumstances permits one to find all integral points on an

10 100
e1liptic curve with coordinates up to a number of the order of 10 . The

question naturally arises whether this, in combination with the known upper

bounds on integral points given by Baker's results on linear forms in logarithms,

suffices to ensure that all integral solutions of an equation 2 3y cx +ax+b have

been found. Unfortunately, although the bound given by Baker's method ~s only

singly exponential in a polynomial in H = max{lal ,Ibl}, the constants involved

are so big that the bound is for all practical purposes actually trip1y exponential

even for H = 10 the published resu1t [1]

gives the upper bound

- 106

< exp«10 6H) )

106 . 8
lxI< 10 10 far bigger than the above 10 100

10

However, recently better estimates have been obtained by Masser and Wüstholz

based on analogues of Baker's bounds for elliptic rather than ordinary

logarithms (cf. [8], pp. 262-263); here "elliptic logarithmll refers to the

funu tion <.p: E (R) 0 ~ R/Z discus sed under "Method 3" above. The bes t bound

>

obtained (G. Wüstholz, not yet published) has the form

n+l-c(log r) log log r
e ( r = max Ir. I ).

l:Si~n ~

where c is a computable constant depending on E and on "p 1"."Pn whose value
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(not ye t compu ted numerically) shou ld be of the orde r of 1050 for n= 1 and E,
,., 2

P 1 ,of reasonable size. Together with the upper bound I<.pI < e-c r discussed above,

this should lead to abound on r small enough to permit the determination of all

integral points on E if the rank of E(lQ) is small and its generators are known.

§2. Curves with large integral points

We now turn to our second therne of finding examples of equations

( 12) 2 3
y = x + ax + b (a,bf71)

which have a large integral solution. We must first decide what we mean by

"large ." If x is any positive integer and we take for y the nearest integer

to 3/2 then ly 2-x 3
1 < 3/2 1

and we obtain a solution of ( 12) withx x +'4

Ibl :;; x/2, lai ~ x! + 1 . Since this works for all x , we want at least to

require that a ''1argd' solution have a = O(xO:) , b = O(xS)
3

This forces us to choose y = <x~> (nearest integer to

with

1.
x 2 ) ,

1
0: < 2' S < 1 •

b = smallest

residue (in absolute va lue) of y2_x 3 (mod x), a::l (y2_x3_b) /x in (12), i. e. ,

everything is determined by x. Since the apriori ranges of a and bare
1

O(x'!) and O(x), respective1y, the probability that a given x leads to a

0: S +S 3
solution with a = O(x ), b = D(x) is D(xO: -2), and we will expect infinitely

many such examp1es if the surn of this over all x diverges, i.e., if a+ 8 ~ ±.
In particular (specializing to a=O, 8=0, a=8 and 30:=28, respectively), we can

expect that for any E > ° the four assertions

2 3 + b ( x, y, b ELZ ) x S b 2+E ("Hall's conjecture ll
)y = x a>

2 3 + ax ( x, y, a EZ ) x S 2+E
Y x 0::::> a

2 3 (x,y,a,bEZ) x ~ max { I a I, 1b I }
4

+EY =x + ax + b 0::::>

2 3 (x,y,a,bEZ) x ;$ rnax{[al~,lbI1}10+Ey = x + ax + b *'*

hold with only finite1y many exceptions but that each has infinitely many

exceptions for E = 0. A reasonable rneasure of the irnpressiveness of a large

integral solution seerns to he the numher

( 13)
1 1

P = log (x) /log (max{ la 1
2 , I b 1

3 }
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3
XI is of the order of the p-th power of the roots of X +ax+b=O);

then asymptotieally we would not expee t to exeeed p = 10+ E: and would regard any

value of p near 10 as worth reeording.

The above suggests an exhaustive way to find good solutions of (12): we simply

1 2 -1 2 2 3try every value x::;: 1 , ... ,X, set y = <x 2 >, a = <y x - x >, b::::::l Y -x -ax and

record (a, b ,x ,y) if p is large enough. This method of eoming up with examples

is admittedly like the one Borho [2] anee likened ta that of draining a seetion

of a river dry and picking up the fish from the river bed, earning the seorn of

all real fishermen; neverthe1ess, it gives us astart. We ean make two slight

Zimprovement8. First of all,. if we write x =s +t with -8 < t :;; s (every positive
1

integer has a unique such representation) , then by the binomia1 theorem x 2 equals

3 3 3 -1 2
S + - st + -s t + co w~th I co I < 1 s a co te y asZ 8 .....L....., 0 we e n mpu

thus avoiding the non-elementary square root operation. Also, if we write

( 14) y
3 3st + r

s + Z r = 3 t 2
<-->4 s

(rejecting the solution if r1- st (mod 2)), then

which involves only numbers of the order of rather than

( 15) 2 3
y - x =

1 Z Z 2 37; [s ( 4s r- t ) + r + 6s t r] - t

xt 3
x , so we can

compute with modest accuracy. In this way we can fairly quickly find all

solutions of (12) with a and b fairly small relative to x and x less than

some chosen beund X. At my request, A. Odlyzko ran this algori thm on a Cray-l

up to X= 10
8 (running time: 4 minutes), printing out all ~olutions with

1 1-
lai ;;ij x 4 , Ibl :;i x 3 • He found 117 solutions in this range, of which 54 had the

form a = ±1 or ±Z and b =0, corresponding to the parametric solutions

( 16)
(x,y) = (64n6±8nZ, 51Zn9±96n5+3n)

(x,y) = (4n6±4n2 , 8n9±12n5+3n),

2 3 2
y =x ±x+n

y2 x3 ± 2x + n 2

with n:;i10, n~17, respectively. SOIDe of the best of the other 63 solutions

are listed in Table 1, with the corresponding values of p (note that p = 9 +

O( 1 ) for the families (16)). The curve (~) in this table is the curve (5)log n

used as an example in §1. Most of the curves in Odlyzkots tab1e had a relatively
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y p

(a)

(b)

(e)

(d)

(e)

(f)

(g)

(h)

( i)

(j)

(k)

( R.)

(m)

(n)

(0)

(p)

(q)

(r)

-2 . 5

4 -1

o 17

11 4

-13 37

-12 -10

-7 22

-9 28

-13 4

-19 -51

-24 124

-30 133

-37 60

-23 -33

:-16 49

27 -62

37 18

2 97

1,318

4,321

5,234

16,833

60, 721

80,327

484,961

764,396

1,056,517

2,955,980

-4,435,710

"5,143,326

11,975,623

1.7,454,557

19,103,002

28,844,402

64,039,202

90,986 ,608

4.7,849

284,038

378,661

2,183,948

14,962,645

22,766,293

337,722,676

668,309,460

1,085,962,264

5,082,205,677

9,342,104,422

11 ,664 ,498,677

41 ,442 ,61 7 , 124

72,922,784,957

83,493,454,805

154,914,585,540

512,470,496,030

855,047,718,145

13.39

12.08

9.07

8.12

8.59

9.09

12. 71

12.20

10.82

10. 12

9.53

9.09

9.03

10.64

12.09

10.42

9.96

12.01

Table 1. Some large solutions of (12)

large number of small integral points; only 8 (including the curves (h), (t),

(m) and (p) of Table 1) had a rational 2-torsion point.

We now try to construct families of eurves with big solutions. The first

idea is to choose x = 52+t with 3t 2 divisible by 45, s~nce this will g~ve

the best approximation of r to 3
4
t
s

2
in (14). If 4sr = 3t 2 then (15) reduces

to y2_x3 = ~t3 +~r2, and this can be made near a multiple of x =s2+t by

ehoosing ~t3 divisible by S2. The eonditions 4s13t 2 , 8s 2 [t 3 lead to

S = An 3, t = 2Aun 2, r = 3AU 2n and henee to

with A, u, n EZ and (to ensure integrality) 21Aun. The best values are obtained

with n large and A and u small. In partieular, the values u =±1, A= 1, 2

give the families (16), and any fixed values of A and u lead to an infinite

parametrie family with p = 9 + o( 1). We ean modify the family (17) by adding a
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constant c to the formula x = I.. 2n 6+2Aun 2 this leads after some calculation to

x ~ A2n 6 + 2Aun 2 + c

y = A3 n 9 + 3A 2un s + !A(u 2 +cn 2)ö
(18)

a = A6u - 3c 2

b tA2ö2n2 - cAou + 2c 3

with 1.., u, n, c EZ, 6:= u 2
- 3cn 2, and AonaO (mod 2). For fixed values of c and

o the equation u 2-3cn 2=ö "is a Pell's equation with (if any) infinitely many

integral solutions and we again get infinite families of examples with p c 9 + o( 1) .

For instance, taking A c öo:::l we find for c=2 and (n,u) c(20,49) the curve (q)

of Table 1, while taking c CI 4, 10, 1 and 6 and the smallest integer solution of

u 2_3cn 2=1 with n > 20 leads to the larger examples given in Tahle 2.

( s) y2 "'" x 3 + 49x - 64, x = 482,042,404 y 10,583,464,697,386

( t) y2 = x 3 - 59x + 74, x = 7,257,247,018 y = 618,241,079,050,562

(u) y2 = x 3 + 94x + 689, x = 30,841,587,841 y = 5,416,329,712,145,492

(v) y2 = x 3 + 469x + 1594, x = 6,327,540,232,326 y = 15,916,675,888,150,694,092

Table 2. Curves given by ( 18) with 1..=1, 0=1

Next, we analyze same of the large solutions in Table 1 to see if they have

a special form which can be generalized. The solutions in (b), (d), (i), (rn) and

(q) are of the form 3P for some P wi th small integral coordinates, those in (k)

and (t) havc the form 5P, und those of (h) and (r) hnve the form 2P + T whc re

2T =° (in fact, the solution in (h) has the form 4P + T with P c (-1 ,6) or (9, -26)

and T = (-4,0) ). This suggests looking for parametric families of curves with

integral points of one of these forms. We firnt need a small integral (or, in the

case of 2P+T, half-integral) point P on our curve. It is convenient to abandon

the standard Weierstrass form and instead shift x by x(P) so that P = (O,n)

for some n EZ, i. e., we take our curve in the form

( 19) E : 2 3 2 2 p (O,n) (R..,m,nE71 )y = x + R..x +mx + n , =

Then by direct calculation we have

x(2P)
rn 2

x(3P)
n 6 mn 2

= 7.":'1. - .t = k7 +
4n k
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1(2 2)where k c

S m.-4tn . Making 2P integral consists simply in requiring that

m D 2nh in (19) for some in teger h, bu t the corresponding 'value x (2P) = h 2_ t

is not particularly big, corresponding to the fact that there are no cases of

a point 2P in Table 1. Making x(3P) integral and large can be done most

easily by taking k c ±1 or, since only 8k need be integral, . k = ± t, ±t or

± ~, i. e. m2-4 tn 2 = ±1, ±2, ±4 or ±8. This has trivial solutions with t = 0,

m c ± 1 or ±2, leading to the families (16), and Pell-type solutions with l 1: 0

fixed and small, leading to the families (18). Thus w7.ßet nothing new with

this Ansatz. Of course, we may have k n (and hence ~P integral) for other

1 1 1
values of k than ± 1, ±"2' ± '4 or ±8' (as mentioned, several of the large solutions

found have the form 3P without belonging to the parametric family (18», but it

is not clear how to obtain infinite families of curves satisfying this.

He next try to make 5P integral as in the curves (k), (l) of Tab le 1. The

above f ormula für x (5P) is in tegral at k and n, so need solu tions of

(20)

in integers n, 8k, m with 8k-m2 divisible by n
2

It is not clear how to

solve this parametrically in general. However, our test curves (k) and (~)

have not only P and 5P, but also 2P

set p=l-h 2

reduces to

then our curve becomes

integral, i.e. 2nlm. Hrite m= 2nh and

y2 :::J x 3 + (h2+p)x2 + (Znh)x + n 2 and (20)

This is still hard to salve in full generality, but we can get two classes af

solutions by choosing either

Zn - ph cO,

or

2·
P - h = 0 2n - ph = ±1 .

The first does not lead to particularly large x(5P) , but the second gives
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4
m =h ±h x = h 14 1= 2h 11 + h8 ± 2h5 - 2h2

with x fairly large:.. To get n integral we take. h odd; we also choose 31 h

so that ~ i:i 0 (mod 3) and the equation (19) can he put into standard Weierstrass

form without introducing denominators. This gives the two families

with p = 7 + o( 1) . For h c 3 they give the curves (k) and (R.).

Finally, we consider the ease when 2P+T is integral for same P, where

T is a rational 2-torsion point. This time we shift coordinates to make T =

(0,0), so our eurve has an equation y2=X 3 +tx 2+mx. We assurne that P has the

examples (h) and (r), exeept that ~ has a denominator 2 whieh ean be removed

by resealing). Then x(2P)
~4_m 2

and x (2P+T) >:: rn/x (2P) Tf have= ( 2~n ) we

~4-m = ±1 , then x(2P) is the reeiproeal of a large integer and x(2P+T) is

integral and large. Both of our test curves are of this type with the + sign,

This leads to

where (E;,n) is a solution of the Pell' s. equa tion 2 2n -rE; =-1 \.Je look (or

l
r such that this equation has a solution with ~ of the order of r 2 ; then

R, =O(r), m =O(r2), x(2P+T) = O(r5) and our curve has p =5 + o( 1), the best that

can be at tained this way. We get some improvement by taking r 8 2 (mod 8)

(then E; and n are odd and we can divide R., m by 2
2

and 2
4) and r;:: 2 (mod 3)

(then 31R. and we can put our curve into standard Weierstrass form without extra

denominators) . This gives

(22)

2 ~ x 3 __1_(r2_4r~2+~4+3) x + 1_(r-2~2)(2r2-8r~2_E;4+9)
y 48 1728

2 2 4 "1" 2 1 4 6 4 2
(x,y) = (~ n (~ -1) +TI(r-2~ ), 4~n(1; -1)(4r~ -4~ -2rt,; +1» ,

r m 2 ( mo d 24), n2 - r S2 = -1 .

The values r = 2, (~, n) = (5,7) and r = 74, (~, n) = (5,4"3) give the curves (h)
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and (p) •. The values, r = 338, (~,Tl) = (13,239) give the curve (x) ~n Table 3

be1ow; this curve is especia11y interesting because it has b:::l 0, but this

never happens again with (22), since r c 2~2 leads to the equation n2 =2~4 - 1

whose on1y non-trivial solution is (13,239). Larger values of r give less

impressive solutions (since the family (22) has only p = 5 + o( 1) ), but sometimes

the coefficients a and b have the form for some smaller integers

A, 1-1, a 1 and b l' aud then the curve can be put in to the form 1-IY 2 = AX 3 +3 1x+b.1

with smaller coefficients. In this way the values r =218, 338, 5018 and 3170

(and (~,n) :::I sma1lest solution of n2=r~2-1) give the curves with large integral

points shown in Table 3.

(w) 2 3 50689092575 104179232100927326y <=5x +14x+19, x= y =
(x) 2 3 275702503440 144764163249358380Y cx + 1785x, x= yc

(y) 2 3 185532736100114 24631600184311173563844Y = 95x +9Jx-946, x= y =

( z) 2 3 x = 147235975797220556 Y = 3900572008246309345178734203y = 143x -9x+9116,

Table"3. Curves coming from equation (22)
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