The configuration of a finite set on surface (Revised)

Xu Mingwei

Institute of Mathematics Academia Sinica

.

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 D-5300 Bonn 3

Germany

MPI/91-34

§ 0. Introduction

Let S be a smooth surface in \mathbb{P}^n and m be an integer with $n \ge m \ge 2$. For any m different points on S, if they are linearly dependent we say this set is special. Let M be the collection of all these special sets, then M is a scheme with a natural algebro-geometric structure. We can show that, when n = 3m - 2 and S is in general position, M is a finite scheme. We denote the degree of M by $\nu(s)$ which is intuitively the number of the points in M possibly with multiplicities.

S.K. Donaldson posed a conjecture about this case in [2]:

"Conjecture 5. There is a universal formula for expressing $\nu(s)$ in terms of m, the Chern numbers of S, the degree of S in \mathbb{P}^{3m-2} , and the intersection number of the canonical class S with the restriction of the hyperplane class."

He pointed out this enumerative problem has something to do with Yang-Mills invariants.

In this paper we give an affirmative answer for the conjecture. But the formula for expressing $\nu(s)$ is complicated for writing down explicitly though there is an algorithm for computing it.

In § 1 we explain the meaning about "general position" in the present case and give the basic construction for computing $\nu(s)$. In § 2 all of the objects considered in § 1 are lifted to some projective vector bundle where it is comparatively easier for computation. In § 3 we prove the main theorem by computing some Segre classes.

Author thanks K.C. Mong for showing him this problem and thanks R. Piene for the profitable discussion with her.

§ 1. Preliminaries

In sequels we assume the ground field is algebraically closed with characteristics $\neq 2$.

Let $m \ge 2$ be an integer and n = 3m - 2.

Let $\mathbf{P}^n = \mathbf{P}(V^{\vee})$ be the *n*-projective space, where *V* is a vector space of dimension n+1 over the ground field, and we chose a basis e_0, \ldots, e_n for *V* once for ever. Let $Y = (\mathbf{P}^n)^m$, the *m*-cross product of \mathbf{P}^n , and let $X = (S)^m$, where *S* is a smooth surface in \mathbf{P}^n which is in general position in a sense as follows.

Definition. S is in general position if, except for a finite number of the sets consisting of m points on S, every other such set is linearly independent, including the case when k of m points are replaced by a (k-1)-plane which tangents to S at a point of S.

We call the exceptional set a <u>special set</u>. For m = 2, every smooth surface in P^4 is automatically in general position.

For $m \ge 3$ we have the following proposition:

Proposition 1.1. Let $i: S \to \mathbb{P}^n$ be a non-degenerate embedding, then there exists a reembedding $j: S \mapsto \mathbb{P}^n$ by a generic projection from \mathbb{P}^{n+1} to \mathbb{P}^n such that j(s) is in general position.

Proof: Let $i^*O_{\mathbf{Pn}}(1) = O(1)$, then *i* is determined by a linear system belonging to O(1). First we shall show that, there exists an integer N_0 such that for every $N \ge N_0$, on the image of the embedding φ determined by O(N) every *m* points are linearly independent. In fact, let Z be a subscheme of m points on S with reduced stucture and J_Z be the sheaf of ideal defining Z in S. We have an exact sequence

$$0 \to H^0(S, J_Z(N)) \to H^0(S, O(N)) \xrightarrow{a} H^0(S, O_Z(N))$$
$$\to H^1(S, J_Z(N)) \to H^1(S, O(N)) \to 0.$$

Since dim $H^0(S, O_z(N))$ is the number of the points in Z, we see from the sequence that, if $H^1(S, J_Z(N)) = 0 \dim H^0(S, J_Z(N))$ is the dimension of the smallest subspace which contains Z. Therefore, if $H^1(S, J_Z, (N)) = 0$ for every (reduced) subscheme $Z' \subset Z$, then the points of Z are linearly independent.

By Cartan-Serre Theorem B [4], there exists N_0 such that whenever $N \ge N_0$ we have $H^1(S_{Z'}(N)) = 0$ for all $Z' \subset Z$. Now we have to prove that N_0 depends only on m rather than on the position of Z. As a standard method we take Z as a subscheme of \mathbf{P}^n and let the ideal defining Z in \mathbf{P}^n be I_Z and the ideal defining S in \mathbf{P}^n be I_S , then we have an exact sequence

$$0 \to I_S \to I_Z \to I_Z \to 0 \; .$$

In the long exact sequence of the above sequence we see that, the vanishing of $H^1(S, J_Z(N))$ is a consequence of the vanishing of $H^1(\mathbb{P}^n, I_Z(N))$ and $H^2(\mathbb{P}^n, J_S(N))$. But on \mathbb{P}^n , $H^1(\mathbb{P}^n, I_Z(N)) = 0$ for N sufficiently large depends only on #Z (by the homogenety of \mathbb{P}^n or simply by induction on #Z).

We continue to prove our proposition.

Let $r + 1 = \dim H^0(S, O(N_0))$ and $\psi: S \to \mathbf{P}^r$ be the embedding determined by $O(N_0)$. We show that, for $r \ge n+2 = 3m$ a generic projection from \mathbf{P}^r to \mathbf{P}^{r-1} gives an embedding of S in \mathbf{P}^{r-1} and preserves the independence of any m points on S. Indeed, the subscheme consisting of all the (m-1)-planes in \mathbf{P}^r spanned by any m points on S (including the case when k of m points is a (k-1)-plane which tangents to S) has dimension 3m-1. Therefore a projection with a generic point as center meets our need. We proceed like this till we arrive at \mathbf{P}^{3m-1} . Then taking a generic point of \mathbf{P}^{3m-1} as center we have a projection which preserves the independence of m points on S except for a finite number of these sets, and in this case anyone of these exceptional sets spans a (m-2)-plane.

Hereafter we always assume the surface S is in general position in the above sense.

Our main idea for solving the conjecture is as follows. Let $j: X \to Y$, $j = i \times \ldots \times i$, $P = (p_1, \ldots, p_m) \in X$, and $p_i = (\xi_{i0}, \ldots, \xi_{in})$ be the homogeneous coordinates of p_i in \mathbb{P}^n with respect to the fixed basis of V. Then, $p_1, \ldots p_m$ being in special position means $rk(\xi_{ij}) \leq m-1$. We would like to construct a morphism φ between two locally free sheaves such that φ can be expressed locally by the matrix (ξ_{ij}) , then in the (m-1)-degeneracy of φ the finite part is what we need.

Let $q_i: X \to S$ be the ith projection and denote $q_i^*O(1)$ by H_i . Then the fiber of H_i^{-1} over P is the 1-subspace of V representing the point p_i . From the following exact sequence

$$0 \to H_i^{-1} \xrightarrow{\varphi_i} V \otimes_{q_i} O_X \to q_i^* \Omega_{p^n}^{\vee} (H_i^{-1}) \to 0$$

we have a morphism

$$\varphi: \oplus H_i^{-1} \xrightarrow{\oplus \varphi_i} \oplus V \otimes_{q_i} O_X \xrightarrow{\Sigma} V \otimes_k O_X$$

 φ is expressed locally by the matrix (ξ_{ij}) with respect to the basis of V. We shall study the degeneracy $D = D_{m-1}(\varphi)$ [5]. By Proposition 1.1, D is divided into two parts, D_0 and D_1 , where D_0 is a finite subscheme corresponding to the special sets of S and D_1 is a subscheme of X with positive dimension, supporting on the various diagonals of X. Let ν denote the number of the special sets on S, then deg $D_0 = m!\nu$.

Formally, at present we may compute ν by Excess Formula [5] § 9.1, but it seems difficult technically. So we lift φ to the desingularization of D [1]. Let $S_{i_1...i_k}$ with $i_1 < ... < i_k$ be the (i_1, \ldots, i_k) -diagonal of X, i.e. the image of $\Delta_{i_1...i_k} \times id : S^{m-k+1} \to S^m$, where $\Delta_{i_1...i_k}$ is the diagonal morphism from S to the i_1th, \ldots, i_kth factor of X.

Let $Q = P(H_1^{-1} \oplus \ldots \oplus H_m^{-1}) (= P(H_1 \oplus \ldots \oplus H_m)), \quad p : Q \to X$ be the structure projection and O(-1) be the universal subbundle on Q. We have a morphism on Q:

$$O(-1) \rightarrow p^* H_1^{-1} \oplus \ldots \oplus p^* H_m^{-1}$$

The composition of the morphism and $p^*\varphi$ gives

$$\psi: O(-1) \to V \otimes O_Q \xrightarrow{\sim} O^{n+1}$$

Generally we could not assert that $p_*[D_0\psi] = [D_m(\varphi)]$ since φ does not have "correct" dimension [1] Ch. II. But by the assumption of "S being in general position", out of $p^{-1}\left(\bigcup_{k\geq 2} S_{i_1\dots i_k}\right)$ we have $p_*[D_0(\psi)] = [D(\varphi)]$ where the dimension is correct [1]. Therefore, $D(\psi)$ is divided into two parts: V_0 and V_1 , where V_0 is a finite scheme with degree $m!\nu$ and V_1 is a scheme supporting on $p^{-1}(\bigcup S_{i_1\dots i_k})$, defined by the Fitting ideal $F^n(\psi)$ [5]. ψ induces a section $r: Q \to O(1)^{n+1}$ then, if letting r_0 be the zero section, we have the following diagram:

$$\begin{array}{cccc} V_1 \cup V_0 & \to & Q \\ \downarrow & & \downarrow \gamma_0 \\ Q & \to & O(1)^{n+1} \end{array}.$$

By the definition of intersection in [5], § 6.1,

$$\deg V_0 = \deg \left[Q^2\right] - \deg \left(\left(1 + c_1(O(1))^{n+1} \cdot s(V_1, Q)\right)_0,\right.$$

where $s(V_1, Q)$ is the Segre class of V_1 in Q and c_i is the notation of the *i*th Chern operator. By an easy computation we have deg $[Q^2] = d^m$.

§ 2. Birational transformation

The next step is the computation of $s(V_1, Q)$. Since Segre class is birationally invariant [5], we shall construct a scheme being birationally isomorphic to Q and making the computation easier.

Let $\alpha_m : X_m \to X$ be the blowing-up of X with respect to $S_{1...m}$, and $\beta_m : P(\alpha_m^* H_1^{-1} \oplus \ldots \oplus \alpha_m^* H_m^{-1}) \to Xm$ be the pull-back of Q by $\alpha_m . Q_m$ is birationally isomorphic to Q.

Let X_{m-1} be the blowing-up of X_m with respect to $\bigcup S'_{i_1\dots i_{m-1}}$ where $S'_{i_1\dots i_{m-1}}$ is the strict transform of $S_{i_1\dots i_{m-1}}$ with respect to α_m and $\{S'_{i_1\dots i_{m-1}}\}$ for $i_1 < \dots < i_{m-1}$ are disjoint each other. We denote the composition of these two blowing-ups by $\alpha_{m-1}: X_{m-1} \to X$ and the pull-back of Q with respect to α_{m-1} by $\beta_{m-1}: Q_{m-1} = P(\alpha^*_{m-1}H_1^{-1} \oplus \dots \oplus \alpha^*_{m-1}H_m^{-1}) \to X_{m-1}$. In this case the strict transforms of all of $S_{i_1\dots i_{m-2}}$ with respect to α_{m-1} are disjoint each other and we do the same thing as above until we arrive at

$$\alpha_2: \tilde{X} = X_2 \to X$$

$$\beta_2: \bar{Q} = Q_2 \to X_2 ,$$

where $\bar{Q} = P(\alpha_2^* H_1^{-1} \oplus \ldots \oplus \alpha_2^* H_m^{-1})$.

Let $\gamma: \overline{Q} \to Q$ be the composition of all of these pull-backs, which is a birational morphism. By the elementary property of Fitting ideal, $\gamma^{-1}(D(\psi))$ is defined locally by the 1-minors of the matrix representing $\gamma^*\psi: Q_{\overline{Q}}(-1) \to \alpha_2^*H_1^{-1} \oplus \ldots \oplus \alpha_2^*H_m^{-1} \to V_{\overline{Q}}$. Since γ is an isomorphic out of $\beta_2^{-1}\alpha_2^{-1}\left(\bigcup_{k\geq 2} S_{i_1\dots i_k}\right)$, $\gamma^{-1}(V_1)$ is the scheme defined by the nth Fitting ideal $F^n(\gamma^*\psi)$ near $\beta_2^{-1}\alpha_2^{-1}(\bigcup S_{i_1\dots i_k})$. Now we should know the structure of $\gamma^{-1}(V_1)$ explicitly. For simplicity we denote $\alpha_2^*H_i^{-1}$ by \mathcal{H}_i^{-1} , $\alpha_2^{-1}S_{i_1\dots i_k}$ by $\tilde{S}_{i_1\dots i_k}$ and $\gamma^*\psi$ by $\tilde{\psi}$. Let k be an integer with $2 \leq k \leq m$. We are going to study the structure of $\gamma^{-1}(V_1)$ near $\beta_2^{-1}(\tilde{S}_{1\dots k})$.

We begin with studying the local structure.

Taking a point $P \in \tilde{S}_{1...k} \setminus \bigcup_{I} \tilde{S}_{1...kI}$ with $\alpha_2(P) = (p_1, \ldots, p_m)$, and $p_i = (\xi_{i0}, \ldots, \xi_{im})$, where I is an index set and $\{\xi_{ij}\}$, $0 \le j \le n$, is the homogeneous coordinate of p_i in \mathbb{P}^n with respect to the basis given in § 1.

Near P (precisely, in the homogeneous local ring of \tilde{Q} over P) we have

$$\hat{\psi}(e) = (a_1\xi_{10} + \ldots + a_m\xi_{m0})e_0 + \ldots + (a_1\xi_{1n} + \ldots + a_m\xi_{mn})e_n$$

where e is the base for O(-1) over P, (a_1, \ldots, a_m) is the coordinate of e in $\mathcal{H}_i^{-1} \oplus \ldots \oplus \mathcal{H}_m^{-1}$. Therefore $\gamma^{-1}(V_1)$ is defined by ideal a where

$$\mathfrak{a} = (a_1\xi_{10} + \ldots + a_m\xi_{m0}, \ldots, a_1\xi_{1n} + \ldots + a_m\xi_{mn}) \tag{1}$$

From the assumption of "S being in general position" we see that $a_{k+1} = \ldots = a_m = 0$. In fact, since p_k, \ldots, p_m are different points on S and $k \ge 2$, the vectors representing these points in V are linearly independent; otherwise we would have an infinite number of special sets. Hence the degeneracy $D(\tilde{\psi})$ over P is defined by

$$(a_1\xi_{10} + \ldots + a_k\xi_{k0}, \ldots, a_1\xi_{1n} + \ldots + a_k\xi_{kn}, a_{k+1}, \ldots, a_m)$$

Since $p_1 = \ldots = p_k$, near P we may assume $\xi_{10} = \ldots = \xi_{k0} = 1$ without loss of generality, and then we may write $a_1\xi_{1i} + \ldots + a_k\xi_{ki}$ as $(a_1 + \ldots + a_k)\xi_{1i} + a_2(\xi_{2i} + \xi_{1i}) + \ldots + a_k(\xi_{ki} - \xi_{1i})$. Therefore a is reduced to

$$(a_1 + \ldots + a_k, a_{k+1}, \ldots, a_m, a_2(\xi_{21} - \xi_{11}) + \ldots + a_k(\xi_{k1} - \xi_{11}), \ldots, a_2(\xi_{2n} - \xi_{1n}) + \ldots + a_k(\xi_{kn} - \xi_{1n}))$$
(2)

or by emphasizing the symmetry we write $(a_1 + \ldots + a_k, a_{k+1}, \ldots, a_m)$ as

$$(a_1+\ldots+a_k,a_1+\ldots+a_k+a_{k+1},\ldots,a_1+\ldots+a_m)$$

time to time. Denoting the zero locus of an ideal I by V(I), then

$$\mathsf{V}(\mathfrak{a}) = \mathsf{V}(a_1 + \ldots + a_k, a_{k+1}, \ldots, a_m) \cap \mathsf{V}(\mathfrak{a}'),$$

where a' is generated by those last n elements in the above expressing for a. We write the above argument as a proposition but in its global form.

Proposition 2.1. Over $\tilde{S}_{i_1...i_k}$ with $2 \le k \le m$, $D(\tilde{\psi})$ has a component $W_{i_1...i_k}$ which is a projective bundle $P(E_{i_1...i_k})$ over $\tilde{S}_{i_1...i_k}$, where $E_{i_1...i_k}$ is the kernel of the surjective morphism: $\mathcal{H}_{i_1}^{-1} \oplus \ldots \oplus \mathcal{H}_{i_k}^{-1} \to \mathcal{H}_{i_1}^{-1}$ with $\mathcal{H}_{i_k} = \ldots = \mathcal{H}_{i_k} = \mathcal{H}$.

Proof: We still work with $\tilde{S}_{1...k}$ without loss of generality. By the above local argument $\tilde{\psi}$ is splitted into two parts:

$$O(-1) \to \oplus \mathcal{H}_i^{-1} \qquad \swarrow \qquad \mathcal{H}_1^{-1} \oplus \ldots \oplus \mathcal{H}_k^{-1} \qquad \searrow \qquad V_{\bar{Q}} ,$$
$$\searrow \qquad \mathcal{H}_{k+1}^{-1} \oplus \ldots \oplus \mathcal{H}_m^{-1} \qquad \nearrow \qquad V_{\bar{Q}} ,$$

and $D(\tilde{\psi}) = D(\tilde{\psi}_1)$, where $\tilde{\psi}_1$ is the top arrow in the diagram. The local assumption of " $\xi_{i0} \neq 0$ for $1 \leq i \leq k$ "globally means that, in $V^{\vee} = H^0(\mathbf{P}^n, O(1))$ we have chosen the sections which has non-zero coordinate ξ_0 at p_i . Therefore all of these sections generate O(1), i.e.

$$H^0(\mathbf{P}^n, O(1)) \otimes O_{\mathbf{P}^n} \to O(1) \to 0$$
.

Pulling back the morphism to \overline{Q} by anyone of these projection, restricting it over $\tilde{S}_{1...k}$ and taking the duality we have an exact sequence

$$0 \to \mathcal{H}^{-1} \to V_{\bar{Q}} \to T_{\mathbf{P}^n} (\mathcal{H}^{-1})_{\bar{Q}} \to 0$$

where $T_{\mathbf{P}n} = \Omega_{\mathbf{P}n}^{\vee}$. In this case $D_0\left(\tilde{\psi}_1\right) = D_0\left(O(-1) \to \mathcal{H}^{-1}\right) \cap D_0\left(O(-1) \to T_{\mathbf{P}n}\left(\mathcal{H}^{-1}\right)_{\overline{Q}}\right)$. On the other hand, the ideal $(\xi_{21} - \xi_{11}, \dots, \xi_{2n} - \xi_{1n}, \dots, \xi_{k1} - \xi_{11}, \dots, \xi_{kn} - \xi_{1n})$ defines the diagonal $S_{1\dots k}$ in X. Then on \tilde{X} we have a principal factor for defining $\tilde{S}_{1\dots k}$ from the ideal. Denoting the factor by $s_{1\dots k}$, then at a generic point of $\tilde{S}_{1\dots k}$ we have

$$\mathfrak{a}' = s_{1...k} \cdot \mathfrak{a}''$$

This implies that

$$V(\mathfrak{a}) = V(a_1 + \ldots + a_k, a_{k+1}, \ldots, a_m, s_{1\ldots k})$$
$$\cup V(a_1 + \ldots + a_k, a_{k+1}, \ldots, a_m) \cap V(\mathfrak{a}'').$$

Since $\tilde{S}_{1...k}$ is irreducible then by taking closure we see that the first component in the expression is what we expect.

For the structure of a'' we have the following proposition.

<u>Proposition 2.2</u> Over $\tilde{S}_{12...k}$ with $k \geq 3$, \mathfrak{a}'' is the first Fitting ideal of $O(-1) \rightarrow (\beta_2 \alpha_2)^* T_s \otimes \mathcal{H}^{-1} \otimes \tilde{S}_{12...k}^{-1}$, and it defines a subscheme of $W_{12...k}$ consisting of $\bigcup_I \tilde{S}_{1...kI}$ and a component of codimension 2.

Proof: Let $P_s^1(1)$ denote the sheaf of the first principal part of $O_s(1)$, then we have a diagram as follows [4] [7].

The two rows in the diagram is exact because $O_s(1)$ is very ample, and the column on the left is exact by using Five Lemma. Obviously N^{\vee} is the sheaf of conormal of S in \mathbb{P}^n . From the definition of $P^1(1)$ we see that the local sections of $\Omega_{\mathbb{P}^n}(1)$ has its Taylor expansion with order ≥ 1 at any point on S. We claim that the local sections of $\Omega_{\mathbb{P}^n}(1)$ has its power expansion at any point of S exactly with order 1, i.e. $T_s(\mathcal{H}^{-1}) = s_{1...k}T_s(\mathcal{H}^{-1} \otimes S_{1...k}^{-1})$, $N(\mathcal{H}^{-1}) = S_{1...k}^2 N(\mathcal{H}^{-1} \otimes S_{1...k}^{-2})$, where $T_s(\mathcal{H}^{-1} \otimes S_{1...k}^{-1})$ and $N(\mathcal{H}^{-1} \otimes S_{1...k}^{-1})$ is regular.

In fact, taking any smooth curve c on S (for example a section of O(1)) then by [8] we see that the first two gap numbers in the gap sequence of c with respect to V_c is 0, 1 since the ground field has characteristics $\neq 2$. This means the power series of one section of V_c has the form $at + \ldots$ with $a \neq 0$ and where t is the local parameter of C and hence the claim is true.

In the proof of Proposition 2.1 we saw that over $\tilde{S}_{1...k}$ \mathfrak{a}'' is the (n-1)th Fitting ideal of $O(-1) \to T_{\mathbf{P}^n} | \mathfrak{s}(\mathcal{H}^{-1})$, now we have a splitting for $T_{\mathbf{P}^n}(\mathcal{H}^{-1})$ (shown in the above diagram). Therefore the Fitting ideal is the product of the first Fitting ideal of $O(-1) \to T_s(\mathcal{H}^{-1})$ and the (n-3)th Fitting ideal of $O(-1) \to N_s(\mathcal{H}^{-1})$. Since $N\left(\mathcal{H}^{-1} \otimes \tilde{S}_{1...k}^{-2}\right)$ is generated locally by some sections of $sym^i T_s\left(\mathcal{H}^{-1} \otimes \tilde{S}_{1...k}^{-1}\right)$ with $i \ge 2$, [7], then over $\tilde{S}_{1...k}$ the (n-1)th Fitting ideal of $O(-1) \to T_{\mathbf{P}^n}(\mathcal{H}^{-1})$ is the same as $F^1\left(O(-1) \to \tilde{S}_{1...k}T_s\left(\mathcal{H}^{-1} \otimes \tilde{S}_{1...k}^{-1}\right)\right)$.

As for the last assertion in this proposition we note that, when we write down $F^{n-1}(O(-1) \to T_{\mathbf{P}^n}(\mathcal{H}^{-1}))$ explicitly we have by (2)

$$s_{1...k} \prod_{\#I \ge 1} s_{1...kI}(a_2x_{21} + \ldots + a_kx_{k1}, \ldots, a_2x_{2n} + \ldots + a_kx_{kn})$$

where $x_{ij} = (\xi_{ij} - \xi_{ij}) \cdot \left(s_{1...k} \prod_{\#l \ge 1} s_{1...kl} \right)^{-1}$ and $(x_{21}, \ldots, x_{2n}, \ldots, x_{i1}, \ldots, x_{in}, \ldots, x_{k1}, \ldots, x_{kn})$

is the ideal for defining the strict transform of $S_{1...\hat{i}...k}$ with respect to α_{k+1} . $\left\{S'_{i...\hat{i}...k}\right\}$ are disjoint each other for $i = 1, \ldots, k$ and $k \ge 3$, therefore the rank of (x_{ij}) does not zero on an open set of $W_{1...k}$, and then the Fitting ideal defines $\sum_{\substack{\#I \ge I\\ \#I \ge I}} \tilde{S}_{1...kI}$ and a subscheme of $W_{1...k}$ with codimension 2 which is the zero locus of 2-bundle $T_s\left(\mathcal{H}^{-1} \otimes \tilde{S}_{1...k}^{-1} \otimes \prod_{\substack{\#I \ge 1}} \tilde{S}_{1...kI}^{-1} \otimes O(1)\right)$ on $W_{1...k}$.

§ 3. Main Theorem

From Proposition 2.1 and 2.2 we see that $\gamma^{-1}(V_1)$ is defined by an ideal with the form $(s_{1...m}\mathfrak{a}, a_1 + \ldots + a_m)$ over an open set containing $\beta_2^{-1}(\tilde{S}_{1...m})$ and hence on \overline{Q} by taking closure. By the definition of the Segre class $s(\gamma^{-1}(V_1), \overline{Q})$ we should blow up \overline{Q} with respect to the ideal $(s_{1...m}\mathfrak{a}, a_1 + \ldots + a_m)$. In order to make the following statement simplier we fix some terms.

Definition. Let Y, \tilde{Y} be two schemes, J be an ideal sheaf on Y. The morphism $\pi : \tilde{Y} \to Y$ is said to be an effective resolution of Y with respect to J if π is a composition of π_1, \ldots, π_l , where $\pi_i : Y_i \to Y_{i-1}$ is a birational morphism with $Y_0 = Y, Y_l = \tilde{Y}$ such that

- (1) $\pi^{-1}(J)$ is an invertible sheaf,
- (2) each π_i is a blowing up of Y_{i-1} with respect to a locally free sheaf.

What we shall show in this section is that, \overline{Q} has an effective resolution with respect to ideal $(s_{1...m}a, a_1 + ... + a_m)$ and, for each π_i the Chern class of the locally free sheaf involved is expressed by the Chern classes of S, \mathcal{H} and $\tilde{S}_{1...k}$ with $k \geq 2$.

Theorem. $\nu(s)$ is expressed by a polynomial of the Chern numbers of S, the degree of S in \mathbb{P}^{3m-2} and the intersection number of the canonical class of S with the restriction of the hyperplane section; the coefficients and the degree of the polynomial depend only on m.

Proof: First we show that there exists an affective resolution of \overline{Q} with respect to the *nth* Fitting ideal of $\tilde{\psi}$ over $\bigcup_{1 \le i < j \le m} \tilde{S}_{ij}$ and the Chern classes of all of the normal bundles involved are expressed by the Chern classes of Ω_s , $c_1(O(1))$, H and \tilde{S}_{ij} , \tilde{S}_{ijI} with $\#I \ge 1$. In fact, in this case the *nth* Fitting ideal of $\tilde{\psi}$ is the product of $(s_{ij}a'', a_i + a_j, \ldots, a_1 + \ldots + a_m)$ since $\{\tilde{S}_{ij}\}$ are disjoint by Proposition 2.1. Locally a_{ij} is written as

 $\prod_{\substack{\#I \ge 1}} s_{ijI} \left(a_j (\xi_{j1} - \xi_{i1})', \dots, a_j (\xi_{jn} - \xi_{in})' \right), \text{ but } (\xi_{j1} - \xi_{i1}, \dots, \xi_{jn} - \xi_{in}) \text{ is the ideal for defining } S_{ij} \text{ in } X \text{ and hence, after the blowing-ups in } 1, \left((\xi_{j1} - \xi_{i1})', \dots, (\xi_{jn} - \xi_{in})' \right) = 1.$ Indeed, this shows that near $\tilde{S}_{12}, F^n \left(\tilde{\psi} \right)$ is simply W_{12} described in Proposition 2.1. The normal bundle of W_{12} in \overline{Q} is

$$\left\{\tilde{S}_{12} \oplus O(-1)\mathcal{H}_2^{-1} \otimes \oplus \ldots \oplus O(-1) \otimes O(-1) \otimes \mathcal{H}_m^{-1}\right\} \otimes \prod_{\#I \ge 1} \tilde{S}_{12I}^{-1}$$

Inductively assuming there exists an effective resolution of \overline{Q} with respect to $F^n(\tilde{\psi})$ near $\tilde{S}_{1...k-1}$ and the normal bundles of each blowing-up is expressed by $\tilde{S}_{1...kI}$ with $\#I \geq 0$, Ω_s , \mathcal{H}_i and O(1), we shall construct an effective resolution of \overline{Q} with respect to $F^n(\tilde{\psi})$ near $\tilde{S}_{1...k}$. We saw in the beginning of § 2 $F^n(\tilde{\psi}) = (s_{1...k}\mathfrak{a}'', a_1 + \ldots + a_k, \ldots, a_1 + \ldots + a_m)$ near $\tilde{S}_{1...k}$. By induction we have had an effective resolution with respect to $F^n(\tilde{\psi})$ near $\cup \tilde{S}_{i_1...i_{k-1}}$, denoted by \tilde{W} , then

$$(s_{12...k}\mathfrak{a}'',a_1+\ldots+a_k,\ldots,a_1+\ldots+a_m) = w(s_{12...k}\mathfrak{a}''',(a_1+\ldots+a_k)',\ldots,(a_1+\ldots,a_m)')$$

and $s_{12...k}$, $(a_1 + ... + a_k)', ..., (a_1 + ... + a_m)'$ have no any common factor. The reason of this assertion is from the local expression (1), (2) in § 2. In fact, the intersection $(w, s_{1...k}, a'', a_1 + ... + a_k, ..., a_1 + ... + a_m)$ is the same as $(w, s_{1...k}, a_1 + ... + a_k, ..., a_1 + ... + a_m)$. On the other hand, what we just did means $(a''', (a_1 + ... + a_k)', ..., (a_1 + ... + a_m)')$ is the residue ideal of $(a'', a_1 + ... + a_k, a_1 + ... + a_m)$ with respect to W, and then

 $(\mathfrak{a}''', (a_1 + \ldots + a_k)', \ldots, (a_1 + \ldots + a_m)')$ defines a subscheme which is supported over $\tilde{S}_{12\ldots k}$. Therefore, if we blow up \overline{Q}' (the effective resolution of \overline{Q} with respect to W) along $\tilde{W} \cap \tilde{S}_{12\ldots k}$ and denote the exceptional divisor by $\tilde{Z}_{12\ldots k}$ we see from Proposition 2.2,

$$\left(\mathfrak{a}^{\prime\prime\prime\prime}, (a_{1} + \ldots + a_{k})^{\prime}, \ldots, (a_{1} + \ldots + a_{m})^{\prime}\right)$$

= $Z_{12\ldots k} \left(\prod_{\#I \ge 1} s_{1\ldots kI} \mathfrak{a}^{\prime\prime\prime}, (a_{1} + \ldots + a_{k})^{\prime\prime}, \ldots, (a_{1} + \ldots + a_{m})^{\prime\prime}\right)$

where $(\mathfrak{a}''', (a_1 + \ldots + a_k)'', \ldots, (a_1 + \ldots + a_m)'')$ is the locally free sheaf $T_s \left(\mathcal{H}^{-1} \otimes O(1) \otimes \prod_{\#I \ge 0} \tilde{S}_{1\ldots kI}^{-1} \right)$ over $\tilde{S}_{12\ldots k}$. Blowing up \overline{Q}'' (the blowing-up of \overline{Q}' with respect to $\tilde{W} \cap \tilde{S}_{12\ldots k}$) with respect to the locally free sheaf and denoting the exceptional divisor by $\tilde{G}_{1\ldots k}$ we have

$$(s\mathfrak{a}'', a_1 + \ldots + a_k, \ldots, a_1 + \ldots + a_m)$$

= $wzg \left(\prod_{\#I \ge 0} s_{1 \ldots kI}, (a_1 + \ldots + a_k)'', \ldots, (a_1 + \ldots + a_m)'' \right).$

Finally we blow up \overline{Q}''' with respect to $\left(\prod_{\#I\geq 0} s_{1...kI}, (a_1 + \ldots + a_k)'', (a_1 + \ldots + a_m)''\right)$ and denote the exceptional divisor by $\tilde{T}_{1...k}$. As for the normal bundles involved are as follows.

$$\begin{split} & N_W \overline{Q} \text{ is given by induction hypothesis.} \\ & N_Z \overline{Q}' \text{ is } O\left(\tilde{W}\right) \oplus O\left(\tilde{S}_{1\dots k}\right) \\ & N_G \overline{Q}'' \text{ is } T_s \left(\mathcal{H}^{-1} \otimes O(1) \otimes \prod_{\#I \ge 0} \tilde{S}_{1\dots kI}^{-1} \right) \oplus \tilde{S}_{12\dots k} \oplus \bigoplus_{i \ge 0} \mathcal{H}_{k+i}^{-1} \otimes O(1) \otimes \tilde{z}^{-1} \end{split}$$

$$N_T \overline{Q}^{\prime\prime\prime}$$
 is $\left(\sum_{\#I \ge 0} \tilde{S}_{1...kI}\right) \oplus \bigoplus_{i \ge 0} \mathcal{H}_{k+1}^{-1} \otimes O(1) \otimes \tilde{z}^{-1} \otimes \tilde{G}^{-1}$.

Therefore there exists an effective resolution of \overline{Q} with respect to the ideal $F_0(\tilde{\psi})$ near $\cup \tilde{S}_{i_1...i_k}$, and the total exceptional divisor is

$$\tilde{W} + \Sigma \tilde{Z}_{i_1...i_k} + \Sigma \tilde{G}_{i_1...i_k} + \Sigma \tilde{T}_{i_1...i_k}$$

The last step we need to do is to show $\left(\beta_{2*}\left(1+c_1(O(1))^{n+1}\cdot s(V_1,\overline{Q})\right)_0$ can be expressed by $c_2(\Omega_s)$, K^2 , KH, d, where $K = c_1(\Omega_s^{\vee})$, H is the hyperplane section of \mathbb{P}^n , $d = H_s^2$. But on \overline{Q} , $\beta_{2*}\left(c_1(O(1))^{(m-1)+i}\cdot\beta_2^*a\right) = \frac{1}{(1-h_1)\dots(1-h_m)_i}\cdot a$, where a is a cycle on \tilde{X} . By the above argument, $\left(\beta_{2*}\left(1+c_1(O(1))^{n+1}\cdot s(V_1,\overline{Q})\right)\right)$ is a polynomial in terms of $\tilde{S}_{i_1\dots i_k}$, H_i , $c_2(\Omega_s)$, $c_1(\Omega_s)$. We push down $\left(\beta_{2*}\left(1+c_1(O(1))^{n+1}\cdot s(V_1,\overline{Q})\right)\right)_0$ by α_{2*} , the terms involved with $\tilde{S}_{i_1\dots i_k}$ give us the terms involved with $c_2(\Omega_s)$, $c_1(\Omega_s)$. The theorem is proved.

Example 1 m = 2. In this case S is a surface in P^4 and $\nu = 0$. Theorem tells us $2\nu = d^2 - 10d - 5HK + c_2(S) - K^2 = 0$

This is the well-known condition for a smooth surface embedded in P^4 [4].

Example 2 [6] m = 3. In this case, S is a surface in P^7 and ν is the number of trisecants of S. The total exceptional divisor is

$$\sum_{1 \le i < j \le 3} \tilde{W}_{ij} + \sum_{1 \le i < j \le 3} \tilde{Z}_{ij} + \tilde{G}_{123} + \tilde{T}_{123} ,$$

where W_{12} is the projective bundle $\mathbf{P}(E_{12})$ over \tilde{S}_{12} with $c_1(E_{12}) = c_1\mathcal{H}$, $Z_{12} = \begin{bmatrix} \tilde{W}_{12} \end{bmatrix} \cdot \begin{bmatrix} \tilde{S}_{123} \end{bmatrix}$, $G_{123} =$ the Zero locus of a generic section of $T_s \otimes \left(\mathcal{H}^{-1} \otimes \tilde{S}_{123}^{-1}\right)$ $T_{123} = \begin{bmatrix} \tilde{S}_{123} \end{bmatrix} \cdot \begin{bmatrix} O(1) \otimes \mathcal{H}^{-1} \otimes \left(\Sigma \tilde{Z}_{ij}^{-1}\right) \otimes \tilde{G}_{123}^{-1} \end{bmatrix}$. We have the following formula $6\nu = d^3 - 3d(10d + 5KH + K^2 - c_2) + 224d + 192KH + 56K^2 - 40c_2$

References

[1] E. Arbarello, M. Cornalba, P. Griffith and J. Harris, <u>Geometry of algebraic curves</u>, Springer-Verlag, 1985.

[2] S.K. Donaldson, Instantons in Yang-Mills theory, in <u>Interface between particle physics</u> and mathematics, Oxford 1990, 59-75.

[3] A. Grothendieck, EGAII, IHES, 1961.

[4] R. Hartshorne, Algebraic Geoemtry, Springer-Verlag, 1977.

[5] W. Fulton, Intersection Theory, Springer-Verlag, 1984.

[6] P. Le Barz, Formules pour les trisécantes des surfaces algébriques, L'Ens. Math. t. 33, 1987, 1-66.

[7] R. Piene, Numerical characters of a curve in projective n space, in <u>Real and complex</u> singularities, Oslo, 1976, 475–495.

[8] D. Laksov, Weierstrass points on curves, Astér. 87-88, 1981, 221-247.