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o. Introduction

0.1. Three approaches to the Painleve equations. Thc differential equa
tions studied in this paper fonu a family PVIo:,ß,')',o depending on foul' paralueters
(Y, ß, T' 0, and classically written as:

X(X - 1)(X - t) [ t t - 1 t(t - 1) ]
+ t2(t - 1)2 a + ßX2 +T (X _ 1)2 + 8(X _ t)2 . (0.1)

They were discovered around 1906 anel have been approached from at least three
different directions.

a. Study of non-linear ordinary differential equations of the second order whose
solutions have no movable critical points.

Their classification program was initiated by Painleve, hut he inadvertently omit
ted (0.1) due to an error in calculations. It was B. Galubier [G] who completed
Painleve's list anel found (0.1).

b. Study of the isomonodromic deformations of linear differential equations.

c. Theory of abelian integrals depending on parameters and taken over chains
with boundary (not necessarily cycles.)

These two approaches are due to R. Fuchs [F].

In the subsequent development of thc theory, relationship with isomonodromic
dcfonuations proved to be IUOst fruitful. For sorne recent research and bibliography
the reader may consult [JM], [01], [Hl], [H2].

In this paper I take up the somewhat ncglected approach via abelian integrals
and algebraic geonletry.

My principal motivation was the desire to understand thc quantuln cohomology
of p 2 and to find an algebraic-georuetrie object whieh could be reasonably called the
mirror of p2, thus tentatively exteneling the scope of thc mirror duality eliscovered
for Calabi-Yau manifolds.

As was explained in a preprint version of [D] (cf. also [DFI] and [H3]) , thc
potential of the quantum cohomology of p2 can be reduced by a change of vari
ables to a partieulaI' solution to the Painlevc equation with parameters (a, ß, 'Y, 8) =
(l, -l, 0, ! ). The Painleve transcenelents are generally "new" functions, but for cer
tain values of pararneters all or SOIlle solutions can be expressed through Illore clas
sieaI special functions. Whether this is true for the p2-solution rcfcrred to abovc,
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seenls an open problem. N. Hitchin conlpletely solved the equation (l, -~,~,~) in
elliptic functions: cf. [H2).

Trying to understand all this, I arrivcd to the basically algebraic-geometric pic
ture of all Painleve VI equations, which in particular suggests that the nlirror of
p2 can be thought of as a pencil of elliptic curves with labelled sections of order
two and an additional, possibly transcendental, multiseetion. More preciscly, the
Picard-Fuehs equation for the periods of the nlirror dual Calabi-Yau family is re
placed in our framework by a "non-holuogeneous Pieard-Fuehs equation" satisfied
by the Abelian integral frOI11 zero to this additional multisection (cf. formula (1.5)
below.) It would be important to understand whether this pattern persists for
quantulll cohomology of other Fano manifolds.

I will llOW briefiy deseribe this pieture strcssing its geometrie aspects. Areader
with more analytic background Inay prefer to skip the following section. In the luain
body of the paper, a prominent role is given to the uniformization picturc using
elliptic and modular funetions. In particular, it allows HS to reduce the p2-equation
to the beautiful form

(0.2)

where p is the Weierstrass functioll. The special solution to (0.2) eorresponding to
. p2 at a point with eomplex Iuultiplication by the cubic root of unity passes through

a point of order three. For details, see [M2), Chapter 11, 5.6.1.

0.2. Algebraic geometry of Painleve VI: a review. We will deseribe a
series of constructions which starts with a pencil of elliptic curves. We work in the
category of eomplex analytic manifolds, although thc most natural category for this
part seelus to be that of schemes over Spec Z[~].

a. Let (7r : E --+ Bj Do, ... ,D3 ) be a peneil of cOlnpact smooth eurves of genus
one, with variable absolute invariant, endowed with four labellcd sections D i such
that if any Olle of them is taken as zero, the others will be of order two.

We will caU E a configuration space of PVI (eolnnl0ll for all values of paralueters.)
Solutions to all equations will be represented by some Illultisections of 7r.

b. Let :F be the subsheaf of the sheaf of vertical I-fornls 0kl B (D3 ) on E with

pole at D 3 and residue 1 at this pole. It is an affine twisted version 0 f n1I B whieh
is the sheaf of sections of the relative cotangent bundlc TEl B' Sirnilarly, :F itself
('is" the sheaf of sections of an affine line bundlc F = FEI D on E. More precisely,
we construct such a bundle A : F -t E and a form Vp E r(F, O}IB(A- 1 (D3)) such
that the map

{loeal seetion s of F} M s· (vp)

identifies the sheaf of sections of F / E with :F.

We will caU F a phase space for PVI (again, COlluuon for all paralueter valucs.)

e. E carries a distinguished fanüly of algebraic curves transversal to the fibers
of E: considered as multiscctions of E / B they are of finite order (if any of Di is
chosen as zero.) It is important that each curve of this family has a canonieallifting
to F (for its deseription, see the main text, formulas (2.12) and (2.29).)
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d. F carries a closed 2-forrn w(O) which can be characterized by the following
two properties:

i). The vertical part of w(O), i. e. its restrietion to the fibers of 1r 0 A : F -T B,
coincides with dF / B (lJF ) .

ii). Any canonicallijt to F of a connected multisection of finite order 01 E -T B,
referred to above, is a leaf of the null-foliation of w(O).

e. E also carries foul' distinguished closed two-forms wo, ... , W3' They are deter
mined, up to nlultiplication by a constant, by the following propcrties.

iii). The divisor 0/ Wi is Dj~~DI where {i, j, k, I} = {O, 1,2, 3}.
'I

iv). Identify the sheaves O~ and 1r*(Ok/B)®3 on E using the Kodaira-Spencer

isomorphism 71'""'(01) ~ (01/B)®2 and the exact sequence °-T 1T*(01) -r 01 --+
ok/B --+ 0. Th en the image 01 Wi in 1T* (0k/B ) ®3 considered in the formal n eigh
borhood of D i is the cube 01 a vertical l-form with a constant residue along D i .

The affine space Po := w(0)+ 2:::=0 CA* (wd of closed two-forms on F is our
version of the moduli space of the PVI equations replacing the classical (0', ß", 0)
space.

We can now sUIDlnarize our definition of PVI equations and their solutions.

0.2.1. Definition. a). A Painleve two-fonn on F is a point w E Po.
b). The Painleve foliation corresponding to w is the null-foliation of w.
c). The solutions to the respective Painleve equation are the leaves of this folia

tion (in the Hamiltonian description), or their projections on E.
The form w(O) corresponds to (0', ß", 0) = (0,0,0,!).

To obtain (0.1), we mnst specialize this description to the (projcctivized) family

Et : y2 = X(X - l)(X - t) ~ t E B := pI \ {O, 1,00} (0.3)

and look at the variation of X along solutions.

0.3. Plan of the paper. In §1 we reproduce R. Fuchs's description of (0.1)
in tenns of elliptic integrals and deduce from it an analytic fonn of the Painlcve
equations involving Weierstrass p-punction. As 'an application, we derive the cle
mentary symmetries of PVI and introduce the Landin transform.

The key §2 is devoted to the Hamiltonian structure of PVI and contains proofs
of all claims made in 0.2 above.

In §3 we establish the relationship of our Hanliltonian picture with that of
Okamoto [02] and sketch Okamoto's treatrnent of thc hidden W(D4 )-syrnmctry
of PVI. We also review somc known solutions.

This sYlnmetry nicely explains, why Hitchin was ahle to solve his (~, - k, k, ~)
equation.

0.4. Further plans. Thc geolnetric setting advocatcd in this paper furnishes
a convement framework for thc treatnlent of thc following subject matters:

a. Three-diniensional Frobenius nlanifolds, including the quantum COhOIllOlogy
OfP2.
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b. Geometry of the degenerations of PVI to PV, ... , PI.
e. Generalizations to higher genus and isoIllonodromie deformations with Illany

singular points.
I hope to return to these probleIlls in future publications.

Acknowledgement. I an1 very grateful to Andrey Levin for consultations and
hclp with elliptic functions.

§1. PVI and elliptic functions

1.1. Theorem (R. Fuchs, 1907). The equation (0.1) can be written in the
form

t(l - t) [t(l - t)_d
2

+ (1 _ 2t)i. _ ~] l(X,Y) --;==:====dx::::::;::::::;:==:=
dt2 dt 4 00 Jx(x - 1)(x - t)

tY (t - I)Y 1 t(t - I)Y
= aY + ßX2 +, (X -1)2 + (8 - 2") (X - tF

where y 2 = X(X - l)(X - t).

(1.1)

Proof. First, let HS clarify thc meaning of (1.1). Consider thc family of elliptic
eurves E --+ B parametrized by t E pI \ {O, 1, oo} := B : thc curve E t is the
projcctive closure of y 2 = X(X - I)(X - t). Points at intinity of {Et } fonn a
section D o of trus family which is the zero section for thc standard group law on
tibers. Choose in Et(C) a path frolll Do(t) to thc point (X(t), Y(t» of a loeal
section. The operator

d2 d 1
Lt := t(1 - t)- + (1- 2t)- - -

dt 2 elt 4

annihilates thc periods Jdx along closed paths in Et(C) because
y

(1.2)

(1.3)[
82 8 1] dE/BX 1 Y

t(l - t) Bt 2 + (1 - 2t) Bt - 4 y = 2"dE / B (x _ t)2

a l(X,Y) rix
where we put -8 (x) = 0 and dEI Bt = O. Applying L t to - we get

t 00 y

I

(X,y)

~ ( y )2 plus the contribution of the boundary sections which tagether with
2 x - t

00

thc right hand side of (1.1) amounts to (0.1).

·1.2. Ji.-equations. The equation (1.1) is an instance of a general construction
which was used in (MI] to prove the functional Mordell conjecturc. We will recall
it now.

A j.L-equation is a systen1 of non-linear PDE in which independent variables are
(Iocal) coordinates on a manifold Band unknowIl fUIlctions are represented by a
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section S of a family of abelian varieties (or cornplcx tori) 1f : A --+ B. To writc
this system explicitly, assume B small enough so that 1f*(01/B) and VB (shcaf of
differential operators on B) are OB-free, and make the following choiccs:

a. An OB-basis of verticall-forms Wb'" ,Wn E r(B, 1f*(O~/B))'
b. A system of generators of the 'DB-rnodule of the Picard~Fuchs equations

tLijllWi=O, j=I, ... ,N,
i=1 "f

(lA)

where r runs over fanlilies of closed paths in the fibers spanning H 1 (Bd.
c. A faruily of rnerorllorphic functions <I>(j), j = 1, ... , N on A.

Thc respective J-L-equation for a local (multi)-section s: B --+ A rcads then

j = 1, ... ,N, (1.5)

where 0 denotes the zero section.

One drawback of (1.5) is its dependence on arbitrary choices. Clearly, this can be
reduced by taking account of the transformation rules with respect to the changes
of various generators. For elliptic pencils, thc result takes a very ncat form.

1.3. Elliptic J-L-equations. Let again E --+ B be a non-constant one
diInensional family of elliptic curves. We tcmporarily keep thc assumption that
7f*(nk/B) and the tangent sheaf TB are free. For any symbol of order two (7 E

S2(TB) and any generator W of 7f*(01/B) denote by Lcr,w the Picard-Fuchs opera
tor on B with the symbol (7 annihilating all periods of w.

1.3.1. Lemma. For any local section s, the expression Lu,w 1" W is OB

bilinear in (7 and w.

Proof. Obviously,

where f, gare functions on B. The lemma folIows.

Thus thc expression

depends only on sand is compatible with rcstrictions to open subsets of B. This
means that thc natural domain of the right hand sides for elliptic j.l-cquations is

the set of meromorphic sections <I> of the sheaf 7f* [82 (0h) ® (7f*01/B ) -1] .

Notice that the Kodaira-Spencer isornorphisrn (and eventually a choice of the
theta~characteristicof B) allows us to identify <I> with a rnerornorphic section of
(0 1 )3 or 7f*(01 )3/2 as weHE/B B .
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We will now lift the Fuchs-Painleve equation (1.1) to thc classical covering space,
which in particular will Blake transparent the nature of its right hand side.

1.3.2. Uniformization. Consider thc family of elliptic curves paralnetrized by
the upper half-plane H: Er := C/(Z + Zr) M rEH. Recall that

p(z, T) := z12 +L' ((z + m~ + n)2 - (mT ~ n)2 ) , (1.7)

1
Pz(z, r) = -2 '""' ( )3' (1.8)

L.-, z + mT + TL

We have

where

(1.10)

and e1 + ez + e3 = O. Functions p and pz are invariant with respect to thc shifts
ZZ : (z, r) M (z+mT+n, T) and behave in the following way under the fulllllodular
group r :

(
z aT + b) Z

P d ' d = (ct + d) p (z, T),CT+ CT+

(
zar + b) 3

Pz d ' d = (ct + d) fPz (z, T).CT+ CT+

Consider now the morphism of families r.p: {Er } -+ {Et } induccd by

This is a Galois covering with the group f(2) ~ Zz. Wo have

* (dE/BX) ( )1/2r.p Y = 2 e2 - el dE/HZ,

(1.11)

(1.12)

(1.13)

(1.14)

In thc future formulas of this type wo will Olllit <p* and denote differentials over

a base B by d.J... For instance, dJ. ( z d) = d~z d' whereas d ( z d) =
CT+ CT+ CT+

dz czdr
cT+d (cT+d)z·

It follows fronl (1.14) that if wc denote by 11 (resp. 12) the ilnage of [0,1] (resp.
[O,1]r) in {Et }, then

(1.15)

so that the operator L t from (1.2) annihilates periods (1.15) as functions of T.
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1.4. Theorem. A lift 0/ (1.1) to the (z, r)-space C x H reads:

where
1

(ao, ... , (3) := (a, -ß, " 2 - 8):

(1.16)

(1.17)

(1.18)

Proof. Following the lead of no. 1.3, we will directly calculate the j.L-equation for

{Er}, choosing w = dJ.z (instead of dJ.X/Y) and t7 = d
2

2 (instead oft2(1-t)2 d
2

2.)
dr dt

Since periods of dJ.z are generated by 1 anel r, thc relevant Picard-Fuchs operator
d2

is sinlply dr 2 ' Prom thc Lemma 1.3.1 and (1.15) it follows that

Using (1.13) anel cOluparing symbols, we see that

_ ~ ITi>j(ei - ej)2 ( _ )-3/2
- (' , ) 2 e2 Cl .9 ele2 - e2el

Since el + e2 + e3 = 0, we can replace (ele~ - e2e~)2 by (eiej - ejei)2 for any i =f: j.
It follows that

c '= ITi>j(ei - ej)2
. (ele~ - e2e~)2

is a nlodular function for the fullinodlliar group without zeroes and poles, hence a
constant. A calculation with theta-fllllctions, here omitted, for which I am grateful
to A. Levin, shows that C = -97T"2, so that finally

(1.19)

for the rcspective sections. We can now consecutively COll1pare the sUllul1ands in
the right hand siele of (1.1) with those in (1.16). The first sUllunand gives

For the rcmaining ones wc have to usc the addition fonnulas

f Ti (ei-ej)(ei-ck)
Pz(z+-2,r)=- (( ) )2 pz(z,r), {i,j,k}={I,2,3},

P z, r - ei
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so that, say, for i = 3 we get

__ ~ (-C _ ~) ( _ )-3/2. -(e3 - el)(e3 - e2) ( ) _
- 2 u 2 e2 el ((»2 pz Z, r p z,r -e3

1 1 -3/2 1 + r= -2(8 - 2)(e2 - el) tJz(z + -2-' r).

The remaining two sunlmands are treated sirnilarly. This finishes the proof.

As the first application, we can now describe the space of the right hand sides
of Painleve-Fuchs equations in a model-independent way (colnpare Introduction,
0.2e, iv».

1.5. PVI on an arbitrary elliptic pencil. We put ourselves in the setting of
O.2a. As was explained in 1.3.1, for an invariant j.l-equation (as (1.6» the right hand
side can be considered as a Ineromorphic section of 7[* (83 (0k/B»' The space of the
right hand sides of (1.16) written in the invariant fornl is generatecl by four cubic

differentials !'Jz(z + Jt, r)(d-iz)3. Looking at their Laurent series near z + ~i = 0

one easily sees that they are cubes of a fonnal differential with a constant residue

along D i := Ti model, r), and that this propcrty together with identification of
2

h · d' . D j D k DI h . th 1 . 1" tt elr IVlsors as D~ c aractenzes em up to a 11111 tlP lcatlvc cous auto
s

In the Theorem 2.5 below we will give a Hamiltonian interpretation of this space.

1.6. S4-symmetry and the Landin transform. As thc first application of
1.5 and (1.16) we will construct SOlne natural transformations of PVI. For Inuch
deeper hidden symmetries, see §3.

a. The classical 84 -symmetry. Isomorphisnls of (E, Dd which do not conscrve
the labelling of D i induce transfornlations of PVI pcrnluting ai. In the form (1.16),
they act on solutions as conlpositions of the transfonnations of two types: (z, r) f---t

(
Z , ar +~) indexed by cosets r /f(2), and (z, r) f---t (z + Ti ,r) shifting thc

cz + r cr + 2
zero section.

b. The Landin transform. From (1.8) one easily deduces Landin's identity

r [2: 1 2: 1 ]fil Z -) - -2 +
z( '2 - (z+2m~+n)3 (z+~+2m~+n)3

r
= filz (z, r) + pz(z + 2' r).

Hence if zer) is a solution to PVI with parameters (ao, ab ao, al), we have



1 d2z(r) r 1 r
= 4" d(r/2)2 =aQPz(Z'2)+alPZ(z+2"'2)'

that is, z(2r) is a solution to PVI with parameters (4ao, 4al, 0, 0). Thc converse
statement is true as weH. In this way we get thc following bijections between the
sets of solutions to (1.16):

and in particular
(ao, 0, ao, 0) H (4ao, 0,0,0).

(1.19)

(1.20)

Of course, we can cOlnbine these correspondences with pcrnnItations. In this way,
Hitchin's equation rcduccs in two steps to

(1.21)

whereas the p2-equation reduces to (0.2).

1.7. Remark. A straightforward generalization 0 f (1.16) IS the following
infinite-dimcllsional falnily of /.l-equations:

(1.22)

where ( runs over representatives of (Q + Qr)/(Z + Zr), and ae: = 0 for almost all
(. Most of the results of this paper readily extend to (1.22)

§2. Hamiltonian structure

2.1. The time--dependent Hamiltonian. Thc PVI-cquation written a.s in
(1.16) has an obvious titne-dependent Hamiltonian form:

where

dz 81l dy 8?-l
dr 8y' dr - 8z '

(2.1)

(2.2)
y2 1 ~ ~

?-l := 2 - (21Ti)2 ~ CYjp(z + 2' r).
J=O

To understand the geometrie meaning of these equations, we will extend thc action
off(2) c< Z2 to the (y,z,r)-space in a way compatible with (2.1), (2.2). We start
with recalling thc general Halniltonian fonnalisnl.

2.2. Hamiltonian formalism. a. Non-degenernte case. Let X bc a lnanifold,
1T E feX, 1\27x ), w E f(X, 1\27;). Thc natural intcgrability conditions for such
tensors are
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for 1T:

for w:
{J, g}1r := 1T( dJ, dg) satisfies thc Jacobi identity;
dw= O.

If both 1T anel ware nowhcre degenerate, we can write the compatibility condi
w

tion for thenl meaning that they elefine mutually inverse isonlorphisms Tx +=! T;.
ii-

This relation is a bijection compatible with thc two intcgrability conditions, which
establishes the equivalence between thc non~degeneratcPoisson structures 1T on X
and the symplectic structures w on X, so that we can write the relevant Poisson
bracket as {f, g}w as well. Any function 11.. on X (time-independent Halniltonian)
defines a flow on X enclowecl with 1T or w. This flow has respcctively two cquivalent
clescriptions:

Poisson: df = {1l, f}w, f being any function on X;
dt

symplectic: graphs of the flow lincs in thc extcndccl phase space X x At are
leaves of the null-foliation of the c10scd form pr'X-w - d1l.. A dt.

b. Degenerate case. Here the two structurcs divergc, and the natural cOlnpati
bility relation ceases to be a bijection.

A tensor 1T E f(X, A2Tx ) of constant rank clefines thc subbllnclle Ker if C T;
anel the orthogonal distribution (Ker if)..l C Tx. If in addition 1T is Poisson, thell

i). (Ker if)..l is integrable, i. e. it clefines a foliation called the symplcctic foliatioll
of ?T.

ii). On the leaves of this foliation, 1T induces a nondegenerate POiSSOll, 01' eqlliv
alently, symplectic structllre.

On the other hand, a tensor w E f(X, A2T;) of constant rank directly defines
the distribution Ker wc Tx, anel if w is closeel, thell

i/). Kerw is intcgrable; its leaves form the null-foliation of w.

ii/). w induces a symplectic structure on the leaves of any foliation transversal
to the null-foliation of w anel having the complementary dimension.

We will llOW call1T and w compatible, if Tx = (Ker if)..l EBKer W, and if in addition,
1T and W induce the salne symplectic strllcture on the symplectic leaves of 1T.

In the remaining part of this paper, we will be intcrested only in the (elegener
ate) symplectic picture (X, w) considered as a generalization of the cxtellcled phase
spacc. The leaves of the null-foliation will be for H8 801utions to a Hamiltonian
systeln. The following siInple Proposition shows that a particular case of this pic
ture encodes the classical formalism of Hauliltonian equations with many tinles anel
tiIne-depenelent Hamiltonians.

2.2.1. Proposition. Let X = X o X B, (Pi, qd, i = 1, ... ,71, be coordinates on
X0, (h, ... , t m ) coordinates on B. Let Wo = L:~= 1 dPi A dqi be a non-degenerate
symplectic form on X O, and w = 2:7=1 dPi Adqi -2:;:1 d1l..j Adtj be a closed form
of the constant rank 2n, where 11..j = 1l j (P l q, t) are functions on X. Then we have:

a). Leaves of the null-foliation of w form an etale covering of B ijj the Hamil
tonians lI..j satisfy the integrability condition
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(empty for m = 1), where the Poisson bracket is laken at constant tirnes.

b). The equations 01 motion expressing variation of Pi, qi along the leaves lLre

Proof. Leaves of the null-foliation form an 6tale covering of B, iff the null
distribution is spanned by lifts of the basic vector fields ßt .:

J

n n

'Vj = L A~j)api + L B;j)ßqi + ß tj , j = 1, ... , m"
i=l i=l

where L is any leaf of the foliation.

Proposition 2.2.1 generally furnishes a too simplified picture. Not only IIamilto
nians but thc constant tinle slices, together with their synlplectic structure, lnight
beconle time--dependent (especially in thc analytic context). Still würse, projection
ünto a tiIne manifold B may not be apart of the data. Even a spccific transversal
füliation need not be present.

2.3. PVI revisited. Looking at (2.1) and (2.2), we see that in the (y, z, r)
space solutions of a particular PVI fornl thc null-foliation of

w = w(ao, ... , a3) := 21ri(dy /\ dz - d1-l A dr) =

1 3 T.
= 21ri(dy A rlz - ydy /\ dr) + -. '""" D:jpz(Z + -.2., r)dz 1\ dr. (2.3)

21T'l D 2
j=o

(The extra factar 21Ti nlakes w defined over Q, cf. bclow.)

2.3.1. Proposition. The standard action 01 r(2) (resp. Z2) on C x H has a
unique extension to C x C x H leaving (2.3) invariant:

(
Z CLT+b)(y, z, T) I-t Y(CT + d) - CZ, , ,

cr + d er + d

(y, z, r) I-t (y + 711" Z + rnr + 7'1" r).

(2.4)

(2.5)
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Proof. Let (y, z, T) f---7 (iJ, z = Z d,T = UT +~) , dfj = Ady + Bdz + GdT,
CT+ CT+

be a transformation froln r(2) preserving the fOrIn of (2.3):

1 3 T
w =27ri(dfj /\ dz - fjdfj /\ df) + -. '"' CYjPz(Z + 2, f)dz /\ di. (2.6)

21rt W 2
j==O

From (1.12) it follows that the ternlS in (2.6) involving the Weierstrass function
are autoillatically invariant. COlllparing coefficients of dy /\ dz at both sides of
(2.6), one sees that A = cr + d. COlllparing coefficients of dy /\ dr, one then finds
fj = Y(CT + d) - cz, which gives B = -C, G = cy. Finally, one checks the vanishing
of the relevant part of the coefficient of dz /\ dr. This proves (2.4); (2.5) is checked
similarly.

We will now construct a function of z, T behaving in the same way as y in (2.4),
(2.5).

Nanlely, consider the theta-fllllctioll

B(z, r) = 2: exp (1fin 2r + 21finz).
nEZ

It has zeroes of the first order at z == 1; T mod (1, T) and satisfies the following

functional equations under the action of r(2) anel Z2:

(2.7)(
zar + b) / ( z2)o , = ((cr + d) 1 2cxp 1ric d O(z, r),

cr+d cr+d cr+

O(z + mr + n) = exp (-1rim2 r - 2ni1nz) B(z, r), (2.8)

where ( is a root of unity of degree eight. Therefore the function v(z, r) :=
1 {}z . . 1 1 + T

- -. -0 (z l r) has poles of the first order Wl th resldlle - -. at z == -- 11lOel (1, r)
21ft 27rt 2

anel satisfics

(
z ar+b)

v d' d = v(z, r)(cr + d) - cz,
cr+ cr+

v(z + mr + n) = v(z, r) + '(n.

Comparing this to (2.4), wc find finally:

2.3.2. Proposition. The vertical (over H) differential

( . (}z)
v:= 21rty + 8 d.!.z

(2.9)

(2.10)

(2.11)

on the phase space C x C x H is r(2) t>< Z2 -invariant, has residue one (Lt its poles

z = T3 fiOel (1, r), and therefore can be pushed down to the three-dimensional space
2

F := r(2) t>< Z2 \ (C x C x H) fibered over the total s]Jace E 01 the elliptic pencil
{Et }.

We will use (2.11) first of all in order to identify F with thc phase space clescribed
in the Introduction, 0.2. Here is thc formal construction.
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2.4. Lemma-Definition. Let (1T : E --+ B, D i ) be an elliptic pencil with r(2)
rigidity, as in 0.2. Then there exists an affine line b'Undle A : F --+ E, and a relative
1-lorm Vp E 0}/B(A- 1 (D3» such that thc map 0/ sheaves 0/ affine fines over OE

{sections of F aver E} --+ O};/ B (D3 ): 8 H s* (vp) identifies the sheal 01 sections 01
F / E with that 01 lorms with residue one F C 01/B (D3 ). Moreover,

a). (F = F(E,?T, {Dd), A, vp) is unique up to a unique isomorphism over E.

b). (A: Z2 \ (C x C x H) -T Z2 \ (C x H), v = (21l'iY + i)d..z) is the F-space

T·
for the pencil {Er} over H, with D i - -i luod (1, r).

Proof. Uniqueness follows from general nonsense. For existence, we glve a
standard Cech-type construction which will be usefnl later.

Put Ui = E \ D i for i = 0,1,2.

Localizing on B, we nlay and will assulue that 01/B is OE-free.

Choose Vi E r(Ui , F), i = 0,1,2 (recall that F consists of relative I-fonns with
residue 1 at D3 ) and take for V3 a generator 0 f 0 k/B over OE.

Define thc alternating Cech 1~cocycle in Zl((Ui ), OE) by

Use it to glue together Ui x A l
:

(x E Vi n Uj , Pi E A l
) H (x E Uj n Ui , Pj = Pi + fij (x) ).

Denote by F the resulting space, with projection A : (x, p) H X on E. Denote
by vp the form whose restriction to Uj x A l is l)j - PjV3' One easily checks the
compatibility, so that Vp is a section of "\*(F) C O}/B(,,\-1(D3».

Clearly, (F, A, vp) satisfies the defining universal property. In fact, any section
1) of F on Vi can be uniquely represented as a SUffi of Vi and a unique regular
differential, i. e. v = Vi + /iv3, li E f(Ui , OE)' Therefore v is induccd by l)p on
the seetion locally given by Ui --+ F : x H (x,/i(x»), We leave the last statement
to the reader.

This finishes the proof.

Notice that ,,\ : F -; E has no global sections, even over a single fibre of E,
because there are no differentials of thc third kind with a single pole. However,
F can be trivialized over E \ D i for any i so that any Painleve eqllation with one
nontrivial O:'i effectively lives on E x Al.

Having thus described (F, vp), we cau characterize thc wholc space of Painleve
forms along the lines of 0.2.

2.5. Theorem. a). The form w(G) which in the (y, z, r)-cooTdinates is defined
by

w(G) := 21ri (dy /\ dz - ydy 1\ dT)
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is the unique closed holomorphic 2-/orm on F satisftJing two conditions:

i). The restrietion 0/ w(O) to TF / B coincides witk dJ,YF.

ii). The canonical lifts to F 0/ the multisections 0/ finite order 0/ E / B defined
by

z = cr + f, y = e; C, / E Q

are leaves of 01 the null-Ioliation 01 w(O) .

b). The form Wj on E which in the (z, r)-coordinates is defined by

1 T·
Wj := -2. pz(z + -.1..., r)dz A dr

1r1, 2

(2.12)

(2.13)

is the unique closed meromorphic form on E satisftJing two conditions:

) . . . DkDzDm {' } { }iii . The dZV1,sor 01 Wj zs 3' J, k,l, 711. = 0,1,2,3 .
Dj

iv). 1/ we identiftJ D~ with 1r*(Dk/B)®3 with the help 0/ thc Kodaira-S]Jcncer

isomorphism dr f---7 41Ti(d.J..z) 2 , then in a formal neighbourhood 0/ Dj , Wj becomes
the cube of a differential with constant residue r, where r3 = -4.

Proof. a). From (2.11) one sees that

Froln (2.1) and (2.2) far CYi = °far i = 0, ... ,3 it follows that (2.12) are solutions
to this PVI.

Canversely, consider a holamorphic closed 2-forrn w(0) enjoying properties i), ii).
Then

~w(O) = dy A dz + Edy A dr +Gdz A dr,
21rz

where E, Gare entirc functions of y, z, r with E z = -Gy- The rcspectivc equations
of motion are

dz dy
dr = -E(y, z, r), dr = G(y, z, r). (2.14)

If (2.12) satisfy (2.14) for all e, f E Q, we get that E(e, er+I, r) = -e für all real c, f
by continuity, so that E(y, z, r) - -y by analyticity. SiInilarly, G(e, er + f, r) = °
for aIl c, 1 E R so that G _ 0, and w(O) = w(O).

b). The divisor of (2.13) is weIl known. If the Kodaira-Spencer isomorphism is
nornlalized as above, Wj becomes represented by the cubic differential

so that its formal cubic foot near z = - '!;f exists and has residue - ij4. Any other
cubic differential with thc salne divisor can be obtained from ours by rnultiplication
by a function of r. Fixing the residue, we lose this freedoln.
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2.6. Theorem. The PainleVt~ forms are exact. More precisely,

where w(ao, . . . ,0'3) is defined by (2.3), and

1 3 T.
+- '""" a· Vl(Z + .2. r)dr2-n-i LJ J rr 2 '

j=O

(2.15)

(2.16)

is a r(2) ~ Z2-invariant meromorphie i-form wilk poles of tlte second order at Dj .

Here
1 00

G2(r) '= __ + '""('""" d)e21TinT. 24 LJ LJ .
n=l d/n

(2.17)

Proof. Only r(2) t< Z2-invariance needs to be ehecked. This is a straightforward
calculation using (2.4), (2.5), (2.7), (2.8), anel thc pscuelo-nlodular propcrty of
G2 (r):

We leave it to the reader.

2.7. Theorem. On a PVI phase space (F, A, VF), denote by D the divisor of
the zeroes 0 f 1/F eonsidered as a section 0f the invertible sheaf A* (n1/B (D3 ) ). Then:

a). D is a section 0/ A : F \ A- 1 (D3 ) -+ E \ D 3 .

b). In the space of Painleve 2-forrns, there exists a unique fOrTn identically
vanishing on D. It corresponds to the point (0'0, ... , a3) = (0, 0, 0, ~ ) (which is the
p 2 -point up to a renumbering and a Landin transfonn, cf. 0.1 and 1.6.)

c). D is generieally transversal to the null-leaves 0 f any P VI cxeept fo r (0, 0, 0, ~),

and so ean serue as a cornmon space of initial conditions for these equations {cf.
[OS} for a framework for the more precise analysis.)

Proof. a). From the construction given in the proof of Lemlna 2.4 Olle sees that
the equation of D in Uj x A l is Pj = Vj/V3. Since V3 is everywhere invcrtible, anel
the only pole of Vj is D 3 , D is a scction of A outside D3 .

b). Since the difference of any two fonlls in the Painleve space on F is lifted frOlll
E, its restrietion to D can vanish identically only if these fonns coincide. Hence
at IIlOSt one fonIl can vanish on D identically. To exhibit the one corresponding
to (0'0, ... ,a3) = (0,0, 0, ~) we will prove a slightly stronger staternent, that it is a
differential of a form vanishing on D. Put

. 1 i 82

0 0 := 2-n-2 [ydz - -y 2dr] + dlog ß(z, r) + - 8 2 log 8(z, r)dr.
2 4-n- z

(2.18)
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Then we can consecutively check that it is r(2) ~ Z2-invariant and that dO,o =
w(O, 0, 0, ~). For the latter, usc the identity

82 1 + T

8
2 log8(z, r) = -p(z +--, r) + cp(r)

z 2

where the precise fonn of cp(r) is inessential here.

On the other hand, froln the heat equation

it follows that

[ . 8z] 1 [ . 2 i (8z) 2]0,0 = 27r2 Y + (j dz -"2 27r2 y + 27r (j dr =

( . 8z ) [ 1 (. 8z ) ]= 27r2 y + 7i dz - 47ri 27r2 Y - (j dr . (2.19)

Comparing this with (2.11), one sees that 0 0 vanishes on D.

c). From the previous discussion, it follows that if w i=- dOo, then the restriction
of w to D is generically of rank 2, so that its null-foliation is generically transversal
to D.

2.8. The structure of the phase space in algebraic coordinates. In this
subsection, we will work out thc basic formulas on thc algebraic model (0.3).

2.8.1. The vertical coordinate. According to the proof of Lemma 2.4, thc
natural vertical (over E) coordinate on the algebraic Inodel of F \ A-1 (D 3 ) is

FrOfi (2.11) and (1.14) one finds its expression through elliptic functions:

. ()z
27r2 Y + (j

U = (push down of) ( () ( ))1/2'2 e2 r - e1 T

(2.20)

(2.21)

In particular, the equation of D is simply U = O.

We will now idcntify the Painlevc forms) using thc classical parameters (a, ß", 0)
rather than (Xi.

2.8.2. Theorem. We have

dX 2 dt
0(a,ß",8)=U-y -U ( )+t t - 1

1 (x t t - 1 t(t - 1)) d
+2t(t - 1) (X - ßX - , X-I - 8 X _ t t, (2.22)



a U ili
w(a,ß",O") = dU /\ Y - 2(X _ t)Y dX /\ dt - 2UdU /\ tU -1) +

1 ( t t - 1 t(t - 1) )
+2t(t - 1) a + ßX2 +, (X _ 1)2 + 8 (X _ t)2 dX /\ dt.
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(2.23)

Proof. The main task is to show that (2.22) holds for a = ß = ., = 8 = O. In
fact, the part involving Cl:', ß", 0" can bc treated in the salne way as at thc end of
the proof of TheoreIll 1.4, and (2.23) is then obtained by derivation.

Now, the form 0 corresponding to a = ß = , = 8 = 0 is prcciscly 0 0 froln
(2.19). Thus, wc have to prove that

o = U dX _ U2 cU .
o Y t(t - 1)

Using (2.19) and (2.21), wc find

(2.24)

PrOll (1.13) one can deducc that

i dt
-(e2 - et}dT = - .
1r t(t-1)

COlnparing (2.25) and (2.24), one sees that it reInains to prove that

dX 1/2 [ 1 (}z ]- = 2(e2 - el) dz + -. -dT .
Y 21r2 e

Now, froln (1.13) we obtain

(2.25)

(2.26)

(2.27)_ ( _ )1/2d _ PT - elT d
- 2 e2 el z 2 ( )1/2 T.

e2 - el fPz

Taking the difference of thc right hand sides of (2.26) and (2.27), we first check that

it cannot depend on z, because a calculation shows that d(d; - J1.) = 0, where we

temporarily denoted by J1. the right hand side of (2.26). Put now d; - J1. = rp(r)dr.
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Then we can calculate 4'(r) by restricting this idcntity to the divisor D 1 : X = 0
01' equivalently, z = 1/2. We get

4'(r) = _1 8%(1/2,r) = 0
21ri 8(1/2, r)

finishing the proof.

2.8.3. PVI in the (U, X, Y, t)-space and the canonical lifts of the mul
tisections of the finite order. Prom (2.23) one deduces the following cquations
of motion:

dX

dt

dU - U Y ( t t - 1 t(t - 1) )
di = - 2(X - t) + 2t(t - 1) Ci +ßX2 + 'Y (X _ 1)2 + 0" (X - t)2 . (2.28)

In particular, if (X(t), Y(t)) is a nnutisection of finite order, hence a solution of thc
(Ci = ß = f = 0, 6 = 1/2)-equation, then from the first equation (2.28) we sec that
its lift to F is given by

U( ) = t(t - 1) X/(t)
t 2 Y(t) .

§3. Symmetries and special solutions

(2.29)

3.1. Reduced phase space and enhanced moduli space. Thc discretc
symmetrics of PVI of infinite order were discovcred in the context of isomonodromic
defonnations by Schlessinger and rediscovered many tilnes afterwards (cf. (JM].)
We review here the Okamoto's treatnlent [02] which llicely fits in our framework.

Our phase space F has an obvious Z2-synlmetry induced by the inversion map
on the fibers of E:

(y, z, r) J--t (-y, -z, r), (U, Y, X, t) J--t (-U, -Y, X, t).

Each Painlcve fonn and thc respective cquations of Inotion are invariant w.r.t.
this symmetry. Wc delete eventual poles and consider thc reduced phase space
Fa := (F \ U~=oDi)/Z2' In this scction we will work with thc algebraic (U, Y, X, t)
model. Then Fo has an obvious structllre of affine algebraic variety.

We also replace the nloduli space Po := Spec C[ao, ... ,Cia] by its cover

Finally, we introduce the pair (<1> := Fox P,w), wherc w is the (relative ovcr P)
closed regular algebraic 2-fonn on <I> denoted w(a, ß, f' 6) in (2.23). This pair is an
algebraic lnodel of the space of all PVI equations.
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3.2. Symmetries. Denote by W the group of symlnetries of P gcnerated by
the following transformations:

a). (ai) M (ciai), where ci = ±1.

b). Permutaions of (ad.
3

c). (ai) M (ai + ni), where ni E Z and L ni - 0 (2).
i=O

3.2.1. Theorem (Okamoto [02]). All transformations in W can be li/ted to
the birational tmnsformations 0/ cI> = Fox P ]Jreserving the equations of motion
defined by w.

Sign changes of ai can be cxtended by idcntity on Fa- The action of 84 on E was
described in 1.6. To lift it to F, it suffices to rmnark that the foul' affine sheavcs
of differentials with a single pole and residuc 1 at D i can be pairwise identified by
adding ~d log fij, div fij = DJ /D;.

Thc whole group W is generated by these elClnents and one shift (ai) f-7 (ai +
OiO + Oi3), hence it suffices to construct its lifting. I will briefly sketch Okalnoto's
ingenious argument for doing trus.

I start with comparing notation. Okanloto's q, t are ours X, t. The vcrtical
coordinate in thc phase space which Okanloto denotcs p can be idcntificd as

(3.1)

The verification reduces to a son!Cwhat tedious calculation, showing that (3.1)
transforms Okamoto's equations of motion ([02], (1.5), p. 349) into ours (2.28). It is
useful to rcmember that Okamoto's paralneters (1'\:00' KO, /'LI, B) are O\lfS ((La, al, a2, aa).

Okamoto introduces an auxiliary function h ((1.6), p. 349), which in our coor
dinates is

2 1 [2 2 t 2 t - 1 2 t(t-1)]
h = U +:4 -aoX - al X + a2 X-I - (ua - 1) X _ t -

1 2 1 2 22 2-:4 (U3 - 1) t + 8[ao + u 1 - a2 + (aa - 1) ).

We need also the Painleve flow on cI> given by thc total tüne derivative

2UY
D := 8t + ( )ax-t t - 1

(3.2)

[
U Y (2 2 t 2 t - 1 2 t(t - ~) )]

- 2(X - t) - 4t(t - 1) Uo - ul X2 + a2 (X _ 1)2 - (aa - 1) (X _ t)2 Du.
(3.3)

This is arestatement of (2.28).

Now Okalnoto's description of the shift can bc sUllunarized as follows.
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The action 0f the shijt upon h given explicitly by

(
U (LI a2 a3 - 1 )

h M h - X(X - 1) Y + 2X + 2(X _ 1) + 2(X _ t) +

1 1
+'2(-ao + (LI + a2 + a3 -l)X + 4(ao - 2aI - a3 + 1)

has a unique birational extension to the whole affine ring of<I> compatible with 'D.

The proof given by Okamoto is a ealculation. He shows that thc ring honlomor
phism

C[ao, ... , a3; h, k, l] --+ affine ring of cI>

defined by h M h, k H 'Dh, l H 'D 2 h, after a loealization beeomos surjeetive. Its
kernel is generated by an cxplieit polynomial relation (see [02], p. 349, Prop. 1.1.)
The symmetries of this polynomial relation are slightly more visible than those of
the initial setting.

The geometrie meaning of this proof in the context of elliptic pencHs reillains
unclear to me. On the level of the eOITIpletc phase spaee F x P, OkaITIotO's map
becomes a correspondence.

3.3. Special solutions. The points of the Painleve nloduli space ean be roughly
divided into foul' groups, according to the diInension of thc space of sohltions rc
ducible to "classical" functions. This is a purely experimental classification, since
to the author's knowledge, no precisc definition of this notion led to a prccise clas~

sification picture. Nevertheless, it seenlS worthwhile to summarizc apart of what
is known.

Generally, SOIlle classical solutions at a point of P are constructecl dircctly. Af
terwards new solutions can be generated in principle by applying transformations
frOITI Wand Landin's transfonTI (which in the (ad coordinates is (ao, al, ao, (Ld f-r

(2ao, 2aI' 0, 0).) Especially intcresting are algebraic solutions: those for which X(t)
is an algebraic function of t. Sylnnlctries (including Landin) prcserve thc algebric
ity.

a). Equations with classical general solutions. Thc basic point for them is thc
null-point ai = 0 for a11 i. In the (z, r)-space we get siInply z = er + /, e, f E
C. Aigebraic solutions are obtained precisely for e, f E Q. Thcy are rigid (not
deformable), but in a certain sense dense in the set of all solutions.

Applying shifts from W, wo get infinitely many classically conlpletely solvable
n?

equations: (ai) = (ni), (ai) = (--t), whcre ni are integral and the sun} of ni is cven.

Let L be the lattice of such vectors. Inverse Landin transform applicd to (1,1,0,0)
then shows that the points (ai) in (~'~' ~'~) + L are also classically solvable; this
includes Hitchin's equation.

I do not know of other PVI eqllations with this property.

b). Equations with one-dirnensional farnilies 0/ classical solutions. The basic
point here is the p2-point (ad = (0,0,0,1). Onc family of solutions is obvious in
the algcbraic coordinates (2.28): X = const, U = O. These solutions have a clear
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geometrie Ineaning in our phase spaee F: they fonn the foliation of the divisor D
formed by the null-leaves entirely contained in D: cf. ThcoreIn 2.7.

It is interesting that this time algebraic sohltions are not rigid. If they look
sOInewhat plain, they beconle more sophisticated on other elenlents of the orbit
(0,0,0,1) + Land on thc Landin transforms (0, O,~,~) + L and (~,~,~,~)+ L.

More interesting one-dimensional family of solutions can bc constructed for any
(ad belonging to the hypcrplane ao +al +a2 +a3 = 1. They are expressed through
Gauss hypergcolnetric cquations: sec [02], p. 373-374. Again, Wand Landin
generate infinitely many new families.

c). Hitchin [H1] and Dubrovin [D] constructecl isolated algebraic solutions using
rcspectively twistor geolnetry and Frobenius llla.nifolds.

Our last remark concerns SOUle similarity between the (generalizcd) Lame poten
tials in thc theory of KdV-type equations and our classically integrablc potentials
of the non-linear equation (2.2). According to [TV], the fornlcr are of the fornl

whereas according to our discussion the latter have coefficients (proportional to)
(n;)/2 or (nj + ~)2 /2. Is there a direct connection bctwecn thc two phcllomena?
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