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DEGREE BOUNDS FOR GENERATORS OF COHOMOLOGY
MODULES AND CASTELNUOVO-MUMFORD REGULARITY

UWE NAGEL AND PETER SCHENZEL

1. INTRODUCTION

Let F denote a coherent sheaf on the projective space P* = P%, K denotes an al-
gebraically closed field. In [10], Lecture 14, F is called m-regular, m € Z, provided
H(P", F(m—1)) = 0{or all s > 0. Then it turns out, see loc. cit., that F(k) is generated
as Opn-module by its global sections if £ > m. By more recent results, see e. g. [4], this
is generalized to the generation of §;, the j-th sheaf of syzygies of 7. Here we want to
show another generalization of Mumford’s result. In order to formulate our approach we
fix a few notation. For s > 0 let

r5(F) :=min{m € Z | H'(P", F(m — 1)} = 0 for all i > s}.

Note that reg F = r|(F) is called the Castelnuovo-Mumford regularity of F. Hence F is
m-regular for all m > reg F. Furthermore, define ef (F) the smallest integer m € Z such
that H*'(P", F(k)) is spanned by H°(P™ Ops(1)) ® H'(P", F(k — 1)) for all k¥ > m. By
Serre’s vanishing result this is true for all m > 0. More precisely, Mumford’s result, see
loc. cit., says ef (F) < reg F. Its extension is our first main result.

Theorem 1.1. Let F be a coherent sheaf on P". Then there is the following bound
el (F) S rin(F) —i

for all : > 0.

This result is shown in Section 2 where we prove more general degree bounds for the
minimal generators of local cohomology modules. That is, we prove 1.1 by considering
local cohomology modules of graded modules.

Another point of our considerations are estimates of reg F under additional assumptions
on the local behaviour of F, in particular when F is a Cohen-Macaulay Ops-module. More
precisely, let S = K{zo,...7,), denote the polynomtal ring in n + 1 variables over K.
Then a Cohen-Macaulay Opn-module F is called k-Buchsbaum whenever the S-module
®;czH' (P, F(7)) is annihilated by (zg,...,z,)* for all ¢ with 1 < i < dimF. Note
that every Cohen-Macaulay sheaf is k-Buchsbaum for some k. Using our results on the
generators of cohomology modules we explore some of the restrictions on the vanishing of
the cohomology of k-Buchsbaum sheaves as demonstrated by:
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Theorem 1.2. Let F denote a k-Buchsbaum Qpn-module. Then
reg F < e(F)+(d = (k+1) +2,
where d = dim F and e(F) = max{m € Z | H*(P", F(m)) # 0}.

The previous result shows that (in the case of a “nice” local behaviour of F) the
number e(F) is dominating for regF. A bound of this type has first been shown in
[6] by completely different means. Theorem 1.2 is a considerable improvement of the
corresponding estimate in [6]. It will be proved in Section 3. By some examples we show
that certain of the finer bounds obtained in that section are best possible.

In the case of 7 = Jx, the ideal sheaf of a:projective scheme X C P", there are
estimates of e(Jx) by simple invariants. Here X is called k-Buchshaum scheme whenever
Jx is a k-Buchsbaum sheaf. For an integral nondegenerate k-Buchsbaum scheme X this
leads to bounds of the following type

oo < [BOO21] o)

where reg X = reg Jx. In [7] it was shown that C(k) < (*')k—d+1,d = dim X. In [12]
resp. in [6] (in a slightly weaker form) this was improved to C(k) < (2d~1)k—d+1. Our
applications to Castelnuovo bounds presented in Section 4 provide a further improvement.

Theorem 1.3. Let X C P" denote an integral nondegenerate k-Buchsbaum scheme,
k > 1, of dimension d. Then there is the bound

deg(X) — 1

\ <
reg X < ’r codim(X)

1 + dk.

So it turns out that C'(k) < dk.

As mentioned above we translate the statements into the context of graded modules
and their local cohomology. In our terminology we follow [12].

2. DEGREE BOUNDS FOR THE GENERATORS OF Local COHOMOLOGY MODULES

Let R = @0l denote a graded Noetherian ring such that R = Ry[R;] and K :=
Ry is a field. Put m = @,50R, the irrelevant maximal ideal of R. Let M denote a
finitely generated graded R-module. We fix the basic notation of [12]. In particular, a
homogeneous element = € R is called M-filter regular provided 0 :ps z is an R-module of
finite length. A system of (homogeneous) elements z = {zy,... ,z.} is called an M-filter
regular sequence whenever

(Z1y ooy @ic)M sz f(2, .. zie) M, =1,...,7,
is an R-module of finite length. For an arbitrary graded R-module N let e(N) denote
e(N) := sup{j € Z | N; #0},

Here N; denotes the J-th graded piece of the graded R-module N. Thus ¢({0}) = ~oo.
Furthermore put

et(N) := e(N/mN).
Hence, in the case of a finitely generated module N it denotes the maximal degree of an
element in a minimal generating set of N.

The following technical result does not look impressive but it will be proven useful with
respect to the estimates announced in the introduction.
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Lemma 2.1. Let y = {y1,... ,%} C R denote a set of homogeneous elements of degrec
< s. Let ¢ € R; be an M-filter regular element. Then we have
e( Ho(M)/(z,y) By (M) < max{e(HH (M) +t+ s, e(Ho(M/aM) [y HL (M/2M))}

for all ¢ > 0.

Proof. Since z is an M-filter regular element the short exact sequence
0> M/0:pyya(~t) DM M/zM -0

induced by multiplication by = provides a long exact sequence
() HA(M)(—t) 5 Hi(M) = H(M/aM) = HF (M)(~t) 3 HEL(M)
for all 2 > 0. Hence, it induces a short exact sequence

0 — Ho(z; Hy(M)) = HL(M/zM) — Hy(z; HFY (M) — 0.
By applying the Koszul homology functor H,(y;-) it provides an exact sequence

Hi(y; Hi(z; Hit ' (M) — Hiy (M) (2, y)Hi (M) — Hy(M/zM)[yHEL(M]aM).
Call the module on the left hand side N. Note that it is a subquotient of
@; 1 (z; Hy' (M) (- deg y;).

Whence it turns out that .

e(N) < e(HF(M))+1+s.

So the claim follows by the previous exact sequence. []

As a consequence there is the following bound of e* (H: (M)).

Corollary 2.2. Let z € R, denote an M-filter regular element. Then
et (Hy(M)) < max{e(Ht'(M)) +t + 1,e* (H,(M/xM))}
for all1 < dimM.

Proof. Choose y as a set of generators for the maximal ideal m. Note that all the generators
have degree 1. So the claim is an immediate consequence of 2.1. O

For a system of elements z = {z1,... ,z.} of R and an integer 0 < i < r let g; =
{z1,...,z;}. Note that z, is the empty set.

Theorem 2.3. Let z = {z4,... ,z,} be an M-filter regular sequence consisting of homo-
geneous elements of degree < t. Let ¢ denote an integer with 0 < ¢ < dimM =:d. Then
there exist the following bounds:
(a) e(HL(M)/zH (M) < max{e(Hp(M/2M), e(H (M/z;M)+2t |0 < j <r -2}
forallt with1 <r <d—1.
(b) e(Hy(M)/zH; (M) < max{e(Hi'(M/z;M))+2t |0 < j <d—i—1} for all 1
with1 > d—r.
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Proof. First consider ¢ with 1 < r < d — 1. Then a repeated application of 2.1 provides
e(Ho(M)[zH (M) < ,

ma.x{e(H,‘n'H(M) + 2t e(H (M/z: M)/(z2, . .. ,m,.)'H;(M/mlM))} < .
max{e(He (M) -+ 20, e(HEr (M) 2 M) + 20, e( (M) 2aM)/ (53, ., e Hi(M /25 M)))

el e(HE (M ;M) + 21, e(Hi(M/ 2, M) [, Hi\(M/2,_ M)) |0 < § < 2},
But now by an exact sequence as in the proof of 2.1 it is easy to see that
e(HL(M/[z,_,M)[z, Hy(M/z, 1 M)) < e(Hy(M[z,M)).
Thus the statement in (a) follows. Now let r > d —z. Then first note that
(HL(M)/ZHE(M)) < e(Ha(M)/24_ep Ha(M)
as easily seen. Similarly as above we obtain
e(Hy(M) /24 i Ho(M)) < .
max{e(Hy(M/zyiM)/z4-1 Hy(M[za i M), e(HF (M/z;M)) | 0< 5 <d —i—1}.
But now it turns out that
e(Hu(M/za_iM)/zamiss Hy(M[24_:M)) = =00

because Hi (M/z4_;,1M) = 0. Observe that dim M/z,4_; ., M < i. Therefore (b) is shown
to be true. [J

Note that the previous result for r = 2, ¢ = 1 was proved in (3], Lemma 4.1. In the
special case of linear elements there is the following application.

Corollary 2.4. Let [ = {l;,... 1z} C Ry be an M-filter regular system of parameters,
d=dimM. Then

(a) et (HL(M)) < max{e(HF'(M/LM)) +2 {0 < j <d-i—1} for all i with
1<1<d

(b) e* (Ha(M)) < max{e*(M), e(Hp(M/I;M)) +2]0< j < d}.
Proof. Because of e*(HE (M)) < e(H:(M)/LH: (M)) the statement in (a) follows imme-
diately by 2.3 (b). In order to prove (b) choose a system of elements y = {1,...,ys}
consisting of linear forms such that ({,y)R = m. By 2.1 it follows that

HHO(M)) = e(HO(M)/(Ly) HO(M))
< max{e(HX(M/IM)[yHJ(M/IM)),e(H  (M/LM)+2|0 < j <d}.
Now dim(M/IM) = 0 and therefore HS(M/IM) ~ M/IM, i.e.,

e(Ho(M/IM)[yIo(M/IM)) = e(M/(L,y)M) = e (M)

which proves the claim. [

In order to continue we recall a definition, see [12], Definition 6.1. For an integer s > 0
put

rs(M) = max{i + e(HL(M)) | i > s}.
Then reg M := ro(M) = rgepnm (M) is called the Castelnuovo-Mumford regularity of M.
It is known,see e.g. [4], that e* (M) < reg M.
Corollary 2.5. There are the following estimates:
(a) et (HL(M)) < ria(M) ~i+1 for all i > 0.
(b) et (H2(M)) < max{e*(M),r (M) + 1} provided d > 0.
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Proof. For | € Ry an M-filter regular element the short exact sequence (*) in the proof of
2.1 provides

r(M/IM) < ri(M) for all z,

see [11] for more details. Now let { = {{1,...,I,} C R, be an M-filter regular sequence.
Then by induction on r it turns out that r;(M/IM) < r;(M) for all ¢. Thus the state-
ments of this corollary follow by 2.4. O

Moreover e*(HS(M)) = —oo for d = dimM > 0, since HE(M) = mHL(M). Tt is
also noteworthy to say that there is no bound for e*(HS(M)) which does not depend on
et (M). To this end note that

ri(M) =r(M © Ro(t))

forallt € Z.

For the following result let H(-) = li;p Hom (m*,-) denote the functor of global trans-
form. Let R*H,i > 1, its right derived functors. For an R-module M there are a natural
exact sequence

0— HY(M)—=> M — HM)— HL(M) -0
and natural isomorphisms Hi* (M) ~ R H(M) for ¢ > 1.
Lemma 2.6. Let M denote a finitely generated graded R-module. Then
et (H(M)) < ra(M),
in particular e*(H(M)) is a finite number.

Proof. If d = dimM < 1, then et (H(M)) = —o0, so the claim is true. Let d > 2. Let
l € Ry denote an M-filter regular element. The multiplication by / induces a short exact
sequence

0— H(M)/IHM) — H(M/IM) — H,({; HA(M))(-=1) — 0.
Now a Koszul homology argument as in the proof of 2.2 provides that
e* (H(M)) < max{e"(H(M/IM)), e(Hy (M) +2)}.
Furthermore, by induction hypothesis
e (H(M/IM)) < ry(M/IM).

Because of ro(M/IM) < ry(M) and e(HZ(M)) + 2 < ry(M) the inductive step is com-
plete. O

Now we prove Theorem 1.1 of the introduction.

Proof. We use the notation of the introduction. Choose M a finitely generated graded

S-module such that M, the sheafification of M, satisfies M = F. Then there are graded
isomorphisms

H(M) ~ @;ezH°(P™, F(j)) and HJ'(M) = @2 H' (P, F(j))

for i > 1, see, e.g., [5]. That is, ef (F) = et (H(M)) and r(F) = ripq (M) for 1 > 1. So
the claim of 1.1 is a consequence of 2.5 and 2.6. O
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3. RESTRICTIONS ON THE COHOMOLOGY IMPOSED BY LARGE COHOMOLOGICAL
ANNIHILATORS

For a graded R-module M let a;(M) = Anng Hi(M),i € Z, denote the i-th coho-
mological annihilator of M. See [12] for basic results and applications. For an M-filter
regular element z € a;(M) N a;41(M) the long exact cohomology sequence induced by
multiplication by z provides a short exact sequence

0 — Hi(M) — Hi(M[zM) — HIF'(M)(=t) = 0,

t = degz, see (*) in the proof of 2.1. So there is a good comparison of r;(M) and
ri(M/zM). Pursuing this point of view further we show estimates of e(H(M)) by
e(HE(M)) and the “size” of a;(M),1 < j < d.

Theorem 3.1. Let [ = {l;,... ,la_i1} C Ri,1 <1 < d, denote an M-filter regular
sequence with d = dim M. Suppose that

Bl HL(M)=0 forall i<j<d
and certain integers u; > 0. Then

e(HE(M)) < e(HE(M)) + Y (5 +1).

j=t

Before we shall prove 3.1 let us mention an interesting consequence. In fact, it is helpful
in order to streamline the proof of 3.1. It gives bounds of r;(M) in terms of e(HZ(M))
and the “size” of a;(M). If in addition H} (M) is a finitely generated R-module, one can
measure the “size” of a;(M) by the integer

M(M) = min{} € N|m* C a;(M)}.
Corollary 3.2. With the assumptions of 3.1 there are the following estimates:

(a) ri(M) < e(HE(M)) +d + 352! pj, provided i > 0.
(b) reg(M) < Xo(M) + max{e*(M) — 1,e(Hy(M)) +d + iz} 1}

Proof. By the definition of r;(M), the claim in (a) follows by 3.1. If Ao(M) = 0, i.e.,
equivalently H3(M) = 0, then reg(M) = r{(M) and the statement in (b) follows by (a).
If A\o(M) > 0, then reg(M) = max{e(H2(M)),r1(M)}. On the other hand by Lemma 3.3
below it follows that

e(Hn(M) < e (HL(M)) + do(M) - 1.
Therefore, by 2.5 we get
reg(M) < Ao(M) + max{e* (M) — 1,7 (M)}.
So the statement in (b) follows by virtue of (a). O

In the proof of the previuos corollary we have already used the following observation.

Lemma 3.3. Let I C R be an ideal generated by elements of R, and let M be a finite
graded R-module. Suppose there is an integer u > 0 such that I*M = 0. Then

e(M) < e(M/IM) + p — 1.
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Proof. Let r denote the number of generators of . For an integer t > 1 there is the natural
epimorphism
$i—1

(MIIM(=t) (7)) S M/ M
Thus e(I'M/T""' M) < e(M/IM) + t. Because of
e(M/I'M) = max{e(I' *M/I'M),e(M/I'""" M)}
the conclusion follows now. [

Now let us continue with the proof of 3.1

Proof. In order to prove the desired bound we make induction on d —7 > 0. In the case
d — i = 0 the statement is empty. Let 0 < ¢ < d. If y; = 0, L.e., Hy (M) = 0, then
e(H: (M)) = —co and the statement is true. Let z; > 0. Then by 3.3

e(Hn(M)) < e(Ho(M)/LHL(M)) + i — 1.
By combining 2.3 (b) with the fact that
ri(M/L;M) < ri( M)
for all 4,7 with 0 < j <d —1i— 1 it turns out that
e(Hu(M)) Srip —14 1+ p— 1.

By the induction hypothesis the claim is true for d — (¢ +1). Whence the above Corollary
3.2 provides
d-1
rist (M) S e(Hy(M) +d+ 3 ;.
F=t+1

Putting this together it completes the inductive step. O

Note that in 3.1 there is no assumption on the finiteness of Hi(M),i =1,...,d — 1.
Under the additional assumption of finiteness it follows:

Corollary 3.4. In addition to the assumptions of 3.1 suppose that Hi (M),i=0,... ,d—
1, are finitely generated. Then there are the bounds:

(a) ri(M) < e(HE(M)) +d+ 92! (M)  provided i > 0.
(b) reg(M) < max{e* (M) + Ao(M) — 1, e(Hg(M)) + d + 1325 A;(M)}.

There is no generalization of 3.1 relating e(H:L(M)) and e(Hi(M)) with i < j < d.
This follows because for any integers m,n one may construct Buchsbaum modules with
e(HL(M)) = m and e(HL(M)) = n.

Let R be the coordinate ring of a projective curve C C P* Then 3.1 specializes to
[9], Proposition 2.8. If C is a rational curve, then e(HL(R)) < A (R) by 3.1. Since
a(HY(R)) > 1 and M(R) < e(H(R)) — a(HL(R)) + 1 it {ollows (cf. also [9], 2.10) that

e(HL(R)) = M(R) and a(HL(R)) = 1.

In particular, it turns out that 3.1 is optimal in this case. Note also that the previ-
ous equalities are generalizations of the main results in [2], proved there in the case of
monomial curves in P°. Theorem 3.1 is also optimal in higher dimensions as seen by the
following:
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Example 3.5. Let S := K[zy,...,z4} denote the polynomial ring in &,,...,zq4 over the
field K. For a positive integer p let M = z*S, where z = {zy,...,zq4}. So there are the
following isomorphisms

. Slz*S ify =1,
HI(M) ~ HE(S) ifj=d,
0 otherwise.

Now z is an M-filter regular sequence. Thus 3.1 is applicable. It yields the following
estimate.

e(Hu(M)) < e(Hn(S)) +u+d-1=pn~1.
On the other hand e(S/z#S) = u — 1, as easily seen. So it follows that
e(HL(M)) = e(S/2*S) = i — 1.

Hence the bound in 3.1 is optimal.
The bound in Theorem 3.1 is also optimal in the case when M has more than two
non-vanishing cohomology modules. In order to illustrate this situation consider:

Ezample 3.6. For r > 2 put § = K[z1,...,22] and R = S/a with a = b N ¢, where
b= (:171,... ,112,-)0 (217,-4_1,... ,:Egr) and

- (31,...,12[2-_1,(1171'_;_1__'_1,...,.'I:‘zr)s) if 7 is odd,
(T1ye oy BL TE41 T2 o 3 ToT2r, (Tt ,T3.)°) if r is even.

Then H} (R) ~ H:(S/b) for ¢ > 0 and thus

N _ K fOl‘ Z= 1,
H'“(R)—{ 0 for 1<

Finally H9(R) =~ b/a ~ K(-2){7'). Therefore we have e(HL(R)) = —r, do(R) =
M(R)=1,A(R) == A_1(R) =0, and reg R = 2. Thus in 3.4 (b) equality holds.
Now recall that M is called a k-Buchsbaum R-module if A;(M) < k for all z with
0 < i< dim M. Note that 0-Buchsbaum means Cohen-Macaulay. Observe that 3.6 shows
that the bound in [6], 2.8, is not true for 1-Buchsbaum rings which are not arithmetically
Buchsbaum. Instead, we have the following estimations in case of k-Buchsbaum modules.

Corollary 3.7. Let M be k-Buchsbaum R-module. Then there are the bounds:
(a) ri(M) < e(HE(M))+d+ (d—1i)k foralli>0.
(b) reg(M) < max{et(M)+k —1,e(HE(M)) +d(k +1)}.

Proof. By the definitions this is an immediate consequence of 3.4. O

Remark 3.8. (1) First note that Theorem 1.2 of the introduction is a consequence of 3.7
by the same translation procedure as in the proof of Theorem 1.1.

(2) Put M = R. Then e*(R) = 0. Moreover, it is known that e(HZ(R)) +d > 0, see e.
g., [8]. Let R denote a k-Buchsbaum ring. Then 3.7 yields the following estimate

reg(R) < e(HL(M)) +d + (d — t)k,

where ¢ = depth R.

(3) Note that 3.7 improves the main results of [6] for k-Buchsbaum modules. It is often
much easier to check if a module M is k-Buchsbaum than to decide if m* is an M-
standard ideal. Note that the main results of [6] stated under this latter assumption are
also improved by 3.7 in case : + k& > d.
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4. APPLICATIONS TO CASTELNUOVO BOUNDS

First let us recall the definition of an (r,z)-standard sequence introduced in [12]. To
this end let z = {z4,...,2,},1 < r < dimM =: d, denote an M-filter regular sequence.
For i <d —r it is called an (r,7)-standard sequence with respect to M provided

:t:n+1H;l+j(M/(:B,, < ,:B,-,)M) =0

for all non-negative j,n with 0 < 7 + n < r. This notion generalizes the notion of a
standard system of parameters. In [12] it is shown to be useful in order to control the
vanishing of graded local cohomology. This point of view is pursued further in this section.

Lemma 4.1. Let £ = {z1,...,2,} C Rx be an (r,1)-standard sequence with respect to
M. Then

e(Hi(M/2M)) = max{e(HF(M)) + 7k |0 < j <7}
Proof. In [12], 6.3, it is shown that
e(HoP (M) < e(Hp(M/zM)) — jk

for 3 = 0,1,...,r. This proves that the left-hand side is bounded by the maximum on
the right. Since z is an (r,2)-standard sequence there are short exact sequences of local
cohomology modules

H::'j(M/(:c],. o2 )M = H (M (21, .. 2pp1) M) — H;"j“(M/(azl, ce e ) M) (—E).
Thus an easy induction on r proves the claim. [J

As an application 4.1 implies a bound of r;(M). Thereby we use the notation .=
{5 ..., I¥} for L = {l1,...,I.} asequence of elements of R.

Proposition 4.2. Let [ = {I},... ,ls_;} C Ry denote an M-filter regular sequence. Sup-
pose that I*) js an (d — 1,1)-standard sequence. Then

ri(M) < e(HL(M/IM)) 4+ i+ (d — i) (k —1).
Proof. By virtue of [12], 6.5, it follows that
e(Hi(M/IPM)) < e(H(M/IM)) + (d = i)(k —1).
Therefore, by 4.1 it implies for 2 < j < d that

e(H(M) + (G — )k < e(Hi(M/IPM))
< e(HA(M/IM)) + (d - i)(k - 1),

which by definition proves the claim. [J

In the case of M a Buchshaum module and { = {l4,...,,} C R, a subsystem of a
system of parameters 4.1 yields that

ri(M)=r;(M/IM) foralli<d-—r.

This is the crucial observation in [13] in order to derive Castelnuovo bounds for Buchs-
baum schemes. In contrast the basic result for our Castelnuovo bounds for k-Buchsbaum
schemes is the following:
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Proposition 4.3. Let | = {li,... ,laq} C Ry, 0 <4 < d, be an M-filter regular se-
quence. Suppose there are integers pu; > 0 such that I ;H3(M) =0 for all 1 < j < d.
Then

ri(M) < e(HL(M/IM)) +i+ ¢,

where

0 otherwise.

c,-={ i+t gy il gt e >0,

Proof. Let pi + ...+ pta1 =0, i. e., HL(M) =0 for j = ,... ,d — 1. Then the claim is
a consequence of 4.1. Otherwise we make an inductionon d—¢ > 1. Let t: =d— 1. If
pa—1 = 0, then the claim follows by the previous argument. Let pg4—y > 0. By 3.3 we have

e(H™ (M) < e(Ho ™ (M/LHZTH (M) + pat = 1.
Whence by 2.3 (a)
e(Hy ' (M) < e(HR™ (M/IM)) + pa—s — 1.
Moreover, by [12], 6.2, we know that
e(Hn(M)) + 1 < e(Hg™ (M/IM))

which proves the claim for : = d — 1.
Suppose 0 < i < d—1. If g; = 0, then r;(M) = r;11(M). So the statement follows

by the induction hypothesis. Now suppose that g; > 0. By 2.3 (a) and observing that
ri{M/IM) < ri(M) it turns out

(*) e(HL(M)) < e(HL(M)/IHL(M)) + i — 1
< max{e(Hp(M/IM),rip1(M) —i+1} +p — 1.

Assume that ¢;41 > 0. Then by the induction hypothesis and [12], 6.2, we get

rei(M) < e(HF (ML M) +i4 14 cin
< e(HL MM} 1 4 e

So (*) implies e(H;,(M)) < e(H} (M/IM))+i+c;, i. e., the claim is true. In the remaining
case of cipy = 0 we have HIX'(M/L;M) =0 for all 0 < j < d — i — 2, which follows by an
easy induction. Thus 2.3 (a) reads as

e(Hn(M)/UH (M) < e(Hy(M/IM)).
Therefore (%) and the induction hypothesis complete the inductive step. [J

It is noteworthy to say that in 4.3 there is no finiteness condition for the cohomology
modules in the case z > 0. Under additional finiteness conditions 4.3 yields the following:

Corollary 4.4. Suppose that Hi (M),j =i,... ,d—1, are finitely generated R-modules.
Let I={lL,...,la_;} C Ry, 0 <i < d, be an M-filter regular sequence. Then

ri(M) < ri(M/IM) + d;,
where

d.:{ MM+ da (M) =1 ifMM) 4 4 A (M) >0,

0 otherwise.
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Remark 4.5. Consider the ring R of Example 3.6. R is 1-Buchsbaum and reg B = 2.

Since rankg[a]; = (Hz'l) we obtain for general linear forms { = {l;,..., [} that
rankg[(a,0)]2 = rankgl[a] + rankg[({)]2
— (r-|2-l) + (21-;-1) _ (r-|2-1)
= rankg[K[z1,...,Z2]]2-

Therefore e(HA(R/IR)) = e(R/LR) = 1. Whence
2 =reg R = e(HY(R/IR)) 4+ Xo(R) + ...+ A\ 1 (R) = 1.

That is, the bound in 3.4 is the best possible.

We need some more notation. The unique polynomial ha(t) determined by has(t) =
rankp, M; for ¢t > 0 is called the Hilbert polynomial of M. Let d = dim M > 0. Then it
may be written as

d—1)!

where mult(M) # 0. Then the multiplicity of M is defined to be mult(M). If M is zero-
dimensional its multiplicity is by definition mult(M) = length(M). The codimension of
R is codim R := rankg, Ry — dim R. Finally, recall that [a] denotes the least integer > a
for a € R.

The following lemma concerns the most technical part of estimates of the Castelnuovo-
Mumford regularity.

hat(t) = mult(M) + terms of lower degree

Lemma 4.6. Let M denote a finitely generated graded R-module.

(a) Let { = {l1,... ,la_1} C R, be an M-filter regular sequence where d = dim M.
Then we have for all1 > 0

d+ e(HL(M)) < i+ e(HL(M/1_;M)) < mult(M) + et (M) - 1.
(b) Suppose that R is integral and Ry, = K is an algebraically closed field. Let

li,...,li_y be general linear forms where d = dim R. Then we get for all 1 > 0
, . W(R) -1
d < ! . < muitifE) — 4 .
L e(HA(R) < i+ el (/L o) < |

Proof. In both statements the bounds on the left-hand side follow by [12], 6.2. In order
to show (a) put M’ := (M/IM)/H2(M/IM). Note that M’ is an one-dimensional Cohen-
Macaulay R-module. Since [ is an M-filter regular sequence it is well-known that

mult(M) = mult(M").
Furthermore,
(M) 2 c*(M[IM) = e (M') and  e(HA(M/LM)) = e(HL(M"))
as easily seen. Now let us prove that
(%) 1+ e(HLM") < eo(M') + et (M) — 1.

To this end choose a general | € [R/LR],. Then we have e*(M') = et (M'/IM'). Therefore
[M'/IM']; = 0 for a certain integer t > eT(M’) implies [M'/IM'];41 = 0, too. Now the
multiplication by [ on M’ induces a short exact sequence

0 — [M'/IM"], = [He(M)]im1 — [Ho(M")), = 0
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for any integer t. It provides
rank[H}(M")]; < max{0, rank[HL(M")];-, — 1}
for all t > et (M’). But
rank[Hy (M")] o+ () = mult(M) — rank[ M)+ .
Because of rank[M']¢+ (s > 0 the inequality in (*x) follows. But now
i+ e(Hu(M/1;_iM)) 1+ e(Hy(M/IM))

for all i > 0. This proves part (a) of the claim.

In order to prove (b) we use the same notation as above. Then R’ is the coordinate
ring of a set of mult(R) points in linear semi-uniform position, see [1]. Moreover, by [1]
and Riemann-Roch it follows that

et < [P 1]

| codim R’
Then the same arguments as above show (b). O

Remark 4.7. (1) Because of et(R) = 0 part (a) of 3.6 is a generalization of [6], 3.1.
Furthermore, part (b) of 3.6 is an extension of [11], Corollary 2, to the case of a ground
field of arbitrary characteristic.

(2) The result in 4.4 is an improvement by one of the bound which follows by a direct
combination of 3.4 and 4.6.

Now there are several bounds of Castelnuovo type by combining 4.2 resp. 4.3 with 4.7.
. Here we state only one which seems most interesting to us. Consider a Cohen-Macaulay
. scheme X C P". Let R denote its homogeneous coordinate ring. In accordance with the
introduction put reg(X) = reg(R) + 1. Moreover, define A;(X) = A;i(R).

Theorem 4.8. Let X C P% be a projective Cohen-Macaulay scheme of positive dimen-
sion d, where K is an algebraically closed field. Let

e AM(X) 4+ 4+ Aao1(X) =1 if X is not arithmetically Buchsbaum,
- 0 if X is arithmetically Buchsbaum.

(a) Then there is the following bound
reg(X) < deg(X) + c.
(b) Suppose in addition that X is integral and nondegenerate. Then

deg(X) —1

reg(X) < ’r codim(X)

]+c+1.

Proof. Let R be the homogeneous coordinate ring of X and let { = {{3,... ,la_;} C R be
general linear forms. Suppose that X is aritmetically Buchsbaum. Then ! is an (r,1)-
standard sequence and 4.1 provides that

reg(R) = 1 + e(HA(M/LM)).

Furthermore deg(X) = mult(R). Thus the asserted bounds are a consequence of 4.6. If
X is not arithmetically Buchshbaum the claims follow by 4.3 and 4.6. O
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Remark 4.9. (1) The statements in 4.8 are an improvement of [12], 6.9, and - as noted
there - also of [6], 3.2 (ii) and 3.3 (ii). Moreover, Theorem 1.3 of the introduction is a
particular case of 4.8.

(2)

Let R denote a k-Buchsbaum ring with &£ > 0. Let { denote a system of linear pa,r.arn—

eters. Then reg(R/IR) = e(HY(R/IR)). Hence, it yields an improved bound in [12], 6.8.
This follows by replacing the corresponding argument in [12], 6.7, by 4.4.

—

11.
12.

13.
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