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Abstract

We give the criterion for the irreducibility, the Schur irreducibility and the inde-
composability of the set of two n×n matrices Λn and An in terms of the subalgebra
associated with the ”support” of the matrix An, where Λn is a diagonal matrix with
different non zeros eigenvalues and An is an arbitrary one. The list of all maximal
subalgebras of the algebra Mat(n, C) and the list of the corresponding invariant
subspaces connected with these two matrices is also given. The properties of the
corresponding subalgebras are expressed in terms of the graphs associated with the
support of the second matrix.

For arbitrary n we describe all minimal subsets of the elementary matrices Ekm

that generate the algebra Mat(n, C).
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1 Introduction

In the representation theory of different objects (groups, rings, algebras etc.)
the problem of the ireducibility of the concrete representations (modules) some-
times reduce to the irreducibility of the algebra, generated by two operators
or by two matrices if the representation is finite dimensional.

In the case of the discrete group generated by two elements this is exactly the
problem one need to solve. The most popular examples are the following: the
free group F2 generated by two elements, the Artin braid group B3 on three
strands, the group PSL(2,Z) = SL(2,Z)/± 1.

We give the criteria of the irreducibility and the Schur irreducibility (see below
the definitions) of the set of two complex n×n matrices Λn and An in terms of
the ”support” of the matrix An, where Λn is a diagonal matrix with different
non zeros eigenvalues and An is an arbitrary one (Theorem 5). The list of all
invariant subspaces for this two matrices is also given (Theorem 6).

This criterion allows us to study completely in [2] the irreducibility of some
family of representations depending on the parameters of the braid group B3

in any dimensions.

There are three different notion connected with the irreducibility of the repre-
sentations T of the group G in a complex vector space V

G 3 g 7→ Tg ∈ GL(V ),

where GL(V ) is the group of the linear invertible operators in the space V .
They are as follows: 1) irreducible, 2) Schur irreducible, 3) indecomposable.
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Definition 1 We say that the representation is irreducible (resp. Schur irre-
ducible) when there are no nontrivial invariant closed subspaces for all op-
erators of the representation (resp. there are no nontrivial bounded operators
commuting with all operators of the representation). The representation is
indecomposable if it can not be presented as the direct sum of the subrepre-
sentations.

Remark 2 It is well known that the relations between the mentioned notions
when the space V is finite dimensional are as follows: 1)⇒ 2)⇒ 3).

Remark 3 The notions of irreducibility and Schur irrereducibility coincides
for the unitary representation of an arbitrary group G (hence, for an arbitrary
representation of a compact group, using the ”Wayl trick” [7]).

Counterexample 1. 2) 6⇒ 1). Let us consider the subalgebra of the algebra
Mat(2,C) consisting of the matrices

( a b
0 c ) , a, b, c ∈ C.

This subalgebra is subspace reducible (the subspace in C2 generated by the
vector (1, 0) is invariant) but the algebra is operator irreducible.

Counterexample 2. 3) 6⇒ 2). The classical example of the operator reducible
but the indecomposable representation of the additive group of C is as follows:

C 3 z 7→ ( 1 z
0 1 ) ∈ GL(2,C). (1)

1.1 Irreducibility criteria

Let Mat(n,C) be the algebra of all complex matrices over the field of complex
numbers C and let Λn (resp. An) be a diagonal (resp. an arbitrary) matrix in
Mat(n,C):

Λn = diag(λ1, λ2, ..., λn), An = (akm)1≤k,m≤n ∈ Mat(n,C).

We shall call the support of the matrix A the following subset

Supp(An) = {(k,m) ∈ {1, 2, ..., n}2 | akm 6= 0}. (2)

Remark 4 It is well known that the algebra Mat(n,C) acting in the space Cn

is irreducible (and hence Schur) irreducible.

Notation. Let us denote by Ekm the matrix units i.e. the matrix Ekm =
(aij) such that aij = δkiδmj where δij are the Kronecker symbols. Obviously
EkmEpq = δmpEkq.
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Theorem 5 Let the eigevnalues λk of Λn are different and non zeros, then
1) the family of two operators (Λn, An) is irreducible if and only if the set
(Ekm | (k,m) ∈ Supp(An)) generates the algebra Mat(n,C);
2) the family (Λn, An) is Schur irreducible if and only if the set (Ekm | (k,m) ∈
Supp(An)

⋃
Supp(At

n)) generates the algebra Mat(n,C) ;
3) the family (Λn, An) is indecomposable if and only if the set (Ekm | (k,m) ∈
Supp(An)) generate the indecomposable subalgebra in Mat(n,C).

If A and B be complex n× n matrices. When they have 1) a common eigen-
vectors; 2) a common invariant subspace of dimension k, (2 ≤ k < n)?
In 1984 Dan Shemesh [5] shows that the criteria for 1) is:

⋂n−1
k,l=1 ker[Ak, Bl] 6= 0.

In [4], under the additional assumption that at least one of the matrix A and B
has distinct eigenvalues, were given some sufficient conditions for 2) in terms
of kth compound matrix Ck(A) and Ck(B) of the matrix A and B (for defini-
tion see e.f. [3], chap I,§ 4). Namely, 2) holds if the matrix Ck(A) and Ck(B)
have a common invariant vector.

The advantage of our approach is that in the case where one of the matrices
is diagonal, we give the criterion for 2) in terms of the support of the second
matrix. The list of all invariant subspaces for this two matrices is also given
(Theorem 6). In Section 3 we reformulate theorems 5 and 6 in terms of the
graph associated with the support of the second matrix. It allows us to make
use of graph theory (which is well developed).

1.2 Irreducibility

PROOF. 1) The sufficiency part ⇐ is obvious using the Remark 4. Indeed
let us denote by An the algebra generated by operators Λn and An. Since λk

are different and non zeros we conclude that Ekk ∈ An, 0 ≤ k ≤ n. Further,
since

EkkAnEmm = akmEkm,

we conclude that Ekm ∈ An if akm 6= 0 i.e. if (k,m) ∈ Supp(An).

To prove the necessary part⇒ for any fixed n = 1, 2, ..., let us suppose that the
set (Ekm | (k,m) ∈ Supp(An)) does not generate the whole algebra Mat(n,C),
but only some proper subalgebra s(n) of the following form

s(n) = (x ∈ Mat(n,C) | x =
∑

(k,m)∈S(n)

xkmEkm), (3)

corresponding to some subset of indices S(n) ⊂ {1, ..., n}2. We can suppose
that this subalgebra is maximal proper subalgebra of the form (3). Indeed, if
we can find the invariant subspace V for the maximal subalgebra hence this
subspace would be also invariant one for any of its subalgebra. By Theorem 6
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the list of the maximal proper subalgebras s(n) in Mat(n,C) of the form (3)
is as follows:

si(n) =
(
x = (xkm)1≤k,m≤n ∈ Mat(n,C) | xkm = 0, k ∈ î, m ∈ i

)
, (4)

where i = {i1, i2, ..., ik} ⊆ {1, 2, ..., n}, k ≤ n and î = {1, 2, ..., n} \ i.

Notation. For the general n let Vi1i2...ik(n) = 〈ei1 , ei2 , ...eik〉 be the linear
subspace in Cn generated by the vectors ei1 , ei2 , ...eik , 1 ≤ i1 < i2 < ... < ik ≤
n, where ek = (δrk)n

r=1 ∈ Cn, 1 ≤ k ≤ n.

The subspace Vi(n) := Vi1i2...ik(n) is invariant subspace for the algebra si(n).

2) To prove the Schur irreducibility we note that the commutant (Λn)′ of the
operator Λn has the following form

(Λn)′ = (B ∈ Mat(n,C) | B = diag(bk)n
k=1)

hence, the relation [An, B] = 0 is equivalent with

akmbm = bkakm, 1 ≤ k,m ≤ n. (5)

We say that we can connect k and m where 1 ≤ k,m ≤ n if akm 6= 0 or
amk 6= 0 i.e. (k,m) ∈ Supp(An) or (k,m) ∈ Supp(At

n). In this case bk = bm.
To show that all bk coincide (i.e. that B = bI) we should be able to connect
step by step all k and m i.e. for any (k,m) ∈ {1, 2, ..., n}2 we should be able
to find the sequence (kr,mr)

l
r=1 ∈ Supp(An)

⋃
Supp(At

n), such that

Ekm = Ek1,m1Ekr,mr ...Ekl,ml
. (6)

This proves the sufficiency part of the second part of the theorem. We say in
this case that the set {1, 2, ..., n} is connected.

To prove the sufficiency part let us suppose that the set J = {1, 2, ..., n} is
not connected i.e. it consists of l connected components Jr i.e. J =

⋃l
r=1 Jr.

In this case bk = bm for k,m ∈ Jr and the operator B = ⊕l
r=1brIr where

Ir =
∑

k∈Jr
Ekk, commute with An, i.e. [An, B] = 0 hence, the representation

is Schur reducible. Part 3) is evident. 2

2 Maximal proper subalgebras of Mat(n,C)

We give the complete list of subsets of indices S(n) ⊂ {1, 2, ..., n}2 such that
the subspace s(n) ∈ Mat(n,C) defined by

s(n) = (x ∈ Mat(n,C) | x =
∑

(k,m)∈S(n)

xkmEkm) (7)
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is a maximal proper subalgebra in Mat(n,C).

Theorem 6 The list of maximal proper subalgebras s(n) in Mat(n,C) is as
follows

si(n) =
(
x = (xkm)1≤k,m≤n ∈ Mat(n,C) | xkm = 0, k ∈ î, m ∈ i

)
, (8)

where i = {i1, i2, ..., ik} ⊆ {1, 2, ..., n}, k < n and î = {1, 2, ..., n} \ i. The
corresponding invariant subspace is Vi(n) := Vi1i2...ik(n).

PROOF. For n = 2 we have only one subset G(2) = {(1, 2), (2, 1)} and two
subsets S(2), namely {(1, 1), (1, 2), (2, 2)} and {(1, 1), (2, 1), (2, 2)}. We shall
use the following notations for the set G(2) and the algebra s(2):

G(2) := ( 0 1
1 0 ) , s(2) : ( ∗ ∗0 ∗ ) , ( ∗ 0

∗ ∗ ) .

Notation. In general we shall write the subset G(n) as the matrix G(n) =
(gkm) with matrix elements gkm = 1 ( resp. gkm = 0) if the corresponding
(k,m) ∈ G(n) (resp. (k,m) 6∈ G(n)).

The mentioned subalgebras s(2) have respectively the invariant subspaces:
V1(2) = 〈e1 = (1, 0)〉 and V2(2) = 〈e2 = (0, 1)〉. For n = 3 the list of subsets
G(3) and the subalgebra s(3) are as follows:

G(3) : G1(3) =
(

0 0 1
1 0 0
0 1 0

)
, G2(3) =

(
0 1 0
0 0 1
1 0 0

)
, G3(3) =

(
0 1 0
1 0 1
0 1 0

)
, (9)

G4(3) =
(

0 1 1
1 0 0
1 0 0

)
, G5(3) =

(
0 0 1
0 0 1
1 1 0

)
,

s(3) :
( ∗ ∗ ∗

0 ∗ ∗
0 ∗ ∗

)
,
( ∗ 0 ∗
∗ ∗ ∗
∗ 0 ∗

)
,
( ∗ ∗ 0
∗ ∗ 0
∗ ∗ ∗

)
;
( ∗ 0 0
∗ ∗ ∗
∗ ∗ ∗

)
,
( ∗ ∗ ∗

0 ∗ 0
∗ ∗ ∗

)
,
( ∗ ∗ ∗
∗ ∗ ∗
0 0 ∗

)
. (10)

The mentioned subalgebras s(3) have respectively the following invariant sub-
spaces: V1(3), V2(3), V3(3); V23(3), V13(3) and V12(3).

To obtain the list of subalgebra s(n+ 1) from the list of s(n) we consider two

projectors P
(0)
n,n+1 and P

(1)
n,n+1 defined as follows

P
(r)
n,n+1 : Mat(n+ 1,C) 7→ Mat(n,C),∑

1≤k,m≤n+1

xkmEkm = x 7→ P
(r)
n,n+1(x) =

∑
r+1≤k,m≤n+r

xkmEkm,

( ∗ ∗ ... ∗ ∗
...

∗ ∗ ... ∗ ∗
∗ ∗ ... ∗ ∗

)
P

(0)
n,n+1→

( ∗ ∗ ... ∗ 0
...

∗ ∗ ... ∗ 0
0 0 ... 0 0

)
,

( ∗ ∗ ... ∗ ∗
∗ ∗ ... ∗ ∗

...
∗ ∗ ... ∗ ∗
∗ ∗ ... ∗ ∗

)
P

(1)
n,n+1→

(
0 0 ... 0 0
0 ∗ ... ∗ ∗

...
0 ∗ ... ∗ ∗

)
.

Notation. For arbitrary subset of indices i = {i1, i2, ..., ik} ⊆ {1, 2, ..., n} let

us denote by s
(r)
i (n) = (P

(r)
n,n+1)−1(si(n)) the corresponding subspace in the

algebra Mat(n + 1,C), where we denote by A−1(H0) = {x ∈ H1 | Ax ∈ H0}
the preimage of the subset H0 ⊂ H2 for an operator A : H1 → H2.
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We show how to obtain the list s(3) from the list s(2). Since the algebra s(3)

should be contained in the space s(r)(2) = (P
(r)
2,3 )−1(s(2)) for r = 0, 1 we get

s1(2) = ( ∗ ∗0 ∗ )←
(
∗ ∗ ×
0 ∗ ×
× × ×

)
,
(
× × ×
× ∗ ∗
× 0 ∗

)
; s2(2) = ( ∗ 0

∗ ∗ )←
(
∗ 0 ×
∗ ∗ ×
× × ×

)
,
(
× × ×
× ∗ 0
× ∗ ∗

)
.

Since E21 = E23E31 and E32 = E31E12 we have only two subalgebras in s
(0)
1 (2)

and two subalgebras in s
(1)
1 (2):(

∗ ∗ ×
0 ∗ ×
× × ×

)
→
( ∗ ∗ ∗

0 ∗ ∗
0 ∗ ∗

)
,
( ∗ ∗ ∗

0 ∗ 0
∗ ∗ ∗

)
;

(
× × ×
× ∗ ∗
× 0 ∗

)
→
( ∗ 0 ∗
∗ ∗ ∗
∗ 0 ∗

)
,
( ∗ ∗ ∗
∗ ∗ ∗
0 0 ∗

)
and since E12 = E13E32 and E23 = E21E13 we have only two subalgebras in
s

(0)
2 (2) and two subalgebras in s

(1)
2 (2):(

∗ 0 ×
∗ ∗ ×
× × ×

)
→
( ∗ 0 ∗
∗ ∗ ∗
∗ 0 ∗

)
,
( ∗ 0 0
∗ ∗ ∗
∗ ∗ ∗

)
;
(
× × ×
× ∗ 0
× ∗ ∗

)
→
( ∗ ∗ 0
∗ ∗ 0
∗ ∗ ∗

)
,
( ∗ ∗ ∗

0 ∗ 0
∗ ∗ ∗

)
.

Finally we obtain the list (10) of subalgebras s(3). We see that

s
(0)
1 (2)→ s1(3), s13(3), s

(1)
1 (2)→ s2(3), s12(3), (11)

s
(0)
2 (2)→ s2(3), s23(3), s

(1)
2 (2)→ s3(3), s13(3).

The list of subalgebra s(4) is as follows

si(4) :
( ∗ ∗ ∗ ∗

0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

)
,
( ∗ 0 ∗ ∗
∗ ∗ ∗ ∗
∗ 0 ∗ ∗
∗ 0 ∗ ∗

)
,
( ∗ ∗ 0 ∗
∗ ∗ 0 ∗
∗ ∗ ∗ ∗
∗ ∗ 0 ∗

)
,
( ∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗

)
,

si1i2i3(4) :
( ∗ 0 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

)
,
( ∗ ∗ ∗ ∗

0 ∗ 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

)
,
( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ 0
∗ ∗ ∗ ∗

)
,
( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 0 ∗

)
,

si1i2(4) :
( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

)
,
( ∗ ∗ ∗ ∗

0 ∗ 0 ∗
∗ ∗ ∗ ∗
0 ∗ 0 ∗

)( ∗ ∗ ∗ ∗
0 ∗ ∗ 0
0 ∗ ∗ 0
∗ ∗ ∗ ∗

)
,
( ∗ 0 0 ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ 0 0 ∗

)
,
( ∗ 0 ∗ 0
∗ ∗ ∗ ∗
∗ 0 ∗ 0
∗ ∗ ∗ ∗

)
,
( ∗ ∗ 0 0
∗ ∗ 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

)
.

The corresponding invariant subspaces are Vi(4), 1 ≤ i ≤ 4; Vi1i2i3(4), 1 ≤
i1 < i2 < i3 ≤ 4; and Vi1i2(4), 1 ≤ i1 < i2 ≤ 4.

To get s(4) from s(3) we show how this works only for two subalgebras s1(3)
and s13(3)

( ∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗

)
←
( ∗ ∗ ∗ ×

0 ∗ ∗ ×
0 ∗ ∗ ×
× × × ×

)
,

( × × × ×
× ∗ ∗ ∗
× 0 ∗ ∗
× 0 ∗ ∗

)
,

( ∗ ∗ ∗
0 ∗ 0
∗ ∗ ∗

)
←
( ∗ ∗ ∗ ×

0 ∗ 0 ×
∗ ∗ ∗ ×
× × × ×

)
,

( × × × ×
× ∗ ∗ ∗
× 0 ∗ 0
× ∗ ∗ ∗

)
.

Since we have only one possibility to obtain E21 and E31, namely E21 = E24E41

and E31 = E34E41, we have only two subalgebras in s
(0)
1 (3) (case a)). Another

cases are treated similarly. In the case b) s
(1)
1 (3) we have E32 = E31E12 and

E42 = E41E12; in the case c) s
(0)
13 (3) we have E21 = E24E41 and E23 = E24E43;

in the case d) s
(1)
13 (3) we have E32 = E31E12 and E34 = E31E14. Finally we get

a)

( ∗ ∗ ∗ ×
0 ∗ ∗ ×
0 ∗ ∗ ×
× × × ×

)
→
( ∗ ∗ ∗ ∗

0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

)
,
( ∗ ∗ ∗ ∗

0 ∗ ∗ 0
0 ∗ ∗ 0
∗ ∗ ∗ ∗

)
; b)

( × × × ×
× ∗ ∗ ∗
× 0 ∗ ∗
× 0 ∗ ∗

)
→
( ∗ 0 ∗ ∗
∗ ∗ ∗ ∗
∗ 0 ∗ ∗
∗ 0 ∗ ∗

)
,
( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

)
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c)

( ∗ ∗ ∗ ×
0 ∗ 0 ×
∗ ∗ ∗ ×
× × × ×

)
→
( ∗ ∗ ∗ ∗

0 ∗ 0 ∗
∗ ∗ ∗ ∗
0 ∗ 0 ∗

)
,
( ∗ ∗ ∗ ∗

0 ∗ 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

)
; d)

( × × × ×
× ∗ ∗ ∗
× 0 ∗ 0
× ∗ ∗ ∗

)
→
( ∗ 0 ∗ 0
∗ ∗ ∗ ∗
∗ 0 ∗ 0
∗ ∗ ∗ ∗

)
,
( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ 0
∗ ∗ ∗ ∗

)
.

So we have the following relations using (11) and the latter considerations

s
(0)
1 (2)→ s1(3), s13(3), s

(0)
1 (3)→ s1(4), s14(4),

s
(1)
1 (2)→ s2(3), s12(3), s

(1)
1 (3)→ s2(4), s12(4),

s
(0)
2 (2)→ s2(3), s23(3), s

(0)
13 (3)→ s13(4), s134(4),

s
(1)
2 (2)→ s3(3), s13(3), s

(1)
13 (2)→ s24(4), s124(4).

To guess the general formula for arbitrary n we note also that

s
(0)
14 (4)→ s14(5), s145(5).

The similar considerations explains us how to describe all the subalgebra
s(n+ 1) starting from the subalgebra s(n). Namely we have

si(n)← s
(0)
i (n), s

(1)
i (n),

s
(0)
i (n)→ si(n+ 1), si0(n+ 1), s

(1)
i (n)→ si+1(n+ 1), si1(n+ 1),

or

si(n)

s
(0)
i (n) s

(1)
i (n)

si(n+ 1) si0(n+ 1) si+1(n+ 1) si1(n+ 1)

(12)

where for i = {i1, i2, ..., ik} we denote i + 1 = {i1 + 1, i2 + 1, ..., ik + 1}, i0 =
i ∪ {n+ 1} and i1 = i + 1 ∪ {1}. 2

3 Generating sets, maximum subalgebra and the graph theory

Definition 7 We say that the subset G ⊂ {1, 2, ..., n}2 is generating subset
if the set of matrices

(Ekm | (k,m) ∈ G)

generate the algebra Mat(n,C).

We would like to describe the minimal generating subsets G in terms of the
graphs. It would be nice also to find the complete list G(n) of the minimal
generating subsets in {1, 2, ..., n}2.

Definition 8 We associate with the any subset G ⊂ {1, 2, ..., n}2 an directed
(oriented) graph Γ on n vertices in the following way: if (k,m) ∈ G we draw
the edge (arrow, arc) from the vertex k to the vertex m on the graph.
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Definition 9 A directed graph Γ is called orientationally connected if starting
from any vertex k on the graph we can arrive by arrows in any other vertex
m on the graph.

Definition 10 An orientationally connected graph is called minimal if one
can not extract any vertex without losing the property of being orientationally
connected.

Definition 11 A directed graph Γ is called symmetric if, for every arc that
belongs to Γ, the corresponding inverted arc also belongs to Γ. For a given
directed graph Γ we call its symmetric closure the minimal symmetric graph
Γs containing the initial graph.

Lemma 12 The subset G is minimal generating if and only if the correspond-
ing graph Γ is minimal orientationally connected.

PROOF. Use (6). 2

Now we can reformulate the Theorem 5 in terms of the graph ΓA associated
with the support of GA = Supp(An) of the matrix An.

Theorem 13 1) The family (Λn, An) is irreducible if and only if the graph
ΓA is orientationally connected;
2) the family (Λn, An) is Schur irreducible if and only if the symmetric closure
Γs

A of the graph ΓA is orientationally connected;
3) the family (Λn, An) is indecomposable if and only if the graph ΓA is con-
nected.

Definition 14 Adjacency matrix. This is the n by n matrix A, where n is
the number of vertices in the graph. If there is an edge from some vertex x
to some vertex y, then the element ax,y is 1 (or in general the number of xy
edges), otherwise it is 0.

Let us use denote by AΓ = AG the adjacency matrix of the graph Γ associated
with the set G. We have the following correspondence:

set G↔ graph Γ↔ adjacency matrix AG = AΓ. (13)

Definition 15 For two subset G1, G2 ⊆ {1, 2, ..., n}2 define the product G3 =
G1 ◦G2 as the subset

G1 ◦G2 = {(k,m) | (k, p) ∈ G1, (p,m) ∈ G2 for some p}. (14)
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Let us denote for any subset G ⊂ {1, ..., n}2 by g the corresponding subspace

g = (x ∈ Mat(n,C) | x =
∑

(k,m)∈G

xkmEkm). (15)

Let g1 and g2 be the subspaces corresponding (via (15)) to two subsets G1 and
G2. We define the product g1g2 as follows g1g2 = (z = xy | x ∈ g1, y ∈ g2).
Obviously, we have

g1g2 = (x ∈ Mat(n,C) | x =
∑

(k,m)∈G3

xkmEkm),

where G3 = G1 ◦G2.

To define correctly the product of two adjacency matrix matrices AG1 and
AG2 , corresponding to the subsets G1 and G2, we assume that the matrix
elements of the matrix AGi

, which are equal to 0 and 1, are in the semiring R.

Definition 16 Define the semiring R consisting of two elements 0 and 1 with
operations (see [1])

0+0 = 0, 0+1 = 1, 1+1 = 1, 0×0 = 0, 0×1 = 0, 1×1 = 1. (16)

We have AG1AG2 = AG1◦G2 . (17)

Lemma 17 The set G generate the algebra Mat(n,C) if and only if the powers
Gk = G ◦ ... ◦G, k = 1, 2, ..., n covers the set {1, 2, ..., n}2.

Using Lemmas 6 and 12 we get

Lemma 18 1) The number ](s(n)) of the maximal proper subalgebra is equal
to

](s(n)) =
n−1∑
r=1

Cr
n = 2n − 2,

the number of ordered subsets of the set {1, 2, ..., n} of the length between 1
and n− 1;
2) the numbers ](G(n)) of the generating subset G(n) is equal to the numbers
of the minimal orientationally connected graphs with n vertices.

Problem 1. To find the number ](G(n)).

We know that the first values of ](G(n)) for n = 2, 3, 4 are 1, 5, 54.
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4 Appendix, some examples

Notations. For the sake of shortness we shall use the same notations for the
set G(n) and for the corresponding adjacency matrix AG(n). We shall denote
both by G(n).
Example 1. We show, using Lemma 17 , that the set G(2) and sets G(3)
from the list (9) are generating. For n = 2 the set G(2) is obviously unique.
We get

G(2) = ( 0 1
1 0 ) , G2(2) = ( 1 0

0 1 )⇒ G(2)
⋃
G(2)2 = {1, 2}2.

For n = 3 we have G1(3)
⋃
G2

1(3)
⋃
G2

1(3) = {1, 2, 3}2. Indeed

G1(3) =
(

0 0 1
1 0 0
0 1 0

)
, G2

1(3) =
(

0 1 0
0 0 1
1 0 0

)
, G3

1(3) =
(

1 0 0
0 1 0
0 0 1

)
,

G2(3) = G2
1(3), G2

2(3) = G4
1(3) = G1(3), G3

2(3) = G6
1(3) = G3

1(3),

G3(3) =
(

0 1 0
1 0 1
0 1 0

)
, G2

3(3) =
(

1 0 1
0 1 0
1 0 1

)
⇒ G3(3)

⋃
G2

3(3) = {1, 2, 3}2,

G4(3) =
(

0 1 1
1 0 0
1 0 0

)
, G2

4(3) =
(

1 0 0
0 1 1
0 1 1

)
⇒ G4(3)

⋃
G2

4(3) = {1, 2, 3}2,

G5(3) =
(

0 0 1
0 0 1
1 1 0

)
, G2

5(3) =
(

1 1 0
1 1 0
0 0 1

)
⇒ G5(3)

⋃
G2

5(3) = {1, 2, 3}2.

Example 2. The list of G(n) and s(n) for n ≤ 4 (for n = 4 only some G(n) ).

G(2) : ( 0 1
1 0 ) , s(2) : ( ∗ ∗0 ∗ ) , ( ∗ 0

∗ ∗ ) (18)

G(3) :
(

0 0 1
1 0 0
0 1 0

)
,
(

0 1 0
0 0 1
1 0 0

)
,
(

0 1 0
1 0 1
0 1 0

)
,
(

0 1 1
1 0 0
1 0 0

)
,
(

0 0 1
0 0 1
1 1 0

)
. (19)

s(3) :
( ∗ ∗ ∗

0 ∗ ∗
0 ∗ ∗

)
,
( ∗ 0 ∗
∗ ∗ ∗
∗ 0 ∗

)
,
( ∗ ∗ 0
∗ ∗ 0
∗ ∗ ∗

)
;
( ∗ 0 0
∗ ∗ ∗
∗ ∗ ∗

)
,
( ∗ ∗ ∗

0 ∗ 0
∗ ∗ ∗

)
,
( ∗ ∗ ∗
∗ ∗ ∗
0 0 ∗

)
(20)

G(4) :
( 0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 0

)
,
( 0 1 0 0

0 0 1 0
0 0 0 1
1 0 0 0

)
,
( 0 1 0 0

0 0 0 1
1 0 0 0
0 0 1 0

)( 0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

)
,
( 0 0 1 0

0 0 0 1
0 1 0 0
1 0 0 0

)
,
( 0 0 0 1

0 0 1 0
1 0 0 0
0 1 0 0

)
. (21)

( 0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0

)
,
( 0 0 1 0

0 0 1 0
1 1 0 1
0 0 1 0

)
,
( 0 1 1 1

1 0 0 0
1 0 0 0
1 0 0 0

)
,
( 0 0 0 1

0 0 0 1
0 0 0 1
1 1 1 0

)
, (22)

( 0 1 0 0
0 0 1 0
1 0 0 1
0 1 0 0

)
,

( 0 0 1 0
1 0 0 1
0 1 0 0
0 0 1 0

)
,

( 0 1 0 1
0 0 1 0
1 0 0 0
0 1 0 0

)
,

( 0 1 0 0
0 0 1 0
1 0 0 1
0 0 1 0

)
,

( 0 1 0 1
0 0 1 0
1 0 0 0
1 0 0 0

)
,

( 0 1 0 0
0 0 1 1
1 0 0 0
0 1 0 0

)
,

(23)( 0 1 0 1
1 0 0 0
0 0 0 1
1 0 1 0

)
,
( 0 1 0 1

1 0 1 1
0 1 0 0
1 0 0 0

)
,
( 0 1 0 0

1 0 1 0
0 1 0 1
0 0 1 0

)
,
( 0 0 0 1

0 0 1 0
0 1 0 1
1 0 1 0

)
,
( 0 0 1 1

0 0 1 0
1 1 0 0
1 0 0 0

)
,
( 0 0 0 1

0 0 1 1
0 1 0 0
1 1 0 0

)
,

(24)

si(4) :
( ∗ ∗ ∗ ∗

0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

)
,
( ∗ 0 ∗ ∗
∗ ∗ ∗ ∗
∗ 0 ∗ ∗
∗ 0 ∗ ∗

)
,
( ∗ ∗ 0 ∗
∗ ∗ 0 ∗
∗ ∗ ∗ ∗
∗ ∗ 0 ∗

)
,
( ∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗

)
,

si1i2i3(4) :
( ∗ 0 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

)
,
( ∗ ∗ ∗ ∗

0 ∗ 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

)
,
( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ 0
∗ ∗ ∗ ∗

)
,
( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 0 ∗

)
,
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si1i2(4) :
( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

)
,
( ∗ ∗ ∗ ∗

0 ∗ 0 ∗
∗ ∗ ∗ ∗
0 ∗ 0 ∗

)( ∗ ∗ ∗ ∗
0 ∗ ∗ 0
0 ∗ ∗ 0
∗ ∗ ∗ ∗

)
,
( ∗ 0 0 ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ 0 0 ∗

)
,
( ∗ 0 ∗ 0
∗ ∗ ∗ ∗
∗ 0 ∗ 0
∗ ∗ ∗ ∗

)
,
( ∗ ∗ 0 0
∗ ∗ 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

)
.
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