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Abstract

We construct index pairings of Dirac operators with K-cycles coming from the
Higson corona of a complete Riemannian manifold. We produce operators of Callias
type and compute their index as far as possible. A real construction using Clifford-
indices leads to obstructions against the existence of metrics with certain positivity
properties of the scalar curvature in a given quasi-isometry class,
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1 Introduction

There are several methods known to produce a Fredholm operator starting with a Dirac
operator on a complete Riemannian manifold M acting on sections of a Clifford bundle
S — M. A very easy one is to add a suitable bundle endomorphism & € I'(M, End(S)).
Adding such a @ should have the effect of shifting away the essential spectrum such that
B := D + ® has a gap at zero. We call such endomorphisms admissible. If S has a
Zy-grading by z and deg ® = 1 then B has a well defined index

nd B = trer p2.

It takes into account the geometry of D as well as the behaviour of ® at infinity. Especially
in the odd-dimensional case the index of B vanishes if D 1s itself Fredholin. Thus ind B
depends on the properties of the essential spectrum of D near zero. There should be a
relation to scattering indices as considered by Borisov/Miiller/Schrader in [4]. @ can be
deformed on compact subsets of M without changing the index of B. If ®.is boundedly
invertible then ind B = 0.

Operators of the form B + ® are often called operators of Callias type because of the
special case considered by Callias in [9]. Besides the problem how to find an admissible
® one is confronted with the question of computing the index of B. At a first glance it
seems hopeless to have a general effective method to do this if one takes into accout all
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the difficulties of index theory on open manifolds. But it turns out that there is in fact a
rather effective and surprisingly easy method for computing ind B. All the information
on the index of B is contained in a tubular neighbourhood of a compact hypersurface
N C M cutting off the part where @ is invertible. Thus the computation can be reduced
to an index computation on a compact manifold. In the example of Callias there is
M = R" and ind B is expressed as the index of a Dirac operator Dy on a large sphere
S"~1 ¢ R” twisted with a bundle of the positive eigenvectors of & on $"~!. Callias result
has been generalized by Anghel [1][2] to manifolds with cylinder like-ends where of course
N becomes the cylinder base. Another example is'Roe’s index theorem for partitioned
manifolds [23] which has a reformulation in terms of operators of Callias type by Higson
[15].

All the examples mentioned above start initially with a Dirac operator on an ungraded
Clifford bundle E — M. The grading enters later by forming matrices. They give non-
trivial results on odd-dimensional manifolds. It turns out that there is an even-dimensional
counterpart of the theory which in fact starts with Z,-graded Dirac operators.

In the present paper we deal with the problem of finding admissible endomorphisms &
and with the computation of ind B. It will turn out the somehow most general ¢ can be
constructed out of finite K-classes of the boundary d,M of a compactification M of M.
This compactification has been introduced by Higson [14] and has been described in [24].
OpM is called the Higson corona. It is the spectrum of the C*-algebra C,(M)/Co(M)
where Cy(M) is the C*-subalgebra of C(M) generated by the smooth bounded functions
with vanishing gradient at infinity. Finite K-theory K}(ahM ) is generated by unitary
matrices (* = 1) or projections (x* = 0) in C(IM) ® Mat(N) for N > 0. It comes
out that constructing ® and taking the index of B := D + ® gives a homomorphism
u: K3(0nM) — Z when D is ungraded and g : Kk;(9,M) — Z if D is graded. We will
also give a more general interpretation of these maps taking the K-homology content of
D into account.

The maps « and ¢ are closely related to two other constructions; namely the spectral
flow pairing s : K}(M) — Z (constructed with an ungraded operator) and the relative
index pairing 7 : K(M) — Z (constructed with a graded Dirac operator). All these maps
fit into the following commutative diagram which consists of the the long exact sequence
of complex K-theory associated to the short exact sequence of C*-algebras

0 — Co(M) = Co(M) = C(OM) > 0

completed with the finite K-theory and the index maps.
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K}(B;,M) T

K\(,M) ——  KoM)

exp
K.(M) ~— K%&:M)

s K?(@hM)

We will compute » and ¢ by a cutting and pasting procedure simplifying M to a
suitable compact manifold and employ the result to verify commutativity of the above
diagram.

There should be a close relation between Roe’s exotic index and the index of Callias
type operators contructed above such that the theory of Roe and the theory developed
here are two sides of the same thing. We will try to exhibit this elsewhere.

Having in mind several generalizations in future we will formulate our results in terms
of KK-theory. Thus we associate to B := D + ¢ a Kasparov module which represents
a class [M] € KK(C,(M),C) and the restriction {M} € KK(C,C) = Z (here we
use the convention that the symbol M stands for all structures over M). Our main
computational tools are deformation invariance of {M}, vanishing theorems for {M}
(e.g. if @ is invertible or if D is itself Fredholm) and the relative index theorem that
states that cutting and pasting along compact hypersurfaces does not change the class
{M} € Z. The idea of computation is to use cutting and pasting and the vanishing
theorems in order to reduce the problem to a cylinder over some compact hypersurface
N. There one can compute explicity by seperation of variables. This method is similar
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to that used by Roe [23] and Anghel [1]. We will describe the technical machinery in the
first few sections of the present paper.

It turns out that a large part of our methods work also in the case of real operators
and of operators beeing equivariant with respect to the action of some C*-algebra A. The
index of B is then of course an element of K.(A) (or of KO.(A) in the real case). The
difficulties come when A is infinite dimensional. The are two critical points which have
to be resolved. The first is that one has to verify that D? 4 1 is invertible. This is not
obvious (at least to the author). This is equivalent to the density of the image of D? + 1.
and is true if £ — M 1is a usual Clifford bundle twisted with a flat bundle of projective
A-modules under some finiteness conditions at infinity. The second problem arrises in
our computations on the cylinder. Here we explicitly identify kernels of two operators
living on different spaces and want to conclude that the indices coincide. This is true if
the kernels are projective modules. But in general they are not and one has to interpret
the index as in [22]. We do not know any result assuring that the two kerncls after
reinterpretation give the same K-class. Nevertheless we hope to solve these problems (at
least partially) in a forthcoming paper. Then there would be immedeate generalizations
of the results of the present paper to this more general case. ’

For the purpose of the present paper we consider the real case and A = C% some
Clifford algebra. There should be a similar diagram as in the complex case where one has
to replace the two-periodic by the eight-periodic long exact sequence of real K-theory.
The relative index pairing works in this case too. Finding the right generalization of ¢
depends on an explicit understanding of the boundary maps in real K-theory in terms of
Clifford bundles. Up to now we have not succeded to do that. Thus we start with a real
CO"_equivariant Dirac operator on E — M and an suitable ® with values in a matrix
algebra over C*? and construct a new bundle S — M and and operator B := D + &
beeing equivariant with respect to C%*~*, This operator is then Fredholm and represents
an element {M} € KO, _r(R). Again we are able to simplify the manifold by cutting off
the part where ® is invertible and replace it by a half-cylinder R, x N. We we are not
able to reduce to a tubular neighbourhood of the cylinder base in general.

In order to push through the calculation we have to make special assumptions on ®.
We use a map F :— R¥ with |F| > 1 and |grad F| — 0 when |z| — co. We let & := zF
where z is the Zo-graduation of E and form B := D + ®. In order to define the action of
® on E we understand the inclusions

R* c CU
n n .
R* c CO»

Let C%"* be gencrated by (R*)* ¢ R®. Then B is C%" *.eqivariant and ind B =
{M} € KO,_«(R). Let 0 be a regular value of F and N = F~1(0). Then we find a Dirac
operator Dy on N beeing C%"~*-equivariant and show that

ind B = ind Dy.

If M™ is a Riemannian spin manifold and £ is the real Clifford bundle associated to the
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spin structure then
ind B = ind Dy = a(N)

where a(N) € KO, _(R) is the a-invariant defined by Hitchin [16] (see also [25] and [20].
We apply this result in order to produce obstructions against the existence of metrics
with certain positivity requirements. Our results are similar to those of Roe [23] (section
6.1) but we can also cover Zy-valued obstructions. Moreover we can answer questions of
Rosenberg and Stolz [26]. As special cases we prove:

Corollary 1.1 If a(N) # 0 there is no metric on R* x N with uniform positive scalar
curvature at infinity in the quasi-isometry class of the product.

Corollary 1.2 If a(N) # 0 then there is no metric of non-negative scalar curvature T
on R x N with lower bound 7(z,n) > Itlﬁ for some ¢ > 0 in the quasi-isometry class of
the product.

Corollary 1.3 If a(N) # 0 then there is no complete metric of non-egative scalar cur-
vature on R x N which is positive on some section {a} x N.

Corollary 1.3 has also been shown by Lesch [21].

The author was strongly influenced by discussions with S.Stolz and talks given by J.
Rosenberg at a DMV-Seminar in June 1992. Moreover it was profitable reading the paper
of S.Hurder [17]. The present paper came out as a by-product of the work on obstructions
against positive scalar curvature metrics on open manifolds for which the maschinery of
the KK-theoretic relative index theorem (7] was developed. It has been turned out that
it is applicable also in the situations described in this paper. The author thanks M. Lesch
for the suggestion how to defer Corollary 1.2 from our index theorem.

2 The Higson corona and finite K-theory

Let M be a complete Riemannian manifold with Dirac operator D acting in sections of
a Clifford bundle E — M. We want to construct admissible ® € I'(M, End(F)) out of
K-classes living on some compactification M of M. An inspection of the constructions
below shows that the largest compactification we can work with is the compactification
by the Higson corone 9, M. It has been introduced by Higson [14] and is also described
in [24]. K-classes living on smaller compactifications can be pulled back to 3, M. Thus
we can apply our constructions to them too.

Let us now describe 9, M. Let C(M) be the C*-algebra of bounded continuous func-
tions on M with the sup-norm (we consider real or complex functions depending on the
context). Let Cyo(M) be the closure of C°(M) in C(M). Define

C(M) = {f € C®(M) N C(M)||df| € Co(M,T* M)}

and let Cy(M) be the closure of C;°(M) in C(M). There is an exact sequence of C*-
algebras
' 0— Co(M) = Cy(M) = C(OnM) — 0
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where C(OyM) = Co(M)/Co(M). In fact dyM := spec C(0nM) is defined by duality.
Then M := specC,(M) = MU, M is the smallest compactification to which all functions
of Cy(M) extend continuously.

The Higson corona is rather large. It maps to any smaller compactification defined by
a subalgebra of Cy( M), especially the one-point compactification and the compactification
given by the closure of the algebra of functions beeing constant outside of compact sets.

Since the Higson corona is a very large space it is not a priori clear that every element
of K*(0,M) = K.(C(9,M)) can be represented by a finite matrix. That is the reason
for introducing finite K-theory as the group of stable homotopy classes of projections
(or unitaries) which can be realized by finite matrices. Here only homotopies via finite
matrices are allowed as equivalence relation. Due to this restriction finite K-theory is not
simply a subset of the usual K-theory.

3 The relative index theorem

3.1 Operators of Dirac type and invertibility at infinity

Let M be a complete Riemannian manifold and § — M be a Clifford bundle over M (real
or complex) with associated Dirac operator D : C®(M,S) — C®(M,S). We consider
the Sobolev spaces H¥(M, S) becing the closures of C*(M, S) with respect to the norm
given by the scalar product :

k
<¥9>u=Y [ <D, D'¢> dvl.
=0

for k > 0. For negative k we define H* by duality. Then D extends to bounded operators
in B(H*, H*1).

Let ® € C'(M, End(S)) and form B := D + ®. Then B € B(H*, H*"!) for k = 2,1.
We call B an operator of Dirac type. If B is an operator of Dirac type so is B* where we
take the adjoint with respect to the scalar product in H := L%(M, S).

Definition 3.1 An operator of Dirac type is invertible at infinity if there is a positive
function s € C®(M) such that BB* + s and B*B + s are invertible as bounded operators
in B(H?, HY).

One well known example where D itself is invertible at infinity is the following. Let M
be spin and assume that M has uniform positive scalar curvature at infinity. Then the
Dirac operator on M associated to the spinor bundle is invertible at infinity. This follows
easely from the Weizenboeck formula.

Invertibility at infinity of B implies the Fredholm property (as operator in B(H', H°))
and the applicability of relative index theorems (see below, Gromov/Lawson [13] and [6]).
In many cases invertibility at infinity is easy to verify.
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3.2 Kasparov modules

Since we want to consider also real indices of Fredholm operators, i.e. indices of Fredholm
~ operators acting on Hilbert-C"-modules over a real Clifford algebra C%" we formulate our
constructions in the language of Kasparov modules. This is also most suitable for defor-
mation arguments and the statement of the relative index theorem. The generalizations
to operators beeing equivariant with respect to more complicated C*-algebras become (at
least formally, disregarding technical difficulties as described in the introduction) rather
obvious. .

In order to simplify notation we try to avoid Hilbert-C*-modules where this is possible.
In fact it is the same to consider a Hilbert space H with a right action of C%" or a Hilbert-
C*-module H over C®". There is a trace ¢ : C®" — R given by €{1) := 1 and ¢(e;) := 0
where I := {0 < i < i3 < ... < i < n} is some multiindex with 0 < &k < n and
e; = e, ...e;, for an orthonormal basis {e;}7, of R™ generating C%" with relations
eie; + eje; = —26;;. One can reconstruct the C%"_valued scalar product <<,>> of H
from the Hilbert space structure by

<<, p>>=Y <P, de; > €]
i

an vice versa the Hilbert space structure of H from <<, >> by

<P, >=e(<< Y, P >>).

Moreover B(H) is the space of C%"-equivariant bounded operators on H while K(H) is
the space of compact elements in B(H). This is not true for gencral Hilbert-C*-modules
over infinite dimensional algebras (see [22],(3] and [18]).

A Kasparov module over the pair (C, C) is a Zs-graded Hilbert space H together with
an bounded Operator F' € B(H) such that

o deg(F)=1
e F—F*¢e K(H),
e F2— 1€ K(H).

If Ais a C-algebra acting on H from the left then for Kasparov module over the pair
(A, C) we require in addition bla, F| € K(H) for any a,b € A.

Note that C%" is Zy-graded. A Kasparov module over the pair of real C*-algebras
(R, C%") is a real Zy-graded Hilbert space H with a graded right action of C"" together
with F € B(H) satisfying the same conditions as above (but with different meaning of
B(H), K(H)). Analogously we define a I{asparov module over (A, C%") where A is a real
C*- algebra.

A Kasparov module (H, F) over the pair of C*-algebras (A, B) represents a class in
KK(A, B). Note that we do not distinguish the real case from the complex case in our
notation. Some authors use KXKR for the rcal KK-theory. In the present paper it is
always clear from the context which KK-groups are ment.
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We will use the equivalence relations generated by compact perturbation, unitary
equivalence, addition of trivial elements and homotopy (see Kasparov [19], Blackadar [3]
and Jensen/Thomsen [18] for more information on KK-theory). We will also employ the
identifications

KK(C,C) = KO(C)=Z
KK(R,C’") = KO,.(R)

which are given by taking the index of F' in the first case and by taking the class of the
kernel of F' as a graded C%"-module in the second.

We prefer to work with bounded Kasparov modules. But some constructions are
simpler described with unbounded ones. Thus unbounded modules will occur in the
places where we decribe in a more general framework using the intersection product
what we did down to earth. We do not use the intersection product explicitly in our
proofs. Implicitly it is contained in the proof that the different equivalence relations on
the Kasparov modules give in fact the same KK-groups (see [3]).

3.3 The relative index theorem

Let M be a complete Riemannian manifold and S — M be a Zy-graded Clifford bundle
(complex or admitting a C%"-right action in the real case). Let D be the associated Dirac
operator and B := D + ® be a selfadjoint operator of Dirac type of degree one which is
invertible at infinity (in the real case we assume B to be C%"-equivariant). .

As we have shown in [6] there is a § € K(H? H!') such that B + S is invertible. We
set A:= B+S and F := [B(AA*)~1/%]°% € B(H®). It has been proven in [6] that (H®, F)
is a Kasparov module over the pair (C,(M),C) ( or (C,(M),C%") in the real case ). Let
{M?} be the class in KK(C, C) (or KK(R,C"") in the real case) represented by (H°, F).
This class does not depend on the choice of S. Another choice of S results in a compact
perturbation of F'.

We formulate now the relative index theorem (see [6]). Let N C M be a compact
hypersurface cutting a normal neighbourhood U(N} into two pieces U{N)4. Assume that
there is a diagram

L Sy — Suw-
i 1
vy : UN). — U(N)-
such that « is an isometry and I is an isomorphism of Clifford bundles commuting with
®. We form a new manifold M cutting at N and glueing the pieces together using 7.
We glue a new Clifford bundle bundle S using I'. Then & extends nicely to & and we

obtain an operator of Dirac type B. Suppose that B is also invertible at infinity. Let
{M} € KK(C, C) (or KK(R,C"") ) be the class defined with B as described above.

Theorem 3.2 (K-theoretic relative index theorem) {M} = {M}

Special cases have been proven by Gromov/Lawson [13], Donnelly [10] and other authors.
The present formulation in terms of cutting and pasting was suggested to me by S. Stolz.
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4 Construction and deformation of Dirac-type op-
erators

4.1 Admissible endomorphisms

Let M be a complete Riemannian manifold and § — M be a Z,-graded Clifford bundle
with associated Dirac operator D (admitting a C®"-right action in the real case).

Definition 4.1 An endomorphism ® € C'(M, End(S)) is called admissible if
¢ deg® =1 and ¢~ = 9,
o ®D + D® 1is bounded of zero order and

e there is a compact set K C M such that ®D + D®+ &% > ¢ > 0 on M\ K for some
constant c.

In the real case we will require in addition equivariance with respect to certain Clifford
algebra C%* c C%" such that B := D + ® becomes C%*-equivariant,.

A compact set K C M with 2 > ¢ > 0 on M \ K is called an essential support of .
Later we will show that all the information on the index of B is contained in an essential
support of ®. Note that replacing ® by ®, := t® one can have also D®, + &,D + ®? =
t(D® + ®D) + t28% > ¢ > 0 outside of a given essential support for large t. Note that B
is selfadjoint for admissible ®.

Lemma 4.2 If® € CY(M, End(S)) is admissible then B := D+® is invertible at infinity.

Proof: Let K ¢ M such that D + D® + ®2 > ¢ > 0 on M \ K for some constant c.
Let s € CX®(M) be a positive function such that s > c on K. Then B? + As is selfadjoint
and positive for large A. O

4.2 Deformations

Let M be a complete Riemannian manifold and § — M be a Zjy-graded Clifford bundle
with Dirac operator D. Let ® € C'(M, End(S)) be an admissible endomorphism and
B := D+ ®. Consider a perturbation B, of B continuous in B(H', H%). Let {M,} be the
class in KK-theory constructed with B,. Then we have deformation invariance.

Lemma 4.3 {M,} = {M,} for smallt.

Proof: Let § € K(H® H') such that B + S is invertible. Then for ¢ small B, + S is
invertible. Thus we can form A, := B,+.5 and F; := [B,(A,A'{)"‘/Q]"dd. The cycle (H°, F})
represents {M,}. To prove the Lemma it is enough to show that F, induces a homotopy
(do not confuse with operator homotopy). In fact it is enough to show that F, is strongly
continuous and that F; — F; and F? — 1 are continuous in the norm. This is easely seen
from the integral representations used in [6]. O
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Corollary 4.4 Let {B,}; € I be a continuous family in B(H', H®) such that B, is in-
vertible at infinity for any t € I. Then {M,} = {M}.

Proof: One finds a finite partition of the interval I and applies the Lemma 4.3 finitely
often. O

A continuous path &, € C(M, End(S)) leads to a continuous family B, € B(H*, H°).
More general continuous deformation of the Clifford bundle structure or Riemannian
metric in the C%-topology (sec Eichhorn [11] and [12]) (with appropriate identification of
the Hilbertspaces) lead to continuous families in B(H!, H%) and thus do not change the
class {M} constructed with B. Of course if the connection of the Clifford bundle comes
from the Levi-Civita connection on has to consider C'-continuous families of metrics in
order to obtain C%continuous families of Clifford bundle structures.

Corollary 4.5 If ® is admissible and has an empty essential support (i.e. 2 > ¢ > 0
for some constant ¢ > 0) then {M} = 0.

Proof: Consider the family B, := D +t®. If & is admissible so is t® for t > 1. Moreover
B, is invertible for large t > 0. Hence {M} = {M;} =0. O

5 The map u

5.1 The construction of u

Let M be a complete Riemannian manifold and £ — M be a (complex) Clifford bundle
over M with Dirac operator Dg : C®(M,E) — C*(M,E) which is ungraded. Let
[p] € K}(0n M) be represented by a projection p € C(,M) ® Mat(N) for some large N.
We can find a 'lift’ P € Cy(M) ® Mat(N) of p such that

o P=PF
o P2 P e C(M)® Mat(N)
o P (mod Co(M) ® Mat(N)) represents [p].

Stabilization and homotopies of p can be lifted to stabilization and homotopies of P. Form
the Zy-graded Clifford bundle S := EQ(CN @ (C¥)°P) with associated Dirac operator D

given by the matrix
D= 0 Dg®1
T\ Dg®1 0 ’

Here C¥ is trivially graded (i.e. all elements have degree 0) and (C¥)* consists of
elements of degree 1. Let

0 1-2P

¢:=’®(2P—1 0

) € CY(M, End(S)).
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Lemma 5.1 ® 1s admissible.

Proof: Obviously deg® = 1 and & = &*. Moreover

_ gradP 0
D<I’+‘I'D-—22( 0 -—gradP)'

But gradP tends to zero at infinity while ®2 tends to 1. Thus there is a compact set
K C M such that D® + ®D + %2 > ¢> 0 on M \ K for some constant ¢. O

‘Let {M} € Ko(C) be the class defined by the operator of Dirac type B := D + &.
It is easy to see that {M} does only depend on the stable homotopy class of p in finite
K-theory. In fact two different choices of the lift P can be deformed into each other such
that we get a C°-deformation of the corresponding adinissible ®’s. This does not change
the K-class of {M} by Corollary 4.4. Stabilization results in forming a direct sum of B
with some invertible operator of Dirac type. Homotopies of p inside finite matrices can
be lifted to C%-continuous homotopies of the P and thus of the ® inside the admissible
endomorphisms. Again this does not change the class {M}.

Definition 5.2 The map u : K}{(OyM) — Z is given by p — {M}.

Obviously u is a group homomorphism.
Since D commutes with the action of C'? given by

£ o 01
1 0
where € gencrates C1Y with €2 = 1 we have the following fact.

Proposition 5.3 If there is a gap in the spectrum of Dg then then u = 0.

Proof: Let D and @ be as in the construction above. The important property of ® is
that it anticommutes with e. Let A € res D. Consider the two-parameter family

B, =D —ske+t®

We can deform B, to By inside the operators of Dirac type beeing invertible at infinity.
In fact let first s go from zero to one and then ¢ go from one to zero. But By commutes
with € thus its index vanishes. O

This fits well into the results of Roe and others stating that the odd K-homology class
constructed out of an ungraded Dirac operator vanishes if there is a gap in the spectrum.

5.2 Computation of u

Let N C M be a compact hypersurface cutting M = M_Uy M, such that M_ is compact
and contains an essential support of . Deform the metric, the Clifford bundle structure
and & in a neighbourhood of N such that there is a product collar near Nand @ is constant
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in normal direction. This makes glueing easier. Let M) := M_ Uy [0,00) X N. There is
a Clifford bundle §; — M, respecting the product structure over the cylindrical end and
restricting to S)a_ on M_. In fact one restricts S to Sy on N. Then Syjjpc0yx¥ = prySin
with induced connection and Clifford bundle structure. One can extend —®)p_ constantly
along the cylinder obtaining ®;. We form M, := M U —~M;? where op means that we
choose the opposite grading on the Clifford bundle over M; and — stands for redefining
the Clifford bundle structure such that X € TM, acts as —X. (note that we compress all
structures over the manifolds into the symbols M, My, ...). Then {Ms} = {M} — {M;}.

Now we apply the relative index theorem. We cut the manifold M5 at the two copies of
N,ie. NU{0} x N and glue together interchanging the boundary components obtaining
My = M_Uy —MZP UM, Uy —(R, x N)*. In order to glue the Clifford bundles we
have to use an isomorphism I' of degree one such that TX = —XT for X € TN and
I'n = nI' for the unit normal vector field at N (note that the diffeomorphism used for
glueing transports n to —n). We take I' simply as multiplication with n. In fact we have
also n® = —®n. Thus the admissible endomorphisms glue nicely. By the relative index
theorem {M>} = {M3}. But {M3} = 0. On one hand {M_ Uy —M2P} = 0 since this
manifold is compact and hence the Dirac operator has gap in the spectrum such that
we can apply Proposition 5.3. On the other hand an essential support of the admissible
endomorphism over My Uy —(R4 x N)? is empty. Thus {M, Uy —(R; x N)°?} =0 by
Corollary 4.5. Hence {M} = {M;}. Thus we have replaced one half of the manifold by a
cylinder. In the next step we do the same with the other half.

Consider My := M| U —M,; where we chose the admissible endomorphism &, as — &,
on the first component and ®; on the second. Then {My} = 2{M;}. Now we deform
®, on a compact set such that it is zero near the two copies {0} X N of N in M,. Cut
M, at these two copies and glue together again interchanging the boundary components
obtaining My := M_ Uy —M_ U Mg where Mg = R x N. For glueing the Clifford bundle
we use the even isomorphism of S), given by multiplication with I := diag(n,n). By the
relative index theorem 2{M;} = {Ms}. But {M_ Uy —M_} = 0 since this manifold is
compact and therefore we can apply Proposition 5.3. Hence 2{M} = {R x N}. Thus we
have reduced the index computation to a cylinder.

But there we can calculate explicitly. Let @, be the admissible endomorphism over
the cylinder. By a further deformation over compact sets we can assume that ¢, = Y@ x
where 1 is a smooth function on R X N depending only on the first coordinate such that
P(r,n) = sign(r) for |r| > 1. Moreover we can deform @5 to an involution or, what is
the same, Py to a projection. This amounts to an index-preserving deformation of ®, by
Lemma 4.4. Then

{Rx N} = index (n-% —P(r)l - 2P) + DN)

= index (f% + ¢(r)in(l — 2P) — nDN)

- index (a% + (r)na(l — 2P) — n(1l — 2P)Dy(1 — 2P))



5 THE MAPU 14

where Dy is the Dirac (;perator on Syy. Note that (1 —2P)Dy(1—2P) = (1—P)Dy(1 -
PY+ PDyP — PDy(1 — P)— (1 — P)DyP. But (1 — P)DyP and PDy(1 — P) are of
zero order. Hence by an index preserving deformation

{RX N} =indexT
with

T .= (0—37 + Y(r)nyl = 2P) — [n(1 — P)Dny(1 = P) + nPDNP]) .

By explicit calculation using separation of variables and employing the L2-condition (sim-
ilar to the caluculation of Higson [15]) one obtains that the kernel of T and T* consists
of elements of the form '

() = exp (-— for P(shn(l — 2P)) v
frr) = exp (+ /Or P(s)n(l — 2P)) v

with v € ker n[(1 — P)Dy(1 — P) + PDyP]. Note that in(1 — 2P) is an involution
anticommuting with nf(1 — P)Dy(1 — P) + PDyP). Thus we can split

k6T7l[(1—P)DN(1—P)+PDNP]=W+@W—

into the eigenspaces of in(l — 2P) to the eigenvalues +1. fF is in L? exactly when
veE W™ and f; isin L? iff v € W*. Thus index T = dim W+ —dimW~. Let V.- N
be the vector bundle over N given by P and V, be the bundle given by (1 — P). Then
n((1 — P)Dn(1 — P)+ PDyP) is the sum of the two twisted Dirac operators Dy vy, and
Dyy_ and dim W= +dim W~ = ind,, Dy v, — ind,, Dyy_ where the grading is given by
the involution wn. By cobordism invariance ind,, Dyy, = —ind,, Dyy_. Thus

u([p]) = {M} = %{R X N} = %indemT = ndy, Dy y,

Let us formulate this result as a theorem.

Theorem 5.4 Let [p] € KYOwM) and P € Co(M)Q Mat(N) be a selfadjoint representer
of p. Let N C M be a compact hypersurface cutting M = M_Uy M, where M_ is compact
and (1 — 2P)? > ¢ > 0 on M, for some constant c. Let V, be the subbundle of N x CV
gwen by the eigenvalues < -;- of Piy. Then u([p]) = indDyy, where Dy y, is is the Dirac
operator of E\y @ V. and the grading is given by in with the unit normal vector field n at
N pointing into the direction of M.

This reproves and generalizes the theorems of Callias [9] and Anghel [1]. It containes also
the index theorem for partioned manifolds of Roe [23] in the formulation of Higson [15]
as a special case. In fact a partioned manifold M is given by a complete Riemannian
manifold M together with a function ¢ € C*®°(M) such that || = 1 outside of a compact
set and 1~'(0) is a smooth compact hypersurface. Then 3 induces an element [(1+)/2] €
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K?(B;,M). Let Ny UN_ be the boundary of a small tubular neighbourhood M_ of N such
that ¥;5_ < 0. Hence u([¢]) = ind,\n Dy_ = ind,,Dx where n is the unit normal vector
field pointing into the region of M where ¥ is negative.

Since the index of a Dirac operator on an odd-dimensional manifold vanishes we have
u = 0 if M is even-dimensional.

5.3 Interpretation as KK-intersection product
0 Dg
Dg 0

represents an unbounded cycle [D] € KK(Cy(M), C1'%) where the action of the generator
¢ of C10 is given by

01

10/

0 1-2P
‘I"*(zp—l 0 )

represents a cycle [®] € KK(Cy(M), Co(M) ® C*!) where the action of the generator of
C%! is given by

0 -1

1 0/

The construction of {M} above is nothing else than forming the intersection product

[M] = [®] ®cy(ary [D) € KK(Cy(M) ® C°, C) = KK(C,(M),C).

The operator

The endomorphism

restricted to KK(C,C). One can show this in the framework of bounded Kasparov
modules using the definition given in [18] in terms of connections (This becomes easy
since we are tensoring with a trivial bundle and thus 1 ® D makes sense).

Formulating things in terms of K-homology and K-cohomology we have [D] € K¢ (M)
and {®] € K, !(M) and we have employed the pairing K} (M) @ KS(M) — KJ_,(M).

6 The spectral flow pairing s

6.1 Construction

Let M be a complete Riemannian manifold and £ — A{ be an ungraded Clifford bundle
over M.

A cycle [W] € K!(M) is represented by an unitary matrix W € C®(M) @ Mat(N)
with W = 1 outside of a compact set K C M. Let S := E® C" and D be the associated
Dirac operator. It is selfadjoint and defines a spectral projection @ € B(H?®) onto the
positive spectral subspace of D. Consider A := (1 — Q) + W*Q where W acts on H? as
unitary operator in the obvious way. It was shown in [8] that A is a Fredholm operator.
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Definition 6.1 The spectral flow pairing is given by s(|W]) 1= indez A. :

In fact it is easy to see that inderA depends only on the stable homotopy class of W
and is additive under direct sums. One can compute this index by reducing to a compact
manifold containing K. If M would be compact then s([W]) is given by the spectral flow
of a family between D and WDW™.

6.2 The relation between s and u

We show the commutativity of the lower part of the diagram in the introduction. Let
exp : KY(OsM) — K (M) be the exponential map and i : K$(8,M) — K9, M).

Theorem 6.2 u=soexpoi

Proof: Let [p] € K%(0,M) be represented by a selfadjoint P € C,(M)®Mat(N). We can
choose P such that P is a projection outside of a compact set K C M. Then exp(i([p]))
is represented by the unitary W := exp(2mP). In fact W = 1 on M \ K. Choose a
compact hypersurface N C M which splits M = M_ Uy M, such that K C M_.. Let
I x N be a tubular neighbourhood of N in M. We can choose another P, representing
p such that P, = P on the plus-side of / x N and P, = 0 on the minus-side. Let
Wi = exp(2miPy). Then W; = 1 outside of the tubular neighourhood of N and W,
represents the same class as W. Thus consider P, W) instead of P,W. As it has been
shown in [8] one can compute s([W]) by reduction to M; := S! x N, a manifold which
containes naturally our tubular neigbourhood I x N. First one deforms the metric and
the Clifford bundle structure near N such that it respects the product structure of the
tubular neighbourhood. Then one can glue Sj;x» at the boundaries of of I x N obtaining
a Clifford bundle S, — M;. Since W =1 on these boundaries it extends to W; over M.
Now one can form A; := (1 — Q1) + W@, where Q) is the positive spectral projection of
the Dirac operator on S;. By the results of [8] we have index A = index A and indezx A,
is the spectral flow of a family between D, and W, D,W}. Since W is the image of a
projection P; := Pjjxx under the suspension map it is rather well known that this spectral
flow equals ind,, Py Dy P,. Comparison with Theorem 5.4 finishes the proof. O

Note that the spectral flow pairing must not vanish even when D has a gap in the
spectrum. It gives then the spectral flow of the familiy between D and WDW™ in this

gap [5]. >

7 The map g

7.1 Construction of g

Let M be a complete Riemannian spin manifold and £ — M be a Z,-graded Clifford
bundle over M with grading 2. An clement [u] € K}(9,M) is represented by an unitary
matrix u € C(OpM) ® Mat(N) for some large N. Let U € C°(M) ® Mat(N) be a
lift of  (up to homotopy in order to obtain smoothness). Stabilization and homotopies
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of u can be lifted to stabilization and homotopies of U. Form the Z,-graded bundle
V := M x (CV @ C¥) and the graded tensor product S:= E®V. § is a Clifford bundle

with Dirac operator D. Let
0 U
=20 ( U 0 )

and B:=D + &.
Lemma 7.1 ¢ is admissible.

Proof: In fact deg ® =1 and ®* = &. Moreover

_ 0 ~gradU*
D<I>+<I>D—z®(_gmdU 0 )

vanishes at infinity while ® tends to 1 there. Hence there is some compact set K C M
such that D® + ®D 4 2 > ¢ > 0 on M \ K for some constant ¢. O

Let {M} € K¢(C) be the class constructed with B. It is easy to see that it depends
only on the stable homotopy class of U and therefore of u. Moreover it is additive under
direct sum. Thus we can define the homomorphism g by

Definition 7.2 The map g is given by g([u]) :== {M}.

7.2 Computation of g

Let N C M be a compact hypersurface cutting M = M_ Uy M, such that M_ is compact
and contains an essential support of . We can deform U to an unitary matrix on M, using
polar decomposition. Thus let us assume this. Further we assume that (after deformation
near N) the metric and the Clifford bundle structure near N respect the product structure
of a tubular neighbourhood I X N C M of N. Consider M; := M UR x N where
the Clifford bundle on R X N comes from restriction S|y. We extend @y constantly
along the R-direction obtaining ®; over M;. Then {M} = {M,} since an essential
support of ®; over R x N is empty. We apply now the relative index theorem. We
cut at the two copies N U {0} x N and glue interchanging the boundary components
obtaining My, = M_Uy Ry x NUR_ x N Uy M. The Clifford bundles are glued
using the natural isomorphism. The admissible endomorphism glues nicely to 3. Then
{M} = {M,} = {M;}. But over R_ x N U M, an essential support is empty and thus
{M} = {M;3} where M3 := M_Uy Ry x N. Again we have replaced half of the manifold
by a cylinder.
Counsider the matrix

W= ( g (1’ ) € C*(M, End(S).
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W is even, unitary and constant in the R-direction over the cylindrical end. Deform the
connection V on Sz near {1} x N such that it is WVW?* in a neighbourhood of {1} x N
and deform ®3 there such that it is

01 .
(1 0)=W¢,NW.

Now we cut M_ Uy Ry x N at {1} x NU {2} x N and glue together obtaining M, :=
M_Un[0,1] x NUy [2,00] X NUS! x N. We use W to identify

W= 1 Siyxn — Sjg2yxn-

Then the admissible endomorphisms glue nicely to 4. By the relative index theorem
{M} = {Ms}. Since W@ yW* can be extended as invertible over M_ Uy [0,1] x N we
have {M} = {S' x N}. Since this manifold is compact we can deform &, to zero there.
Let us formulate this result as a theorem.

Theorem 7.3 Let [u] € K}(8,M) be represented by U € C(M)@Mat(N). Let N C M

be a compact hypersurface of M splitting M = M_ Uy My such that M_ is compact and

U is invertible over M,. Then g([u]) is given by the index of the twisted Dirac operator

Dy over S' x N where L — S' x N is constructed from the trivial bundle I x N x CV by

glueing with )
Un: {0} x NxC¥ = {1} x N x CV.

g([u]) is also the spectral flow of a family between Dy and UnDnUn where Dy is half
of the Dirac operator in Sjn.

7.3 Interpretation as KK-intersection product

The operator D represents an unbounded cycle [D] € KK(Cy(M), C) while

0 U
(5 %)

represents an cycle [®] € KK(Cy(M), Co(M)). The construction of {M} is nothing else
than forming the intersection product [M] = [®] ®¢,(m) [D] € KK(Cg(M), C) restricted
to element KK(C, C). Formulating things in terms of K-homology and K-cohomology we
have [D] € K§(M) and [®] € KJ(M) and we have again employed the pairing K}(M) ®
K§(M) — K{_,(M).

'8 The relative index pairing r

8.1 Construction

Let M be a complete Riemannian manifold and E — M be a Z,-graded Clifford bundle
over M. An element 7 € K (M) is represented by a tuple (Vi,V,, W) where V},V; are
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vector bundles over M and W € C*(M, Hom(V}, V4)) is invertible outside of a compact
subset K C M. Let N C M be a hypersurface cutting M = M_ Uy M, such that M_ is
compact and contains K. Take M = M_ Uy — M2 where we glue the Clifford bundle E
using the odd morphism given by the multiplication with the unit normal vector field n
pointing into M. We glue Vija_ with V5 _ e using the identification

Win - Vi — Voo per

obtaining V — M. Let Dy be the twisted Dirac operator on E @ V.
Definition 8.1 The relative index pairing is gwen by r(t) := ind (Dy).

It has been shown that this definition does not depend on the choice of the representer of
7 and the hypersurface N (for the latter see [13])

8.2 The relation between r and ¢

We show the commutativity of the upper part of the diagram in the introduction. Let
1 KH (M) — K (0 M).

Theorem 8.2 rodoi=g.

Proof: Let [u] € K}(8,M) be represented by the unitary matrix u € C(8,M) ® Mat(N)
and let U € Co(M)® Mat(N) be a lift of u. We can assume that U is unitary outside of a
compact set ¥ C M. Then §0i([u]) is given by 7 = [M x CY,M x C¥ U)]. Let N C M
be a compact hypersurface cutting M = M_ Uy M, such that K C M_. Let ] x N be a
tubular neighbourhood of N. We can deform U on M_ such that Up_\;xy = 1. Hence
we can construct r(7) as follows. We glue

M=8'xN=IxMU-(IxN)”.

We have to glue the trivial bundle 7 x N x C¥ with the trivial bundle —(I x N)°? x C¥
using the identifications

1: {0} x N x C¥ = —({0} x N)? x C¥

and
Un: {1} x Nx CY - —({1} x N)’? x C¥

obtaining V — S' x N: Then r(r) = indDy. Comparison with Theorem 7.3 gives the
desired result. O
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9 A real construction

9.1 The pairing

There are geometric constructions where real Dirac operators arrise naturally [20],[25],{16].
These Dirac operators commute with a natural right action of some real Clifford algebra
C%" The real index is an equivalence class of the kernel as a graded module over this
Clifford algebra modulo restrictions of graded modules of C%"*!, Let, for example, M™
be spin with spin structure Pgp, — M. Then the bundle Pgpin X gpin(n) C%" admits a
right action of C%". Here Spin(n) C C®" acts by left multiplication on C%",

The index constructions are most compactly formulated in terms of KK-theory. In
this section we consider KK-theory for real C*-algebras. Also Cy(M), Co(M), etc. consist
of real functions.

Let M be a complete Riemannian manifold and £ — M be a real Z,-graded Clifford
bundle over M admitting a right action of the real Clifford algebra C%". Let z be the
grading operator. The Dirac operator D is C%"-equivariant and represents an element
[D] € KK(Co(M),C""). For later purpose it is better to understand [D] € KK(Co(M)®
C™%, R). The action of an element f ® e € Co(M) ® R" is given by ~fze i.e. first
multiplication with —e from the right followed by the action of z and left multiplication
with f. Here R" generates C" as well as C™?. This construction realizes an isomorphism

KK(Co(M) ® C™® R) = KK(Co(M), C*™).

In terms of K-homology we have [D] € K%(M). We want to pair [D] with certain
elements [®] € KK(C,(M),Co(M) ® C*P). For simplicity we assume k < n, this can
easely be obtained by tensoring [D] with C®? several times and using Bott periodicity.
We consider [®] represented by a matrix ® € Mat(C,(M)®C*°, N) for some N > 0 with
the properties ®* = &, deg ® = 1 and that 2 — 1 vanishes at infinity. We construct now
an operator of Dirac type representing

[M] = [®] ®cyanects [D] € Ky (M).

Form the graded tensor product S := (C*9)®" ®.:0 E. This is a real Zy-graded Clifford
bundle with right action of C%"~*, In fact let R* C R" generate C% and C*° and
R** = (R*)! generate C%"* then e € R* acts by —ze on E and this commutes with
the action of f € R**. Let Dg be the Dirac operator of S and form B := Dg+ &. Note
that ® acts naturally on 5.

Lemma 9.1 & is admaissible.

Then [®] ®c,oneco+ [D] = [M] € KK(Cy(M),CO*) = Kf_ (M) is the class con-
structed with B. Let {M} € KK(R, C%*"~*) be the restriction of [M].

9.2 Computation of the real index

We want to compute { M} in analogy to the complex case as far as possible. Let N C M be
a hypersurface cutting M = M_Uy M, such that M_ is compact and contains an essential
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support of ®. Again we assume (after deformation) that there is a tubular neighbourhood
I x N C M of N where the metric and the Clifford bundle structure respect the product
structure and where ® is constant in the normal direction. Consider M; := R x N with
the induced Clifford bundle and with @, induced by ®|x constantly extended over the R-
direction. An essential support of ®, is empty. Thus {M} = {MUM;}. Now we cut at the
two copies N U {0} x N and glue together again interchanging the boundary components
obtaining M_ Uy Ry x NUR_ X N Uy M,. We apply the relative index theorem and
obtain {M} = {M,} where M, = M_ Uy Ry x N. The second component does not
contribute since an essential support of the admissible endomorphism there is empty. So
far the computation is similar to the one of g. We have replaced the nonessential part by
a cylinder. It is not obvious how to go further. In the complex cases the special form of
® or D are used. It is a question wether the index information is contained in a tubular
neighbourhood of N. This is the case in the example below.

10 An example

Let M be a complete Riemannian manifold and § — M be a real Zp-graded Clifford
bundle over M admitting a right C%"-action with associated Dirac operator D. Let
0 < k < n and consider R* ¢ R™ where R* generates C®* C C%" and (R*)* generates
COn=k c C%. Let f € C(0nM) ® R¥ be given such that f2 = —1 i.e. f has values in
the unit sphere. Let F € C;(M)® R* be a lift of f. Then & := 2F represents a cycle in
KK(C,(M),Co(M) ® C*0).

Lemma 10.1 & s admissible.

The operator of Dirac type B .= D+ ® is Cd'"""-equiva,ria.nt and represents the class
[M] = [®] ®c,mecre [D]. Let {M} € KK(R, C®"*) be the restriction of [M].

10.1 Reduction to a product

We want to compute {M}. We can assume that 0 is a regular value of F. Then
N := F~1(0) is a compact manifold of dimension n — k. We use F to identify a small
neighbourhood of N with D*¥ x N where D* is the unit disk in R¥. After deformation
of the metric we can assume that F is an isometry on this neighbourhood. Let F be a
deformation of F' in a neighbourhood of N such that Fi(z,n) = 2/ ||zl in a neighbourhood
of §¥7! x N = §(D* x N). Let M, := R* x N with F\(z,n) = F(z,n) on D¥ x N and
z/|lz|| for ||z]| = 1. M, has a Clifford bundle S, induced from M respecting the product
structure. Let ®; := —zF). Note that ®; is admissible. Let My := M U —M;®. We
split M, at the two copies of S¥~! x N and glue together interchanging the boundary
components obtaining M3 = My U My with

My := M\ D*¥ x NUg-1yy —(R*\ D x N)P

and

My = DF x NUS*"‘)(N —(Dk X N)OP.
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We glue the Clifford bundles using the odd morphism given by left multiplication with
the unit normal vector field at the boundary S*~! x N. By the relative index theorem
{My} = {M3}. But {M;} = 0 since M5 is compact and thus ®5 can be deformed to zero
and the Dirac operator itself without perturbation is equivariant with respect to a larger
Clifford algebra. On M, an essential support of the admissible endomorphism is empty.
Hence {M} = {M;}. Thus we have reduced the problem to a product M; = R* x N
where ®,(z,n) = zz/||z| for ||z| > 1.

10.2 The product case

Let M := M, and ® := @, for a moment. The Clifford bundle § — R* x N is the pull
back of a bundle S* over N admitting a right action of C%" and a left action of C%* (which
commutes with the action of the Clifford algebra bundle of N in a graded way). This left
action is used to define the Clifford multiplication with TR* on prj S* in order to obtain
the Clifford bundle S over R* x N. We want to use induction in k. In order to employ the
product structure RF = R x R*~! we have to deform ® such that it respects this product
structure. For 1/2 > € > 0 let 9 € C*°(R) be such that (r) = sign(r) for |r| > 2/,
Y(r) € [-1,1] for |r| < 2/e and |8,¢] < 2¢. Form &,(x,n) := 2((z!),..., ¥(z*)).

Lemma 10.2 &, is admissible.

Proof: In fact deg®; = 1 and &} = ®,. Moreover & D+ D®, + &2 = —zgrad(z®,)+ 2.
But |[grad(z®,)]| < 2¢ and for ||z|| > 2/¢ we have 2 > 1. O
Let {M,} be the class defined by B; := D + &,.

Lemma 10.3 {M} = {M,}

Proof: We can deform @ to &, inside the admissible endomorphisms. Let ®, = t® +
(1 —t)®,. Then for ||z|| > 2/¢

&,D + D%, + &?

k
= —tzgrad(z®) — (1 — t)z grad(2®,) + 2@* + (1 — £)* S ¢(z')?

i=1

8
+2t(1 — t)”%" Y ()

=1
> 24 (1 —t)? ~ t|grad(z®)| — 2(1 — t)ke
> 1/8

for € small enough. O

Let now R* = R x R*! and n be the unit normal vector in R-direction. n generates
C%! and we can split S* = $*¥~! @ C%! by the following procedure. Let e := zlr where ! is
the action of n from the left and r is the action of n from the right. e is an even involution
of S*. Let S*~1 be the positive eigenspace of e. Then S¥~! admits an C%"*~!-action from
the right where C%"~! is generated by R* C R", is a Clifford bundle over N and admits
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a C%~1 action from the left commuting in a graded sense with the action of the Clifford
algebra bundle of N. In fact the generators of C%*~! acting from the left and of C%"~!
acting from the right commute with the involution e.

For 0 < i < klet M) = R"_ x N with Clifford bundle induced from 5¢. Construct
the admissible endomorphism <I)(l') as above and form {M®},

Proposition 10.4 {M®} = (M-}

Proof: We identify ker(D®™ + &) with ker(DC-Y 4 ®(-1) as a CO"~*-module. With
respect to $* = $*71 ® C%! we have

D + ) = l?}% + zv'¢($k) + [D(i—l) + q)(i—l)] Q1.

Multiplying with —! we obtain

9 + zlﬂ!)(ac‘“') - I[D(*'-l) + (I)(t'-l)] o1

A= —
ox*

A respects the splitting
LR x N, §) = L}(R) @ ker([DV 4+ -] ®1) @ LA(R) ® ker([D" D + (V] @1)*

and is invertible on the second component (compare Higson [15] for a similar argument).
Thus the elements of ker A are of the form

k

fu(a*) = expl(=2tr [ wit)dve.

From the L?-condition we sec that ker A is the 1-eigenspace of zIr in ker([DU~V4-3(-1]g
1). But this is exactly ker(DU~1 4+ @(=1), All identifications we have made respect the
structure of graded C%"~*-modules. This proves the Proposition. O

10.3 A real index theorem and applications

We come now back to the general situation. Let M be a complete Riemannian manifold
and § — M be a real Zo-graded Clifford bundle over M admitting a right C%"-action
with associated Dirac operator D. Let F € C,(M) ® R* for 0 < k < n as above with
F? — —1 at infinity. Assume that 0 is a regular value of F and let N := F~1(0). We
have constructed a Clifford bundle $° — N with Dirac operator Dﬁ,?) admitting a right
COm~F._action such that Sy = S°® C™. Let B := D + zF and {M} € KK(R,C*"F)
be the class constructed with B. Putting the above results together we have

Theorem 10.5 {M} = ind DY,
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10.4 Obstructions against positive scalar curvature

If M is a Riemannian spin manifold of dimension n there is a natural real Clifford bundle
S — M admitting a C%"-action. In fact S := Psyin X spin(n) C*". Let F € Cy(M) ® R,
n >k > 1and N as above. Then N is spin and S° is the natural Clifford bundle
associated to the spin structure of N. In this case ind DY) = a(N) where a(N ) is the
alpha invariant defined by Hitchin [16],[20]. Let D be the Dirac operator on M. We have
the Weizenboeck formula D? = A + 7/4 where 7 is the scalar curvature of M.

If 7 is uniformly positive at infinity then D is invertible at infinity and hence {M} =0
for any F. In fact we can then deform F to zero without changing the index. But D
is equivariant with respect to a larger Clifford algebra C%" and hence the class of its
kernel vanishes. It follows a(N) = 0. Since the conditions on F' depend only on the
quasi-isometry class we obtain

Corollary 10.6 Let M™ be a complete Riemannian spin manifold and F € C,(M) @ R*
be such that |F| — 1 at infinity and 0 is a regular value. If o(F~1(0)) # 0 then there is
no metric in the given quasi-isometry class which has uniform positive scalar curvature
at infinity.

A special case is:

Corollary 10.7 If a(N) # 0 then there is no metric with uniform positive scalar cur-
vature at infinity on the product R* x N for any k in the quasi-isometry class of the
product.

Another application is

Corollary 10.8 If a(N) # 0 then there is no metric of non-negative scalar curvature T
on R* x N with lower bound (z,n) > ﬁff for some ¢ > 0 in the quasi-tsometry class of
the product.

Proof: Assume that M := R* x N has a metric with non-negative scalar curvature
in the quasi-isometry class of the product satisfying 7(z,n) > 57 for some constant

¢ > 0. Consider B, := D + tzF with F € C®(M,R*) depending only on the first
coordinate and satisfying F~!(0) = {0} x N and F(z,n) = z/|z| for |z] > 1. Then
B? = A+71/4— 2t grad F + t*F?. But ||grad F(z,n)| < it for some ¢; > 0. Thus

cfd—cit

t2F2,
e[+l

7/4 — 2zt grad F + t*F% >
If we chose t < 3% then B, is positive and hence invertible. It follows {M} = {M;} =0
and o(N)=0. O -

Let M again be a complete Riemannian spin manifold with non-negative scalar curva-
ture. Let F € C°(M)®R* with 0 as a regular value and which is constant of unit length
outside of a tubular neighbourhood U of N = F~!(0). Assume that the scalar curvature
is positive on U. Then
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Proposition 10.9 «(N)=0

Proof: Consider B, = D + tzF for small t > 0. B, is invertible at infinity. Thus by
Theorem 10.5 and deformation invariance o(N) = {M} = {M,}. Then B? = A + 7/4 —
zt grad(F) + t*|F|%. 1f t is small enough then 7/4 — zt grad(F) > 0 and hence B, is
invertible. But then {M,} =0. O

(This sort of argument the author has learned from M. Lesch [21]).

Corollary 10.10 If a(N) # 0 then there is no complete Riemannian metric on R x N
which is positive in some section {a} Xx N C R x N.

All these obstructions have refinements to the case of finite fundamental groups where
one employs Clifford bundles twisted with flat bundles with fibre C:(m(M)). In order to
cover the case of general fundamental groups one has to find a proof of Proposition 10.4
circumventing the problem of non-projective modules which may occur as a kernel. We
hope to do this in a forthcoming paper.
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