The configuration of a finite set on surface
 (Revised)

Xu Mingwei

Institute of Mathematics
Academia Sinica

Max-Planck-Institut für Mathematik
Gottfried-Claren-Straße 26
D-5300 Bonn 3

Germany

§ 0. Introduction

Let S be a smooth surface in $\mathbf{P}^{\boldsymbol{n}}$ and m be an integer with $n \geq m \geq 2$. For any m different points on S, if they are linearly dependent we say this set is special. Let M be the collection of all these special sets, then M is a scheme with a natural algebro-geometric structure. We can show that, when $n=3 m-2$ and S is in general position, M is a finite scheme. We denote the degree of M by $\nu(s)$ which is intuitively the number of the points in M possibly with multiplicities.
S.K. Donaldson posed a conjecture about this case in [2]:
"Conjecture 5. There is a universal formula for expressing $\nu(s)$ in terms of m, the Chern numbers of S, the degree of S in $\mathbf{P}^{3 m-2}$, and the intersection number of the canonical class S with the restriction of the hyperplane class."
He pointed out this enumerative problem has something to do with Yang-Mills invariants.
In this paper we give an affirmative answer for the conjecture. But the formula for expressing $\nu(s)$ is complicated for writing down explicitly though there is an algorithm for computing it.
In § 1 we explain the meaning about "general position" in the present case and give the basic construction for computing $\nu(s)$. In § 2 all of the objects considered in § 1 are lifted to some projective vector bundle where it is comparatively easier for computation. In § 3 we prove the main theorem by computing some Segre classes.

Author thanks K.C. Mong for showing him this problem and thanks R. Piene for the profitable discussion with her.

§ 1. Preliminaries

In sequels we assume the ground field is algebraically closed with characteristics $\neq 2$.
Let $m \geq 2$ be an integer and $n=3 m-2$.
Let $\mathbf{P}^{n}=\mathbf{P}\left(V^{\vee}\right)$ be the n-projective space, where V is a vector space of dimension $n+1$ over the ground field, and we chose a basis e_{0}, \ldots, e_{n} for V once for ever. Let $Y=\left(\mathbf{P}^{n}\right)^{m}$, the m-cross product of \mathbf{P}^{n}, and let $X=(S)^{m}$, where S is a smooth surface in \mathbf{P}^{n} which is in general position in a sense as follows.
Definition. S is in general position if, execpt for a finite number of the sets consisting of m points on S, every other such set is linearly independent, including the case when k of m points are replaced by a $(k-1)$ - plane which tangents to S at a point of S.
We call the exceptional set a special set. For $m=2$, every smooth surface in \mathbf{P}^{4} is automatically in general position.
For $m \geq 3$ we have the following proposition:
Proposition 1.1. Let $i: S \rightarrow \mathbf{P}^{\boldsymbol{n}}$ be a non-degenerate embedding, then there exists a reembedding $j: S \mapsto \mathbf{P}^{\boldsymbol{n}}$ by a generic projection from \mathbf{P}^{n+1} to \mathbf{P}^{n} such that $j(s)$ is in general position.
Proof: Let $i^{*} O_{\mathbf{P}_{n}}(1)=O(1)$, then i is determined by a linear system belonging to $O(1)$.
First we shall show that, there exists an integer N_{0} such that for every $N \geq N_{0}$, on the image of the embedding φ determined by $O(N)$ every m points are linearly independent.

In fact, let Z be a subscheme of m points on S with reduced stucture and J_{Z} be the sheaf of ideal defining Z in S. We have an exact sequence

$$
\begin{gathered}
0 \rightarrow H^{0}\left(S, J_{Z}(N)\right) \rightarrow H^{0}(S, O(N)) \xrightarrow{a} H^{0}\left(S, O_{Z}(N)\right) \\
\quad \rightarrow H^{1}\left(S, J_{Z}(N)\right) \rightarrow H^{1}(S, O(N)) \rightarrow 0
\end{gathered}
$$

Since $\operatorname{dim} H^{0}\left(S, O_{z}(N)\right)$ is the number of the points in Z, we see from the sequence that, if $H^{1}\left(S, J_{Z}(N)\right)=0 \operatorname{dim} H^{0}\left(S, J_{Z}(N)\right)$ is the dimension of the smallest subspace which contains Z. Therefore, if $H^{1}\left(S, J_{Z},(N)\right)=0$ for every (reduced) subscheme $Z^{\prime} \subset Z$, then the points of Z are linearly independent.
By Cartan-Serre Theorem B [4], there exists N_{0} such that whenever $N \geq N_{0}$ we have $H^{1}\left(S, Z^{\prime}(N)\right)=0$ for all $Z^{\prime} \subset Z$. Now we have to prove that N_{0} depends only on m rather than on the position of Z. As a standard method we take Z as a subscheme of \mathbf{P}^{n} and let the ideal defining Z in \mathbf{P}^{n} be I_{Z} and the ideal defining S in P^{n} be I_{S}, then we have an exact sequence

$$
0 \rightarrow I_{S} \rightarrow I_{Z} \rightarrow I_{Z} \rightarrow 0
$$

In the long exact sequence of the above sequence we see that, the vanishing of $H^{1}\left(S, J_{Z}(N)\right)$ is a consequence of the vanishing of $H^{1}\left(\mathrm{P}^{n}, I_{Z}(N)\right)$ and $H^{2}\left(\mathrm{P}^{n}, J_{S}(N)\right)$. But on $\mathbf{P}^{n}, H^{1}\left(\mathbf{P}^{n}, I_{Z}(N)\right)=0$ for N sufficiently large depends only on $\# Z$ (by the homogenety of P^{n} or simply by induction on $\# Z$).
We continue to prove our proposition.
Let $r+1=\operatorname{dim} H^{0}\left(S, O\left(N_{0}\right)\right)$ and $\psi: S \rightarrow \mathbf{P}^{r}$ be the embedding determined by $O\left(N_{0}\right)$. We show that, for $r \geq n+2=3 m$ a generic projection from \mathbf{P}^{r} to \mathbf{P}^{r-1} gives an embedding of S in P^{r-1} and preserves the independence of any m points on S. Indeed, the subscheme consisting of all the ($m-1$)-planes in \mathbf{P}^{r} spanned by any m points on S (including the case when k of m points is a $(k-1)$ - plane which tangents to S) has dimension $3 m-1$. Therefore a projection with a generic point as center meets our need. We proceed like this till we arrive at $\mathbf{P}^{3 m-1}$. Then taking a generic point of $\mathbf{P}^{3 m-1}$ as center we have a projection which preserves the independence of m points on S except for a finite number of these sets, and in this case anyone of these exceptional sets spans a ($m-2$) - plane.
Hereafter we always assume the surface S is in general position in the above sense.
Our main idea for solving the conjecture is as follows. Let $j: X \rightarrow Y, j=i \times \ldots \times i, P=$ $\left(p_{1}, \ldots, p_{m}\right) \in X$, and $p_{i}=\left(\xi_{i 0}, \ldots, \xi_{i n}\right)$ be the homogeneous coordinates of p_{i} in \mathbf{P}^{n} with respect to the fixed basis of V. Then, $p_{1}, \ldots p_{m}$ being in special position means $r k\left(\xi_{i j}\right) \leq m-1$. We would like to construct a morphism φ between two locally free sheaves such that φ can be expressed locally by the matrix $\left(\xi_{i j}\right)$, then in the $(m-1)$-degeneracy of φ the finite part is what we need.
Let $q_{i}: X \rightarrow S$ be the ith projection and denote $q_{i}^{*} O(1)$ by H_{i}. Then the fiber of H_{i}^{-1} over P is the 1 -subspace of V representing the point p_{i}. From the following exact sequence

$$
0 \rightarrow H_{i}^{-1} \xrightarrow{\varphi_{i}} V \otimes_{q_{i}} O_{X} \rightarrow q_{i}^{*} \Omega_{p^{n}}^{\vee}\left(H_{i}^{-1}\right) \rightarrow 0
$$

we have a morphism

$$
\varphi: \oplus H_{i}^{-1} \xrightarrow{\oplus \varphi_{i}} \oplus V \otimes_{q_{i}} O_{X} \xrightarrow{\Sigma} V \otimes_{k} O_{X} .
$$

φ is expressed locally by the matrix $\left(\xi_{i j}\right)$ with respect to the basis of V. We shall study the degeneracy $D=D_{m-1}(\varphi)$ [5]. By Proposition 1.1, D is divided into two parts, D_{0} and D_{1}, where D_{0} is a finite subscheme corresponding to the special sets of S and D_{1} is a subscheme of X with positive dimension, supporting on the various diagonals of X. Let ν denote the number of the special sets on S, then $\operatorname{deg} D_{0}=m!\nu$.
Formally, at present we may compute ν by Excess Formula [5] § 9.1, but it seems difficult technically. So we lift φ to the desingularization of D [1]. Let $S_{i_{1} \ldots i_{k}}$ with $i_{1}<\ldots<i_{k}$ be the $\left(i_{1}, \ldots, i_{k}\right)$ - diagonal of X, i.e. the image of $\Delta_{i_{1} \ldots i_{k}} \times i d: S^{m-k+1} \rightarrow S^{m}$, where $\Delta_{i_{1} \ldots i_{k}}$ is the diagonal morphism from S to the $i_{1} t h, \ldots, i_{k} t h$ factor of X.
Let $Q=P\left(H_{1}^{-1} \oplus \ldots \oplus H_{m}^{-1}\right)\left(=\mathbf{P}\left(H_{1} \oplus \ldots \oplus H_{m}\right)\right), \quad p: Q \rightarrow X$ be the structure projection and $O(-1)$ be the universal subbundle on Q. We have a morphism on Q :

$$
O(-1) \rightarrow p^{*} H_{1}^{-1} \oplus \ldots \oplus p^{*} H_{m}^{-1}
$$

The composition of the morphism and $p^{*} \varphi$ gives

$$
\psi: O(-1) \rightarrow V \otimes O_{Q} \xrightarrow{\sim} O^{n+1}
$$

Generally we could not assert that $p_{*}\left[D_{0} \psi\right]=\left[D_{m}(\varphi)\right]$ since φ does not have "correct" dimension [1] Ch. II. But by the assumption of " S being in general position", out of $p^{-1}\left(\bigcup_{k \geq 2} S_{i_{1} \ldots i_{k}}\right)$ we have $p_{*}\left[D_{0}(\psi)\right]=[D(\varphi)]$ where the dimension is correct [1]. Therefore, $\bar{D}(\psi)$ is divided into two parts: V_{0} and V_{1}, where V_{0} is a finite scheme with degree $m!\nu$ and V_{1} is a scheme supporting on $p^{-1}\left(\cup S_{i_{1} \ldots i_{k}}\right)$, defined by the Fitting ideal $F^{n}(\psi)$ [5]. ψ induces a section $r: Q \rightarrow O(1)^{n+1}$ then, if letting r_{0} be the zero section, we have the following diagram:

By the definition of intersection in [5], § 6.1,

$$
\operatorname{deg} V_{0}=\operatorname{deg}\left[Q^{2}\right]-\operatorname{deg}\left(\left(1+c_{1}(O(1))^{n+1} \cdot s\left(V_{1}, Q\right)\right)_{0}\right.
$$

where $s\left(V_{1}, Q\right)$ is the Segre class of V_{1} in Q and c_{i} is the notation of the ith Chern operator. By an easy computation we have $\operatorname{deg}\left[Q^{2}\right]=d^{m}$.

§ 2. Birational transformation

The next step is the computation of $s\left(V_{1}, Q\right)$. Since Segre class is birationally invariant [5], we shall construct a scheme being birationally isomorphic to Q and making the computation easier.
Let $\alpha_{m}: X_{m} \rightarrow X$ be the blowing-up of X with respect to $S_{1 \ldots m}$, and β_{m} : $P\left(\alpha_{m}^{*} H_{1}^{-1} \oplus \ldots \oplus \alpha_{m}^{*} H_{m}^{-1}\right) \rightarrow X m$ be the pull-back of Q by $\alpha_{m} . Q_{m}$ is birationally isomorphic to Q.

Let X_{m-1} be the blowing-up of X_{m} with respect to $\cup S_{i_{1} \ldots i_{m-1}}^{\prime}$ where $S_{i_{1} \ldots i_{m-1}}^{\prime}$ is the strict transform of $S_{i_{1} \ldots i_{m-1}}$ with respect to α_{m} and $\left\{S_{i_{1} \ldots i_{m-1}}^{\prime}\right\}$ for $i_{1}<\ldots<$ i_{m-1} are disjoint each other. We denote the composition of these two blowing-ups by $\alpha_{m-1}: X_{m-1} \rightarrow X$ and the pull-back of Q with respect to α_{m-1} by $\beta_{m-1}: Q_{m-1}=$ $P\left(\alpha_{m-1}^{*} H_{1}^{-1} \oplus \ldots \oplus \alpha_{m-1}^{*} H_{m}^{-1}\right) \rightarrow X_{m-1}$. In this case the strict transforms of all of $S_{i_{1} \ldots i_{m-2}}$ with respect to α_{m-1} are disjoint each other and we do the same thing as above until we arrive at

$$
\begin{gathered}
\alpha_{2}: \tilde{X}=X_{2} \rightarrow X \\
\beta_{2}: \bar{Q}=Q_{2} \rightarrow X_{2}
\end{gathered}
$$

where $\bar{Q}=P\left(\alpha_{2}^{*} H_{1}^{-1} \oplus \ldots \oplus \alpha_{2}^{*} H_{m}^{-1}\right)$.
Let $\gamma: \bar{Q} \rightarrow Q$ be the composition of all of these pull-backs, which is a birational morphism. By the elementary property of Fitting ideal, $\gamma^{-1}(D(\psi))$ is defined locally by the 1 -minors of the matrix representing $\gamma^{*} \psi: Q_{Q}(-1) \rightarrow \alpha_{2}^{*} H_{1}^{-1} \oplus \ldots \oplus \alpha_{2}^{*} H_{m}^{-1} \rightarrow V_{Q}$. Since γ is an isomorphic out of $\beta_{2}^{-1} \alpha_{2}^{-1}\left(\bigcup_{k \geq 2} S_{i_{1} \ldots i_{k}}\right), \gamma^{-1}\left(V_{1}\right)$ is the scheme defined by the nth Fitting ideal $F^{n}\left(\gamma^{*} \psi\right)$ near $\beta_{2}^{-1} \alpha_{2}^{-1}\left(\cup S_{i_{1} \ldots i_{k}}\right)$. Now we should know the structure of $\gamma^{-1}\left(V_{1}\right)$ explicitly. For simplicity we denote $\alpha_{2}^{*} H_{i}^{-1}$ by $\mathcal{H}_{i}^{-1}, \alpha_{2}^{-1} S_{i_{1} \ldots i_{k}}$ by $\tilde{S}_{i_{1} \ldots i_{k}}$ and $\gamma^{*} \psi$ by $\tilde{\psi}$. Let k be an integer with $2 \leq k \leq m$. We are going to study the structure of $\gamma^{-1}\left(V_{1}\right)$ near $\beta_{2}^{-1}\left(\tilde{S}_{1 \ldots k}\right)$.
We begin with studying the local structure.
Taking a point $P \in \tilde{S}_{1 \ldots k} \backslash \bigcup_{I} \tilde{S}_{1 \ldots k I}$ with $\alpha_{2}(P)=\left(p_{1}, \ldots, p_{m}\right)$, and $p_{i}=\left(\xi_{i 0}, \ldots, \xi_{i m}\right)$, where I is an index set and $\left\{\xi_{i j}\right\}, 0 \leq j \leq n$, is the homogeneous coordinate of p_{i} in \mathbf{P}^{n} with respect to the basis given in § 1 .
Near P (precisely, in the homogeneous local ring of \tilde{Q} over P) we have

$$
\tilde{\psi}(e)=\left(a_{1} \xi_{10}+\ldots+a_{m} \xi_{m 0}\right) e_{0}+\ldots+\left(a_{1} \xi_{1 n}+\ldots+a_{m} \xi_{m n}\right) e_{n}
$$

where e is the base for $O(-1)$ over $P,\left(a_{1}, \ldots, a_{m}\right)$ is the coordinate of e in $\mathcal{H}_{i}^{-1} \oplus$ $\ldots \oplus \mathcal{H}_{m}^{-1}$. Therefore $\gamma^{-1}\left(V_{1}\right)$ is defined by ideal \mathfrak{a} where

$$
\begin{equation*}
\mathfrak{a}=\left(a_{1} \xi_{10}+\ldots+a_{m} \xi_{m 0}, \ldots, a_{1} \xi_{1 \mathrm{n}}+\ldots+a_{m} \xi_{m n}\right) \tag{1}
\end{equation*}
$$

From the assumption of " S being in general position" we see that $a_{k+1}=\ldots=a_{m}=0$. In fact, since p_{k}, \ldots, p_{m} are different points on S and $k \geq 2$, the vectors representing these points in V are linearly independent; otherwise we would have an infinite number of special sets. Hence the degeneracy $D(\tilde{\psi})$ over P is defined by

$$
\left(a_{1} \xi_{10}+\ldots+a_{k} \xi_{k 0}, \ldots, a_{1} \xi_{1 n}+\ldots+a_{k} \xi_{k n}, a_{k+1}, \ldots, a_{m}\right)
$$

Since $p_{1}=\ldots=p_{k}$, near P we may assume $\xi_{10}=\ldots=\xi_{k 0}=1$ without loss of generality, and then we may write $a_{1} \xi_{1 i}+\ldots+a_{k} \xi_{k i}$ as $\left(a_{1}+\ldots+a_{k}\right) \xi_{1 i}+a_{2}\left(\xi_{2 i}+\xi_{1 i}\right)+$ $\ldots+a_{k}\left(\xi_{k i}-\xi_{1 i}\right)$. Therefore \mathfrak{a} is reduced to

$$
\begin{gather*}
\left(a_{1}+\ldots+a_{k}, a_{k+1}, \ldots, a_{m}, a_{2}\left(\xi_{21}-\xi_{11}\right)+\ldots+a_{k}\left(\xi_{k 1}-\xi_{11}\right), \ldots,\right. \\
\left.a_{2}\left(\xi_{2 n}-\xi_{1 n}\right)+\ldots+a_{k}\left(\xi_{k n}-\xi_{1 n}\right)\right) \tag{2}
\end{gather*}
$$

or by emphasizing the symmetry we write $\left(a_{1}+\ldots+a_{k}, a_{k+1}, \ldots, a_{m}\right)$ as

$$
\left(a_{1}+\ldots+a_{k}, a_{1}+\ldots+a_{k}+a_{k+1}, \ldots, a_{1}+\ldots+a_{m}\right)
$$

time to time. Denoting the zero locus of an ideal I by $\mathrm{V}(I)$, then

$$
\mathrm{V}(\mathfrak{a})=\mathrm{V}\left(a_{1}+\ldots+a_{k}, a_{k+1}, \ldots, a_{m}\right) \cap \mathrm{V}\left(\mathfrak{a}^{\prime}\right)
$$

where a^{\prime} is generated by those last n elements in the above expressing for \mathfrak{a}. We write the above argument as a proposition but in its global form.
Proposition 2.1. Over $\tilde{S}_{i_{1} \ldots i_{k}}$ with $2 \leq k \leq m, D(\tilde{\psi})$ has a component $W_{i_{1} \ldots i_{k}}$ which is a projective bundle $P\left(E_{i_{1} \ldots i_{k}}\right)$ over $\tilde{S}_{i_{1} \ldots i_{k}}$, where $E_{i_{1} \ldots i_{k}}$ is the kernel of the surjective morphism: $\mathcal{H}_{i_{1}}^{-1} \oplus \ldots \oplus \mathcal{H}_{i_{k}}^{-1} \rightarrow H_{i_{1}}^{-1}$ with $\mathcal{H}_{i_{k}}=\ldots=\mathcal{H}_{i_{k}}=\mathcal{H}$.
Proof: We still work with $\tilde{S}_{1 \ldots k}$ without loss of generality. By the above local argument $\tilde{\psi}$ is splitted into two parts:
and $D(\tilde{\psi})=D\left(\tilde{\psi}_{1}\right)$, where $\tilde{\psi}_{1}$ is the top arrow in the diagram.
The local assumption of " $\xi_{i 0} \neq 0$ for $1 \leq i \leq k$ " globally means that, in $V^{\vee}=$ $H^{0}\left(\mathbf{P}^{n}, O(1)\right)$ we have chosen the sections which has non-zero coordinate ξ_{0} at p_{i}. Therefore all of these sections generate $O(1)$, i.e.

$$
H^{0}\left(\mathbf{P}^{n}, O(1)\right) \otimes O_{\mathbf{P}^{n}} \rightarrow O(1) \rightarrow 0
$$

Pulling back the morphism to \bar{Q} by anyone of these projection, restricting it over $\tilde{S}_{1 \ldots k}$ and taking the duality we have an exact sequence

$$
0 \rightarrow \mathcal{H}^{-1} \rightarrow V_{Q} \rightarrow T_{\mathbf{P}^{n}}\left(\mathcal{H}^{-1}\right)_{Q} \rightarrow 0
$$

where $T_{\mathbf{P}^{n}}=\Omega_{\mathbf{P}_{n}}^{\vee}$. In this case $D_{0}\left(\tilde{\psi}_{1}\right)=D_{0}\left(O(-1) \rightarrow \mathcal{H}^{-1}\right) \cap D_{0}\left(O(-1) \rightarrow T_{\mathbf{P}^{n}}\left(\mathcal{H}^{-1}\right)_{\bar{Q}}\right)$. On the other hand, the ideal $\left(\xi_{21}-\xi_{11}, \ldots, \xi_{2 n}-\xi_{1 n}, \ldots, \xi_{k 1}-\xi_{11}, \ldots, \xi_{k n}-\xi_{1 n}\right)$ defines the diagonal $S_{1 \ldots k}$ in X. Then on \tilde{X} we have a principal factor for defining $\tilde{S}_{1 \ldots k}$ from the ideal. Denoting the factor by $s_{1 \ldots k}$, then at a generic point of $\tilde{S}_{1 \ldots k}$ we have

$$
\mathfrak{a}^{\prime}=s_{1 \ldots \boldsymbol{k}} \cdot \mathfrak{a}^{\prime \prime}
$$

This implies that

$$
\begin{aligned}
& V(\mathfrak{a})=V\left(a_{1}+\ldots+a_{k}, a_{k+1}, \ldots, a_{m}, s_{1 \ldots k}\right) \\
& \cup V\left(a_{1}+\ldots+a_{k}, a_{k+1}, \ldots, a_{m}\right) \cap \mathrm{V}\left(\mathfrak{a}^{\prime \prime}\right)
\end{aligned}
$$

Since $\tilde{S}_{1 \ldots k}$ is irreducible then by taking closure we see that the first component in the expression is what we expect.
For the structure of $\mathfrak{a}^{\prime \prime}$ we have the following proposition.

Proposition 2.2 Over $\tilde{S}_{12 \ldots k}$ with $k \geq 3, \mathfrak{a}^{\prime \prime}$ is the first Fitting ideal of $O(-1) \rightarrow$ $\left(\beta_{2} \alpha_{2}\right)^{*} T_{s} \otimes \mathcal{H}^{-1} \otimes \tilde{S}_{12 \ldots k}^{-1}$, and it defines a subscheme of $W_{12 \ldots k}$ consisting of $\bigcup_{I} \tilde{S}_{1 \ldots k I}$ and a component of codimension 2.

Proof: Let $P_{s}^{1}(1)$ denote the sheaf of the first principal part of $O_{s}(1)$, then we have a diagram as follows [4] [7].

$$
\begin{aligned}
& 0 \\
& \downarrow
\end{aligned}
$$

The two rows in the diagram is exact because $O_{s}(1)$ is very ample, and the column on the left is exact by using Five Lemma. Obviously N^{\vee} is the sheaf of conormal of S in \mathbf{P}^{n}. From the definition of $P^{1}(1)$ we see that the local sections of $\Omega_{\mathbf{P}^{n}}(1)$ has its Taylor expansion with order ≥ 1 at any point on S. We claim that the local sections of $\Omega_{\mathbf{p}_{n}}(1)$ has its power expansion at any point of S exactly with order 1 , i.e. $\quad T_{s}\left(\mathcal{H}^{-1}\right)=s_{1 \ldots k} T_{s}\left(\mathcal{H}^{-1} \otimes S_{1 \ldots k}^{-1}\right), \quad N\left(\mathcal{H}^{-1}\right)=S_{1 \ldots k}^{2} N\left(\mathcal{H}^{-1} \otimes S_{1 \ldots k}^{-2}\right)$, where $T_{s}\left(\mathcal{H}^{-1} \otimes S_{1 \ldots k}^{-1}\right)$ and $N\left(\mathcal{H}^{-1} \otimes S_{1 \ldots, k}^{-1}\right)$ is regular.
In fact, taking any smooth curve c on S (for example a section of $O(1)$) then by [8] we see that the first two gap numbers in the gap sequence of c with respect to V_{c} is 0,1 since the ground field has characteristics $\neq 2$. This means the power series of one section of V_{c} has the form at $+\ldots$ with $a \neq 0$ and where t is the local parameter of C and hence the claim is true.

In the proof of Proposition 2.1 we saw that over $\tilde{S}_{1 \ldots k} \quad \mathfrak{a}^{\prime \prime}$ is the $(n-1) t h$ Fitting ideal of $O(-1) \rightarrow T_{\mathbf{p}_{n}} \mid{ }_{s}\left(\mathcal{H}^{-1}\right)$, now we have a splitting for $T_{\mathbf{p}_{\mathbf{n}}}\left(\mathcal{H}^{-1}\right)$ (shown in the above diagram). Therefore the Fitting ideal is the product of the first Fitting ideal of $O(-1) \rightarrow T_{s}\left(\mathcal{H}^{-1}\right)$ and the $(n-3) t h$ Fitting ideal of $O(-1) \rightarrow N_{s}\left(\mathcal{H}^{-1}\right)$. Since $N\left(\mathcal{H}^{-1} \otimes \tilde{S}_{1 \ldots, k}^{-2}\right)$ is generated locally by some sections of $\operatorname{sym}^{i} T_{s}\left(\mathcal{H}^{-1} \otimes \tilde{S}_{1 \ldots, k}^{-1}\right)$ with $i \geq 2$, [7], then over $\tilde{S}_{1 \ldots k}$ the $(n-1) t h$ Fitting ideal of $O(-1) \rightarrow T_{\mathbf{p}_{n}}\left(\mathcal{H}^{-1}\right)$ is the same as $F^{1}\left(O(-1) \rightarrow \tilde{S}_{1 \ldots k} T_{s}\left(\mathcal{H}^{-1} \otimes \tilde{S}_{1 \ldots k}^{-1}\right)\right)$.
As for the last assertion in this proposition we note that, when we write down $F^{n-1}\left(O(-1) \rightarrow T_{\mathbf{p}^{n}}\left(\mathcal{H}^{-1}\right)\right)$ explicitly we have by (2)

$$
s_{1 \ldots k} \prod_{\# I \geq 1} s_{1 \ldots k I}\left(a_{2} x_{21}+\ldots+a_{k} x_{k 1}, \ldots, a_{2} x_{2 n}+\ldots+a_{k} x_{k n}\right)
$$

where $x_{i j}=\left(\xi_{i j}-\xi_{i j}\right) \cdot\left(s_{1 \ldots k} \prod_{\# I \geq 1} s_{1 \ldots k I}\right)^{-1}$ and $\left(x_{21}, \ldots, x_{2 n}, \ldots, \widehat{x i t}^{x_{1}, \ldots x_{i n}}, \ldots, x_{k 1}, \ldots x_{k n}\right)$ is the ideal for defining the strict transform of $S_{1 \ldots \hat{i} \ldots k}$ with respect to $\alpha_{k+1} .\left\{S_{i \ldots, \ldots, k}^{\prime}\right\}$ are disjoint each other for $i=1, \ldots, k$ and $k \geq 3$, therefore the rank of $\left(x_{i j}\right)$ does not zero on an open set of $W_{1 \ldots k}$, and then the Fitting ideal defines $\sum_{\# I \geq I} \tilde{S}_{1 \ldots k I}$ and a subscheme of $W_{1 \ldots k}$ with codimension 2 which is the zero locus of 2-bundle $T_{s}\left(\mathcal{H}^{-1} \otimes \tilde{S}_{1 \ldots k}^{-1} \otimes \prod_{\# I \geq 1} \tilde{S}_{1 \ldots k I}^{-1} \otimes O(1)\right)$ on $W_{1 \ldots k}$.

§ 3. Main Theorem

From Proposition 2.1 and 2.2 we see that $\gamma^{-1}\left(V_{1}\right)$ is defined by an ideal with the form $\left(s_{1 \ldots m} \mathfrak{a}, a_{1}+\ldots+a_{m}\right)$ over an open set containing $\beta_{2}^{-1}\left(\tilde{S}_{1 \ldots m}\right)$ and hence on \bar{Q} by taking closure. By the definition of the Segre class $s\left(\gamma^{-1}\left(V_{1}\right), \bar{Q}\right)$ we should blow up \bar{Q} with respect to the ideal $\left(s_{1 \ldots m} \mathfrak{a}, a_{1}+\ldots+a_{m}\right)$. In order to make the following statement simplier we fix some terms.
Definition. Let Y, \tilde{Y} be two schemes, J be an ideal sheaf on Y. The morphism $\pi: \tilde{Y} \rightarrow Y$ is said to be an effective resolution of Y with respect to J if π is a composition of π_{1}, \ldots, π_{l}, where $\pi_{i}: Y_{i} \rightarrow Y_{i-1}$ is a birational morphism with $Y_{0}=Y, Y_{l}=\tilde{Y}$ such that
(1) $\pi^{-1}(J)$ is an invertible sheaf,
(2) each π_{i} is a blowing up of Y_{i-1} with respect to a locally free sheaf.

What we shall show in this section is that, \bar{Q} has an effective resolution with respect to ideal $\left(s_{1 \ldots m} \mathfrak{a}, a_{1}+\ldots+a_{m}\right)$ and, for each π_{i} the Chern class of the locally free sheaf involved is expressed by the Chern classes of S, \mathcal{H} and $\tilde{S}_{1 \ldots k}$ with $k \geq 2$.
Theorem. $\nu(s)$ is expressed by a polynomial of the Chern numbers of S, the degree of S in $\mathbf{P}^{3 m-2}$ and the intersection number of the canonical class of S with the restriction of the hyperplane section; the coefficients and the degree of the polynomial depend only on m.
Proof: First we show that there exists an affective resolution of \bar{Q} with respect to the $n t h$ Fitting ideal of $\tilde{\psi}$ over $\bigcup_{1 \leq i<j \leq m} \tilde{S}_{i j}$ and the Chern classes of all of the normal bundles involved are expressed by the Chern classes of $\Omega_{\mathbf{s}}, c_{1}(O(1)), H$ and $\tilde{S}_{i j}, \tilde{S}_{i j I}$ with $\# I \geq 1$. In fact, in this case the $n t h$ Fitting ideal of $\tilde{\psi}$ is the product of $\left(s_{i j} \mathfrak{a}^{\prime \prime}, a_{i}+a_{j}, \ldots, a_{1}+\ldots+a_{m}\right)$ since $\left\{\tilde{S}_{i j}\right\}$ are disjoint by Proposition 2.1. Locally $\mathfrak{a}_{i j}$ is written as

$$
\prod_{\# I \geq 1} s_{i j I}\left(a_{j}\left(\xi_{j 1}-\xi_{i 1}\right)^{\prime}, \ldots, a_{j}\left(\xi_{j n}-\xi_{i n}\right)^{\prime}\right), \text { but }\left(\xi_{j 1}-\xi_{i 1}, \ldots, \xi_{j n}-\xi_{i n}\right) \text { is the ideal for }
$$ $\# I \geq 1$

defining $S_{i j}$ in X and hence, after the blowing-ups in $\S 1,\left(\left(\xi_{j 1}-\xi_{i 1}\right)^{\prime}, \ldots,\left(\xi_{j n}-\xi_{i n}\right)^{\prime}\right)=$ 1. Indeed, this shows that near $\tilde{S}_{12}, F^{n}(\tilde{\psi})$ is simply W_{12} described in Proposition 2.1. The normal bundle of W_{12} in \bar{Q} is

$$
\left\{\tilde{S}_{12} \oplus O(-1) \mathcal{H}_{2}^{-1} \otimes \oplus \ldots \oplus O(-1) \otimes O(-1) \otimes \mathcal{H}_{m}^{-1}\right\} \otimes \prod_{\# I \geq 1} \tilde{S}_{12 I}^{-1}
$$

Inductively assuming there exists an effective resolution of \bar{Q} with respect to $F^{n}(\tilde{\psi})$ near $\tilde{S}_{1 \ldots k-1}$ and the normal bundles of each blowing-up is expressed by $\tilde{S}_{1 \ldots k I}$ with $\# I \geq 0, \quad \Omega_{s}, \mathcal{H}_{i}$ and $O(1)$, we shall construct an effective resolution of \bar{Q} with respect to $F^{n}(\tilde{\psi})$ near $\tilde{S}_{1 \ldots k}$. We saw in the beginning of § $2 F^{n}(\tilde{\psi})=$ $\left(s_{1 \ldots k} \mathfrak{a}^{\prime \prime}, a_{1}+\ldots+a_{k}, \ldots, a_{1}+\ldots+a_{m}\right)$ near $\tilde{S}_{1 \ldots k}$. By induction we have had an effective resolution with respect to $F^{n}(\tilde{\psi})$ near $\cup \tilde{S}_{i_{1} \ldots i_{k-1}}$, denoted by \tilde{W}, then

$$
\begin{gathered}
\left(s_{12 \ldots k} \mathfrak{a}^{\prime \prime}, a_{1}+\ldots+a_{k}, \ldots, a_{1}+\ldots+a_{m}\right) \\
=w\left(s_{12 \ldots k} \mathfrak{a}^{\prime \prime \prime},\left(a_{1}+\ldots+a_{k}\right)^{\prime}, \ldots,\left(a_{1}+\ldots a_{m}\right)^{\prime}\right)
\end{gathered}
$$

and $s_{12 \ldots k}, \quad\left(a_{1}+\ldots+a_{k}\right)^{\prime}, \ldots,\left(a_{1}+\ldots+a_{m}\right)^{\prime}$ have no any common factor. The reason of this assertion is from the local expression (1), (2) in § 2. In fact, the intersection $\left(w, s_{1 \ldots k}, \mathfrak{a}^{\prime \prime}, a_{1}+\ldots+a_{k}, \ldots, a_{1}+\ldots+a_{m}\right)$ is the same as $\left(w, s_{1 \ldots k}, a_{1}+\ldots+a_{k}, \ldots, a_{1}+\ldots+a_{m}\right)$. On the other hand, what we just did means $\left(\mathfrak{a}^{\prime \prime \prime},\left(a_{1}+\ldots+a_{k}\right)^{\prime}, \ldots,\left(a_{1}+\ldots+a_{m}\right)^{\prime}\right)$ is the residue ideal of ($a^{\prime \prime}, a_{1}+\ldots+a_{k}, a_{1}+\ldots+a_{m}$) with respect to W, and then
$\left(a^{\prime \prime \prime},\left(a_{1}+\ldots+a_{k}\right)^{\prime}, \ldots,\left(a_{1}+\ldots+a_{m}\right)^{\prime}\right)$ defines a subscheme which is supported over $\tilde{S}_{12 \ldots k}$. Therefore, if we blow up \bar{Q}^{\prime} (the effective resolution of \bar{Q} with respect to W) along $\tilde{W} \cap \tilde{S}_{12 \ldots k}$ and denote the exceptional divisor by $\tilde{Z}_{12 \ldots k}$ we see from Proposition 2.2,

$$
\begin{gathered}
\left(\mathfrak{a}^{\prime \prime \prime},\left(a_{1}+\ldots+a_{k}\right)^{\prime}, \ldots,\left(a_{1}+\ldots+a_{m}\right)^{\prime}\right) \\
=Z_{12 \ldots k}\left(\prod_{\# I \geq 1} s_{1 \ldots k I} \mathfrak{a}^{\prime \prime \prime},\left(a_{1}+\ldots+a_{k}\right)^{\prime \prime}, \ldots,\left(a_{1}+\ldots+a_{m}\right)^{\prime \prime}\right)
\end{gathered}
$$

where $\left(\mathfrak{a}^{\prime \prime \prime},\left(a_{1}+\ldots+a_{k}\right)^{\prime \prime}, \ldots,\left(a_{1}+\ldots+a_{m}\right)^{\prime \prime}\right)$ is the locally free sheaf $T_{s}\left(\mathcal{H}^{-1} \otimes O(1) \otimes \prod_{\# I \geq 0} \tilde{S}_{1 \ldots k I}^{-1}\right)$ over $\tilde{S}_{12 \ldots k}$. Blowing up $\bar{Q}^{\prime \prime}$ (the blowing-up of \bar{Q}^{\prime} with respect to $\tilde{W} \cap \tilde{S}_{12 \ldots k}$) with respect to the locally free sheaf and denoting the exceptional divisor by $\tilde{G}_{1 \ldots k}$ we have

$$
\begin{gathered}
\left(s \mathfrak{a}^{\prime \prime}, a_{1}+\ldots+a_{k}, \ldots, a_{1}+\ldots+a_{m}\right) \\
=w z g\left(\prod_{\# I \geq 0} s_{1 \ldots k I},\left(a_{1}+\ldots+a_{k}\right)^{\prime \prime}, \ldots,\left(a_{1}+\ldots+a_{m}\right)^{\prime \prime}\right)
\end{gathered}
$$

Finally we blow up $\bar{Q}^{\prime \prime \prime}$ with respect to $\left(\prod_{\# I \geq 0} s_{1 \ldots k I},\left(a_{1}+\ldots+a_{k}\right)^{\prime \prime},\left(a_{1}+\ldots+a_{m}\right)^{\prime \prime}\right)$ and denote the exceptional divisor by $\tilde{T}_{1 \ldots k}$. As for the normal bundles involved are as follows.
$N_{W} \bar{Q}$ is given by induction hypothesis.
$N_{Z} \bar{Q}^{t}$ is $O(\tilde{W}) \oplus O\left(\tilde{S}_{1 \ldots k}\right)$
$N_{G} \bar{Q}^{\prime \prime}$ is $T_{s}\left(\mathcal{H}^{-1} \otimes O(1) \otimes \prod_{\# I \geq 0} \tilde{S}_{1 \ldots k I}^{-1}\right) \oplus \tilde{S}_{12 \ldots k} \oplus \bigoplus_{i \geq 0} \mathcal{H}_{k+i}^{-1} \otimes O(1) \otimes \tilde{z}^{-1}$

$$
N_{T} \bar{Q}^{\prime \prime \prime} \text { is }\left(\sum_{\# I \geq 0} \tilde{S}_{1 \ldots k I}\right) \oplus \bigoplus_{i \geq 0} \mathcal{H}_{k+1}^{-1} \otimes O(1) \otimes \tilde{z}^{-1} \otimes \tilde{G}^{-1}
$$

Therefore there exists an effective resolution of \bar{Q} with respect to the ideal $F_{0}(\tilde{\psi})$ near $\cup \tilde{S}_{i_{1} \ldots i_{k}}$, and the total exceptional divisor is

$$
\tilde{W}+\Sigma \tilde{Z}_{i_{1} \ldots i_{k}}+\Sigma \tilde{G}_{i_{1} \ldots i_{k}}+\Sigma \tilde{T}_{i_{1} \ldots i_{k}}
$$

The last step we need to do is to show $\left(\beta_{2 *}\left(1+c_{1}(O(1))^{n+1} \cdot s\left(V_{1}, \bar{Q}\right)\right)_{0}\right.$ can be expressed by $c_{2}\left(\Omega_{s}\right), K^{2}, K H, d$, where $K=c_{1}\left(\Omega_{s}^{\vee}\right), H$ is the hyperplane section of $\mathrm{P}^{n}, d=H_{s}^{2}$. But on $\bar{Q}, \beta_{2 *}\left(c_{1}(O(1))^{(m-1)+i} \cdot \beta_{2}^{*} a\right)=\frac{1}{\left(1-h_{1}\right) \ldots\left(1-h_{m}\right)_{i}} \cdot a$, where a is a cycle on \tilde{X}. By the above argument, $\left(\beta_{2 *}\left(1+c_{1}(O(1))^{n+1} \cdot s\left(V_{1}, \bar{Q}\right)\right)\right)$ is a polynomial in terms of $\tilde{S}_{i_{1} \ldots i_{k}}, H_{i}, c_{2}\left(\Omega_{s}\right), c_{1}\left(\Omega_{s}\right)$. We push down $\left(\beta_{2 *}\left(1+c_{1}(O(1))^{n+1} \cdot s\left(V_{1}, \bar{Q}\right)\right)\right)_{0}$ by $\alpha_{2 *}$, the terms involved with $\tilde{S}_{i_{1} \ldots i_{k}}$ give us the terms involved with $c_{2}\left(\Omega_{s}\right), c_{1}\left(\Omega_{s}\right)$. The theorem is proved.
Example $1 m=2$. In this case S is a surface in \mathbf{P}^{4} and $\nu=0$. Theorem tells us

$$
2 \nu=d^{2}-10 d-5 H K+c_{2}(S)-K^{2}=0
$$

This is the well-known condition for a smooth surface embedded in \mathbf{P}^{4} [4].
Example 2 [6] $m=3$. In this case, S is a surface in \mathbf{P}^{7} and ν is the number of trisecants of S. The total exceptional divisor is

$$
\sum_{1 \leq i<j \leq 3} \tilde{W}_{i j}+\sum_{1 \leq i<j \leq 3} \tilde{Z}_{i j}+\tilde{G}_{123}+\tilde{T}_{123}
$$

where W_{12} is the projective bundle $\mathbf{P}\left(E_{12}\right)$ over \tilde{S}_{12} with $c_{1}\left(E_{12}\right)=c_{1} \mathcal{H}, Z_{12}=$ $\left[\tilde{W}_{12}\right] \cdot\left[\tilde{S}_{123}\right], G_{123}=$ the Zero locus of a generic section of $T_{s} \otimes\left(\mathcal{H}^{-1} \otimes \tilde{S}_{123}^{-1}\right) T_{123}=$ $\left[\tilde{S}_{123}\right] \cdot\left[O(1) \otimes \mathcal{H}^{-1} \otimes\left(\Sigma \tilde{Z}_{i j}^{-1}\right) \otimes \tilde{G}_{123}^{-1}\right]$. We have the following formula

$$
6 \nu=d^{3}-3 d\left(10 d+5 K H+K^{2}-c_{2}\right)+224 d+192 K H+56 K^{2}-40 c_{2}
$$

References

[1] E. Arbarello, M. Cornalba, P. Griffith and J. Harris, Geometry of algebraic curves, Springer-Verlag, 1985.
[2] S.K. Donaldson, Instantons in Yang-Mills theory, in Interface between particle physics and mathematics, Oxford 1990, 59-75.
[3] A. Grothendieck, EGAII, IHES, 1961.
[4] R. Hartshorne, Algebraic Geoemtry, Springer-Verlag, 1977.
[5] W. Fulton, Intersection Theory, Springer-Verlag, 1984.
[6] P. Le Barz, Formules pour les trisécantes des surfaces algébriques, L'Ens. Math. t. 33, 1987, 1-66.
[7] R. Piene, Numerical characters of a curve in projective n space, in Real and complex singularities, Oslo, 1976, 475-495.
[8] D. Laksov, Weierstrass points on curves, Aster. 87-88, 1981, 221-247.

