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Introdﬁcfioﬁ.

On an analytic manifold X, a bundle E is said to be
flat.if it is associated to a representation of the fundamen-
tal group, or, equivalently, if there is an holomorpﬁic inte-
grable connection vV on E. In this article we construct
classes éb(E,v) E'Hzp(X,Z(p) ——>T) ., whose images in the

Deligne cohomology Hzp(x,z(p) >0 > .. —> Qp—1)

X X
are the Chern classes cg(E) in the Deligne cohomology. In

particular their images in HZP(X,%(p)) are the topological

tOP(g) (and their images ch(E) in

dimx
U

Chern classes cp
Hp(x,ﬂg'———> . —> ) vanish). Those classes

cp(E,V) are functorial ané additive.

The group H°(X,%Z(1) —> 0,) = H'(x,0§) is identified
with the group of isomorphism classes of rank one bundles.

P, Deligne ([1], (1.3)) remarked that the group

1
x)

isomorphism classes of rank one bundles with holomorphic

HZ(X,Z(T) —-——>_OX —_—> Q is identified with the group of
connections (E,v) . Therefore one sees that V 1is inte-
grable if and only if the class (E,V) 1lies in

Hz(x,Z(1) —_— ni) = H1(X,E*) . Qur construction relies on

this observation.

Suppose that E has a filtration by subbundles Ey such

that Ly = Ek/E is a rank one bundle and such that Vv

k-1

induces an integrable connection Vk on L

a flat filtration. If we define a product

K We call this

(B (p) —> C) x (E(g) —> C) —> (Z(p+tgq) —> )



which is compatible with the standard cup product and Deligne

product, we will define classes cp(E,V) as symmetric sum of’

-

the p-products of (kavk) which map to’ c;Op(E) and cg(E)

However such a filtration does not exist in general, and
of course if one considers a particular splitting morphism
f:P—> X of E , the corresponding canonical filtration

Ek is not flat. So one has to define a substitute for the

flatness on P

- Assume first that rank E=2 , and consider the canoni-

cal filtration of f*E on its projective bundle P by 0(1)

and n;/x(1) . The integrable connection ¢V defines a

morphism 1 Py —> Q; from the De Rham comolex of P to
TX ,
complex of X . Further Vv defines integrable rt-connections

1
)

VT and VT on 0(1) and QP/X(
1

P/)((1),‘J'T') in H2(P,Z(1) —_ Q%) . We.define a pro-

- a complex whose image on X is Rf*g; = Q the De Rham

1) , and classes (O(t),VT)
and (
duct by multiplying the class of (Q;/X(1)’V'r) by

c?oP(O(i)) to get.a class cz(f*E,f*v)EiH4(P,x(2) —_ 971) ’
whose image in -H4(P,Z(2)) is c§°p(f*E) . This implies in
particular tﬁat cz(f*E,f*V) = f*cz(E,V) for a well defined
class CZ(E,V)EZH4(X,Z(2) —> ) . It is not hard to compute

the compatibility with cg(E) .

If one has now a flat filtration L, <E and L2==E/L1 ’

one wishes the above construction gives the same class as be-

fore. As the r1-cohomology H'(P,Z(*) —> Q‘T) is not a free

module over H'(X,Z (‘)

> ), one can not apply Hirzebruch-



Grothendieck's formalism to prove this additivity properfy.
We show that the restriction of VT to the section of P
over X corresponding to L, is precisely Vy - This proves

essentially the additivity wanted.

For a higher rank.bundle,one has to repeat this construc-
tion (rank E-1} times. To do this we have to start with ge-
neral integrable t-connections. The necessary stﬁdy of formal
operations (like pull-back...) makes the article a bit techni-
nal. But basically the general construction follows the same

line as in the rank 2 case. One obtains the existence of simi-

lar classes for general integrable rt-connections with the

usual properties.

J. Cheeger and J. Simons ([3]) constructed in a diffe-

Val - -—
rential geometric framework classes cp(E) E-'{H2p !

(X,IR/E)
when X is a C~ manifold and E 1is a flat bundle. Follo-
wing S. Bloch ([2]) their images in the Deligne cohomology
are the classes cg(E) in the unitary case. M. Karoubi ([7])
constructed with K-theory and cyclic homology classes

ép(E)E Hzp_1(x,mﬂm(p)) when X 1is a simplicial set and

E is a flat bundle. One may ask what is the relationship

between cp(E,v), ép(E) and EP(E) . However we don't con-

sider this question here.

If D 1is a divisor with normal crossings on X, one
may perform the same construction for bundles E with an

integrable "logarithmic connection VvV along D . This leads




to classes cp(E,V,D)G HZP(X,Z(p)———> Rj,L) , where

j ¢+ X-D —> X 1is the open embedding, whose images in
HZP(X,z(p) —_— OX _ .. —> 95-1 <D>) are the images of
cg(E) . Those classes cp(E,V,D) arehfunctorial and additive.

One knows that if X has a Hodge structure and E 1is of
rank one with vanishing Atiyah class, all the homomorphic cdn~
nections Vv on E are integrable. This can be easily seen
in the language introduced before, namely one has
Hz(x,x(1)‘———> Ox _— Q;) = H2(X,z(1) _— Qi) . The corres-
ponding thing for highexr rank bundles is: if 'one has a Hodge
structure, then .

2 1
H(P,Z(1}) —> OP > f*nx)

Hz(P,Z(1) - >92r),' provided

td
Q'T is a complex, i.e (Td)2 = 0. The latter is therefore

equivalent to the integrability of Vv

I like to thank B. Angéniol with whom.I computed the
important point (0.7) some time ago (see (0.8)), C. Soulé
who told me a lot about Chern classes in the Deligne cohomology
(and sent me [8]) , J.L. Verdier and E. Viehweg for wvery
stimulating discussions. Finally I thank O. Gabber for poin-

ting out to me an error in an earlier version of this work.



§ 0. Preliminaries.

(0.1) X: analytic manifold over € of coyumplex dimension n
D: divisor with normal crossings on X
j : X-D —> X : open embedding
A(p) = (2in)p-A . for a Z-module A

2 : holomorphic De Rham complex with K#hler differen-
tial d

Qk<D>: holomorphic De Rham complex with logarithmic sin-
gularities; it is gquasi-isomorphic to Rj*m([4])

E: vector bundle of rank r on X

End E = OX @ EndoE via

Qp = % trace ¢ - id & mo

with trace wo = 0 : endomorphisms of E

(0.2) An holomorphic connection

Vv: E ~—> Q; 2 E is a (-linear morphism verifying the

Leibnitz-rule

T(A+x) = 2-9(x}) + dx*x , for a € Ox and x € E . One
defines

. o) . p+1

Vi Qg ®E > 9, ®E by

V(w@x)=(-—1)pdw@x+wf_\VX, for “’EQI;{ and x € E

One says that v is integréblé if (ey, ®E,V) is a complex,

or equivalently, if the curvature V2 € Homo‘(E,Qi ® E} vanishes.
The bundle E 1is said to be flat if some intzgrable connection.
exXists. Flat bundles are in one~-to-one correspondence with local

constant systems by the Riemann-Hilbert correspondence

{(E,V) }——>{L =Kexv}, {L} —>{L®0X , 184}
T



(0.3) On a trivializing open cover Ui of E on X define

Vs by declaring some basis to be flat. Then

: 1 o : .
- U, . ®'F
Vs Vj € T( lrwuj, 2,0 EndE) is a cocycle whose class in

H1IX,Q;9 EndE) is the Atiyah class . atE of E . Its va-
nishing is the obstruction for E to have an holomorphic con-
. P

nection. One ‘has ch(E) ={-‘l)p trace A atg G'Hp(x,np) ; Where
. X

ch(E) is .the De Rham Chern class. One has

atE = —rl "R (E)- identity o. at’E
If Eij is a cocycle representing the class of E in

g (X,62, (0)), then —e. o1,

df.. represents atE 7
ij ij

‘(C.4) One defines atDE to be the image of atE in
H1(X,Q;<D> ® EndE) . Its vanishing is the obstruction for
E to have an holomorphic connection with logarithmic poles

along D (same definition as in (0.2) where one replaces 9;
by Q;<D>) . Integrable logarithmic connections where studied

by P. Deligne [4]

(0.5) Define P = P(E) = Projx( gos'(E)) the projective bundle
n

of E , where S°(E) are the symmetric powers of E ,
£ : P ——> X, 0(1) as the relatively ample sheaf uniquely

determined by the exact sequence

1

q
P/Z(1) —> f*E ~—> (1) —> 0

(1) 0 —> @

where 91 are the relative holomorphic one forms.

P/X



One has the other fundamental sequence

1 i 1 P 1
— * - ———— —_—

Denote by T;/X the relative tangent sheaf.

(0.6) The sequence (0.5.0) is an extension class in

1 1

1 1 1

1 .
H (P,f*QX ® TP/X

|
T
5
0

.

= H (x,nx e Endo E)

Lemma. This class is atoE ; up to the sign.

Proof. It is enough to see that on any trivializing open set

U for E on X , some connection v defines a section of

p , and that QJ ] EndOiE acts on the connections on U as

f*n1 8 T1

: , -1
U P/X does on the sections of p on £ U

Vv being given, define

where £*v is defined to be f 19 on £ g , d on 0

— P

via the Leibnitz rule. Then o¢ 8 1

0(1) is OP-iinear.

(0.6.1) Claim. -0 is a section of p.

Proof. Let ek be a basis of E on U . Define tk==q(ek) .



A basis of n;/x(1) on £ T n(t%0) is given by
k
xk = ek - eo . One has
+0
k k
o © 1(x) = (1eq) (£*v & - &5 £xve?) - d(Eﬁ) - 0
t t
k k k
X t 1 k t 0
pc(—~) = - pd(——) = - — (e - =& e").
£0 0 £0 £0
v o . _ k& 1
If V' = V+a , with o = o € I‘(U,QX® EndE)Y , one has
k
{c'-0) ® 1(xk) = (18q) (ae it ae0>
t
ke, 6 t5 ¢ oe. e
=Zu t ——Zor. t
£ t 2
One sees that % traceti-id acts trivially, and that
1 0 X e 1
nu ® Fnd E acts as f QU ® TP/X does.

(0.7) Assume E to have an holomorphic connection Vv . This
defines ¢ as in (0.6) and 1 = 1+g¢p 1is a section of 1i.

With the notations of (0.6) one has

k
t

X
Td(Eﬁ) = 1 (eq) (£*ve”
t t

Define a Tt-connection VT on a sheaf F on P to be a

1
X

1— Leibnitz rule VT(A.x) = A.VT (x) + td)r.x , for X € 0

C-linear morphism VT: F —> f*Q, € F verifying the

P
and x € F

Lemma. t£*v 1s a t-connection on f*E such that

* .
Tt le;/X(1)

. . 1
— 1
is a gt-connection VT on QP/X(1) and



(18gYyt£*Vv is a well defined t-connection v, on 0(1) .

Proof. As - ¢ is a section of p ,

(18q) (1 = 0 . Therefore Q;/x(1) is stable un-

£*v)
der +tf*v , and the quotient (18qg)1f£*V is defined.

{0.8) Remark. In an effort to understand conditions for a
bundle to be flat, we computed some time ago (0.6) and (0.7)
with B. Angéniol. The point (0.6) is well known whereas the

point (0.7) will play an important role in this article.
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§ 1. Some conditions for a bundle to be flat.

(1.1) Let E be a rank one bundle. Its isomorphism class is

a class in H1(X,0*) <e:p H2(X,%(1) —> () , say of cocycle
. . v

gij € I‘(Ui n Uj,O*) in a Cech cover Ui‘
2 - . 2 n

morphism o _

B (%, % (1) —> ;) > H'(x, €*)

2 : ' 1
H (X, Z2(1)——> OX S nx)

is injective. One considers also the morphism

2 ‘ | 1
H lx,x(1) —_— 0X _ QX}
2 ~ 1

Lemma. i) The isomorphism classes of rank one bundles E with

holomorphic connections Vv build a group identified with

H2(X,Z(1) 0X _ ﬁ;) . Denote by (E,v) a class in
H (X, E(1) —> 0, —> o)) . Its image (E) in
Hz(x,z(1) e OX) is the isomorphism class of E .

ii) v is integrable if and only if

(E,V) € H2 (X, Z (1) ——> 2g) .

Proof. i) This is Deligne's point of view.

v
In some Cech cover V 1is given by one forms miE F(Ui,Q;)

e -1
verifying gij 'daij = wyTwy o (5ij

It is isomorphic to the class of (0,d) if and only if they

,mi) is the class wanted.



_‘l 1_

are functions £, €r(U.,0) verifying &,. = fi.f51 and

1]
w. = £.1.4f,
1 1 1

. . 0 2 n .

ii) The curvature dmi.EH (X,nX _ ... —> QX) ~vanishes
if and only if

2 1 0 2 n

~(E,V) €EKer{H°(X,Z(1) ——> ox —_— QX)T> H (x,nX —_— ..—>nx))

= H2(X,2 (1)

> QX)

(1.2) In this language it is easy to see the well known

Claim. If X has an Hodge structure, then

H1(X,m*) = HZ(X,Z(1)  — OX S — Q;) . Therefore if E is

a rank one bundle with vanishing Atiyah class, all the holo-

morphic connections on E are integrable.

Proof. The second statement is a trivial consequence of the
first one.

One has the commutative sqguare

Z(1) > 0 > Q
l I,
Z(1) —> 0
: -d 92 — 5 RIS
O
1 2 n
Q —> Q @ ———> ,,. —> 0

This gives a commutative diagram

H(d1)

HZ(Z(1) > 0 > 91) - s HO(Q? _. .. ___>Qn)
Y H(d,) 1a] 2 n
Hz(Z(1) —> 0) 0 _H(a >0 >e0e —> Q)
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The first statement is equivalent to H(d1) = 0 . The image

of H(do) is contained in H1(91) and therefore meets in

0 42

0 the injective image of H (& > . —> Qn) . This im-

plies H(d1) =0

(1.3) Let 'E be a bundle of rank r with an holomorphic

1
P/X

as in (0.7). Define the t-flat sections to be those which

connection V . Introduce T,(O(?),VT) and (@ (1),V%)‘

are annihilited by a t-connection. If (rd)2 = 0 , denote by
1

¢ = > *aol J— * 11 -
QT OP o £ QX > - > £ ﬂx the +t-Rham complex.
Lemmé.
, k fd k+1 k d k+1
* _ * = —_
i) One has Rfy (£*0y > x5 ) = af S>af
ii) One has Rf* v =V
_— . T

iii) ('rd)2 = 0 if and only if Vf is OP-lihear. In this

case, T : n; —_ f*Q; extends to a morphism of com-
plexes 1 rﬂé _— Q; . This defines a morphism
Rf*([:P —_—> EX in the derived category. One has
RELR. = Qy
iv} One has V2 = 0 if and only if Vf = 0 . In this case
2 1
T = -
one has VT 0 . Moreover 0(1) and QP/X(1) are ge
“nerated by t~flat sections.
Proof.
i) As Rf F*Qk = Qk one just has to see that £f,.xd = d
. l . *‘.- X - X ’ j *T

This is a local condition on X . On an open set U on X ,
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cne has

=1 1 1.k

U,f 'a>) on which 1d = 4

k., _ o
U,f*QX) = I'(f X

r(f
ii) As in i) , one just has to see f*vT =V. As f£*E 1is
the sheaf genérated by relative global sections of 0(1) , and
as VT = (19q)t£*v , this is equivalent to see f*(rf*v) =V

This is the same as in i) .

1ii) oOne has vZ(a-x) = A-v2(x) + (xd)®(A)-x , for

€0, and x € 0(1)

ﬂﬁ is additively generated by elements y = iA:-de , for
gk—1

w € p ,. "M E OP . Then =tdy = tdiardw , whereas

7d (A -1de) = td Atde+A (1d)%e . If (td)% = 0 , then

tdy = 1d(A-1tdw) . In other words, one has a morphism of complexes
T QP — QT .
iv) If V2 = 0 then E = LGDOX where L 1is a local constant
G: .
system, and V = 1®@d . Then =<f*V = 1@+d . If ek is a

basis of L on U , one has {(with the notations of (0.7))

k
Td(Eﬁ> = 0 . Therefore (Td)2 = 0 . This implies
t‘A

(Tf*\f)2 = 0 , as well as vf = v;z = 0 .,

.2 2 _ L2 _
Conversely if V.= 0 , then f*VT = ¢¥7 = 0. One may gene-
rate 0(1) by tk and Q;/X(1) by xk , which are t-flat

sections.

(1.4) Remark. To see that 9- = 0 implies (td)2 = 0
(which means that Q; is a complex), one does not need in iv)

the description of E by its flat sections. If ek is any



-14-

basis of E on U , one has in the notations of (0.7)

k k
Td(Eb-) =1 ([ - B 1u0%e)
t t™ s

for ka the connection matrix of v on U .

Therefore one has

k ks, s ks  ss' . s s Os's!
(td)® (t—o) =Jaw & o+ S [{w -5 le t }
s s'!

t s t s' t t
k Os .s ks . s k O0s . s Os . s
PEda H- v -5 e 5 (e %)
t™ s t s t t s t s t
L} 1 1 [}
) EE szS [z wss ts ) Z wOs ts }
9 s' 0 s’ 9

Applying the integrability condition

do¥% + Tu¥5,%% = 0, one finds (@)% =0 .
S

(1.5) If (?d)2 = 0 , one has as in (1.1) an injection

H2 (B, & (1) —> ar)

2 1
H(PrZ(1) _ OP T_d_> f*QX)

(0,7d) 1is the trivial (integrable) 1~connectionl One considers

the morphism’

2 1
H (I:z(1) —_ OP 5 f*ﬂx)

u2(p,Z (1) —> 0,) .
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For (F'VT) and (F',v;) two rank one bundles with (inte-
grable) t-connections, define the (integrable) t-connection on

FOF' : V 07 ,(e@e') =V eRe’'+e@V'ie' . If ¢:F'

> F

is a OP-morphism, define on F' the (integrable) t-connection:

@*VTTE') = VT(w(e)) . Then ¢ is an isomorphism from
IF',V;) to  (F,VT) if it is an isomorphism from F' to F

verifying ©*v. = v'_

Lemma. 1) The isomorphism classes of rank one bundles F with

T~connections V. build a group identified with

H2(P,z(1) _ OP > f*n;) . Denote by (0(1)’V1) the class

-
defined in (0.7) . Its image in H°(P,Z(1) —> 0,) 1is the

isomorphism class of 0 (1)

ii) Assume that (rd)2 =0 . Then V¥ is integrable if and
only if (0(1),7) € H (B,Z(1) —> ),
Proof. 1) We mimic (1.71) . If Uig is a cocycle representing

v
F on some Cech cover, then VT is given by W EF(Ua,f*n;)

-1 _ _ .

such that uaB rduas--wu we - Then (uaB'ma) is the class
wanted.

This class is isomorphic to (0,t1d) 1if and only if they are

-1 -1
* 1 1 = . = .

fGE P(Ua,OP) verifying Usa fu fB , and W, fu Tdfu .
. . 2 , , 2 1
ii) By (1.3)iv) , v7 =0 if and only if v, S 0
This is equivalent to 0 = wau € HO(P,f*Qi —> ... ——>f*9§)

2 _ wel
or (O(1),VT) € Ker (H"(P,Z (1) > OP > f QX)

2 2 n

HY (P, £*Qy —> .., —> f£*q.))
= #X(p,z(1)

>Q')
T
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(1.6) Claim. If X has an Hodge structure, and E is a bundle

on X with an holomorphic connection Vv such thét -(Td)z = 0,

then one has HZ(P,%(1) _— Q;)

It}

H2 (P,Z(1) —> OP ﬁ> f*Q;()

In particular v2 = 0 if and only if (rd)2 =0 .

Proof. The- second statement is a trivial consequence of the
first one.
From the commutative diagram

Z(1) >O > f*Q;(

p
. a.
Z(1) >'OP
d Frgl > gD
0 X ; X
1 lZ n+r-1
QP —_— QP _ .. —_—>
v \%
£xq] ——> g2 —> f£*qf
X " e X

one has the commutative diagram

2 H(dq)
H @ (1) —>0, —> f*Q;{) ! > Ho(f*sz; —>..—> £ral)

| !

2 -
H@E(1) —> 0.) > H1(Q1 — >, —> Qn+r 1) > H1(f*Q1 —>,., —> f* n)
P P P X n)(
H(dO) H(t)
_The-first statement is equivalent to H(dq) = 0 . The image

of H(do) is contained in H1(Q;) » therefore the image of

1

H(T)H(do) is contained ip H1(f*QX) .
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It meets in 0 the injective image of

2

0
H (f*QX

——D .. ——D f*Q;) . Therefore one has H(d1) = 0

Remark. Compare (1.3)iv) and (1.6) .
In general one has V2 = 0 if and only if ﬁf = 0 . With

an Hodge structure, one has V2 = 0 if and only if (Td)2 = 0.

This is slightly weaker. This corresponds to (1.2) .
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§ 2. Characteristic classes of a bundle E with an integrable

connection .

(2.1) Let Y be a smooth analytic variety. Let (Ak, kz0) be

a complex such that there is a morphism of complexes

T Qé —> A" where AO = Oy, kA1 = Ak is a guotient bundle
of Qi Define B1 = Kerrt : ﬂ; —_ A1 . As the differential
of A®" 1is the factorization on A" of 1d , write simply =d
for it. |

A bundle P 1is said to have a t-connection if there is a

f-linear morphism vV i: F —> A1®I? verifying the rt-Leibnitz

rule VT(A-x}zl-VT(x)4-rd(A)@:<

VT is said to be integrable if Vf =0 .

F is said to be génerated by t-flat sections if locally sec-

tions x generate F with er = 0 . In this case one may

find a cocycle Uy g representing F with u -1'rdua = 0.

afB 8
(0,7d) 1is the trivial (integrable) t-connection. As in (1.5)

the isomorphism class of (F,VT) is in

Y
(F,v) 1is in H2(Y,% (1) —> at) .

52 (Y,% (1) >0 >a"), and sz = 0 if and only if

(2.2) One has the standard operations for bundles with
T-connections.
Let F and F' Dbe bundles with (integrable) t-connections

VT and V; . One defines (integrable) t-connections on
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5 ) | _ |

AF by (AV) (£,a...Af2) = JfqA...0a £i g AVE A £ 04, nf0
' ' = 1 ' '

F®F by Vv 8V _,(f@f') v (£) @ +£0 V! (£')

_Homoywn?w.by L we () = Telf) - e(vf) .

Denote by V: the connection on Horn,o' (F,OY) = F
Y

1 [ >
If (F,VT) and (F ,V_r) are of rank one, of cocycles (uas,wa)

and (u&B,w;) , then (FQF.'VT@VT) is of cocycle

(uas-u&B,waq-w&) . Therefore (F@F',VT®V%) = (F,VT) + (F',V.'t)
in H2(Y,Z(1) _ OY —_— A1) (resp. in H2(Y,.Z(1) —> A"))
similarly (F',v)) = -(F,v ) in H2 (Y, % (1) —> 0, —> a")

{resp. HZ(Y,?ZH) —>A"))

A filtration Fk—‘l CFk of a higher rank bundle F by sub-

kC A1 @Fk is said to be r1-compa-

bundles Fk such that VTF

tible (r-flat if vf = 0) . This defines (integrable)
T-connections Vr,k on Fk/Fk-‘]
An exact sequenée 0 —>F' —> F —>F" —> 0 is said to

be t-compatible (rt-flat) if the filtration F'c<cF is .

(2.3) Let g : 2 —> Y Dbe a morphism between two manifolds,

an F and 1t be as in (2.1). Define the exact sequence

1 1 r 1
* —_— —_ [
g*B > QZ > QZ,T > 0 .

One has the exact sequence

p!
g*al —s g 1
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Define

Claim. r -extends ‘to-a morphism of complexes r : @, —> R,
k k .
Proof. The kernel of Q, —> @, . 1is generated by
I am ) -
g*B1AQg ! . One has to see that d(g*B1AQ§ 1) = g*B1AQg‘
One has dB1‘:B1AQ; . Write g*B1 = 029_1 g—‘lB‘I
g 0
Y
One has
1. k=1 T, wnlank—1
d(g*B AR, ) < Q,Ag*B AR,
-1,51 A1 k-1
+ Oz @_10 g (B AQYJAQZ
Y
+ g¥* L
g*B AQ
< g* 1
g*B AQ
Denote by rd the differential on Qé : ° One has (rd)2 = 0 .
’ .
One defines the r-connection
1
* . * PR, *
g VT : g*F > Q&Ig g*F
Z
by writing g*F = OZ ®_, g_1F
g 0,
and g*vV_(A8¢) = rdA® @+ A® g_1v ®
— T O _10 T
- z 9 Yy

for w€g 'F and A€0,
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The corresponding B'1 is the image of g*B1 in

Q

1
Z .

As (xd)? = 0, g*v_ is integrable if v_ is, and g*F is

generated by r-flat sections if F is generated by rt-flat

sections.

(2.4) Set 2 = P(F) the projective bundle of F .

the other exact sequence

1

. d
Z/Y(1) —> g*F —> (0(1) —> 0

0—,—_> Q

. o L 1
Define as in (0.6} o VQZ/Y  —— Qz,f
by ¢©1 = (19q) g*VT .

By the same computation as in (0.6.1) one has

-¢ 1s a section of p' .

T is embedded in . )

In this case, g*A
Z,t

One obtains a section

' = (1+p'a) : a) !

- *
7t > g*A

which may be written with the notations (0.7) as

k
T'rd(Ea)

1 x tk 0
N = —5(10q) (g*v e” - =5 g*v_e ) .

t t

(2.5) Assume now that v, is integrable.
By (1.4) one has (r'rd)2 = 0 . This defines (1

a morphism of complexes

One has

.3)iii)
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T'r Qé —> g*A’
where the differential on g*A" is defined by «+t'rd . As in
(1.3) one has REf,f*A" = A" . The morphism +<'r defines a

morphism in the derived category =t'r : Rg,C, —> A" .

Z

(2.6) Further one may define: rt'r-connections Vt.r and
1
V;'r on 0(1) and QZ/Y(1) by
[ = [P
vr'r Tg vr 91 (1)
‘ z/Y
Vo =

(1 @q)'c'g*“v_r .

They are integrable if ¢ is .

(2.7) Through the rest of § 2 , one considers on a manifold

X a horphism of complexes Tg ¢ Q' —> A" as in (2.1) and

A

a bundle E with an integrable ro-connection v .

On the projective bundle P(E) one has defined Tty and in-
. 1

tegrable rro.connectlons on ¢(1) and QP(E)/X(1) . One

may repeat this construction (rank E-1) times.

One has the following data on the flag bundle of E which we

call £ : P —>X , with £ the splitting morphism.

1 1

i) There is a morphism r : QP > ffA with (Td)2 = 0 .
The complex A' = 0, ——> f*A1 —> ... —> £*A" gyerifies
T P od td

Rf*A; = A" . If 14 = identity (which means E flat) ,
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write Q_ for AL . One has Rf*nT = Qe .

Tt extends to a morphism of complexes

ii) The integrable ro—connection v defines an integrable

The canonical filtration»

t-connection (f*v), on £*E .
0 = E0 c ...C Er = f*E- of £f*E is t-flat (see 2.2) . This
on the splitting rank

defines an integrable t-connection VT X
. r

one bundle Ly = Ek/Ek_1 , and therefore a class

2 . . .
(Lk,V.T'k) € H°(P, 3(1) —> A7) whose image in H2(P,Z(1) —_— OP)
is the isomorphism class of Ly (and whose image in H2(P,Z(1))

}
is c?oP(Lk) , the topological Chern class ((2.1)) . This

v
class is represented on some Cech cover by

k k 1
(uaB'ma ) € T(UQB,O*) x T(U ’Ar) such that
-1

a
du =0, u .tdu = 6w, rdu=0 . -

(2.8) The Deligne complexes (see [1]) on a manifold 2Z are

. - _ . p—‘]
z(p) >0, > .. > ay

Z(p)v

p V[ =
cone(Z(p) & F 1 QZ)[ 11

where o : Z(p) —> C is the natural embedding and
i : FP —>q" is the Hodge-Deligne F-filtration. There is

a product

which is uniquely defined by
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X.X' = a(x).x' if deg x = 0
xdx' if deg x > 0 and deg x' = g
0 otherwise,

for x homogeneous in Z(p)D and x' homogenecus in x(q)D .

In the cone language this corresponds to
(ndfdw) . (n'Gf'Bw') = (nen'+£.£',a(n).0'+wai(f)) , for
(n@f) € Z(p)oFP, (n'® £') € Z(q)oF%,0 and w'€ a’

This defines a product in the cohomology
H' @ (p) ) « HY (Eq)p) —> B L& (prq) )
and therefore classes
cg(f*E) € u°P(p,Z(p) ;) on the flag bundle P of E .

Define z(p)v . = Z(p) —> AO e A1 _— ... > Ap-1
’

0

One has the morphism Tg ¢ Z(p)p Z(p)D’T

(2.9) On a manifold Y with a morphism 1: gé —> A" as

in  (2.1), ‘define Z(p)_ = EZ(p) —~ > A" and a product

Z(p).r X Z(q)T —_— Z(p+q)_r
by (x,x'}) = t(x).x' 1if deg x = 0

0 otherwise

for x and x' homogeneous in Z(p)T and Z(q).r .
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This defines a r-brodﬁct in the rt-cohomology

#° @ (p) ) x B (2(q) ) —> 8P "L @iprq) )

v
as one easily sees in the Cech representation.

Write

vy = (WP eyP ey ecP @mp)) P o) 5.

L] 1 " | . LI
such that Gyp =0, Typ = Gyp 1, rdyp 1= - 6yp 2 etc.
similarly for 1z = (zq',zq'_1, I
Then

] | | . 1 I
z = (yP.29 , yP.29 1, yP .29 2,

y ---)

ECP'*q'(%(p"'q)) + ‘Cp'+q"‘1 (0) L

This fullfilles trivially the cocycle condition.

For p'=q'=2, p=g=1, yz—zy==(Oﬁ(y!z1)htd(ylz1) -6(y!zz—zly2n
is a co-boundary.

2 2 . .
Therefore the rt-product H (3(1)T)x H (E(1)T) is commutative.

The t-product factorizes over the product

Z(p) x Z(q)T —_— z(p+q)T defined

by . (x,x") C—> T (x).X'

Therefore the t1-product in the t-cohomology factorizes over

the product

H (2 (p)) x 1Y @(q) ) —> BT @ipr) )

which is defined by 1t (x)-x'.
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Finally the product on Z(p), maps to the Cup;product

Z(p) . Therefore the 1-product in the r-cohomology maps to

the cup-product in cohomology: the following diagram

B @ (p) ) x 1l @ () ) —> #P @ (prq) )
WP @(p)) x BT @(q) —> BT (@ (peq))

is commutative.

(2.10) Define the characteristic classes of (f*E,f*V) by

cp(f*E,f*V)’ = p-th symmetric function of

(L ¥, ) € BP(RE(p) )

for E as in (2.7) .

(2.11) Denote by ap the morphism

AT —> (0 > v —> f*Ap_1) ’
T
Td
by 1 the morphism
p-1 : p-1
(OP -f> g S ) —> (OP > e T f*a }
by Z(p), ., the complex
f
: -1
Z —_— 0, ——> .... —> £*aP
(p) P T3

and similarly for Ty
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" Proposition. One has

wel (E%E) = ac (£%E,£%9) in H°P(P,Z(p)y )

V.
Proof. Compute it in the Cech representation. One may repre-

sent (Lk,vf,k) by
(¥ v € Paan et « Ol
with rnk'= Gvk, expvk = uk = cocycle of Lk ;dv=68w, 1dw= 0 .

Then cp(f*E,f*v) may be represented by the symmetric sum of

k k k k k k k k
(n 1... n p' t(n 1) ee. TN p_1)'v p' T{n 1)... T (n p-1) w p' 0.

2p-1

in ¢?P@(p)) +cC (0) + C2p—2(A1) +

Now cg(f*E) may be represented by the symmetric sum of

k. k k ko, Kk k, kK _,
n '...nP, atn ... an PTH v P, atn ... an P79
ko_q k , ko k, k

v P lav P, .., v 'ay ‘As.adv Py in

c*P@ip)) + c?PTH) + PPy 4 L.

Then cp(f*E,f*V)- rcg(f*E) may be represented by the symmetric

sum of

k., ko, ko, Kk
(0,0,8(t(n ') ... tin P75 v P71 4 P)

r

k k k k k

| k. ok k .k
b v tn P P Poscn Yiattn POy

T(n p-2 W p—1w p)

A

This is precisely a coboundary.
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Remark that if L, is generated by t-flat sections, then

the computation is trivial; one has w = 0 and 1dv = 0

(2.12) If g : M —> X 1is the projective bundle of E ,

then one has (€11, 1.7.2)

izl = e g T zE-3 -0
OsJisr-1
0=sqg-2j
0Osp-3

The Deligne cohomology of M 1is a free module over the Deligne
cohomology of X , with bases O(1)j, 0sj<r-1 . By taking
the coefficients of the expansion of 0(1)r , one defines the
Chern classes cg(E)EIHzp(X,Z(p)p\ . With the formalism of
Hirzebruch-Grothendieck ([5]) , one proves théy are functorial

and additive, and thereby verify f_1cg(E) = cg(f*E) , Where

cg(f*E) was defined in (2.8) (see [1], 1.7.2 and 1.7.3) .

The image of cg(f*E) in Hzp(P,Z(p)) is the topological
Chern class c;Op(f*E) = f_1c;°p(E) , where CEOPIE) is the

image of 'cg(E) in Hzptx,z(p))

(2.13) The formula (2.12) 1is no longer true for the

t-cohomology: H’(M,Z(')T) is not a free module over

H'(X,z(')T ) . Therefore one can not use Hirzebruch-Grothen-
0

dieck's formalism to prove that our classes cp(f*E,f*V)

verify the standard properties of Chern classes.
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The rest of this chapter is essentially devoted to the defi-
nition of classes cp(E,V) on X (2.15) , to the proof of
the functoriality (2.16) and the additivity (2.17) , and to

Y

some simple comments (2.20), (2.21) and (2.22)

(2.14) Leﬁma. With the notations of (2.7) and (2.9) , one

has the following commutative diagram of exact segquences

0 —£ i (% 2) ) —> @z ) — B @z2E) /£ HKzE)—> 0

° | ° | |
0 —f Hixzpy, — #EzE)y, )— HEzE)/E HBEzE) — o .
an D,
Proof. Just write
Z(p), = cone(Z(p) —> a")[-1]
ap L
Z(FUD’T = cone(Z (p) —> (Op 3 > ti. —> (A€_1))[—1]
and remember that
re, (AF s aK*1) = K o pk+1
T 1d T 154

(2.15) Theorem. Let E be a bundle of rank r on a mani-

fold X with an integrable g -connection ¥ . They are

classes cp(E,v) € Hzp(x,x(p)TO) . whose images in

H2P(x,%(p)D'TO) are the images by Tq of the Chern classes

cg(E) € Hzp(x,%(p)v) in the Deligne cohomology, and whose
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images in HZP(X,Z(p)) are the topological Chern claéses.

Ctop(E)
P

Proof. The t-product is compatible with the cup-product
(2.9). Therefore the image of cp(f*E,f*V) in HZP(P,Z(p))

is precisely f_Tc;Op(E) . This shows via (2.14) that
o, (E¥E,£%V) = f_1cp(E,V) for a class

cp(E,V) € HZP(X,%(p)TO) which is uniquely determined.
Its image c' in HZP(X, Z(p)p r,) verifies
I

-1

£ lor = £XE, £¥
c apcp( E 7 )
= cc? (£*E) (2.11)
p
1D
= tf ‘cp(s) (2.12)

One has the commutative diagram

Hq(xn%(p)p) > Hq(P,Z(p)D)

To LT
\'2

£ Hq(X,Z(p)D'TO) > u%ep,z(p), )

D,t

Dy

1 —
Therefore C —.TOCp E)

This proves also that the image of cp{E,V) is the topological

class ctOp(E)

(2.16) In this point we want to prove the functoriality .

Let g : ¥

> X be a morphism between two manifolds, and
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E be a bundle with an integrable TO—connection on X (z2.1). As
" - L] L] ' - . -

in (2.3} g defines a morphism Ty ¢ QY _ QY,rb Write for
simplicity A'® = ni ! and set B'l = im g*B1 in Q; . Let.

L4
0

r : A" —> A"" Dbe a morphism of complexes with A 0. OY ,A"k
is a quotient bundle of a'k . set BJCZEJ=K0HQ;'——4>A"H . Then
rg*v = rv' 1is a well defined integrable Ta-connection on

* = t Lo n . - "oa

g*E E for 10 : QY > A

. -1_ . -1 9 -1_1

Define g 'A by ¢ A¥ 5 g A ——>.,, as a complex of C-modules.
One has a natural map of T-complexes »p :g’1(x(p}T0) _— %(p)T"
This defines

- 2
TO T
‘ 0
Prépbsition. i) One has pg_1cp{E,V) = cp(E',V')
r r
ii) One has c1(E,V) = (AE, AV) as defined
in (2.15) and (2.2).

Proof. The second statement is a consequence of the first.

.1 r I r r .
If i) 1is true, then one has p'f 1(AE,AV) = (Af*E,Aff*v}Ty,. for

-1
1 - D ———
p' : £ EZ(P)TO > E(p)T .
r r
One has (AE*E,A(£*%V)_) =(QL.,Q9V_ .} by construction
T j 3 9 T.d
= L.,V . 2,2
L9 3) (2.2)
]
= c1(f*E,f*V) (2.10)
- f_1c,|(E,V) (2.15)

r r ‘
Therefore one has (AE,AV) = c1(E,V)
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Let us prove the first statement. Consider the cartesian product

h
p! > P
f'l f
v
Y > X
g

where P 1is 'the flag bundle of E and P' 1is the flag bundle
of E'(2.7) . The canonical filtration E‘k (resp. splitting Li)

of f'*E' is the pull-back by h of the canonical filtration

By (resp. splitting L of £*E

x!

On P and P' one has 1: Q. —> A; and t" Qé. —_—> A";u

as defined in (2.7)
One wants to see that there is a natural map

p' : h-1E(P)T _>Z(P)Tn

such that the image by p' of

2 . ' . 2.0
(Lj'v’l’,j) €H (P'%(1)T) 18 (Ljfv.[_ll’j) in H™ (P '2(1)1")

Assume that P

P(E) and P'= P'(E') (this means that

rank E 3 2)

One has the commutative diagram of exact sequences

1 1 1

1 :
—_— * £k —_— * * * —_—
0 > h*f*a > h QP/f B > h QP/X > 0
l J/ LZ
wl 1 vagu 1 0
0 —> f'*np — QP'/f *B > QP'/Y —_
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Recall that o¢ is defined by

—_— *
QP/X(1) > f£*E
lf*v
al/expl @ £
c®1. P
l1®<q
1 1
QP/f*B @ 0(1)
This gives a commutative diagram
w
nea! = neeral BT pagl/gp]
(0)

] vemm ]l ! 1 wl 1 , , 1
A'_, = £'*A <= Rp/f'*B <2 Qp./£'*B
One has 1'ah*f*v = ¢'f'*g*v
Define C1 = Kex Q; > Al . Then h*(f*v)T is a connection
with values in Q%./h*CAl . Define the morphisms r' and ="

1 vapgr b S o1 paet XN e
QP,/f B > np,/h C > A iy .
One has r"r' = t'a. Therefore one has
(1) r"h*('f*v)T = t'agh*f*y

Call VT and V; the integrable rt-connections on

OP(1) and ﬂ;/x(1), VT" and VL" the integrable t"-connec-
1

tions on OP.{1) and QP./Y(1)
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(1) implies r"h*vT = v _,
r"h*y! = v', .
T T
Now (0) implies that the map h—1Af —_ A"ﬁ" extends to
well defined maps of complexes h_1A; —> A",  and
o' :h-1Z(p)T'———> Z(p)T" such that
p‘(OP(1)'vT) = (0P|(1)IVTE) and

' 1 ' 1 '
p (QP/X(1}'VT) (QP'/Y(1)’VT") .

One repeats the construction inductively for

1 ' 1 '
(QP/X(1)'VT) and (QPI/Y(1)IVT|1)

(2.17) The next points (2.18) and (2.19) are devoted to

the following additivity property.

Let 0 —> (G,V) —> (E,V) —> (E,V) —> 0
be a To—flat sequence (all 2.2)), with r=rank E and

s=rank G .

Proposition. One has cp(E,V) = 2 ck(G,V) -cL(F,V) .
k+2=p :
To prove it we need a standard geometrical compatibility of
the flag bundles of F,G,E and further we need that this compa-

tibility respects the complexes Z(p)T
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{(2.18) We consider the flat exact sequence and

P (F) P (E)

N/

The surjective morphism g*E ——> OP(F)(1) defines an injection

j ¢+ P{(F) —> P(E) such that 3j*0 )(1) = 0 ){1) ([el) .

P(E P(F

One obtains the following commutative diagram of exact sequences

0 0
E*G [~ e*G

v A\ s

0 LS v B, 1 0
—_— . >
e¥n
(%)
v
0 —> a) 1 SR SN, (1) > 0
> 8 p) sx M € P (F)

0 0
Call Ig and I the sections defined in (2.4) . ¢g'*y
connection with values in Q;(E)/e'*B1 , and we have
j*e'*V = ¢*7 Dby construction. - Call j*e'*V simply the re-

striction of g'*vV to P(F)

One has
e*nj*cE®1 = e*ﬂj*(1®qE) (e'*V)
= (1 @qF)E*V
= g,901

F
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Therefore the diagram

1 TE|P(F) 1
b (E) |p(F) > e*A
i -

]
25 (F)

is commutative and extends to the commutative diagram

T
E|P(F)_> A%

*p.(E) | P (F) .

2p(p)"

Especially the restriction of the 1_-connection of

E

OP(E)(1) to P(F) is the rF—connection of OP(F)(1)’

and the vertical left hand side sequence of (*) 1is an exact

sequence of integrable rt_-connections. This shows that our

F
situation is inductive. We repeat the previous first step to

reach the following state at the (r-(s+1))-st step.

One has the commutative diagram

D(F)

f/'
\Z

X

where D(F) is the flag bundle of F,i' is injective . On

Z' one has the canonical "half-splitting" of
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E : E'!'CE! C ...CE' = h*E
s s+1 r
such that i'*Eé = f*G

i'*Ei{/Ek_1 = Fk/Fk_1 for s+l sksr

where Fk is the canonical splitting of F

0 =F CF c...CF_ = t*F
s s+1 r
Call L Tp f QD(F) —_ ATF the morphism defined in (2.7) ,
with aF . = £*aK, re a- = A and 1, : @5, —> A"
T (F) ' *2o (1) ! LA : T4

the morphism in 2' defined in (2.5) and (2.7) . The fil-

tration E! (Fk) is T4~ (T

K - ) flat. The restriction Qf the

F

integrable 11—connection v on E/! to D(F) is

1'1,}( k/F'

k-1
the integrable rtp-connection VTF,k on Fk/Fk—1 .

One has the commutative diagram of complexes

- T1|D(F) .
Bpr) T A
TP

v

D (F)
This defines a morphism Z{p) > E(p)T . The

: "1 |D(F) F

' : 2,.,

classes (Ek/Ek_1, VT1 k) in H (2 ,Z(1)T) are mapped to

! . 2
the classes (Fk/Fk—1’ v ) in H(D(F), Z (1) )

Tr,k F

(2.19) Consider now the cartesian square
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Y -i > 7
BJ, lh"
D(F) —t——5 g

where Y  is the flag bundle of f£*G, Z 1is the flag bundle of

Eé . Of course Y = D(F) x XD(G) and 2 1is also the flag
bundle of E . Write Ek the canonical filtration of
h*E = h"*h'*E. , Then 0 = EjceE, ... cE_ = h"*Eé is the cano-
nical filtration of h"*Eé and Ek = h"*Ei for s+1skszr .
Call 0 = Gy ©G, S...SG, = y*G = B*£*G = i*E; the
canonical filtration of y*G , and set Fi = B*Fk . One
' = i * = F'/F!
has i*E, =G, for Oskss and 1 E /Ep 4 Fk/Fk—1 for
s+1sksr .
Call ' = Qé —_ A;, the morphism defined in (2.7} (with
* . L] —_—— .

respect to f*G and Tp QD(F) > ATF on DI(F)) .

kK _ k s . . .
One has ‘Af. = y*A and RY4 A » = A" ., Call T : Q, —> AT

the morphism defined in (2.7) (with respect to h"*Eé and

T, Qé' —_—> A; , or if one prefers, with respect to h*E
1

and o ¢ QX —> A")

We apply now the functoriality (2.16) . There is a morphism

p' : Z(p)T _ %(p)T. which sends the class of

. 2
(Ek/Ek—1'v1,k) in H (Z,z(p)T} to the class of

- I, ' .
(Fk/Fk;1'VT',k) for s+1sksr oizto the class of
(Gk/Gk-T'VT',k)‘ for Oskss in H7(Y,Z(p) _,)
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By the functoriality again, one knows that

-1

Y Cp(F,V) = cp(y*F,(Y*V)T,) and
Y—Tcp(G,V) = cp(Y*G,(Y*V)T-) : .
Therefore one obtains
i1 * * _ -1 -1
p'i cp(h E, (h V)T} = oy ck(G,v)'Y CQ(F'V) .
k+2=p

The later is 7_1 ) ck(G,V)-cg(F,V)
k+2=p

This finishes the proof.‘.

(2.20) Corollary., Let g : Y ——> X be as in (2.16) . Assume

that (g*E,rg*v) has a T"O—flat filtration (Ek,rg*v= V') .

k

For c(E/E,_,,%) = § c, (E /E, _;,7}) one has

_1 _
pg C(Efv) e E C(Ek/Ek_1lv'k)

Proof. Apply the functoriality and the additivity.

(2.21) Corollary. Let X be a smooth projective variety.

et 0 — (G,v) —>» (E,V) ~—> (F,v) —> 0 be a flat exact

sequence with rank E = r and rank G = s . Then

cp(E,V) is torsion for p3 supl(s,r-s)+1 .

Proof. One has ((2.17) and (2.9)), assuming r-s <p and s<p:

= top .
¢y (E,7) = I ¢ " (Gyrc (F,V)
k+e=p
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As CEOP(G) is torsion for kz1 and as 2<p , one obtains

(2.21).

Remark. This implies (2.15) that the image cg(E) is

torsion also.

(2.22) Multiplicativity.

Let E and F be two bundles on X with integrable Tg-connec-
tions v and V' : Consider a morphism f : P —> X realizing
a splitting Li of E,Mj of F with integrable r-connections
Vi and Vj . One has the splitting of f*(E®F) by Li®Mj ’

of f£* (-‘V@V')T by Vi®\7:'i . Then one has

1

=1 1y LR ry |,
Vo of c, (EOF,707") -t ‘ﬂ.(1+[(Li,Vi) + (Mj,vj)] t)

p 20 o
) £ ¢ (kE,kV)-tp = T (1+[(L Ve ) 4+ .o+ (L, ¥ )J‘t)
P 1 11 i 1y
p=0
1 si1<...< ik s rank E
c, (E,7) = (-1)P cp(E",v") .

(2.23) One summarizes the previous statements for standard

flat bundles.

Theorem. Let E be a flat bundle on X with an integrable

connection V¥V . There are classes c?(E,V)G-HZp(X,Z(p) —> )
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whose images in Hzp(x,z(p)v) are the classes cg(E), whose

images in HZ(X,Z(p)) are the Chern classes c;Op(E) . They

are functorial and additive. The class c1(E,V) is the iso-

. r r
morphism class of (AE,AV) in HZ(X,Z(1) —> (L} . Moreover

cDGLV) is.torsion for pz <2 as soon as E.'has a flat splitting

by rank one bundles (and X 1s projective).
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§ 3. Logarithmic theory.

Let D be a normal crossing divisor on X and j :X-D —> X
be the open embedding. One may perform the whole theory of §2
for bundles E with integrable rd;connections ¥V with loga-

"rithmic poles along D

The set-up is the following.

One has a commutative diagram

Q > A"
v v
Q°<D> > A
o,p P
with = as in (2.1) and 0, = AO Ak is a quotient
0 ’ P D’ ''D
bundle of a%<D> . One defines
= - . - . 0 __. . APl
Z(p)v'ro-x(p) >AD,%(p)D’D'TO Z (p) > Aj —>...—> A,

ap : Z(p)D’TO — E(P) D,D,TO .

Theorem. They are classes ¢ (E,v) € Hzp(X,Z(p) ) which
—_— p,D D'TO il

are functorial and additive such that

- D - 2p
apcp'D(E,V) = TOCP(E) in H (X'z(p)D,D,TO) . For standard
logarithmic connections, one has
- 2P . .
cp'D(E,V) € H"V (X,Z (p) > Rj,C) , and apcp;D(E) is the

image of cg(E) in Hzp(X,%(p) > 0 > e, —> Qpi1D>).
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