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Abstract

We present a descriptiOll of the Illoduli space of holomorphic vector bundlcs
over Riemann curves as a double coset spacc which is differ frolll the standard loop
group construction. Our approach is based Oll equivalent definitions of holoIllorphic
bundles, basecl on thc transition maps or on the first order differential operators.
Using this approach wo prescnt two independent derivatiolls of tlle Hit.chin illtcgrablc
systems. We definc a "superfree" upstairs systems from which Hitchin systems are
obtained by three step halniltollian recluctiollS. A special attention is being givcn
on the Schottky parametcrization of curves.

1 Introduction

The IllOduli space of hololnorphic vector bllndles over Rielnann sllrfaces are popular sub­
ject in algebraic geolnetry anel nlunber theory. In mathematical physics they were investi­
gated due to relations with the Yang-I\1ills theory [1] and thc vVess-Zulnino-\\Titten theory
[2, 3). The confonnal blocks in the VvZVv theory satisfy the Ward identities whieh take
a fonn of differential equations on the Inoduli space [4, 5]. In this approach the nloduli
space is described as a double eoset space of a loop group cIefined on a small circle on a
Riemanll surface [6].

The rnain goal of the paper is an alternative description of the moduli space allel thc
Hitchin integrable systenls [7] based on this construction. \,Ve start with a special grou})
valued field on aRiemann surface which is dcfined as a Illap frorn a holOlllorphic basis
in a veetor bundle to a Coo basis. This field is an analogous of the tetrade field in the
General Relativity and we caU it the Generalized Tetrade Field (GTF). The hololnorphic
structures can be extracted frol11 GTF. They are described via the hololllorphic transition
lnaps, 01' by IlleanS of thc operators d" . The fonner arc invariant uneler thc action of
the global Coo transformations, while thc later lInder the action of the local hololnorphic
transfofll1ations. It allows to clefine the Inoduli space as a double coset space of GTF
with respect to the actions of the Ioeal holornorphie transfonnations anel thc global Coo
transfonnations.

We introeluce Cl cotangent bUlldle to GTF and invariant sYlnplcetic structure on it. Thc
cotangent bundle to the 1110duli of holoillorphic bundles can be obtaillecl by the symplectic
factorizations over the action of two types of COlnmllting gauge transformations. This
cotangent bundle is a phase space of the Hitchin integrable systelns [7]. The tetrade fields
in their turns are scetions of thc principle bllndle over the Riemann surface, which satisfy
SOllle constraints equations. \,Ve interpret them as mOll1ent constraints in a big "superfree
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systern" with a special gauge symnlctry. This space is a cotangent bundle to thc principle
bunelle. Thus the Hitchin systcrns are obtaineel by the threc step symplectic redlletioIlS
[rorn this space.

Vve investigate speeia11y our reduetions in terms of Schottky parametcrization, which
is a particular case of the general construction. This pararneterization was uscd to derivecl
the Knizhnik-Zarnolodchikov-Bcrnard equations on the higher genus curves [3, 8, 9]. On
the other hand the quantum second order Hitehin Hamiltonians coincicle with thelll on
thc critical level.

2 Moduli of holomorphic vector bundles

Let L: = L:g be a nondegenerate Rielnann curvc of genus 9 with 9 > 1 . \"/e will consider
in this section a set of stable hololllorphic structllres Oll cOlnplex vector buuclles over
E [1]. To define thelll we procced in two ways based on thc 6ech anel thc Dolbeault
COholllologies. Eventllally, we eorne to the rnoduli space L of stahle holorllorphic bundles
over Eg and represent thenl as a double coset space (Proposition 2.3).

1. Consider a vcctor bundle V over E9 . To be more concrete we aSSUlne that thc
structure group of V is GL{N, C). Let Ua1 a = 1, ... be a eovering of L:g by open subsets.
Vle consicler two bases in V the holOlnorphic {e hol

} basis and the srnooth Coo {eCOO
} Olle.

In loeal coordinates (za E Ua)

eho1 = ehol (z) e
Coo = e

Coo (z z)aa, a a, a .

Let h be thc transition map bctween theIn ha = h(Zal Za)' Thell loeally in Ua \VC havc

(2.1)

\-Ve call consider ha a..s the sections n~oo (Ua , P) of the adjoint bundle P =A ut V. Vve call
the field h a gcneralized tetraele field (GTF). It [ol1ows frorn the definitions of the hases
that there cxists aglobai section for ecoo

(2.2)

where Zb = Zb(Za) are hololllorphic functions dcfining a C0I11plcx structure on L:y • Oll the
other hand the transfonnations of ehol are holoillorphic lllaps

(2.3)
0--

gab E nhol(Uab, Aut V), (89ab = 0, a= BEa )·

These matrix functions dcfine the holonlorphic structure in the vcctor bllnclle V.
\-Ve cau describe thc sanle holonlorphic structure working with thc SIIlOOth basis eCoo

in V. Let
- -1 -

A a = ha aha.

Then the basis eCo:: is annihilated by thc operator d~ IUa = tJ + Aa

2
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The GTF transfonnations h in (2.1) by no rneans free. Let RE be the subset of sections
in P whieh satisfies the following eonditions

o -1- -I-Rr:, = {h E 0coo (Ua1 P) I ha 8haluab = hb 8hbluabl VUab # 0: a, b = 1, ... }, (2.5)

(Äa(Z(L) = Ä/J(Zb(Za)), Zn E Unb).

Proposition 2.1 Conditions (2.1) and (2.5) are equivalent.

Froo/. Sillce efoo = e~oo in Uab (2.1) iInplies

(2.6)

Then the holonl0rphieity of gab inlplies (2.5) . If hERr:" then (2.6) defines the transition
map for some holon1orphic basis ehol

. The basis ehol h satisfies (2.2) and therefore call bc
taken as eCoo . 0

Consicler the group
(2.7)

It transfonns loeal basses of V over Ua . The group acts Oll itself by the left anel right
multiplications.

Thcrc are two subgroups of 9E' Let X a E Oßoo(Un , P). Tben

9~ol = {x a --+ faxa I f E O~ol(l:,P)}, (2.8)

9foo = {xa --+ Xa<Pa I <P E O~ooO~, P), <p(Zb(Za), Zb(Za)) = <p(Zal Za) Za E Uah}. (2.9)

Vv~e can tonsider tbe GTF (2.5) as a sllbset in 9E. We have the following evident stateulCnt

Proposition 2.2 The left and right actions 0/ 9~ol und 9foo leave invariant Rr:,.

In other woreIs

and

9E : 9E
right mltpl.

9E---+

U U u
9Coo . RE

right mltpl.
REE . ~

9E: 9E
lefl mltpl.

9E~

U U U

9~ol: RE lef~tPI. RE

2. COllsicler the space of holornorphic structures on thc bundlcs V and P. Since
9 > 1 therc is an open subset of stable holomorphic structures. Thc holorllorphic struc­
tures can be defined in two ways. In t.hc first type of the construetion, whieh we call thc
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D-type, the hololuorphic strllctures are clefinccl by the covariallt operators. For \I they
are

d~ : O~oo(E, \I) -+ O~~(E, \I).

It lllealls that A satisfies (2.5). The holOlllorphic structure is cOllsistcnt with the cornplex
structure on Eg such that for any scction S E nßco (E, \I) anel 1 E 0 00 (E) d~ (18) =
(8j)s + jd~s. The space of holomorphic structurcs .cg on P is defillcd in thc similar way

(2.10)

with the action in the adjoint represcntation. The stable holoillorphic structures .cg,st are
an open subset in (2.10). Thc autolllorphislllS of thc holomorphic structures are giVCll by
the action of the gauge group 9fco (2.9)

du -1 d" r.c=
A -+ C{J AC{J, C{J E ~E . (2.11)

They preserve the subset .cg,st. The moduli space .c 0/ stable holornorphic structures on
P is the quotient space

L = Lg,st/9foo.

It is a SlllOOth complcx lnanifold with tangent space at A is isomorphie to
H(O,l) (E, Lie(GL(N, C))). Its dimension is given by thc Rieluann-Roch thcorelll

dilll.c = N 2 (g - 1) + 1.

(2.12)

(2.13)

Thc lcft action of the gauge transforrnations 9ßol (2.8) does not change
Aa = h;;l[)ha , a = 1, .... Therefore the space Lg (2.10) can be reprcscnted as thc quotient
space Lg = g~ol\nE' There is an open subset in n~ such that thc sllbset of the stable
hololllorphic structures is thc quotient space

rD,st _ r.hol\-nst
L..E - ~E I'\..E·

The luain statCluent of this section follows illllUecliately fronl (2.12)

Proposition 2.3 The moduli space .c 0/ staule holornorphic .9tructures on P can ue Tep­
resented as the double coset space

r _ r.hol\-nst/QCoo
L.. - ~E I'\..E E . (2.14)

3. An alternative description of the holomorphic strllctures in terms of the Cech
COholuologies 1 whieh we call the C-type construction is based on the transition lnaps
(2.3), (2.6). The collection of transition lnaps

(2.15)

elefincs the holOluorphic structures on \I 01' P depellding on the choice of the represell­
tatiolls. Again we ehoose the open subset of stable holomorphic struetures L~,st in L~h.

The gauge group 9~ol acts as the autOluorphisluS of L~,st

(2.16)



Thc space I:.~h has CL transparent dcscription in tenns of graphs. Consider the skeleton
of thc covering {Ua , a = 1, ...}. It is an oriented graph, whose vertices are SOUle fixed
inner points in Ua anel edges Lab conncct those Va and Vb for which Uab =I=- 0. Vve choose
an orientation of the graph, saying that a > b on the eeIge Lab and put the holornorphic
function Zb(Za) which elefines the holomorphic map from Ua to Ub . Then the space L~h

can be elefined by the following data. To each eelge Lab, a > b we attach a rnatrix valued
function gab E GL(lV, C) along with Zb(Za)' The gauge fields ia are living on the vertices
Va anel the gauge transfonnation is (2.16).

Thc moch1li space of stahle holornorphic bundles is definecI as the ractor space tHlcier
this action

L = g~ol\L~h,st. (2.17)

Thc tangent space to the moclllli space in this approach is Hl (E, Lie(GL(JV, C))) extracted
frorn the Cech cOIllplex. Though I:.~h,st differs from Lg,st we obtain the sanle Inoeluli space
I:. of stable holomorphic strllctures on P duc to thc equivalcncc of the Dolbeault anel the
Cech cohomologies.

In this construction the right action of 9foo (2.9) leaves thc transition maps g(lb in­
variant. Therefore

L~'h,st = n~/9foo. (2.18)

Taking into account (2.17) wc corne to the sarne construction of the 11lOduli space as thc
double coset space (2.14).

4. Vve fit thc cOlnponents of our construction in thc exact bicornplex

M

rB
G IBG laG

0 S1~ol(Uab1 P)
i

O~oo (Uabl P) 0(0,1) ( ) ~---t ---t ---t coo Uab , EndV

raG IDG lOG
0 S1~ol(Ua, P)

i
O~oo (Ua1 P) O~~) (Ua, EndV) ~---t ---t ---t

li li li
0 ---t O~ol(E, P) ~ f2~oo(E,P) ---t O~~)P-=, EndV)} ~

r r r
0 0 0

Here ae are the Cech differentials, i are the augrnentations. The right arrows from
f2~00(*1 P) to f2~~\*,End'/) are of thc type h --+ h-I[)h. \i\'c have

- (0,1)( )8A E Sleoo Ua , EndV .

Ir these fields satisfy the tetrade conelitions (2.1),(2.3) 01' (2.5) then they lie in the iInages
of i. The Dolbeault COholllologies H(O,I)(E, EndV) that defille the tangent space to thc

rlloduli space are living in Sl~~) (E, EndV) anel thc Cech cohornologies H I (E, End \/) in

5



D.~ol(Uab, EndV). Their cquivalencc can be c1erived fronl thc properties of the double
spectral scquence.

The gauge transformations also can be incorporated in the exact bicolnplex

G:

IaC IOc lac

0 D.~ol(Uab, EndP) ~ D.ßoo (Uab , EndP) ~ (0,1) ( ) ~----t Ocoo U nb 1 EndP

IOC lac IOc
0 n~OI(Ual EndP)

i
D.~oo (Ua , EndP)

fj 0(0,1)( ) fj
----t ----t ----t COO U a1 EndP ----t

li li li
0 ----t n~ol (L:, EndP) ~ n~oo (L:, EndP) ~ n~~) (L:, EndP) ~

I I I
0 0 0

Let (hol E Lie(9~ol), (coo E Lie(9~00). Then

(hol E IInage Of(n~ol(Ua, EndP)) in n~OO(Ual EndP),

(Coo E Image of(n~oo (L:, EndP) in n~oo (Ua , EndP).

The actions of the gauge group (see (2.11) and (2.16))

8holg - (hol g _ 9 (hol
ab - a ab ab b .

(2.19)

(2.20)

1\10re generally, M is the bigradcd G 1l10dllle. The action of G is eonsistent with thc both
differential aC anel a. Thc differentiations take into account thc bigradings of M anel G.
The actions (2.19),(2.20) are particulcn eases of these actions .

3 The Schottky specialization.

Vve apply thc general scheme to the particuhu covering of "E y bascd on the Schottky
paran1eterization. Consider the Riemallll spherc with 2g circles Au, A~, a = 1, ... g. Each
circle lies in the external part of others. Let ra be 9 projective maps A'a = raAa , ra E
PSL(2). The Schottky group r is a frce group generated by 'Yal a = 1 ... g. Thc exterior
part of all the circles

t = pl / U~;l D b

is the fundaInental dOlnain of r. Thc surface "E is obtained [roIn E by the pairwise gilling
of thc circles A'a = ruAn anel Aa . \~TC have only one nonsiInpliconnccted 2d cell Ua rv t
with selfinterseetions Uao' = vieinity Aa = vicinity AIa' V\Te choosc 9 loeal coordinates
Zu, a = 1, ... ,g, which define thc paralneterizations of the internal disks of An circlcs. In
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this case the holomo~yhic Inaps can be written as za,(za) = ta(za). The GTF R'i:. (2.5) is
a twisted field h on L:

1- 1---
17,- 8h(za, Za) = 17,- 8h(ta(za),l'a(za)), a = 1, ... , g.

In the definition of QfXJ (2.9) "the periodicity conditions" take the fonn

CP(l'a(za), 1'a(za)) = cp(za, za), Za E vicinity of Aa.

The transition luaps (2.3),(2.6) defining [,~'h are

ga = gaa' (za) = h(za, za)h- 1 (l'a(za), 'Ya(za)), a = 1, ... ,g. (3.1)

The gauge group Q~ol act.s as aglobaI hololllorphic transformation on t. In the local
coordinates we have

(3.2)

In local coordinates ga havc thc form of Laurent polynomials. 9(J(Za) = E gik)z~. Thus in
this parameterization the set of holOlnorphic structurcs on the vector bundles [,~h can be
identified with the collection of the loop gl'oups L(GLa (N, C)). But in fact, taking into
account thc adjoint action of thc gauge group (3.2), one concludes that thc precise fonn
of cOlllponents is thc sernidirect product L(GL(N, C)) ><1PSL(2) = {g(z) ><Jl'(z)}. Thus

[,~h = EB~=lLa(GL(N, C)) ><l PSL(2)a, (3.3)

where the subgroups {PSL(2)a}, a = 1 ... gare responsible for the cOInplex strllcture on
L:. To define the stable bundles one shoulcl choose an open subset in La(GL(N, C)).

Consider the bundles over genus 9 = 1 Cllrves. Though the bundles are unstable this
case can be cOlnpletely describecl in the wellknown tenns. The Schottky pal'ameterization
Ineans the realization of elliptic curve as an annullls. Let ,(z) = qz, q = exp(21TiT). The
holoInorphic bundles are deflned by the loop group extended by the shift operator

The gauge action (3.2)

eh[,i:. = L(GL(N, C)) ><J exp(27riTZ8). (3.4)

9(Z) --+ f(z)g(z)f~l(qz)

transforms 9(Z) to a z independent diagonal fonn, up to the action of the cornplex affine
\·Veyl group l/ll. Let Hl bc thc AN - 1 \~Tc'yl group (the pennutations of the Cartan el­
C1ncnts). Then l/ll = (ZRYT + ZRV

) ><J Hl (RV is the dual root system). The Inocluli
space [, in this case is the vVeyl alcove. The comparison of two description of holonlorplIic
structures on elliptic curves (3.4) anel (2.10) was carried out in (11, 12] in tenns of two
loop current algcbras and invariants of thcir coacljoint. actiolls.

In general case (g > 1) the gauge transform (3.2) allows to choose 9a as constant 111(\­

trices. Thcy are clefined up to thc COIlllllon conjugation by a GL(N, C) matrix. Thus the
1l10duli space of holoillorphic bundles in thc (3.3) description are defined as the quotient

[, ~ (GL(IV, C) E9 ... EB GL(N, C))/GL(IV, C).
, 'Y' .,

9

Since the center of GL(lV, C) acts trivially we obtain dirn [, = N2 (g - 1) + 1 (see (2.13)).
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4 Symplectic geometry in the double coset picture

Here we consider thc Hitchin integrable SYStCl11S which are defined on the cotangent buncllc
T* C to the 1110duli of stahle holomorphic bllndles C. As it was done in thc original work
[7] this space is derived as a sYlnplcetie quotient of T* cE under thc gauge action of ggoo.
We will eome to the same systems by the three step symplectie recluetions from sOlne big
upstairs spaee. The Inain objcet of this seetion is the eomlnlltativc diagrarn (4.10), which
deseribes these reduetions and intcnnediatc spaees.

1. First, as intenncdiatc step, consider the Hitehin dcseription of T* l.. The upstairs
phase spaee is the eotangent bundle T'" .cg to the space l.g (2.10) of holomorphie structures
on thc bundle P in thc Dolbcault picture. It is thc space of pairs

(4.1)

The ficlel <jJ is called the Higgs field and the bundle T* l.ß is thc Higgs bllndle. vVe ean
eonsider thc Higgs fic1d as a form

wherc K is thc canonical bundle on E. Locally Oll Ua

The sYlnplectic fonn on it is

wD = r tr(D<jJ, Dd~).Ir,
The action of the gauge group ggoo (2.9) on d~ (2.11) with

is a sYlllmetry of T*.cE. It elefines thc ffiOIllcnt Illap

llggoo (1), A) = [d~, 1>].

For the zero level nlOlnent Inap [d~, 1>] = 0 the Higgs ficld beeolncs hololllorphie

(4.2)

The synlplectic quotient p,-l (O)/g~OO = T* l.g / /g~oo is iclcntificcl with the eotangcnt
bundle to the Illocluli spacc T* l.. The Hitchin eOlllllluting integrals are constructed by
Ineans of (1 - j, 1) holomorphic differentials Vj,kl k = 1, ... :

D h D .J. k = 1)· k trcj>1.
], E]'

(4.3)

Sinee the spaee of these differentials HO(E, J( ® Tj) (K is the eanonieal dass,
Tj is (-j, 0) fornls) has diIllension (2j - 1)(9 - 1) for j > 1 anel 9 for j = 1 wc havc
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N 2 (g - 1) + 1 independent comnltIting integrals, providing the complcte integrability of
the Hamiltonian systems (4.2) ,(4.3). Tbe integrals (4.3) define the Hitchin map

2. The same systenl cau be derived starting from the cotangent bundle T* L~h to the
holomorphic structures on P defined in the C-type dcscription (2.15). Now

This bundle can be endo\vcd with the symplcctic structure by I11CanS of thc Cartan-Nlaurer
one-forIns on n~ol(Uab, P). Let r~(C, D) be a path in Uab with thc end points in the tri pie
intersections C E Uabc = UlJnUbnUc, D E Uabd . We can put the c1ata (4.4) on the fat graph
corresponding to the covering {Ua }. The edgcs ofthe graph are {r~(CD)} and {rb(DC)}
with opposite orientation. \~Te assllIne that the covering is such that thc orientation of
cdges defincs thc oriented contours around thc faces Ua . The fields 17ab, 9ab are attributcd to
the edgc r~(CD), while 771m, gua to fl:(DC). The last pair is not independent - (g;;u1 = 9ba)
(see (2.3)). Its counterpart in the dual space is

(4.5)

The synlplectic strllcture is defined by the fonn

(4.6)

Here thc sunl is taken ovcr the edgcs of the oriented graph obtained fronl the fat graph
after the identifications of fields (4.5). In other words we consider only the eclge r~ with
the fields 9ab, 77ab auel forget about thc eclge rg. Since 77ab anel 9ab are holornorphic in Unu,
thc definition is independent on a choke of the path r~ within Uab . The syluplectic fornl
is invariant undcr the gaugc transfonnations (2.16) supplemented by

(4.7)

The set of invariant conllnuting integrals on T* .c~h is

(4.8)

where vrt are (1 - j, 0) differentials, which are related locally to the (1 - j, 1) differentials
as IJf:k = 8vfJ:·

vVe cau considcr the systeIll Oll the defined above graph Lab which is dual to r~ (CD).
The fielcls 9ab, "7ab, a, b = 1 ... are deflnecl Oll edges, while the gauge transfonllations la
live on vertices.

The nlOIllent Inap is

( ) T*rr;.h~LI·C*(I!~ol).Il(j~Q' 17ab, 9ab: J.., ...; ---r ':::I w
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(4.9)

According to (2.20) the HaIlliltonian generating the gauge transforinations is

L lr tr(1}ab(Za)t:~ol(za)) - tr(1]ba(Zb(Za))E~ol(Zb(Za))) =
edgcs r~(CD)

L f L tr(1]ab(Za)EZOl (Za)),
a irQ b

whcrc r a is an oricntcd contour arouncl Ua . Thc IllOIllent equfLtion ltg~ol = 0 can bc read
off from F(;hol. It lucans that 1}ab is a boundary value of some holomorpfic fonn definecI on
Ua

The reduced systeIll is again thc cotangcnt bundle to the moeluli space of hololnorphic
bundlcs

T* l- = g~ol\\T*L~h = g~ol\ll9~OI(0),

which has clilnension 2N2 (g - 1) + 2.

3. To gct thc cotangent bundle T* l- via thc sYlllplectic reeluction we can start from
T*Rr; using the double coset representation (2.14). Then T* l-E or T* L~h are obtained
on the intennediatc stages of thc two stcp reduction nnder thc actions of gßol or gfco.
Sinee these groups act froHl different sieles on R): their actions COIllITIute anel the result of
thc reduction procccIure is independent on their order. But the space RE, as we already
have relnarked, is not free - its clelnents satisfy (2.5). We will represcnt the constraints
(2.5) as 1l10l1lent constraints anel consider thc "superfree" space - cotangent bundle to the
group gE (2.7). t\10re exactly wc will consider (Theormn 4.1) the three step synlplectic
recltlctiolls which result in the following commlltative "tadpole" diagranl

Ir·gEI
gt J-

IT*REI
QQol./ ~gf~ (4.10)

IT*,Cgl IT*,C~h I
Q~'~ ~ ./g~ol

IT*'c1

To begin with we definc the initial data on T*YE anel the gauge grollp QB. Ta construct
T*Q): we consider three elual eleluents

Wa E Og~)(Ua, (EndV)*), 1}ab,17ba E Og~)(UaIJl (EndV)*),

~abl ~ba E O~~) (Uab , (End \1)*).
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Cotangent bunclle T*QE is the set of fielcls ('1J,771~' h). Wc endow it with the sYlllplectic
structure. Consider the sanle fat graph with cdges r~(CD) and fb(DC) as in 4.2. Thcn

'vVe assulne as before that paths r~, r~, ... can be unified in a closed orientcd contour
r a C Ua . The integral over Ua means in fact the integral over apart of Ua restricted by
thc contour r a. Thus thc first SUlll ean be replaceel by thc integration over E. To maintain
the indepenclence of WE on the choice of the contours r a we introduce the following" gauge"
sYlnllletry. Its action clefines of variations of fields along with variations of contours. Let
r~ be another contour anel bUa be the corresponeling variation of the integration dOlllain.
There is the integral relation between fields cOlning frolll the Stokes theorem, providing
the independence of WE

(4.12)

In other words, thc variation of contours is cOIllpensated by thc variation of the field \lJ.
The fonn WE (4.11) is invariant uuder the actiolls of Q~ol :

r.COOanel b'E

(4.13)

(4.14)

'vVe extencl these group transformations by the following affine action of the group

(4.15)

on t;,ab
-1 - -1 - ~1 -

€ab -+ €ab - Sab (8 + ha 8ha)Sab + ha aha

leaving the other ficlds untouched. This action comrllutcs with Q~ol, but eloes not comlnute
with Qfoo. Q~ can be itnbeclcled in the bicornplcx G (see (4.15)). On the Lie algebra level
we have

- A -1 - A
~ab -+ ~ab - (a€ab + (ha aha, €abl)

(€~b E Lie(QB) = {!1~oo (Uab1 End\!) I E:b= €~}.

Proposition 4.1 The form WE (4.11) is invariant under the action 01 Q~ .

11
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Proof FroIn (4.16)

where €A E Lie(Q~). Then

-(\AWt = L L r tr{D([h~läha, E~b])h;l Dha+8E: D(h;l Dha)+[h~18ha,E:]D(h;l Dha)}
a b Jr~

Then direct calculations show that the sunl under the integral in front of E:b vanishes.
Therefore W~ is invariant under these transfonnations. 0

1101'e generally, the dual fields (\l! a, 17ab, 1700, ~ab, ~ba) can be inco1'po1'ated in a general
pattern of two exact G biInoduli:

M'*

laG laG laG
0-+ n~~?) (Uab1 (EndV)*) ~ Og~)(Uab, (EndV)*) ~ og~) (Uab , (EndV)*) ~

laG laG laG
0-+ n(l,O) (U (EndV)*) ~ ng~)(Ua, (EndV)*) ~ ng~)(Ua, (EndV)*) ~hol a,

li li li
0-+ n(l,O)(" (EndV)*) ~ ng~)(E, (EndV)*) ~ Og~\E, (End\l))* ~hol ~,

I I I
0 0 0

M"*

laG laG laG
0--+ n~~ilhol (Uab , (EndV)*) ~ n~~) (Uab , (EndV)*) a

ng~) (Uab , (EndV)*) ~---t

laG loG laG
0-+ n~~iihol(Ua, (EndV)*) ~ n~~)(Ua, (End\/)*) ~ ng~) {Ua , (EndV) *) ~

I' li I'
0--+ n~~;ilhOl (E, (EndV")*) ~ n~~) (E, (EndV)*) ~ ng~) (E, (End \/))* a

------+

r I r
0 0 0

\,Ve renlind that

\lJ a E ng~)(Ua, (EndV)*), 1]ab,17oo E ng~)(Uab' (Endl/ r),

12



~ab 1 ~ba E f2~~) (Uab 1 (EndV)*) .

We will see that after the sYlnplectic rccluctions these fields will obey some special COll­

straints. Now we have all initial data to start from the top of the diagranl (4.10) -thc
fields, thc synlplectic fonn WE (4.11) anel tbc gauge groups actions (4.13), (4.14), (4.15).

Theorem 4.1 The1'e exist two ways 0/ symplectic reductions represented by the commu­
tative diagraT7~ (4.10) which leads from T*9E to the cotangent bundle to the rnoduli space
T*['.

To prove Theorem we shall go down along the c1iagram.

4. Consider first the action of 9B (4.16). Let T*'Rr:. = {'l1, 1], h} anel h is GTF with
syrnplectic fonn

(4.17)

Lemma 4.1

Proof It follows froIn (4.11),(4.15) that the Halniltonian of 9~ action is

F(A = L Fab , Fab = r tr(E~bh;;18ha) + r tr(Etahb"18hb).
a>b Jr~(CD) Jrb(DC)

In fact thc one-fonn

t:an be obtain froll1 WE (4.11) by thc action of the vcctor ficlel gcneratcd by Oß (4.15). But
f:b = E~ (4.15). Putting the n10mcIlt cqual to zero J-LgA = 0 we COIne to thc constraints

E

h;:18ha = hb" 18hb , which are exactly (2.5). Note that the gauge trallsforrn (4.16) allows
to fix ~ab = O. Thus thc synlplectic quotient T*RE = T*9E/ /9f has the ficld contcnt
('l1, '1], h E i1ßco (l:, P)) with WE (4.17). 0

5. Considcr thc action of O~ol (2.20)1(4.13) on T*'RE , which corresponcls to thc left
arrow in thc c1iagraIll (4.11). \·\Te will provc

Lemma 4.2
T* L:g = 9~ol\\T*RE = Q~Ol\J.lgLI(O),

I::

where T* L:g is deJined by (4.1) with the symplectic structure (4.2).

13



Praaf From (4.13) anel (4.17) wc read off the hamiltonian of the gauge fields

On Ua we can put 'lJ(1 = 8(<I>a +Ha), where <Da E S1~~)(Ua, (EnelV)* anel Ha is an arbitrary

elelnellt fron1 O~~lO)(Ua,(Enell/)*) (see M'·). Then

F(hol = L L f tr((<I>a + Ha + 7}ab)EZol
).

a b Jrg

Resolving the 1110mcllt constraint J.Lghol = 0 gives
E

(4.18)

By IneallS of the Stokes theorem W~ (4.17) can be transfonneel to the fonn

Let
-1 -4>a = -ha (Wa + Ha)ha· (4.19)

Rernincl that Ha = Ha(z(J is an arbitrary holornorphic fUllction on Un . vVe will choose it

in a such \Vay that 4Ja becomes aglobai section in S1~~) (L:, (EndV)·). In other woreIs

(4.20)

In fact, since gub = ha h;I,

(4.21)

where thc second tenn is holomorphic. Consieler the integral I a over the eontonr r a = Ubr~

arounel Ua

Ia = - f L (;Pa - 9ab <P b9;;b
1
)(y) dy.

Jra b Z-Y

Due to the Sokhotsky-Plejc1 theorem [13J I a is hololnorphie inside allel outside r a' It has
- - 1

a jUlnp <Pa - 9ab<Pb9;;h on the contour. Let

H b = 9(-:b1Ia9(Lu outside Un .

Therefore the fllllCtiolls Ha and 9abHb9;;b1 defining by this integral provide the vanishing
of the 1eft hand side (4.21). The sYlnpleetic fann Wl: in tenns of cP anel Ä cau be rcwrittell
as

14



This fOrIll coincidcs with WD (4.2) for T·.cg. The field 1> is invariant under thc Q~ol action
(4.13). Therefore the syrnplcctic reduction by thc gauging Q~ol lcaves us with thc ficlds
1> anel h anel the synlplectic structure (4.2). In other words T· .cE / /Q~ol = T·.cg. 0 \r...Te

can now l110ve down along the left siele of diagralll (4.11) as it was described in 1. and
obtain eventually T·.c.

It will be instructive to look on relations betwcen two type of dual fields Tl (4.18) and
4> (4.19) that arisc after thesc two consccutive recluctions. On thc first step we fOUlld that
1] are boundary valueel fonns

wlorcover, it follows frolll (4.20) that

1]ab(Zal Za) = 9ab((Za, Za)17ba(Zb(Za), Zb(Za))gab((Za, Za)-l.

(4.22)

(4.23)

Thc second reduction gives a4> + [A, 4>] = 0 (see 1.). It is equivalent to [)1] = 0, duc to
(4.22) .

6. Now look Oll thc right side of thc cliagraIll.

Lemma 4.3
T· L~h = T·n'i:/ /Qfoo = ILggoo (O)/Qf

oo
,

where T· L~h is the cotangent bundle (4.4) with wGh (4.6).

Proof. The gauge action of Qfoo (4.14) on T'+nr. defines the Hanültonian (see (4.17))

(4.24)

Consicler the zero level of thc rIlol11cllt lllap

Fronl the first tcnns in (4.24) we obtain

lJ1 a = 0, (J, = 1, ....

This choice of '!J breaks the invariance with respect to rcplacements of contours . But if
81]ab = 0 then the exact form of thc path r~ (C, D) is nonesscntial. Note that this choice
is consistent with thc definition of "7 (4.20) (7]ab = Ha in thc Q~ul rcduction). Pic..:king up
in the seconcl sunl in (4.24) integrals ovcr two ncighbor eclges wc corne to thc concIition

Since E
Goo

E Lie(QfOO) it is "periodie" E~'oo (za) = Efoo (Zh(Za)). It givcs thc following ronn
of constraints

15



Cl'

(4.25)

which is just thc twisting property of 7] (4.5). Furtherrnorc, the sYI11plectic fornl WE (4.17)
due to vanishing the fielel \lJ now is

Taking into account that

and thc mOITlcnt constraint (4.25) we can rewrite WE as

It is just wC (4.6) in the C-type c1escription of holonlorphic bunclles. \-Vc have the sarne field
content anel the sanle syulplectic structure as in T* [.~h. Therefore T*RE/ /9goo = T* cgh .

D

The last step on the right siele of eliagrarn was c1escribed in 2. Its completes thc proof
of Theorel11.

5 Schottky description of Hitchin systems

1. Now consider the last step in the diagral11 (4.10) in thc S~hottky paral11eterization.
Sinee in this case wc have only onc topologically nontrivial cell E the sYlnplectic reductioll
is differ frol11 thc clescribed in 4.2 for the standard covering. In this case the hololnorphic
fields TJa, Da = Da(Z(J, a = 1, ... , 9 live in vicinities Va of Aa-cycles, and Za are local
parm11eters in the internat disks. (see (3.1)). The phase space is

T* C~'h = {7]a, gal 7]a E n~~?) (Va, (EndVr), 9a E Sl~ol (Va, P)}.

In other words in accordance with (3.3)

anel the loop groups La (GL( lV, C)) are extended by thc projective transfonnations of Za
as in (3.3). Thc sYIIlplectic fonn Oll this objcct is (see(4.6)

(5.1)

Tbe gauge t!'ansfonnations (2.16), (4.7) act as the conll11on conjllgations by global holo­
rnorphic in E Inatrix functions

(5.2)

16



The invariant cOllunuting Halniltonians (4.8) in this paralneterization are

(5.3)

The gauge transfonn (5.2) prodllccs thc InOfficnt rnap J-Lghol, which takes thc fonn
E

ASSllllle as above that J-L9~ol = 0:

17a(-'Ya(Za)) - (g;;111aga)(Za) = 0, a = 1, .. ·9,

which is twisting property (4.5) in thc Schottky picture.

(5.4)

2. The solut.ions of thc mOlnent equations are known in a few degencrate cases [10].
Vve will cOllsidcr here as an exalllple of thc abovc cOllstruction holornorphic bUlldles over
clliptic curves with a Inarkcd point.

Definc the clliptic curve as thc quotiellt

L:T = C* / qZ, q = exp 21rir.

In this case
T*L~h rv (17(Z),9(z);p,s)

where s E GL(lV, C) is a group clelncnt in the lluHkeel point z = 1 anel P E Lie*(GL(N, C)).
In addition to (5.2)

P --+ j(z)pj-l(l), s --+ 1(1)8.

Tbc one fonn 1/(z) has a pole in thc singular point z = 1. Thc sYlllplectic fonn (5.1) on
these objects is

weh = D Ltr(17(z)Dgg-1(z)) + Dtr(pDss-1).

Tbe transition Illap g(z) can bc diagonali~cd by (5.2):

g(z) = exp 21ri1'7 = exp{diag 21ri(Ul" .. , UN )},

(5.5)

wherc Uj are z-inelependent. 'vVe kecp the Si:une notation for thc transfoflneel 77(Z)

L:nEz17J1 zn. Thc Illoment equatioll (5.5) takes the form

Rewrite it as
qn17~n) _ e21ri(xk-xj )17~n) = p\71).

J,k J,k J,k

After the resolvillg the 1l10lnent constraints wc find
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whcre Wj are new free paranleters anel B(() = LnEZ e1ri(n
2
T+2n(). Thc sYlnplectic [ann

(5.5) on thc reduccd spacc takes the fonn

wred = Dw· Dii + trD(Js- 1DS),

and J defincs thc caadjoint orbit p = 8-
1
.IS. COllsiclcr the quadratic Halniltoniall (5.3).

After the reduction H takes the fonn of the N-body elliptic Calogero Hanültonian with
thc spins [14]:

1 1 N
H = 2"(w. '1.1) + 47r2 ~[Pj,kPk,jP(Uj - ukl r ) + E 2 (r)]).

J>k

Herc E2 ( r) is thc norrnalized Eisenstcin series.
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