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Abstract

We show that the equation in the title (with Φn the nth cyclotomic
polynomial) has no integer solution with n ≥ 1 in the cases (m, p) =
(15, 41), (15, 5581), (10, 271). These equations arise in a recent group
theoretical investigation by Z. Akhlaghi, M. Khatami and B. Khosravi.

1 Introduction

In the recent work [1] by Zeinab Akhlaghi, Maryam Khatami and Behrooz
Khosravi, some Diophantine equations come up in a group theoretical con-
text. In particular, Zeinab Akhlaghi posed the following problems to us.

• Which primes P of the form P = 2 · 412a − 1 can also be written as
P = Φ15(q), with q a prime power?

• For which primes P of the form P = 2 · 55812a − 1 can an odd power
P b also be written as P b = Φ15(±q), with q a prime power?

• For which primes P of the form 2 · 2712a− 1 can an odd power P b also
be written as P b = Φ10(q2), with q a prime power?

Here Φm is the mth cyclotomic polynomial. In particular,

Φ15(x) = x8 − x7 + x5 − x4 + x3 − x + 1,

Φ10(x) = x4 − x3 + x2 − x + 1.

Note that Φ10(q2) = Φ20(q).
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Typical for Diophantine equations arising in group theory is the oc-
currence of primes, and so the above present some ‘typical’ examples of
equations so arising.

Given a group G, let π(G) denote the set of primes q such that G contains
an element of order q. Then the prime graph Γ(G) of G is defined as the
graph G with vertex set π(G) in which two distinct primes q, q′ ∈ π(G) are
adjacent if G contains an element of order qq′. Akhlaghi et al. [1] show,
using Theorem 1 below and various already known Diophantine results,
that in case p is an odd prime and k > 1 is odd, then PGL(2, pk) is uniqely
characterized by its prime graph, i.e. there is no other group having the
same prime graph.

In this paper we will prove the following result, implying the answer
”None” to the first problem, and the same for the second and third problem
in the case b = 1.

Theorem 1. Let (m, p) = (15, 41), (15, 5581), or (10, 271). Then the Dio-
phantine equation

Φm(x) + 1 = 2pn (1)

has no integer solutions (n, x) with n ≥ 1.

In the literature, by different methods, some equations of a similar nature
have been studied, e.g. the equations Φm(x) = pn and Φm(x) = pn +1, with
m a prime. The first equation is a special case of the Nagell-Ljunggren
equation (xm − 1)/(x− 1) = pn and is studied in many papers (for a survey
see [2]). For a non-existence result of solutions of the second equation see
Le [4].

General results on solutions of equations of the form f(x) = bym (see the
book by Shorey and Tijdeman [7]) imply that for an arbitrary, but fixed m ≥
3, equation (1) has finitely many solutions (x, p, n) with max{|x|, p, n} ≤ C,
with C a computable number. Formulated in this generality, C which comes
from applying the theory of linear forms in logarithms, will be huge.

In Section 2.1, we give an elementary proof of a lower bound n ≥ 239,
and a related heuristic argument why we do not expect any solutions for
these problems. In Section 2.2 we see what information can be obtained
by considering (1) modulo a prime number q 6= p. As (x, n) = (0, 0) is a
solution of (1), we cannot prove Theorem 1 in this way. Nevertheless, some
information can be obtained by modular considerations. For the reader only
interested in the proof of Theorem 1, this section can be skipped. In Section
3, we use algebraic number theory and a deep result from transcendence
theory to deduce an upper bound n < 2.163 · 1027 for n satisfying (1). Then
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in Section 4 the LLL algorithm will be invoked to efficiently reduce this
bound to n ≤ 59. In this way we obtain a rigorous, albeit computational,
proof of Theorem 1. We note that our method should work in principle for
other equations of the type f(x) = apn, when f is a fixed polynomial with
integral coefficients and at least three distinct roots, a ≥ 1 is a fixed integer,
and p is a fixed prime not dividing the discriminant of f . The nature of our
method is algorithmic in the sense that for every single choice of parameters
the details of the method have to be worked through separately.

Finally, we like to note that we have preferred to give a rather uniform
approach here to answering the above problems. For the third problem
(in case b = 1), however, an easier, but not so instructive, approach is
available. Starting point is the realization that 2y2 − 1 = Φ10(x) is an
elliptic curve. On rewriting it as y2

1 = 8(Φ10(x) + 1), and invoking e.g.
MAGMA it is found that the first curve has only the integral solutions
(x, y) = (−2,±4), (0,±1), (1,±1). In particular it follow from this, that (1)
has no solutions with n ≥ 1 in case (m, p) = (10, 271).

2 Elementary considerations

2.1 p-adic considerations

Without loss of generality we may assume that |x| ≥ 2 and n ≥ 1. We write
fm(x) = Φm(x) + 1 and d = deg fm for m = 10, 15. Elementary calculus
shows that for all x

(|x| − 1)d < Φm(x) < fm(x) < (|x|+ 1)d. (2)

See e.g. [3] for some similar estimates. We start with seeing what information
we can derive from studying the p-adic roots of fm. If (x, n) is a solution of
(1), then there is a root

x =
∞∑

k=0

akp
k (with ak ∈ {0, 1, . . . , p− 1})

of fm in Qp such that x ≡ x (mod pn). Note that if a0 6= 0 then the p-adic
expansion of −x is

−x = (p− a0) +
∞∑

k=1

(p− 1− ak)pk.

Now (2) with fm(x) = 2pn implies that

|x| < 21/dpn/d + 1 < 2pn/d,
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and this immediately implies that, in the case x > 0

ak = 0 for all k ∈ N with b(n + 1)/dc+ 1 ≤ k ≤ n− 1,

and in the case x < 0

ak = p− 1 for all k ∈ N with b(n + 1)/dc+ 1 ≤ k ≤ n− 1.

In other words, the existence of a solution n of (1) implies that of the first n
p-adic digits of the root x, the last consecutive ≈ n(1− 1/d) all have to be
equal to 0 or p − 1, in respectively the cases x > 0 and x < 0. This seems
unlikely to happen, as can easily be verified experimentally for not too large
n. It seems not unreasonable to expect that the p-adic digits of the roots x
are uniformly distributed over {0, 1, . . . , p− 1}, and that these distributions
per digit are independent. Then the probability that n(1 − 1/d) specific
consecutive digits are all 0 respectively p−1 is p−n(1−1/d), and the expected
number of solutions is at most

∞∑
n=1

1
pn(1−1/d)

=
1

p(1−1/d) − 1
� 1.

We conclude that if p is large, then likely there are no solutions. If p is small
and there is no solution with n small, then very likely there are no solutions
at all.

A minor variation of the above argument suggests that in case d ≥ 3
there are only finitely many solutions (x, p, n) of (1) with n ≥ 2. As we
already remarked in the introduction, this result is known to be true, see
[7].

Explicit computation of the p-adic root x up to some finite precision is a
quick way to rule out small values of n. We now give details for the cases that
are of interest to us. Note that p-adic roots of polynomials are quite easy
to compute by Hensel lifting (i.e. the p-adic version of the Newton-Raphson
method).

In the case p = 41 there is one 41-adic root of f15. Its sequence of 41-adic
digits is

8, 18, 3, 17, 9, 14, 12, 38, 31, 35, 19, 25, 19, 38, 25, 24, 1, 18,

25, 10, 14, 29, 31, 18, 36, 2, 24, . . .

The smallest k such that ak = 0 or 40 is k = 53. Hence a solution of (1)
implies k ≥ 53, which in turn implies b(n + 1)/8c+ 1 ≥ 53, so n ≥ 415.
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Two remarks are in place. Firstly, we did not even bother to use con-
secutive zeros, we used only one. Indeed, a54 = 15, so we could sharpen
our result easily. But we have to stop somewhere, and the result n ≥ 415 is
sufficient for the moment. And secondly, it should be noted that the com-
plexity of this method is exponential, as to compute the nth p-adic digit
we have to compute with numbers of the size pn. This makes this method
unrealistic for values of n that become larger than a few thousand.

In the case p = 5581 there are two 5581-adic roots of f15. Their sequences
of 5581-adic digits are

257, 64, 5438, 1453, 629, 833, 3090, 5096, 4809, 1493, 4462, 1922,

4807, 782, 3819, 2190, 99, 2554, 3603, 4471, 1034, 1407, 3688, . . .

and

4477, 3993, 3590, 3157, 3667, 3404, 2233, 3440, 3784, 2333, 900,

2522, 184, 1707, 5103, 2005, 5325, 1780, 4765, 2645, 3577, . . .

In both cases we computed up to k = 502 and did not encounter a 0 or a
5580. As above it follows that n ≥ 4015.

In the case p = 271 there is one 271-adic root of f10. Its sequence of
271-adic digits is

241, 8, 147, 250, 135, 263, 1, 126, 89, 262, 149, 20, 147, 78,

220, 219, 176, 148, 206, 255, 38, 115, 186, 178, 235, . . .

The smallest k such that ak = 0 or ak = 270 is k = 61. Hence a solution of
(1) implies k ≥ 61, which in turn implies b(n + 1)/4c+ 1 ≥ 61, so n ≥ 239.

Using the above results we infer that on heuristic grounds with prob-
ability at most 10−1000 equation (1) has a non-trivial solution. Since in
mathematics one has to prove assertions beyond ‘unreasonable doubt’, we
cannont conclude our paper at this point.

2.2 Modular considerations

Given a Diophantine equation one of the standard considerations is to reduce
the equation modulo a prime number q. It is then a finite problem to find
all solutions. If there are no solutions, then the original equation has no
solutions. Since we have a solution with x = 0 and n = 0 of equation (1), it
is impossible to prove Theorem 1 by this approach. Nevertheless, let us see
what this line of argumentation gives in case (m, p) = (15, 5581). Naturally
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we have to consider the value set of the cyclotomic polynomials Φm(x).
These consist of the values modulo q assumed by Φm(x). Its cardinality
we denote by Vq(Φm). More generally, given a polynomial f , by Vq(f)
let us denote the number of distinct values assumed by f modulo q. The
number Vq(f) is determined by the Galois group G of f(x)−t over Fq(t) (the
arithmetic monodromy group) and over F̄q(t) (the geometric monodromy
group). In the generic case that both groups equal Sm, the mth symmetric
group, one has

Vq(f) =
( m∑

k=1

(−1)k−1

k!

)
q + O(

√
q).

In case f satisfies the Morse condition, both groups equal Sm. For example,
if m is a prime and q - m(m−1), then Φm(x) over Fq is Morse, and hence both
Galois groups are equal to Sm. For m composite, it seems more complicated
to calculate these groups. In case m = 15 this was kindly done for us by
Nick Alexander using the SAGE package Singular, with as outcome that
both Galois groups equal S8 and hence we infer that Vq(Φ15) = cq +O(

√
q),

where
c =

3641
5760

≈ 0.632118 · · · and 1− 1
e
≈ 0.632120 · · ·

We raise as a problem computing Vq(Φm) for arbitrary m.
Now let us consider 〈5581〉 modulo q. Its cardinality is obviously rq :=

ordq(5581), where ordq(a) denotes the multiplicative order modulo q of a
and is equal to the smallest k ≥ 1 such that ak ≡ 1(mod q), where we
assume that q - a. Now if an element g1 of 2〈5581〉 is not in the value set
of Φ15 + 1, then we conclude that n 6≡ α(mod rq), where α is such that
g1 ≡ 2 · 5581α(mod q). We expect to exclude about rq(1− c) ≈ rq/e classes
mod rq in this way, which fits well with numerical experiments. In case 5581
is a primitive root modulo q, one excludes q(1− c) + O(

√
q) residue classes

modulo q − 1 for n in this way. On taking q = 7 one finds that 3|n. On
taking q = 37 one infers that n ≡ 0(mod 4) or n ≡ 1(mod 4). On taking
q = 337 one then concludes that 4|n. Thus, using modular arguments we
conclude that for an integer solution of (1) in case (m, p) = (15, 5581), we
have 12|n. Indeed, if for more general (m, p) a result of the form n1|n (with
n1 depending on the choice of m and p) can be established by modular
arguments, then heuristics suggest that n1 must be really small.

6



3 Finding an upper bound

We start with giving some data on relevant algebraic number fields. Then
we derive from equation (1) an S-unit inequality, to which we apply tran-
scendence theory to find an explicit upper bound for n.

3.1 Field data

We have

f15(x) = x8 − x7 + x5 − x4 + x3 − x + 2,

f10(x) = x4 − x3 + x2 − x + 2,

and we write equation (1) as

fm(x) = 2pn, (3)

where (m, p) = (15, 41), (15, 5581), (10, 271). For brevity we will refer to
these cases as the cases p = 41, 5581, 271 or m = 15, 10. In Section 2.1, we
have seen that n ≥ 239, and we may assume that |x| ≥ 2.

The polynomials fm are irreducible and have no real roots. We label the
roots as follows:

root f15 f10

α(1) 1.0757 . . .+0.4498 . . . i 0.9734 . . .+0.7873 . . . i

α(2) 0.6243 . . .+0.8958 . . . i −0.4734 . . .+1.0255 . . . i

α(3) −0.1701 . . .+1.0292 . . . i

α(4) −1.0299 . . .+0.2698 . . . i

α(j) = α(j−4) for j = 5, 6, 7, 8 α(j) = α(j−2) for j = 3, 4
max |α(j)| < 1.167 1.252

We write Km for the field Q(α) where α is a root of fm(x) = 0, so that
d = deg fm = [Km : Q], i.e. d = 8 for m = 15 and d = 4 for m = 10.

We need a lot of data on these fields. We used Pari [6] to obtain the
data given below.

The discriminants of K15, K10 are respectively 682862912 = 26·83·128551
and 1396 = 22 · 349. In both cases α generates a power integral basis.
Fundamental units are:

for m = 15 : β1 = α7 + α4 + α2 + α− 1,

β2 = α6 − α5 + α4 + α− 1,

β3 = α2 − α + 1,

for m = 10 : β1 = α3 − α2 + 1.
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The regulators are 4.2219 . . . , 1.1840 . . . respectively. The class groups of
both fields is trivial.

The prime decomposition of 2 is

for m = 15 : 2 = α(α + 1)4(α3 − α2 + 1)β−2
1 β2,

for m = 10 : 2 = −α(α− 1)3β−1
1 .

Thus the prime ideals of norm 2 are (α), (α+1) when m = 15, and (α), (α−1)
when m = 10.

The prime decomposition of p in the field Km is as follows:
for p = 41: 41 = γ1γ2, where

γ1 = −α7 + α6 + α5 − 2α4 + α3 + α2 − α + 1, N(γ1) = 41,
γ2 = −4α7 + 13α6 − 19α5 + 8α4 − 14α3 + 7α2 + 15α + 1, N(γ2) = 417,

for p = 5581: 5581 = γ1γ2γ3γ4, where

γ1 = α6 − α5 − 2α + 1, N(γ1) = 5581,
γ2 = 2α5 + α2 + α + 1, N(γ2) = 5581,
γ3 = −3α7 − α6 + 7α5 − 4α4 − 5α3 + 7α2 + α + 1, N(γ3) = 55812,
γ4 = 85α7 − 41α6 − 112α5 + 55α4 − 21α3+

+134α2 + 92α− 135, N(γ4) = 55814,

for p = 271: 271 = γ1γ2, where

γ1 = −2α3 + 4α2 − 4α + 3, N(γ1) = 271,
γ2 = −18α3 + 16α2 + 44α + 53, N(γ2) = 2713.

3.2 Deriving an S-unit inequality

If x is an integer satisfying (3), then it follows that in OK we have

(x− α)z = 2pn

for a z ∈ OK. Thus, we can write (taking γ3 = γ4 = 1 in the cases p =
41, 271)

x− α = δγn1
1 γn2

2 γn3
3 γn4

4 β, z = (2/δ)γn−n1
1 γn−n2

2 γn−n3
3 γn−n4

4 β−1,

where δ | 2 and β is a unit. Taking norms we find

2pn = N(x− α) = N(δ)pc1n1+c2n2+c3n3+c4n4 ,
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where (c1, c2, c3, c4) = (1, 7, 0, 0), (1, 1, 2, 4), (1, 3, 0, 0) for respectively p =
41, 5581, 271. It follows that N(δ) = 2, and n = c1n1 + c2n2 + c3n3 + c4n4.

First observe that 0 < ni < n is impossible. Indeed, for if not, then there
exists k ∈ {1, 2, 3, 4} such that γk 6= 1 divides both x − α and z. Observe
that if α = α(i), then z =

∏
j 6=i(x− α(j)). Thus, if p is some prime ideal of

OK dividing γk, then p divides both x − α(i) and x − α(j) for some j 6= i.
In particular, p divides α(i) − α(j), and thus also ∆(fm). Since this last
number is an integer and p has norm a power of p in Km, it would follow
that p divides ∆(fm), which is not the case. Thus, the only possibilities
are ni ∈ {0, n} for all i. The equation n = c1n1 + c2n2 + c3n3 + c4n4

now has only the solutions (n1, n2) = (n, 0) in the cases p = 41, 271, and
(n1, n2, n3, n4) = (n, 0, 0, 0), (0, n, 0, 0) in the case p = 5581.

We get the following equations:

p = 41 : x− α = ±δγnβm1
1 βm2

2 βm3
3 , δ = α, α + 1, γ = γ1,

p = 5581 : x− α = ±δγnβm1
1 βm2

2 βm3
3 , δ = α, α + 1, γ = γ1, γ2,

p = 271 : x− α = ±δγnβm1
1 , δ = α, α− 1, γ = γ1.

(4)

Now we could proceed by conjugating equation (4) and eliminating x to get
a unit equation. However, this resulting unit equation will live in the field
Q[α, α], which is of degree d(d− 1), because the Galois group of fm(x) over
Q is Sd. Since estimates for linear forms in logarithms are quite sensitive
to the degree, we will continue to work in Km. We proceed as follows. For
convenience in the cases p = 41, 271 we put β2 = β3 = 1 and m2 = m3 = 0.
We have from (4) that

z =
2pn

x− α
= ±

(
2
δ

)(
p

γ

)n

β−m1
1 β−m2

2 β−m3
3 . (5)

Putting y = x− α, Taylor’s formula yields z =
d∑

i=1

f
(i)
m (α)
i!

yi−1, hence

∣∣∣z − yd−1
∣∣∣ = ∣∣∣∣∣

d−1∑
i=1

f
(i)
m (α)
i!

yi−1

∣∣∣∣∣ .
Let us now make some estimates. Observe that the lower bound n ≥ 239
from Section 2.1 is amply sufficient to guarantee pn > (2 · 1010)d. Then (2)
implies

|y| = |x−α| ≥ |x|−|α| > fm(x)1/d−1−|α| > 21/dpn/d−2.252 > C1p
n/d, (6)
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where C1 = 1.090 when m = 15 and C1 = 1.189 when m = 10. Hence,

|y| > 2 · 1010. We now compute upper bounds for
|f (i)

m (α)|
i!

, getting

i 1 2 3 4 5 6 7
|f (i)

15 (α)|/i! < 16.40 56.37 109.6 126.7 90.07 39.00 9.489
|f (i)

10 (α)|/i! < 6.977 9.261 5.021

so that ∣∣∣z − yd−1
∣∣∣ < |y|d−2

d−1∑
i=1

f (i)

i!
1

|y|d−1−i
< C2|y|d−2,

where C2 = 9.490 for m = 15 and C2 = 5.022 for m = 10, because |y| >
2 · 1010. Thus, ∣∣∣∣1− z

yd−1

∣∣∣∣ < C2

|y|
<

C3

p
n
d

, (7)

where C3 >
C2

C1
, so C3 = 8.706 for m = 15 and C3 = 4.223 for m = 10.

Using equations (4), (5) and (7), we get the S-unit inequality we want:∣∣∣∣1− ( 2
δd

)(
p

γd

)n

β−8m1
1 β−8m2

2 β−8m3
3

∣∣∣∣ < C3

pn/d
. (8)

3.3 Applying transcendence theory

We shall apply a linear form in logarithms to bound the expression on the
left of inequality (8) from below. We first check that it is not zero. If it
were, then since it comes from rewriting the left hand side of inequality (7),
we would get that z = yd−1. Since yz = 2pn, we get that yd = 2pn, which
violates the prime decomposition of 2 in Km.

Next, we need to bound m1,m2 and m3 in terms of n. Since pn/d >
2 · 1010, it follows from (2) that

|y| = |x−α| ≤ |x|+|α| < fm(x)1/d+1+|α| < 21/dpn/d+2.252 < C4p
n/d, (9)

where C4 = 1.091 for m = 15 and C4 = 1.190 for m = 10. Now we take
absolute values of the conjugates of equation (4), and rewrite them as∣∣x− α(i)

∣∣∣∣δ(i)
∣∣ ∣∣∣γ(i)

1

∣∣∣n =
∣∣∣β(i)

1

∣∣∣m1
∣∣∣β(i)

2

∣∣∣m2
∣∣∣β(i)

3

∣∣∣m3

. (10)
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We computed:

for p = 41 : 0.2714 < |δ(i)| < 2.124, 0.5676 < |γ(i)| < 5.349,

for p = 5581 : 0.2714 < |δ(i)| < 2.124, 1.522 < |γ(i)| < 5.531,

for p = 271 : 0.7877 < |δ(i)| < 1.796, 2.253 < |γ(i)| < 7.307,

and thus

max

(
log

p1/d

min |γ(i)|
, log

max |γ(i)|
p1/d

)
< C5,

max

(
log

C4

min |δ(i)|
, log

max |δ(i)|
C1

)
< C6,

where for p = 41 we have C5 = 1.213, C6 = 1.392, for p = 5581 we have
C5 = 0.6584, C6 = 1.392, and for p = 271 we have C5 = 0.5884, C6 = 0.4126.
It follows from (6) and (9) that∣∣∣∣∣log

( ∣∣x− α(i)
∣∣∣∣δ(i)

∣∣ ∣∣γ(i)
∣∣n
)∣∣∣∣∣ < C5n + C6.

Writing ui for the logarithm of the left hand side of equations (10), we get
that

ui = m1 log
∣∣∣β(i)

1

∣∣∣+ m2 log
∣∣∣β(i)

2

∣∣∣+ m3 log
∣∣∣β(i)

3

∣∣∣ for three conjugates i, (11)

and hence |ui| < C5n + C6 for all i. If m = 10 this simply states log
∣∣∣β(i)

1

∣∣∣ >
1.184 (this is the regulator of K10), as then β2 = β3 = 1, and thus |m| <
(C5n + C6)/1.184. If m = 15, solving the system (11) with Cramer’s rule,
we get that

max{|m1|, |m2|, |m3|} <
3(C5n + C6)R2

Rβ
,

where R2 is the maximal absolute value of all the 2 × 2 minors of the co-
efficient matrix appearing in formula (11) whose determinant is Rβ . The
minor largest in absolute value is the (2, 1) minor obtained by eliminating
the second row and first column, and its value is R2 < 2.746. Putting all
this together gives

max{|m1|, |m2|, |m3|} < C7n + C8,

where C7 = 2.369, C8 = 2.718 when p = 41, C7 = 1.286, C8 = 2.718 when
p = 5581, and C7 = 0.4970, C8 = 0.3485 when p = 271.
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The next step is to prepare for the application of a deep result from
transcendence theory. We return to inequality (8) and rewrite it as∣∣∣∣∣1−

r∏
i=1

ηbi
i

∣∣∣∣∣ < C3

pn/d
, (12)

where r = 5 when m = 15 and r = 3 if m = 10, and

η1 =
2
δd

, η2 =
p

γd
, η3 = β1, η4 = β2, η5 = β3,

and b1 = 1, b2 = n, b3 = −dm1, b4 = −dm2, b5 = −dm3 are integers satisfy-
ing

B = max |bi| < d(C7n + C8).

Recall that for an algebraic number η having

a0

d∏
i=1

(X − η(i))

as minimal polynomial over the integers, the logarithmic height is defined
as

h(η) =
1
d

(
log |a0|+

d∑
i=1

log max
{∣∣∣η(i)

∣∣∣ , 1}) .

With this notation, Matveev [5] proved the following deep theorem.

Theorem 2. Let K be a field of degree D, η1, . . . , ηk be nonzero elements
of K, and b1, . . . , bk integers. Put

B = max{|b1|, . . . , |bk|}

and

Λ = 1−
k∏

i=1

ηbi
i .

Let A1, . . . , Ak be real numbers such that

Aj ≥ max{Dh(ηj), | log ηj |, 0.16}, j = 1, . . . , k.

Then, assuming that Λ 6= 0, we have

log |Λ| > −3 · 30k+4(k + 1)5.5D2(1 + log D)(1 + log(kB))
k∏

i=1

Ai.
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We apply Matveev’s result to get a lower bound on the expression ap-
pearing in the left hand side of (12) with k = r + 1. We take the field to be
our Km, so D = d. We also take ηi, bi as in (12).

We computed as leading coefficients a0 of minimal polynomials:

m δ η1 η2 η3, η4, η5

15 α a0 = 27 a0 = p7 a0 = 1
α + 1 a0 = 24

10 α a0 = 23 a0 = p3 a0 = 1
α− 1 a0 = 2

and for the Aj we found

p A1 < A2 < A3 < A4 < A5 <

41 25.02 47.80 4.371 4.247 2.976
5581 25.02 74.22 4.371 4.247 2.976
271 3.988 21.52 2.634

Thus, by Matveev’s bound we have that

| log Λ| > −C9(1 + log(rB)),

where C9 > 3 · 30r+4(r + 1)5.5d2(1 + log d)A1A2 . . . Ar satisfies

for p = 41 : C9 = 1.465 · 1025,

for p = 5581 : C9 = 2.275 · 1025,

for p = 271 : C9 = 1.160 · 1018.

Comparing this with the fact that B ≤ d(C7n + C8) and with inequality
(12), we get

log p

d
n− log C3 < − log |Λ| < C9(1 + log(rd(C7n + C8))).

Concretely:

for p = 41 : 0.4641n− 2.165 < 1.465 · 1025(1 + log(94.80n + 108.8))
implying n < N = 2.163 · 1027,

for p = 5581 : 1.078n− 2.165 < 2.275 · 1025(1 + log(51.45n + 108.8))
implying n < N = 1.424 · 1027,

for p = 271 : 1.400n− 1.441 < 1.160 · 1018(1 + log(5.964n + 4.182))
implying n < N = 3.970 · 1019.
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4 Reducing the upper bound

So, it remains to solve
∣∣∣∣∣1− η1η

n
2

r∏
i=3

η
−dmi−2

i

∣∣∣∣∣ <
C3

pn/d
,

max |mi| < d(C7n + C8),
n < N.

This is a finite problem, but the upper bound N is way too large to apply
brute force or the method from Section 2.1. Efficient methods for solving
such problems based on lattice basis reduction using the LLL algorithm
exist, see [8], and they work quite well in our case. Here are the details.

We put

λ
(j)
i =

 log
∣∣∣η(j)

i

∣∣∣ for i = 1, 2

−d log
∣∣∣η(j)

i

∣∣∣ for i = 3, . . . , r.
, j = 1, . . . , r − 1.

Let

λ(j) = λ
(j)
1 + nλ

(j)
2 + m1λ

(j)
3 + . . . + mr−2λ

(j)
r for j = 1, . . . , r − 1.

By (12), the real linear forms λ(j) satisfy

∣∣∣λ(j)
∣∣∣ ≤ ∣∣∣1− eλ(j)

∣∣∣ ≤ ∣∣∣∣∣1− η
(j)
1

(
η

(j)
2

)n
r∏

i=3

(
η

(j)
i

)−dmi−2

∣∣∣∣∣ < C3

pn/d
. (13)

We let K be some constant slightly larger than N (r−1)/(r−2), i.e. N4/3 when
m = 15 and r = 5, and N2 when m = 10 and r = 3. We write θ

(j)
i =

[
Kλ

(j)
i

]
for i = 1, . . . , r, where [·] denotes rounding to the nearest integer. We put

(λ′)(j) = θ
(j)
1 + nθ

(j)
2 + m1θ

(j)
3 + . . . + mr−2θ

(j)
r .

Then ∣∣∣Kλ(j) − (λ′)(j)
∣∣∣ ≤ 1

2
+

n

2
+

r − 2
2

max |mi| < C10n + C11,

where C10 = 1
2 + r−2

2 dC7 and C11 = 1
2 + r−2

2 dC8. Then n ≥ N implies∣∣∣(λ′)(j)∣∣∣ < K
∣∣∣λ(j)

∣∣∣+ C10N + C11. (14)
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We now look at the matrix Γ and the vector y given as

for m = 15 : Γ =


θ
(i)
3 θ

(i)
4 θ

(i)
5 θ

(i)
2

θ
(j)
3 θ

(j)
4 θ

(j)
5 θ

(j)
2

θ
(k)
3 θ

(k)
4 θ

(k)
5 θ

(k)
2

0 0 0 1

 , y =


−θ

(i)
1

−θ
(j)
1

−θ
(k)
1

0

 ,

where (i, j, k) ∈ {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)},

for m = 10 : Γ =

(
θ
(i)
3 θ

(i)
2

0 1

)
, y =

(
−θ

(i)
1

0

)
,

where i ∈ {1, 2}.

Observe that for x = (m1, . . . ,mr−2, n)T

Γx− y =
(
(λ′)(i), (λ′)(j), (λ′)(k), n

)T
resp.

(
(λ′)(i), n

)T
.

The columns of Γ generate a sublattice of Zr−2. Let d(Γ, y) = min
x∈Zr−2

∣∣Γx− y
∣∣

be the distance from y to the nearest lattice point. From (14) we find

d(Γ, y) ≤
∣∣Γx− y

∣∣ <√(r − 2)
(
K max

∣∣λ(j)
∣∣+ C10N + C11

)2 + N2. (15)

Put

c =
N1/(r−2)

K

√d(Γ, y)2 −N2

r − 2
− (C10N + C11)

 .

If c happens to be a positive real number, then combining (13) and (15) we
get for λ = λ(j), such that |λ| = max

∣∣λ(j)
∣∣ satisfies

cN−1/(r−2) < |λ| < C3

pn/d
,

and hence

n <
d

log p

(
log C3 − log c +

1
r − 2

log N

)
.

In particular, if c is reasonable, that is, not too tiny, then the above bound is
a reduced upper bound for n. We can argue that this is reasonable, because
if the lattice is generic, that is, if it satisfies

d(Γ, y) ≈ det(Γ)1/ dim Γ ≈ K(r−2)/(r−1),
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then with the choice of K being somewhat larger than N (r−1)/(r−2), one
would expect that d(Γ, y) is somewhat larger than N , so that c just becomes
positive:

c ≈ N1/(r−2)

K
·N ≈ 1.

Clearly, a lower bound for d(Γ, y) suffices. To compute such a bound we use
Lemma 3.5 from [8], which we now state.

Lemma 1. If c1, . . . , cr−1 is an LLL-reduced basis for the lattice spanned
by the columns of the matrix Γ, and (s1, . . . , sr−1) are the coordinates of
y ∈ Zr−1 with respect to this basis, then

d(Γ, y) ≥ 2−(r−2)/2‖sr−1‖|c1|,

where ‖ · ‖ denotes the distance to the nearest integer.

When a new upper N1 on n is found, the procedure can be repeated with
N1 instead of N .

As for the practical calculations, for p = 41 and p = 5581 we use K =
1039, and for p = 271 we use K = 1041. For p = 41 the conjugates (i, j, k) =
(1, 3, 4) turned out to give the best results, and for p = 5581 we took the
conjugates (i, j, k) = (2, 3, 4) in the case γ = γ1, and (i, j, k) = (1, 3, 4) in
the case γ = γ2. For p = 271 we took the conjugate i = 2. The values of
the entries of Γ and y are given in the appendix.

As a result of our computations we found:

for p = 41: |c1| = 1.148 . . . · 1030,
for δ = α: ‖s4‖ = 0.2505 . . ., d(Γ, y) ≥ 1.017 · 1029, c = 0.0650 . . .,
for δ = α + 1: ‖s4‖ = 0.0809 . . ., d(Γ, y) ≥ 3.286 · 1028, c = 0.0125 . . ..

We infer n ≤ N1 = 59.

for p = 5581, γ = γ1: |c1| = 1.123 . . . · 1030,
for δ = α: ‖s4‖ = 0.4489 . . ., d(Γ, y) ≥ 1.784 · 1029, c = 0.1119 . . .,
for δ = α + 1: ‖s4‖ = 0.3512 . . ., d(Γ, y) ≥ 1.395 · 1029, c = 0.0867 . . ..

We infer n ≤ N1 = 23.

for p = 5581, γ = γ2: |c1| = 6.875 . . . · 1029,
for δ = α: ‖s4‖ = 0.3849 . . ., d(Γ, y) ≥ 9.357 · 1028, c = 0.0568 . . .,
for δ = α + 1: ‖s4‖ = 0.4225 . . ., d(Γ, y) ≥ 1.027 · 1029, c = 0.0628 . . ..

We infer n ≤ N1 = 23.
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for p = 271: |c1| = 2.826 . . . · 1020,
for δ = α: ‖s2‖ = 0.2302 . . ., d(Γ, y) ≥ 4.602 · 1019, c = 0.0014 . . .,
for δ = α− 1: ‖s2‖ = 0.2565 . . ., d(Γ, y) ≥ 5.127 · 1019, c = 0.0050 . . ..

We infer n ≤ N1 = 37.

All reduced upper bounds are well below the lower bound n ≥ 239 we had
already found in Section 2.1. Hence, the given equations have no positive
integer solutions (n, x).

We used the built-in LLL implementation of Mathematica 7.0. The total
computation time was about 0.5 second on a standard laptop.
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Appendix

The lattices

The entries of the matrices Γ defining the lattices are as follows:

for m = 15, δ = α:

θ
(1)
1 = −535 701 078 188 445 393 051 889 499 285 315 834 220

θ
(2)
1 = −10 521 455 713 307 993 677 385 282 203 941 784 101

θ
(3)
1 = 355 033 171 043 874 873 964 550 682 314 268 786 484

θ
(4)
1 = 191 189 362 857 878 512 764 724 099 174 988 831 837

for m = 15, δ = α + 1:

θ
(1)
1 = −5 333 047 497 874 799 261 155 020 173 693 482 953 059

θ
(2)
1 = −4 250 022 567 236 740 912 821 155 978 113 906 762 299

θ
(3)
1 = −1 540 575 842 877 807 282 174 111 433 652 517 111 903

θ
(4)
1 = 11 123 645 907 989 347 456 150 287 585 459 906 827 261

for p = 41:

θ
(1)
2 = −1 197 628 306 264 185 932 489 953 704 644 364 201 811

θ
(3)
2 = −9 700 547 565 070 802 018 377 652 854 737 318 414 526

θ
(4)
2 = 8243 424 043 479 329 682 142 908 094 257 321 227 079

for p = 5581, γ = γ1:

θ
(2)
2 = 5263 605 697 123 944 704 135 127 379 599 885 704 579

θ
(3)
2 = −2 963 152 790 434 752 959 027 304 664 082 271 081 924

θ
(4)
2 = −3 947 334 581 756 113 011 114 453 716 363 543 662 171

for p = 5581, γ = γ2:

θ
(1)
2 = −5 054 887 673 357 776 148 549 731 828 016 451 580 048

θ
(3)
2 = −428 141 974 047 405 559 024 836 857 709 161 235 654

θ
(4)
2 = 1813 722 745 018 650 232 158 593 055 388 028 132 405
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for m = 15:

θ
(1)
3 = −12 304 678 543 120 429 319 016 409 568 929 653 779 543

θ
(2)
3 = −5 175 490 583 287 403 600 999 179 581 345 876 700 402

θ
(3)
3 = 1315 339 656 720 872 223 605 488 041 323 010 300 861

θ
(4)
3 = 16 164 829 469 686 960 696 410 101 108 952 520 179 084

θ
(1)
4 = −6 491 857 667 627 931 313 552 738 347 206 761 471 914

θ
(2)
4 = 2839 823 311 449 225 025 315 462 816 154 576 105 761

θ
(3)
4 = 14 146 641 173 722 516 215 599 502 471 468 729 095 500

θ
(4)
4 = −10 494 606 817 543 809 927 362 226 940 416 543 729 347

θ
(1)
5 = −161 428 308 887 546 310 612 673 805 712 708 268 679

θ
(2)
5 = 11 901 276 304 984 011 058 128 117 013 664 970 112 594

θ
(3)
5 = −2 614 169 460 911 830 182 254 627 350 998 769 663 233

θ
(4)
5 = −9 125 678 535 184 634 565 260 815 856 953 492 180 682

for m = 10, δ = α:

θ
(2)
1 = 20 573 051 403 432 594 483 552 713 981 506 015 700 526

for m = 10, δ = α− 1:

θ
(2)
1 = −164 737 397 928 296 691 084 558 149 213 695 646 090 715

for p = 271:

θ
(2)
2 = −235 291 255 321 496 775 213 784 479 523 882 283 953 939

for m = 10:

θ
(2)
3 = −473 639 142 381 457 478 770 121 733 659 580 922 571 619

Note that the lattice is the same for both δ’s.
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The reduced bases

The reduced bases consist of c1, . . . , cr−2, as follows:

for p = 41:

(c1)1 = −843 368 108 647 665 336 486 188 942 253
(c1)2 = 559 320 925 743 467 198 006 242 173 197
(c1)3 = −216 383 108 330 870 212 927 002 535 916
(c1)4 = 496 997 227 075 433 258 177 840 213 736
(c2)1 = 769 480 157 105 025 085 610 593 698 120
(c2)2 = −662 868 868 597 435 011 284 138 490 262
(c2)3 = −441 058 071 515 342 369 896 390 140 053
(c2)4 = 553 662 092 722 375 932 830 016 396 748
(c3)1 = 1155 341 406 784 529 993 021 845 712 621
(c3)2 = 840 501 797 894 665 608 764 467 297 238
(c3)3 = 309 221 863 441 485 463 114 052 803 652
(c3)4 = 88 295 819 881 082 922 448 465 078 569
(c4)1 = 168 850 638 387 891 366 230 077 577 847
(c4)2 = 181 452 778 443 755 987 291 974 440 710
(c4)3 = −1 260 179 394 564 692 820 585 182 354 202
(c4)4 = −248 925 942 970 751 183 092 370 837 739

for p = 5581, γ = γ1:

(c1)1 = −872 546 237 539 535 752 706 428 843 319
(c1)2 = −223 156 093 910 873 919 802 195 050 685
(c1)3 = −665 677 021 232 961 022 546 590 079 279
(c1)4 = −94 687 160 788 259 520 945 395 183 066
(c2)1 = −229 473 248 927 567 102 740 277 014 756
(c2)2 = 617 468 741 928 841 755 274 798 916 669
(c2)3 = −543 563 619 528 735 973 870 401 294 450
(c2)4 = −537 677 026 147 002 857 567 211 509 644
(c3)1 = 8031 004 037 197 869 937 202 716 189
(c3)2 = 938 093 837 932 029 873 000 709 129 402
(c3)3 = 195 844 084 019 775 552 360 982 500 961
(c3)4 = 885 190 138 056 570 983 101 607 196 266
(c4)1 = −950 859 499 566 648 889 250 675 739 630
(c4)2 = 241 382 209 533 837 385 381 803 382 951
(c4)3 = 1 301 768 138 134 948 436 200 391 686 948
(c4)4 = −486 686 546 347 026 084 492 973 627 149
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for p = 5581, γ = γ2:

(c1)1 = −33 193 247 358 059 218 472 153 374 410
(c1)2 = −87 912 309 797 970 325 116 462 454 668
(c1)3 = −385 045 401 453 711 728 562 495 875 789
(c1)4 = 561 756 923 681 125 138 115 555 382 317
(c2)1 = 837 832 987 097 082 927 861 574 573 535
(c2)2 = −334 493 013 704 131 410 344 879 715 557
(c2)3 = −300 519 808 958 157 408 324 600 505 185
(c2)4 = 150 629 549 282 709 200 215 988 361 882
(c3)1 = −291 643 217 145 890 486 004 982 245 792
(c3)2 = −919 165 296 754 992 652 058 056 637 120
(c3)3 = −632 210 387 744 580 417 281 335 093 914
(c3)4 = −324 284 573 321 981 804 426 907 933 819
(c4)1 = 114 589 075 187 135 712 515 900 349 220
(c4)2 = −1 775 169 784 941 313 515 682 421 428 402
(c4)3 = 1954 496 644 806 618 832 618 848 766 208
(c4)4 = 1333 361 249 271 924 783 631 535 912 835

for p = 271:
(c1)1 = −108 609 470 650 628 019 733
(c1)2 = 260 932 521 991 777 346 329
(c2)1 = 1 538 463 890 677 024 617 653
(c2)2 = 664 802 792 622 780 399 454
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