New examples of obstructed complex manifolds
in higher dimension

Masa-Hiko Saito

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Straße 26
5300 Bonn 3
West Germany

Institute of Mathematics
Faculty of Education Shiga University
Otsu, 520, Japan

New examples of obstructed complex manifolds

 in higher dimensionby

Masa-Hiko Saito

Institute of Mathematics
Faculty of Education
Shiga University
Otsu, 520, Japan
\& Max-Planck-Institut für Mathematik
Gottfried-Claren-Straße 26
5300 Bonn 3
West Germany

Introduction. In the present paper, we will generalize some results of Burns-Wahl [2] and Kas [10] to varieties of dimension $n \geq 3$ and we will give new examples of obstructed compact complex manifold of dimension ≥ 2.

Let Z be a compact complex manifold and Θ_{Z} its tangent sheaf. An element $\theta \in \mathrm{H}^{1}\left(\mathrm{Z}, \Theta_{\mathrm{Z}}\right)$ is obstructed if there are no deformations $\mathscr{B} \longrightarrow \Delta=\{\mathrm{t} \in \mathbb{C}:|t|<\varepsilon\}$ of Z such that the image of Kodaira-Spencer map $\rho\left[\frac{\delta}{\delta t}\right]$ is θ. A complex manifold Z is obstructed if there is an element θ which is obstructed. This is also equivalent to that the Kuranishi space of Z is not smooth.

In the case where Z is a surface (i.e. $\operatorname{dim} Z=2$), examples of obstructed surfaces are given by (as far as I know), Kas [10], Burns-Wahl [2], Horikawa [8], Pinkham [16] and Catanese [3]. Except for Horikawa's examples, all examples arise from the minimal resolution of surfaces with rational double points.

To be more precise, let V be a surface with only ratinal double points $p=\left\{p_{1}, \ldots, p_{\ell}\right\}, r: X \longrightarrow V$ the minimal resolution and $E=r^{-1}(p)$ the exceptional divisor.

Burns-Wahl showed that there exists a natural inclusion $H_{E}^{1}\left(\Theta_{X}\right) \longrightarrow H^{1}\left(\Theta_{X}\right)$ where $H_{E}^{1}\left(\Theta_{X}\right)$ is the local cohomology group with support E and they studied the contributions of elements of $H_{E}^{1}\left(\Theta_{X}\right)$ to the deformation functor D_{X} of X. Moreover they showed there is a morphism of the deformation functors $\mathrm{D}_{\mathrm{X}} \longrightarrow \mathrm{D}_{\mathrm{V}}$ which fits into the commutative diagram: ([2], [16])

Here L_{X} and L_{V} are local deformation functors of small neighborhoods of E and P and the mophism $L_{X} \longrightarrow L_{V}$ is obtained by blowdowns. Since $L_{X} \longrightarrow L_{V}$ is well understood by a theory of Brieskorn, one can describe the functor D_{X} or the Kuranishi space of X by D_{V} and the morphism $\mathrm{D}_{\mathrm{V}} \longrightarrow \mathrm{L}_{\mathrm{V}}$. From the theory of deformation, we have an exact sequence

$$
\begin{gather*}
0 \longrightarrow \mathrm{H}^{1}\left(\mathrm{~V}, \Theta_{\mathrm{V}}\right) \longrightarrow \mathrm{T}_{\mathrm{V}}^{1} \longrightarrow \mathrm{H}^{0}\left(\mathrm{~V}, \mathscr{S}_{\mathrm{V}}^{1}\right) \xrightarrow{\mathrm{ob}} \mathrm{H}^{2}\left(\mathrm{~V}, \Theta_{\mathrm{V}}\right) \tag{0.2}\\
\mathrm{D}_{\mathrm{V}}(\mathbb{C}[\mathrm{t}]) \quad \mathrm{L}_{\mathrm{V}}(\mathbb{C}[\mathrm{t}])
\end{gather*}
$$

where $\mathbb{C}[t]=\mathbb{C}[t] / t^{2}$ and $D_{V}(\mathbb{C}[t])$ are the Zariski tangent spaces of functors.

From (0.1) and (0.2), one can show that if ob is non-zero map X is obstructed. (cf. [10], [2] and [16]). Using this result, Burns-Wahl [2] and Kas [10] gave many examples of obstructed surfaces X when the singularities of the surfaces V are only ordinary double ($=A_{1}$) points.

Recently, using the result (0.1) and a description of the dual of the map ob in (0.2) (due to Kas [10] and Pinkham [16]), Catanese constructed examples of surfaces of general type whose Kuranishi spaces are isomorphic to the product $T \times S$ of smooth schemes T and nilpotent schemes S . (cf. [3].) These examples contain the former examples of Kas and Miranda.

To generalize these results in [2], [10], [16] and [3] to higher dimensional varieties, we will introduce a kind of n-dimensional singularity which is a generalization of rational double points. A complex space S has equisingular rational double points (RDP) along a subvariety B of codimension 2 in S if for each point $p \in B$, the germ (S, p) is isomorphic to the germ (B, p) \times (rational double points). These types of singularities often appear when one takes a quotient variety or a double covering of a smooth variety.

Let V be a compact complex space of dimension $\mathrm{n} \geq 2$ all of whose singularities are equisingular RDP and set $B=$ support of Sing. V. If one wants to generalize the result (0.1) to the case where $n \geq 3$, one should define a suitable local deformation functor L_{V} of singularity. But since $\operatorname{dim} B \geq 1$, some global structures of B have to make some affects on L_{V} and I do not know what is the reasonable definition of L_{V} and how can one generalize the results (0.1) for such singular varieties.

Since these difficulties are not overcomed, (as far as I know), in this paper, we make very strong global assumptions on V . That is, V is a double covering of a smooth proper
variety Y whose branched locus is a divisor $D=D_{1}+D_{2}$ where D_{1} and D_{2} are smooth and intersecting each other transversally. In this case, the support of Sing. V is a smooth subvariety B which is isomorphic to $D_{1} \cap D_{2}$ and V has equisingular A_{1} points along B. Moreover, one can obtain a unique resolution $r: X \longrightarrow V$. Though our objects V and X are very simple, these give many examples of obstructed manifolds.

In order to mention the statement of our main theorem (Theorem 6.1), we shall give some notations and results. Let E be the exceptional divisor of $\mathrm{r}: \mathrm{X} \longrightarrow \mathrm{V}$. Then, as in 2 dimensional case, one has an inclusion $H_{E}^{1}\left(\Theta_{X}\right) \longrightarrow H^{1}\left(\Theta_{X}\right)$. Moreover we have an isomorphism $H_{E}^{1}\left(\Theta_{X}\right) \cong H^{0}\left(B, L_{B}\right)$ where L_{B} is a line bundle on B. On the other hand, we have the exact sequence (0.2) for V and an isomorphism $H^{0}(V, \overbrace{V}^{1}) \cong H^{0}\left(B, L_{B}^{2}\right)$. Considering an element $\bar{\phi} \in \mathrm{H}^{0}\left(\mathrm{~B}, \mathrm{~L}_{\mathrm{B}}\right)$ as an element of $\mathrm{H}^{1}\left(\Theta_{\mathrm{X}}\right)$, we construct a deformation $\eta_{1}: \mathscr{S} \longrightarrow \mathrm{S}_{1}=\operatorname{Spec}\left(\mathbb{C}[\mathrm{t}] / \mathrm{t}^{2}\right)$ of X . Then we have the following

Main Theorem: (Theorem 6.1.) The deformation $\eta_{1}: \mathscr{L} \longrightarrow \mathrm{S}_{1}$ can be extended to a deformation over $S_{2}=\operatorname{Spec}\left(\mathbb{C}[t] / t^{3}\right)$ if and only if $\underline{o b}\left(\bar{\phi}^{2}\right)=0$ where $\underline{\mathrm{ob}}$ is defined as in (0.2).

This theorem shows that the primary obstruction of the element $\bar{\phi} \in H^{0}\left(B, L_{B}\right)$ is given by $\mathrm{ob}\left(\phi^{2}\right)$ up to nonzero constant. (cf. Corollary 6.2.).

Moreover we can construct examples of Y and $\mathrm{D}_{1}, \mathrm{D}_{2}$ such that for the corresponding V the obstruction map ob is nontrivial on the image of the square map $H^{0}\left(B, L_{B}\right) \longrightarrow H^{0}\left(B, L_{B}^{2}\right)$. Thus, by Main Theorem, the corresponding resolution X is obstructed.

We remark that there exist examples of compact complex manifolds of dimension $\mathrm{n} \geq 3$ whose Kuranishi spaces are not reduced and which are not products of Catanese's examples and some other complex manifolds. We will discuss such examples elsewhere . (See § 8.)

The organization of this paper is as follows. § 1 is a review from deformation theory of complex spaces. § 2 is definition of double cover V and its resolution X which are main objects in this paper. In § 3, we will generalize some results in Burns-Wahl [2] and Wahl [19] and compute the local cohomology group $H_{E}^{1}\left(\Theta_{X}\right)$. In §4, we will construct the first order deformations of X corresponding to elements of $H_{E}^{1}\left(\Theta_{X}\right)$ by using Cech cocycles. In § 5, the first obstruction map ob is introduced and calculated by Cech cocycles. Using the results in $\S 1 _\S 5$, in $\S 6$, we prove our Main Theorem 6.1. After we study the first obstruction map ob more carefully in § 7, in § 8, we will give two kinds of examples of obstructed manifolds of dimension ≥ 2.

Acknowledgements. The author would like to thank Professors Miyajima and A. Fujiki for helpful discussions. Professor F. Catanese kindly informed me of his results in [3] and discussions with him at Max-Planck-Institut in Bonn gave some improvements to this paper. Many discussions on the deformation theory with Professor S. Zucker at MPI gave a motivation of this paper. The author would like to thank them for their help. Finally, the author is grateful to the Max-Planck-Institut für Mathematik in Bonn for their hospitality.

§ 1 Tangent cohomology and deformation theory.

In this section, we shall review some facts about tangent cohomology and deformations of compact complex spaces which we will use in the later sections. For details, one may refer to the articles [15], [6] and [5]. (A good summary can be found in [20].)
1.1. Let Z be a compact complex space and let $\mathscr{L}_{Z} \cdot$ denote the cotangent complex of Z which is defined as an object of derived category. If we denote by Ω_{Z}^{1} the sheaf of Kähler differential of Z , we have a natural morphism $\mathscr{L}_{\mathrm{Z}}^{\cdot} \rightarrow \Omega_{\mathrm{Z}}^{1}$. To describe the local deformation of Z, the cohomology groups of the cotangent complex are most important. As in [15], [6] and [20], we define for $\mathrm{i} \in \mathbb{N}$

$$
\begin{align*}
& \mathrm{T}_{Z}^{\mathrm{i}}=\operatorname{Ext}_{o}^{\mathrm{i}}\left(\mathscr{L}_{Z}^{\cdot}, a_{Z}\right) \tag{1.1}\\
& \mathscr{Z}_{Z}^{\mathrm{i}} \equiv \operatorname{soct}_{O_{Z}}^{\mathrm{i}}\left(\mathscr{L}_{Z} \cdot, a_{Z}\right) .
\end{align*}
$$

The objects $\mathrm{T}_{\mathrm{Z}}^{\mathrm{i}}$ and $\mathscr{S}_{\mathrm{Z}}^{\mathrm{i}}$ are called the tangent cohomology group and sheaf. The sheaf $\mathscr{S}_{Z}^{\mathrm{i}}$ is coherent to Ω_{Z} - module for all $\mathfrak{i} \in \mathbb{N}$. Moreover we have the spectral sequence

$$
\begin{equation*}
\mathrm{E}_{2}^{\mathrm{pq}}=\mathrm{H}^{\mathrm{p}}\left(\mathrm{Z}, \mathscr{S}_{\mathrm{Z}}^{\mathrm{q}}\right) \Rightarrow \mathrm{T}_{\mathrm{Z}}^{\mathrm{p}+\mathrm{q}} \tag{1.3}
\end{equation*}
$$

1.2. A deformation of Z over a germ ($\mathrm{S}, 0$) of complex space is a Cartesian diagram

 of complex spaces (resp. sets). For any base change ($\mathrm{T}, 0) \longrightarrow(\mathrm{S}, 0)$, one gets a deformation $\mathscr{Z} \times \mathrm{T} \rightarrow(\mathrm{T}, 0)$. Thus we get the deformation functor S

$$
\begin{equation*}
\mathrm{D}_{\mathrm{Z}}: \mathscr{\iota}_{0} \longrightarrow \mathscr{H} \text {.ts. } \tag{1.4}
\end{equation*}
$$

This functor can be extended to the category of formal complex spaces.

Let us set $\operatorname{S} \mu=\operatorname{Spec}\left(\mathbb{C}[\mathrm{t}] / \mathrm{t}^{\mu+1}\right)$ for $\mu \in \mathbb{N}$ and let $\mathbf{u}: \mathscr{B} \longrightarrow(\mathrm{T}, 0)$ be a deformation of Z . For any morphism $\left(\mathrm{S}_{1}, 0\right) \longrightarrow(\mathrm{T}, 0)$, one gets a deformation $\underset{\mathrm{T}}{\mathrm{F}} \mathrm{S}_{1} \longrightarrow\left(\mathrm{~S}_{1}, 0\right)$. Thus we can define

$$
\begin{equation*}
\rho: \Theta_{\mathrm{T}, 0}=\operatorname{Hom}\left(\left(\mathrm{S}_{1}, 0\right),(\mathrm{T}, 0)\right) \longrightarrow \mathrm{D}_{\mathrm{Z}}\left(\mathrm{~S}_{1}\right) . \tag{1.5}
\end{equation*}
$$

Here $\Theta_{\mathrm{T}, 0}$ denotes the Zariski tangent space of ($\mathrm{T}, 0$). This map ρ is called the Kodaira-Spencer map.

Definition 1.1. A deformation $\mathscr{Z} \longrightarrow(T, 0)$ of Z is called semiuniversal (or simply versal) if
(i) the Kodaira-Spencer map ρ in (1.5) is bijective,
(ii) any deformations of Z are induced by some morphism $(S, 0) \longrightarrow(T, 0)$.

It follows from the definition that two semiuniversal deformation of Z (after shrinking the parameter spaces) are isomorphic to each other and the parameter space of the semiuniver-
sal deformation is uniquely determined by Z as a germ of a complex space. Hence we denote by $\mathrm{Def}_{\mathrm{Z}}$ the germ of this parameter space.

By a work of Kuranishi, the semiuniversal deformation of Z exists if Z is smooth and Def $_{Z}$ is called the Kuranishi space. Later, Grauert, Forster-Knorr [6] and Palamodov [15] proved the existence of the semiuniversal deformations of all compact complex spaces. Due to Palamodov [15], we have the following theorem.

Theorem 1.2. ([15], Theorem 5)
Let Z be a compact complex space and T_{Z}^{i} the tangent cohomology group of Z. Then we have the following:
(1) T_{Z}^{1} is the Zariski tangent space of Def_{Z}, (i.e. $T_{Z}^{1} \cong D_{Z}\left(S_{1}\right)$)
(2) There exists a germ of holomorphic map

$$
\mathrm{q}: \mathrm{T}_{\mathrm{Z}}^{1} \longrightarrow \mathrm{~T}_{\mathrm{Z}}^{2}
$$

defined near 0 such that $\left(\operatorname{Def}_{Z}, 0\right)$ is isomorphic to $\left(q^{-1}(0), 0\right)$ as a germ.
(3) Let $\mathrm{q}=\sum_{\mathrm{k}=1}^{\infty} \mathrm{q}_{\mathrm{k}}$ be its extension in a series of homogeneous polynomials. Then $\mathrm{q}_{1} \equiv 0$ and q_{2} is the restriction of the Lie bracket $\mathrm{T}_{\mathrm{Z}}^{1} \otimes \mathrm{~T}_{\mathrm{Z}}^{1} \longrightarrow \mathrm{~T}_{\mathrm{Z}}^{2}$ to the diagonal.
1.3. We will restrict to the following situation. Let Z be a compact complex space which is embedded as a hypersurface in a smooth variety W . In this case, if I_{Z} denotes the ideal sheaf of Z, we have the following exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathrm{I}_{\mathrm{Z}} / \mathrm{I}_{\mathrm{Z}}^{2} \longrightarrow \Omega_{\mathrm{W} \mid \mathrm{Z}}^{1} \longrightarrow \Omega_{\mathrm{Z}}^{1} \longrightarrow 0 \tag{1.6}
\end{equation*}
$$

The cotangent complex $\mathscr{L}_{\mathrm{Z}}^{\cdot}$ is isomorphic to $\mathrm{I}_{\mathrm{Z}} / \mathrm{I}_{\mathrm{Z}}^{2} \longrightarrow \Omega_{\mathrm{W} \mid \mathrm{Z}}^{1}$, thus we have

$$
\begin{gather*}
\mathrm{T}_{Z}^{\mathrm{i}}=\operatorname{Ext}^{\mathrm{i}}\left(\Omega_{Z}^{1}, Q_{Z}\right) \tag{1.7}\\
\mathscr{X}_{Z}^{\mathrm{i}}=\operatorname{sat}_{O_{Z}^{\mathrm{i}}}\left(\Omega_{Z}^{1}, a_{Z}\right)
\end{gather*}
$$

Dualizing (1.6) yields an exact sequence

where we set $\Theta_{\mathrm{Z}}=\mathscr{X}_{\mathrm{Z}}^{0}=\mathscr{H a m}\left(\Omega_{\mathrm{Z}}^{1}, Q_{\mathrm{Z}}\right)$.

Lemma 1.3. Let ZCCW be as above.
(1) $\mathscr{S}_{\mathrm{Z}}{ }^{1}=\operatorname{coker}\left(\Theta_{\mathrm{W} \mid \mathrm{Z}} \longrightarrow\left(\mathrm{I}_{\mathrm{Z}} / \mathrm{I}_{\mathrm{Z}}{ }^{2}\right)^{*}\right)$
(2) $\mathscr{X}_{Z}^{\mathrm{i}}=0 \quad$ if $\mathrm{i} \geq 2$.
(3) There exists an exact sequence

$$
\begin{aligned}
& 0 \longrightarrow \mathrm{H}^{1}\left(\mathrm{Z}, \Theta_{\mathrm{Z}}\right) \longrightarrow \mathrm{T}_{\mathrm{Z}}^{1} \longrightarrow \mathrm{H}^{0}\left(\mathrm{Z}, \mathscr{S}_{\mathrm{Z}}^{1}\right) \longrightarrow \mathrm{H}^{2}\left(\mathrm{Z}, \Theta_{\mathrm{Z}}\right) \\
& \longrightarrow \mathrm{T}_{\mathrm{Z}}^{2} \longrightarrow \mathrm{H}^{1}\left(\mathrm{Z}, \mathscr{J}_{\mathrm{Z}}^{1}\right)
\end{aligned}
$$

Proof. The assertions (1) and (2) follow directly from (1.6) and the locally freeness of $\Omega_{\mathrm{W} \mid \mathrm{Z}}^{1}$ and $\mathrm{I}_{\mathrm{Z}} / \mathrm{I}_{\mathrm{Z}}^{2}$. The assertion (3) follows from the spectral sequence (1.3) and (2).

§2. Singular double covering V and its resolution X .

In this section, we will introduce a special variety V which has singularities along a subvariety of codimension 2 . We will also introduce a "minimal" resolution X of V and we will calculate the tangent cohomology groups and sheaves of V and X .
2.1. From this section to the end of this paper, we will consider the following quadruplet $\left(\mathrm{Y}, \mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{~L}\right)$ which consists of:
(i) $\quad \mathrm{Y}:$ a smooth projective variety over \mathbb{C} of dimension $\mathrm{n} \geq 2$,
(ii) $\quad D_{1}, D_{2}$: smooth divisors on Y intersecting transversaly each other,
(iii) L : a line bundle on Y satisfying that $L^{\otimes 2}=L_{1} \otimes L_{2}$ where L_{1} and L_{2} are line bundles corresponding to D_{1} and D_{2} respectively.

For each quadruplet ($\mathrm{Y}, \mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{~L}$) of (2.1), we can define the double covering $\varphi: \mathrm{V} \longrightarrow \mathrm{Y}$ as follows.

Let $\pi: \mathbb{P}=\mathbb{P}\left(Q_{Y} \oplus \mathrm{~L}\right) \longrightarrow Y$ be the projective bundle associated to $\AA_{Y} \oplus \mathrm{~L}$ over $Y, \mathscr{q}_{p}(1)$ the tautological line bundle of \mathbb{P}, and $y \in H^{0}\left(\mathbb{P}, q_{p}(1)\right)$ and $w \in H^{0}\left(\mathbb{P}, \pi^{*}\left(L^{-1}\right) \otimes q_{\mathbb{p}}(1)\right)$ sections corresponding to the natural inclusions $q_{Y} \longrightarrow \sigma_{Y} \oplus L$ and $L \longrightarrow \sigma_{Y} \oplus L$ respectively. Moreover, let $f \in H^{0}\left(Y, L_{1}\right)$ and $g \in H^{0}\left(Y, L_{2}\right)$ denote the sections defining the divisors D_{1} and D_{2} respectively. Considering $\mathrm{f} \cdot \mathrm{g}$ as a section in $\mathrm{H}^{0}\left(\mathbb{P}, \pi^{*}\left(\mathrm{~L}^{2}\right)\right)$, we can define section of $\mathcal{q}_{\mathrm{p}}(2)$

$$
\begin{equation*}
H=y^{2}-f \cdot g \cdot w^{2} \in H^{0}\left(\mathbb{P}, \ell_{p}(2)\right) . \tag{2.2}
\end{equation*}
$$

Then we define the hypersurface

$$
\begin{equation*}
V=\{\mathrm{H}=0\} \longrightarrow \mathbb{P} . \tag{2.3}
\end{equation*}
$$

The natural projection $\pi: \mathrm{Z} \longrightarrow \mathrm{Y}$ induces the morphism $\varphi: \mathrm{V} \longrightarrow \mathrm{Y}$ of degree 2 .

It follows from the definition of V that:
(i) $\quad \mathrm{V}$ is a double cover of Y branched along the divisor $\mathrm{D}=\mathrm{D}_{1}+\mathrm{D}_{2}$,
(ii) $\quad \varphi_{*} q_{V} \cong \sigma_{Y} \oplus L^{-1}$,
(iii) $\quad \mathrm{V}$ is a normal projective variety whose singularities are analytically isomorphic to $\left(y^{2}-x z=0\right) \times(\operatorname{smooth}(n-2)-\operatorname{dim}$. variety),
(iv) the singular locus of V coincides with the subvariety

$$
B=\{y=f=g=0\} \subset \mathbb{P}
$$

The subvariety B in (iv) is isomorphic to $\mathrm{D}_{1} \cap \mathrm{D}_{2} \subset \mathrm{Y}$. Thus we will identify B in \mathbb{P} with $\mathrm{D}_{1} \cap \mathrm{D}_{2}$ in Y .

2.2. Tangent cohomology groups of V .

Let V be as in 2.1. We will calculate the tangent cohomology groups $\mathrm{T}_{\mathrm{V}}^{\mathrm{i}}$ and sheaves q_{V}^{i}.

Proposition 2.1. Let V be as in 2.1 and $B=\operatorname{Sing} V$. Then we have the following.
(1) $\mathscr{q}^{1}=L^{2} \otimes \sigma_{Y} \sigma_{B}$ as a sheaf of B.
(2) $\mathscr{V}_{V}^{i}=0$ for $i \geq 2$.

Proof. From lemma 1.3, we have an isomorphism

$$
\mathscr{V}_{V}^{1} \cong \operatorname{coker}\left(\Theta_{\mathbb{P} \mid \mathrm{V}} \xrightarrow{\alpha} N_{V}\right)
$$

where $\mathrm{N}_{\mathrm{V}}=\left(\mathrm{I}_{\mathrm{V}} / \mathrm{I}_{\mathrm{V}}^{2}\right)^{*}$. Since V is a hypersurface and $\wp_{\mathrm{p}}(\mathrm{V}) \cong \wp_{\mathrm{p}}(2), \mathrm{N}_{\mathrm{V}}$ is the line bundle isomorphic to $\mathscr{p}^{(2)} \mid \mathrm{V} \cong q_{V}(2)$. Let $\mathrm{I}_{\mathrm{B}}=\langle\mathrm{y}, \mathrm{f}, \mathrm{g}\rangle$ denote the ideal of B in \mathbb{P}. Then by a local calculation, one can easily see that the image of α coincides with $\mathrm{I}_{\mathrm{B}} \mathrm{N}_{\mathrm{V}}$. Thus we have an isomorphism

$$
\begin{equation*}
\mathscr{q}^{1} \cong N_{V} \Theta_{V} O_{B} \cong q_{p}(2){ }_{Q_{p}} O_{B} . \tag{2.4}
\end{equation*}
$$

Identifying Y with a section $\{y=0\}$ in \mathbb{P}, we also get $\mathcal{q}_{\mathbb{P}}(2) \otimes \mathcal{Q}_{Y} \cong L^{2}$. Combining this with (2.4), we have

$$
\mathscr{q}_{V}^{1} \cong q_{P}(2) \otimes_{Q_{P}} Q_{Y}^{\otimes} Q_{Y} Q_{B} \cong L^{2} \otimes_{Q_{Y}} Q_{B}
$$

The assertion (2) follows directly from Lemma 1.3, (2). q.e.d.
2.3. Let V be as in 2.1. By assumption on the quadruplet ($\mathrm{Y}, \mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{~L}$) in (2.1), if we
once blow up V along $\mathrm{B}=$ Sing V , we obtain a smooth projective variety X . Let us denote by
$\mathrm{r}: \mathrm{X} \longrightarrow \mathrm{V}$
this resolution and let E be the exceptional divisor of r .

Since X is smooth, the tangent cohomology groups $\mathrm{T}_{\mathrm{X}}^{\mathrm{i}}$ are isomorphic to $H^{i}\left(X, \Theta_{X}\right)$.

Next we will see that X can be embedded into a projective bundle over Y . Let $\boldsymbol{\delta}^{\prime}=\mathcal{O}_{Y} \oplus \mathrm{~L} \otimes \mathrm{~L}_{1}^{-1}$ be the rank 2 vector bundle over Y and $\tau: \mathbb{P}^{\prime}=\mathbb{P}\left(\boldsymbol{\xi}^{\prime}\right) \longrightarrow \mathrm{Y}$ the associated projective bundle. Let $x \in H^{0}\left(\mathbb{P}{ }^{\prime}, O_{\mathcal{P}}^{\prime}(1)\right)$ and $z \in H^{0}\left(\mathbb{P}^{\prime}, \tau^{*}\left(L^{-1} \otimes L_{1}\right) \otimes{\underset{\mathbb{P}}{ }}^{\prime}(1)\right)$ denote the section corresponding to the natural inclusions $Q_{Y} \longrightarrow \mathscr{\delta}^{\prime}$ and $\mathrm{L} \otimes \mathrm{L}_{1}^{-1} \longrightarrow \delta^{\prime}$ respectively. Then we have the section

$$
\begin{equation*}
\mathrm{G}=\mathrm{fx}^{2}-\mathrm{gz}^{2} \in \mathrm{H}^{0}\left(\mathbb{P}^{\prime}, \mathrm{O}_{\mathbb{P}}^{\prime}(2) \otimes \tau^{*}\left(\mathrm{~L}_{1}\right)\right) \tag{2.6}
\end{equation*}
$$

It is easy to see that the hypersurface $\{G=0\}$ in \mathbb{P}^{\prime} is isomorphic to X and the exceptional divisor E of r in (2.5) is given by $X \cap\{f=g=0\}=X \cap \tau^{-1}(B):$ From this fact, we have the following proposition.

Proposition 2.2. Let EC X be as above.
(1) The \mathbb{P}^{1}-bundle $\tau_{\mid \mathrm{E}}: \mathrm{E} \longrightarrow \mathrm{B}$ is isomorphic to $\mathbb{P}\left(\sigma_{\mathrm{B}} \oplus \mathrm{L} \otimes \mathrm{L}_{1}^{-1} \otimes \sigma_{\mathrm{B}}\right) \longrightarrow \mathrm{B}$.
(2) Let N_{E} denote the normal bundle of E in X. Then we have the isomorphism

$$
\mathrm{N}_{\mathrm{E}} \cong \mathcal{O}_{\mathrm{E}}(-2) \otimes \tau^{*}\left(\mathrm{~L}_{2}\right)
$$

Here $\mathrm{O}_{\mathrm{E}}(1)$ denotes the tautological line bundle of $\tau: \mathrm{E} \longrightarrow \mathrm{B}$.

The proof is easy and left for the reader.

Remark 2.3. There exists an elementary transformation $\mathrm{e}: \mathbb{P}^{\prime} \longrightarrow \mathbb{P}$. It is easy to check that the resolution $\mathrm{r}: \mathrm{X} \longrightarrow \mathrm{V}$ is induced by this birational map e.

§3 Local cohomology group $\mathrm{H}_{\mathrm{E}}^{1}\left(\mathrm{X}, \Theta_{\mathrm{X}}\right)$ and its contribution.

Let X and E be as in 2.2. In this section we will compute the local cohomology group $H_{E}^{1}\left(X, \Theta_{X}\right)$ and its contribution to global deformations of X. Moreover we will consider the relation between deformations of X and those of V .

We note that if $\operatorname{dim} \mathrm{V}=2, \mathrm{~V}$ has only isolated ($\mathrm{A}_{1}-$) singularities. In this case, Burns-Wahl [2] and Wahl [19] have dealt with these problems in the context of the deformation theory of normal two-dimensional singularity. Our work in this section is based on their works and may be viewed as a generalization to special non-isolated singularities.
3.1. Let V be as defined in 2.1 and $\mathrm{r}: \mathrm{X} \longrightarrow \mathrm{V}$ its resolution defined in 2.2. Recall that we set $B=\operatorname{Sing} V$ and $E=r^{-1}(B)$ denote the exceptional divisor of r. In this section, we will consider V and X as complex spaces and all cohomology groups are computed by the analytic topology.

Lemma 3.1.
(1) $\mathrm{j}_{*}\left(\Theta_{\mathrm{V}-\mathrm{B}}\right)=\Theta_{\mathrm{V}}$ where $\mathrm{j}: \mathrm{V}-\mathrm{B} \longrightarrow \mathrm{V}$ is the inclusion.
(2) $\mathrm{r}_{*} \Theta_{\mathrm{X}} \cong \Theta_{\mathrm{V}}$.

Proof.: (1): Since V has only quotient singularities, this follows from a general argument (cf. [7]). (2): Since $r: X \longrightarrow V$ is the blowing-up of the maximal ideal I_{B} of B, we have this assertion.

From this lemma, we can prove the following

Proposition 3.2. (cf. [2], 1.1 and [19] Prop. 1.8.)
Let $\mathrm{X}, \mathrm{E}, \mathrm{V}$ be as above.
(1) There is a natural inclusion $H_{E}^{1}\left(X, \Theta_{X}\right) \longrightarrow H^{1}\left(X, \Theta_{X}\right)$
(2) We have the following commutative diagram with exact rows:

$$
\left.\begin{array}{rl}
0 & \longrightarrow \mathrm{H}_{\mathrm{E}}^{1}\left(\mathrm{X}, \Theta_{\mathrm{X}}\right) \tag{3.1}
\end{array}\right) \mathrm{H}^{1}\left(\mathrm{X}, \Theta_{\mathrm{X}}\right) \longrightarrow \mathrm{H}^{1}\left(\mathrm{X}-\mathrm{E}, \Theta_{\mathrm{X}}\right) .
$$

Proof: (1) From the long exact sequence for local cohomology, we set

$$
H^{0}\left(X, \Theta_{X}\right) \longrightarrow H^{0}\left(X-E, \Theta_{X}\right) \longrightarrow H_{E}^{1}\left(X, \Theta_{X}\right) \longrightarrow H^{1}\left(X, \Theta_{X}\right)
$$

Set $U=X-E=V-B$. By lemma, one obtains an isomorphism $H^{0}\left(X, \Theta_{X}\right) \cong H^{0}\left(V, r_{*} \Theta_{X}\right) \cong H^{0}\left(V, \Theta_{X}\right)$. Thus it suffices to show that $H^{0}\left(\mathrm{~V}, \Theta_{\mathrm{V}}\right) \longrightarrow \mathrm{H}^{0}\left(\mathrm{U}, \Theta_{\mathrm{V}}\right)$ is surjective. The local cohomology sequence on V gives

$$
H^{0}\left(V, \Theta_{V}\right) \longrightarrow H^{0}\left(U, \Theta_{V}\right) \longrightarrow H_{B}^{1}\left(V, \Theta_{V}\right)
$$

Let $\mathscr{H}_{\mathrm{B}}^{\mathrm{i}}\left(\Theta_{\mathrm{V}}\right)$ denote the local cohomology sheaves of Θ_{V}. Since $\mathrm{j}_{*}\left(\Theta_{\mathrm{V}-\mathrm{B}}\right)=\Theta_{\mathrm{V}}$, one obtains $\mathscr{H}_{\mathrm{V}}^{0}\left(\Theta_{\mathrm{V}}\right)=\mathscr{H} \mathrm{V}^{1}\left(\Theta_{\mathrm{V}}\right)=0$ (see [9], §1). From the spectral sequence, we have $H_{B}^{1}\left(V, \Theta_{V}\right)=0$. Thus we get the assertion (1).
(2) Let $\mathscr{L}_{\mathrm{X}} / \mathrm{V}$ denote the cotangent complex of the morphism $\mathrm{r}: \mathrm{X} \longrightarrow \mathrm{V}$. We get a short exact sequence in the derived category

$$
0 \longrightarrow \mathbb{L}_{\mathrm{r}^{*}} \mathscr{L}_{V} \cdot \longrightarrow \mathscr{L}_{\mathrm{x}} \cdot \mathscr{L}_{\mathrm{x}} \dot{\mathrm{~V}} \longrightarrow 0
$$

(cf. [20]). This induces the exact sequence of cohomology

$$
\begin{aligned}
\mathrm{T}_{\mathrm{X} / \mathrm{V}}^{1} & \longrightarrow \mathrm{~T}_{\mathrm{X}}^{1} \longrightarrow \operatorname{Ext}^{1}\left(\mathbf{L}_{\mathrm{r}}^{*} \mathscr{L}_{\mathrm{V}}^{\cdot}, 0_{\mathrm{X}}\right) \longrightarrow \mathrm{T}_{\mathrm{X} / \mathrm{V}}^{2} \\
& { }^{\mid 1}{ }^{1}\left(\mathrm{X}, \Theta_{\mathrm{X}}\right)
\end{aligned}
$$

Since V has only rational singularities, we can see $\mathbb{R} r_{*} O_{X} \cong q_{V}$ (in the derived category). By this, we get (by projection formula)

$$
\operatorname{Ext}^{1}\left(\mathbb{E}^{*} \mathscr{L}_{V} \cdot, O_{x}\right) \cong \operatorname{Ext}^{1}\left(\mathscr{L}_{V} \cdot, \mathbb{R} r_{*} O_{x}\right) \cong \operatorname{Ext}^{1}\left(\mathscr{L}_{V} \cdot, Q_{V}\right) \cong T_{V}^{1}
$$

This defines $\beta: \mathrm{T}_{\mathrm{X}}^{1} \longrightarrow \mathrm{~T}_{\mathrm{V}}^{1}$.

Next we will show that there exists a natural inclusion

$$
\begin{gathered}
\mathrm{T}_{\mathrm{V}}^{1} c \mathrm{H}^{0}\left(\mathrm{~V}-\mathrm{B}, \Theta_{\mathrm{V}}\right) \text {. On } \mathrm{U}=\mathrm{V}-\mathrm{B}, \text { we have the exact sequence } \\
0 \longrightarrow \Theta_{\mathrm{V} \mid \mathrm{U}} \longrightarrow \Theta_{\mathbb{P} \mid \mathrm{U}} \longrightarrow \mathrm{~N}_{\mathrm{V} \mid \mathrm{U}} \longrightarrow 0
\end{gathered}
$$

(cf. 2.2). This gives the exact sequence of cohomology

$$
\begin{equation*}
0 \longrightarrow H^{0}\left(\mathrm{U}, \Theta_{\mathrm{V}}\right) \longrightarrow \mathrm{H}^{0}\left(\mathrm{U}, \Theta_{\mathbb{P} \mid \mathrm{V}}\right) \longrightarrow \mathrm{H}^{0}\left(\mathrm{U}, \mathrm{~N}_{\mathrm{V}}\right) \xrightarrow{\alpha} \mathrm{H}^{1}\left(\mathrm{U}, \Theta_{\mathrm{V}}\right) \tag{3.2}
\end{equation*}
$$

Since $\Theta_{\mathbb{P} \mid \mathrm{V}}$ and N_{V} are free sheaves on V and V is normal, we have $j_{*}\left(\Theta_{\mathbb{P} \mid \mathrm{U}}\right)=\Theta_{\mathbb{P} \mid V}$ and $\mathrm{j}_{*}\left(\mathrm{~N}_{\mathrm{V} \mid \mathrm{U}}\right)=\mathrm{N}_{\mathrm{V}}$. Together with $\mathrm{j}_{*}\left(\Theta_{\mathrm{U}}\right)=\Theta_{\mathrm{V}}$, from (3.2), we get the exact sequence

$$
0 \longrightarrow \mathrm{H}^{0}\left(\mathrm{~V}, \Theta_{\mathrm{V}}\right) \longrightarrow \mathrm{H}^{0}\left(\mathrm{~V}, \Theta_{\mathbb{P} \mid \mathrm{V}}\right) \longrightarrow \mathrm{H}^{0}\left(\mathrm{~V}, \mathrm{~N}_{\mathrm{V}}\right) \xrightarrow{\alpha} \mathrm{H}^{1}\left(\mathrm{~V}, \Theta_{\mathrm{V}}\right) .
$$

Since the dual of cotangent complex $\mathscr{L}_{V}{ }^{*}$ is represented by the complex $\Theta_{\mathbb{P}} \mid V \longrightarrow \mathrm{~N}_{\mathrm{V}}$, the image of α is nothing but $\mathrm{T}_{\mathrm{V}}^{1}$. Thus we obtain the assertion. q.e.d.
3.2. We will compute the local cohomology group $\mathrm{H}_{\mathrm{E}}^{1}\left(\mathrm{X}, \Theta_{\mathrm{X}}\right)$. The result is as follows.

Proposition 3.3. Let X, E be as above. Then we have the following isomorphism

$$
\begin{equation*}
H_{E}^{1}\left(X, \Theta_{X}\right) \cong H^{1}\left(E, N_{E}\right) \cong H^{0}\left(B, L_{B}\right) \tag{3.3}
\end{equation*}
$$

Here N_{E} denotes the normal bundle of E in X and L_{B} denotes the line bundle $\mathrm{L} \mathrm{O}_{\mathrm{Y}} \mathrm{O}_{\mathrm{B}}$ on BCY.

Proof: Let

$$
\begin{equation*}
H_{[E]}^{1}\left(X, \Theta_{X}\right) \cong \frac{1 \mathrm{im}}{\mathrm{~m}} \operatorname{Ext}^{1}\left(O_{\mathrm{mE}}, \Theta_{X}\right) \tag{3.4}
\end{equation*}
$$

denote the algebraic local cohomology group where $O_{\mathrm{mE}} \cong \Omega_{\mathrm{X}} / \Omega_{\mathrm{X}}(-\mathrm{mE})$. Since E can be contracted to $B=\operatorname{Sing} V$ and $\operatorname{codim}(B C V)=2$, we can check that the local
cohomology group $\mathrm{H}_{\mathrm{E}}^{1}\left(\mathrm{X}, \Theta_{\mathrm{X}}\right)$ is isomorphic to the algebraic one. (cf. Proposition 1.6. in [9]). Thus we will compute the algebraic one in (3.4). It is clear that:

$$
\begin{aligned}
& \mathscr{B} \operatorname{cosx} \theta_{\mathrm{X}}\left(\theta_{\mathrm{mE}}, \Theta_{\mathrm{X}}\right)=0 \quad \text { and } \\
& \operatorname{socc}^{1}{\sigma_{\mathrm{X}}}^{\left(\theta_{\mathrm{mE}}, \Theta_{\mathrm{X}}\right)=\Theta_{\mathrm{X}} \otimes \mathrm{~N}_{\mathrm{mE}}}
\end{aligned}
$$

where $\mathrm{N}_{\mathrm{mE}}:=\sigma_{\mathrm{X}}(\mathrm{mE}) / \sigma_{\mathrm{X}}$. Therefore by a spectral sequence we get

$$
\begin{equation*}
\mathrm{H}_{\mathrm{E}}^{1}\left(\mathrm{X}, \Theta_{\mathrm{X}}\right)=\underset{\mathrm{m}}{\lim } \mathrm{H}^{0}\left(\mathrm{mE}, \Theta_{\mathrm{X}} \otimes \mathrm{~N}_{\mathrm{mE}}\right) . \tag{3.5}
\end{equation*}
$$

To compute the right hand side of (3.5), we consider the exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathrm{~N}_{(\mathrm{m}-1) \mathrm{E}} \longrightarrow \mathrm{~N}_{\mathrm{mE}} \longrightarrow{o_{\mathrm{E}}(\mathrm{mE}) \longrightarrow 0 \quad(\mathrm{~m} \geq 1) ~} \tag{3.6}
\end{equation*}
$$

First we claim that for $\mathrm{m} \geq 2$

$$
\begin{equation*}
H^{0}\left(\mathrm{E}, \Theta_{\mathrm{X}} \otimes{\sigma_{\mathrm{E}}}^{(\mathrm{mE}))}=0 .\right. \tag{3.7}
\end{equation*}
$$

Consider the following two exact sequences:

$$
\begin{equation*}
0 \longrightarrow \Theta_{E} \otimes \Theta_{E}(m \mathrm{E}) \longrightarrow \Theta_{X} \otimes \sigma_{E}(\mathrm{mE}) \longrightarrow \Theta_{E}((\mathrm{~m}+1) \mathrm{E}) \longrightarrow 0 \tag{3.8}
\end{equation*}
$$

$$
\begin{equation*}
0 \longrightarrow \Theta_{\mathrm{E} / \mathrm{B}} \otimes \sigma_{\mathrm{E}}(\mathrm{mE}) \longrightarrow \Theta_{\mathrm{E}} \otimes \sigma_{\mathrm{E}}(\mathrm{mE}) \longrightarrow \tau^{*}\left(\Theta_{\mathrm{B}}\right) \otimes \sigma_{\mathrm{E}}(\mathrm{mE}) \longrightarrow 0 \tag{3.9}
\end{equation*}
$$

where $\tau: \mathrm{E} \longrightarrow \mathrm{B}$ is the natural map and $\Theta_{\mathrm{E} / \mathrm{B}}$ is the relative tangent sheaf of τ.

Since by (2) of Proposition 2.2, we have

$$
\begin{gathered}
\sigma_{\mathrm{E}}((\mathrm{~m}+1) \mathrm{E})=\mathrm{N}_{\mathrm{E}}^{\mathrm{m}+1} \cong \sigma_{\mathrm{E}}(-(2 \mathrm{~m}+2)) \otimes \tau^{*}\left(\mathrm{~L}_{2}^{\mathrm{m}+1}\right) \\
\Theta_{\mathrm{E} / \mathrm{B}} \otimes \sigma_{\mathrm{E}}(\mathrm{mE})={\sigma_{\mathrm{E}}(2) \otimes \tau^{*}\left(\mathrm{~L}^{-1} \otimes \mathrm{~L}_{1}\right) \otimes{\sigma_{\mathrm{E}}(-2 \mathrm{~m}) \otimes \tau^{*}\left(\mathrm{~L}_{2}^{\mathrm{m}}\right)}^{=}}^{=\sigma_{\mathrm{E}}(-2(\mathrm{~m}-1)) \otimes \tau^{*}\left(\mathrm{~L}^{-1} \otimes \mathrm{~L}_{1} \otimes \mathrm{~L}_{2}^{\mathrm{m}}\right) .} .
\end{gathered}
$$

Therefore we have

$$
\begin{gathered}
\tau_{*} O_{\mathrm{E}}((\mathrm{~m}+1) \mathrm{E})=0 \quad \text { if } \mathrm{m} \geq 0 \\
\tau_{*}\left(\tau^{*}\left(\Theta_{\mathrm{B}}\right) \otimes{\left.O_{\mathrm{E}}(\mathrm{mE})\right)=0} \quad \text { if } \mathrm{m} \geq 1\right. \\
\tau_{*}\left(\Theta_{\mathrm{E} / \mathrm{B}} \otimes \Omega_{\mathrm{E}}(\mathrm{mE})\right)=0 \quad \text { if } \mathrm{m} \geq 2
\end{gathered}
$$

From these and (3.8), (3.9), we can show that the assertion (3.7) is true. By means of (3.6) and (3.7), we have the isomorphisms

$$
H^{0}\left(\mathrm{mE}, \Theta_{\mathrm{X}} \otimes \mathrm{~N}_{\mathrm{mE}}\right) \cong \mathrm{H}^{0}\left(\mathrm{E}, \Theta_{\mathrm{X}} \otimes \mathrm{~N}_{\mathrm{E}}\right) \text { for } \mathrm{m} \geq 1
$$

Moreover putting $m=1$ in (3.8) and (3.9), one gets

$$
H^{0}\left(E, \Theta_{X} \otimes N_{E}\right) \cong H^{0}\left(E, \Theta_{E} \otimes N_{E}\right) \cong H^{0}\left(E, \Theta_{E / B} \otimes N_{E}\right) .
$$

Therefore we obtain the isomorphism

$$
\mathrm{H}_{\mathrm{E}}^{1}\left(\mathrm{X}, \Theta_{\mathrm{X}}\right) \cong \mathrm{H}^{0}\left(\Theta_{\mathrm{E} / \mathrm{B}} \otimes \mathrm{~N}_{\mathrm{E}}\right)
$$

Moreover from the relative Euler sequence for $\tau: \mathrm{E} \longrightarrow \mathrm{B}$, one has the exact sequence

$$
0 \longrightarrow \mathrm{~N}_{\mathrm{E}} \longrightarrow \tau^{*}(\delta) \otimes{O_{\mathrm{E}}}^{(-1) \otimes \tau^{*}\left(\mathrm{~L}_{2}\right) \longrightarrow \Theta_{\mathrm{E} / \mathrm{B}} \otimes \mathrm{~N}_{\mathrm{E}} \longrightarrow 0}
$$

Since $\tau_{*} O_{\mathrm{E}}(-1)=\mathrm{R}^{1} \tau_{*} O_{\mathrm{E}}(-1)=0$, one can easily see that

$$
H^{0}\left(E, \Theta_{E / B} \otimes N_{E}\right) \cong H^{1}\left(E, N_{E}\right)
$$

Thus we have the isomorphism

$$
H_{E}^{1}\left(X, \Theta_{X}\right) \cong H^{1}\left(E, N_{E}\right)
$$

By Proposition 2.2, one can also check that $\tau_{*} \mathrm{~N}_{\mathrm{E}}=0$ and $R^{1} \tau_{*} N_{E} \cong R^{1} \tau_{*} O_{E}(-2) \otimes L_{2} \otimes \sigma_{B}$. Since $R^{1} \tau_{*} O_{E}(-2) \cong L^{-1} \otimes L_{1} \otimes \sigma_{B}$, we get $\mathrm{R}^{1} \tau_{*} \mathrm{~N}_{\mathrm{E}} \cong \mathrm{L}^{-1} \otimes \mathrm{~L}_{1} \otimes \mathrm{~L}_{2} \otimes \mathrm{O}_{\mathrm{B}} \cong \mathrm{L} \otimes \sigma_{\mathrm{B}}$. Thus we have the isomorphism

$$
H^{1}\left(E, N_{E}\right) \cong H^{0}\left(B, L_{B}\right)
$$

from the Leray spectral sequence for $\tau: \mathrm{E} \longrightarrow \mathrm{B}$. q.e.d.
3.3. Let ECX be as in 3.2. Let $\Theta_{\mathrm{X}}(-\log \mathrm{E})$ denote the sheaf of holomorphic vector fields which preserve the ideal of E . This is a locally free sheaf on X and there exists an exact sequence

$$
\begin{equation*}
0 \longrightarrow \Theta_{\mathrm{X}}(-\log \mathrm{E}) \longrightarrow \Theta_{\mathrm{X}} \longrightarrow \mathrm{~N}_{\mathrm{E}} \longrightarrow 0 . \tag{3.10}
\end{equation*}
$$

The sheaf $\Theta_{\mathrm{X}}(-\log \mathrm{E})$ plays the same role in the deformation theory of the pair (X, E) as Θ_{X} plays in that of X. (cf. [11], [19], see also [17], § 4. I). It is known that the semiuniversal family of the deformation of the pair exists ([11]). Moreover Wahl defined the functor of equisingular deformation of the resolution ES which is convenient to our context ($[19], \S 2)$. It is easy to see that the cohomology group $H^{1}\left(X, \Theta_{X}(-\log E)\right)$ is the Zariski tangent space of the semiuniversal deformation of (X, E) and $H^{2}\left(X, \Theta_{X}(-\log E)\right)$ is the set of the obstructions to the deformations.

In our context, the following proposition is important.

Proposition 3.4. Let EC X be as in 3.2. Then we have the following:
(1) there exists an exact sequence

$$
\begin{equation*}
0 \longrightarrow H^{1}\left(X, \Theta_{X}(-\log E)\right) \longrightarrow H^{1}\left(X, \Theta_{X}\right) \longrightarrow H^{1}\left(E, N_{E}\right) \longrightarrow 0 \tag{3.11}
\end{equation*}
$$

(2) $\quad H_{E}^{1}\left(\Theta_{X}(-\log \mathrm{E})\right)=0$,
(3) the subspace $H_{E}^{1}\left(\Theta_{X}\right)$ in $H^{1}\left(\Theta_{X}\right)$ is isomorphic to $H^{1}\left(E, N_{E}\right)$ and to the set of the first order deformations of X to which the divisor E does not lift.

Proof. The assertion (3) follows from Proposition 3.3 and the assertion (2) can be proved by the same argument as in the proof of Proposition 3.3. Hence we left the proofs for the reader. To prove (1), we first note that $H^{0}\left(E, N_{E}\right)=0$ because E is the exceptional divisor of $\mathrm{r}: \mathrm{X} \longrightarrow \mathrm{V}$. In view of (3.10), therefore, it suffices to show that the map

$$
\mathrm{H}^{1}\left(\mathrm{X}, \Theta_{\mathrm{X}}\right) \longrightarrow \mathrm{H}^{1}\left(\mathrm{E}, \mathrm{~N}_{\mathrm{E}}\right)
$$

is surjective. Consider the following diagram

$$
\begin{aligned}
\mathrm{H}_{\mathrm{E}}^{1}\left(\Theta_{\mathrm{X}}(-\log \mathrm{E})\right) & \longrightarrow \mathrm{H}_{\mathrm{E}}^{1}\left(\Theta_{\mathrm{X}}\right) \\
\downarrow & \xrightarrow{\prime} \mathrm{H}_{\mathrm{E}}^{1}\left(\mathrm{~N}_{\mathrm{E}}\right) \\
0 \longrightarrow \mathrm{H}^{1}\left(\Theta_{\mathrm{X}}(-\log \mathrm{E})\right) & \longrightarrow \mathrm{H}^{1}\left(\mathrm{X}, \Theta_{\mathrm{X}}\right) \xrightarrow{\delta} \mathrm{H}^{1}\left(\mathrm{E}, \mathrm{~N}_{\mathrm{E}}\right)
\end{aligned}
$$

Since δ is injective by (1) of Proposition 3.2 and $\operatorname{dim} H_{E}^{1}\left(\Theta_{X}\right)=\operatorname{dim} H^{1}\left(E, N_{E}\right)$, it suffices to show that $\gamma \cdot \delta$ is injective. By the commutativity of the diagram, this is equivalent to the injectivity of γ^{\prime} which follows from the assertion (2). q.e.d.

Remark 3.5. The exact sequence (3.11) has the splitting $H^{1}\left(E, N_{E}\right) \longrightarrow H^{1}\left(X, \Theta_{X}\right)$ if we identify $H^{1}\left(E, N_{E}\right)$ with $H_{E}^{1}\left(\Theta_{X}\right)$. Thus we can write as

$$
\begin{aligned}
H^{1}\left(X, \Theta_{X}\right) & =H^{1}\left(\Theta_{X}(-\log E)\right) \oplus H_{E}^{1}\left(\Theta_{X}\right) \\
& =H^{1}\left(\Theta_{X}(-\log E)\right) \oplus H^{1}\left(E, N_{E}\right)
\end{aligned}
$$

3.4. Let $\mathrm{r}: \mathrm{X} \longrightarrow \mathrm{V}$ be as in (2.5). Let $\mathrm{D}_{(\mathrm{r})}: \mathscr{6}_{0} \longrightarrow$ C゚Cls denote the deformation functor of the morphism $\mathrm{r}: \mathrm{X} \longrightarrow \mathrm{V}$. We have the natural morphisms of functors

$$
\begin{equation*}
\Phi: \mathrm{D}_{(\mathrm{r})} \longrightarrow \mathrm{D}_{\mathrm{X}} \tag{3.12}
\end{equation*}
$$

$$
\begin{equation*}
\Psi: \mathrm{D}_{(\mathrm{r})} \longrightarrow \mathrm{D}_{\mathrm{V}} \tag{3.13}
\end{equation*}
$$

Let $\mathscr{S}_{0}^{\mathrm{f}}$ denote the category of germs of complex spaces of dimension 0 and $\mathrm{D}_{(\mathrm{r})}^{\mathrm{f}}, \mathrm{D}_{\mathrm{X}}^{\mathrm{f}}$ and $\mathrm{D}_{\mathrm{V}}^{\mathrm{f}}$ the functors restricted to $\mathscr{A}_{0}^{\mathrm{f}}$.

Proposition 3.6. Let $\mathrm{r}: \mathrm{X} \longrightarrow \mathrm{V}$ be as above. Then we have a blow down morphism $\beta: \mathrm{D}_{\mathrm{X}}^{\mathrm{f}} \longrightarrow \mathrm{D}_{\mathrm{V}}^{\mathrm{f}}$ and $\tilde{\beta}: \mathrm{D}_{\mathrm{X}}^{\mathrm{f}} \longrightarrow \mathrm{D}_{(\mathrm{r})}^{\mathrm{f}}$ which are compatible with (3.12) and (3.13).

Proof: The most important fact is $\mathbb{R} r_{*} Q_{X} \cong \sigma_{V}$. Let ($\mathrm{S}, 0$) be an element of \mathscr{b}^{f} and $\mathscr{S} \longrightarrow(\mathrm{S}, 0)$ an element of $\mathrm{D}_{\mathrm{X}}(\mathrm{S})$. Considering ${O_{\mathscr{S}}}$ as the sheaf algebras on X , the sheaf $r_{*}\left(O_{\mathscr{S}}\right)$ on V defines a deformation of V over $(\mathrm{S}, 0)$. This is verified by the same argument as in Proposition (2.3) in [2] because of the isomorphism $\mathbb{R} r_{*} O_{X} \cong Q_{V}$. Thus we have $\beta: \mathrm{D}_{\mathrm{X}}^{\mathrm{f}} \longrightarrow \mathrm{D}_{\mathrm{V}}^{\mathrm{f}}$ and $\tilde{\beta}: \mathrm{D}_{\mathrm{X}}^{\mathrm{f}} \longrightarrow \mathrm{D}_{(\mathrm{r})}^{\mathrm{f}}$ as desired. \quad q.e.d.

For the functor $D_{(r)}, D_{X}$ and D_{V}, and we can prove the following
 plex space. Then the natural map

$$
\begin{equation*}
\mathrm{D}_{(\mathrm{r})}(\mathrm{S}) \longrightarrow \mathrm{D}_{\mathrm{X}}(\mathrm{~S}) \tag{3.14}
\end{equation*}
$$

is surjective.

Proof: Let us denote by

$$
\begin{equation*}
\beta^{\dot{i}}: \mathrm{T}_{\mathrm{V}}^{\mathrm{i}} \longrightarrow \operatorname{Ext}^{\mathrm{i}}\left(\ln _{\mathrm{r}}^{*} \mathscr{L} \dot{\mathrm{~V}}, O_{\mathrm{X}}\right) \quad \mathrm{i} \geq 0 \tag{3.15}
\end{equation*}
$$

the natural induced map. By virture of Proposition 1.10 in [20], if β^{1} is surjective and β^{2} is injective, the assertion is true. On the other hand, we have

$$
\begin{aligned}
\operatorname{Ext}^{\mathrm{i}}\left(\mathbb{I}^{*} \mathscr{L}_{\mathrm{V}}, \sigma_{\mathrm{X}}\right) & \cong \operatorname{Ext}^{i}\left(\mathscr{L} \dot{\mathrm{~V}}, \mathbb{R} \mathrm{r}_{*} \sigma_{\mathrm{X}}\right) \\
& \cong \operatorname{Ext}^{\mathrm{i}}\left(\mathscr{L}_{\mathrm{V}}, \sigma_{\mathrm{V}}\right) \\
& \cong \mathrm{T}_{\mathrm{V}}^{\mathrm{i}}
\end{aligned}
$$

Thus β^{i} is isomorphism for each $\mathrm{i} \geq 0$.
q.e.d.

Corollary 3.8. Let $\mathrm{r}: \mathrm{X} \longrightarrow \mathrm{V}$ be as in (2.5). Let $\mathscr{B} \longrightarrow \operatorname{Def}_{\mathrm{X}}$ and $\mathscr{V} \longrightarrow \operatorname{Def}_{\mathrm{V}}$ be the Kuranishi families of X and V . Then we have a commutative diagram

such that $\tilde{\eta}_{0}=\mathrm{r}$.
Proof. By proposition 3.7, we have a commutative diagram

with a flat morphism $\mathscr{V}^{\prime} \longrightarrow$ Def $_{\mathrm{X}}$. By the semiuniversality of $\mathscr{V} \longrightarrow \mathrm{Def}_{\mathrm{V}}$, we get the morphism $\eta: \operatorname{Def}_{\mathrm{X}} \longrightarrow \operatorname{Def}_{\mathrm{V}}$ and $\eta^{\prime}: \mathscr{V}^{\prime} \longrightarrow \mathscr{V}$. Thus we obtain the assertion.

Remark 3.8. In the above case, β^{i} are all isomorphisms. This implies that

$$
\mathrm{T}_{[\mathrm{r}]}^{1}=\mathrm{D}_{[\mathrm{r}]}\left(\operatorname{Spec} \mathbb{C}[\mathrm{t}] / \mathrm{t}^{2}\right) \longrightarrow \mathrm{T}_{\mathrm{X}}^{1}
$$

and

$$
\mathrm{T}_{[\mathrm{r}]}^{2} \cong \mathrm{~T}_{\mathrm{X}}^{2}
$$

Moreover if S is Artinian (i.e. $S \in \mathscr{b}_{0}^{\mathrm{f}}$) or S is a formal analytic space, we have a canonical section of Φ_{S} in (3.14)

$$
\tilde{\beta}: \mathrm{D}_{\mathrm{X}}(\mathrm{~S}) \longrightarrow \mathrm{D}_{(\mathrm{r})}(\mathrm{S})
$$

such that $\left(\Phi \circ \tilde{\beta}_{\mathrm{S}}=\mathrm{id}\right.$.

By using the existence of the relative Doudady space and a Artin's theorem in [1], we can prove that for any $(\mathrm{S}, 0) \in \mathscr{b}_{0}$ the section $\tilde{\beta}_{\mathrm{S}}: \mathrm{D}_{\mathrm{X}}(\mathrm{S}) \longrightarrow \mathrm{D}(\mathrm{r})(\mathrm{S})$ exists and hence so does $\beta_{\mathrm{S}}: \mathrm{D}_{\mathrm{X}}(\mathrm{S}) \longrightarrow \mathrm{D}_{\mathrm{V}}(\mathrm{S})$.

§4 First order deformations of X via Cech cocycles.

4.1. By a first order deformation of a compact complex space Z, we mean a deformation of Z over $S_{1}=\operatorname{Spec}\left(\mathbb{C}[t] / t^{2}\right)$. The set of first order deformations of Z is isomorphic to $\mathrm{T}_{\mathrm{Z}}^{1}$ 。

Let X be as in (2.2). By Proposition 3.4, (1), we have an isomorphism

$$
\begin{equation*}
T_{X}^{1}=H^{1}\left(X, \Theta_{X}\right)=H^{1}\left(X, \Theta_{X}(-\log E)\right) \oplus H^{1}\left(E, N_{E}\right) \tag{4.1}
\end{equation*}
$$

We will construct first order deformations of X corresponding to elements of $H^{1}\left(E, N_{E}\right)$ by using Xech cocycles. To proceed to this, we shall introduce the following notations. Let us define the followings:
(i) $\quad \mathscr{U}=\left\{\mathrm{U}_{\mathrm{i}}\right\}$: a Stein covering of Y such that $\mathscr{U}_{\mathrm{B}}=\left\{\mathrm{U}_{\mathrm{i}} \cap \mathrm{B}\right\}$ is also a Stein covering of B ,
(ii) $\quad\left\{\mathrm{h}_{\mathrm{ij}}\right\},\left\{\mathrm{f}_{\mathrm{ij}}\right\}$ and $\left\{\mathrm{g}_{\mathrm{ij}}\right\} \in \mathrm{H}^{1}\left(\mathscr{q}_{\mathrm{G}} \mathrm{O}_{\mathrm{Y}}^{*}\right)$: sets of transition functions of the line bundles $\mathrm{L}, \mathrm{L}_{1}$ and L_{2} repectively with respect to \mathscr{U}. We also assume that $h_{i j}^{2}=f_{i j} g_{i j}$ on $U_{i j}=U_{i} \cap U_{j}$,
(iii) $\quad\left\{f_{i} \in \Gamma\left(U_{i}, a_{Y}\right)\right\},\left\{g_{i} \in T\left(v_{i}, a_{Y}\right)\right\}$: sets of defining equations D_{1} and D_{2} respectively satisfying that

$$
\begin{equation*}
\mathrm{f}_{\mathrm{i}}=\mathrm{f}_{\mathrm{ij}} \mathrm{f}_{\mathrm{j}} \text { and } \mathrm{g}_{\mathrm{i}}=\mathrm{g}_{\mathrm{i} j} \mathrm{~g}_{\mathrm{j}} \text { on } \mathrm{U}_{\mathrm{ij}}, \tag{4.2}
\end{equation*}
$$

(iv) $\quad\left(\mathrm{t}_{\mathrm{i}}^{\alpha}\right)=\left(\mathrm{t}_{\mathrm{i}}^{1}, \ldots, \mathrm{t}_{\mathrm{i}}^{\mathrm{n}}\right):$ a local coordinate system on U_{i} with transision functions $\left\{\mathrm{F}_{\mathrm{ij}}^{\beta}\right\}$ satisfying that

$$
\begin{equation*}
\mathrm{t}_{\mathrm{ij}}^{\alpha}=\mathrm{F}_{\mathrm{ij}}^{\alpha}\left(\mathrm{t}_{\mathrm{j}}^{\beta}\right) \text { on } \mathrm{U}_{\mathrm{ij}} \tag{4.3}
\end{equation*}
$$

(v) $\quad\left\{y_{i}\right\},\left\{x_{i}\right\}$ and $\left\{z_{i}\right\}$: fiber coordinates of L, Q_{Y} and $L^{-1} \otimes L_{1}$ satisfying that

$$
\begin{equation*}
y_{i}=h_{i j} y_{j}, x_{i}=x_{j}, z_{i}=h_{i j}^{-1} f_{i j} z_{j} \tag{4.4}
\end{equation*}
$$

The \mathbb{P}^{1}-bundle $\tau: \mathbb{P}^{\prime}=\mathbb{P}\left(\mathcal{Q}_{Y} \oplus \mathrm{~L} \otimes \mathrm{~L}_{1}^{-1}\right) \longrightarrow Y$ has a trivialization $\tau^{-1}\left(\mathrm{U}_{\mathrm{i}}\right) \longrightarrow \mathrm{U}_{\mathrm{i}} \times \mathbb{P}^{1}$ with a local coordinate $\left(\left(\mathrm{t}_{\mathrm{i}}^{\alpha}\right),\left(\alpha_{\mathrm{i}} ; z_{\mathrm{i}}\right)\right)$. The transition matrix of this \mathbb{P}^{1}-bundle is given by

$$
A_{i j}=\left[\begin{array}{ll}
1 & 0 \tag{4.5}\\
0 & h_{i j}^{-1} f_{i j}
\end{array}\right] \quad \text { on } \quad U_{i j}
$$

A local equation of $X \cap U_{i} \times \mathbb{P}^{1}$ is given by

$$
\begin{equation*}
\mathrm{G}_{\mathrm{i}}=\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}-\mathrm{g}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}^{2} \tag{4.6}
\end{equation*}
$$

(cf. (2.6).) Note that on $\mathrm{U}_{\mathrm{ij}} \times \mathbb{P}^{1}$, we have the equality

$$
\begin{equation*}
\mathrm{G}_{\mathrm{i}}=\mathrm{f}_{\mathrm{ij}} \mathrm{G}_{\mathrm{j}} \tag{4.7}
\end{equation*}
$$

We finally set $X_{i}=\left\{G_{i}=0\right\} \subset U_{i} \times \mathbb{P}^{1}$.
4.2. Let B denote the submanifold of Y defined by the ideal $I_{B}=\{f=g=0\}$ (Recall that B is isomorphic to Sing V.) Set $L_{B}=L \otimes O_{B}$. By Proposition 3.3, we have an isomorphism

$$
\begin{equation*}
\mathrm{H}_{\mathrm{E}}^{1}\left(\mathrm{X}, \Theta_{\mathrm{X}}\right)=\mathrm{H}^{1}\left(\mathrm{E}, \mathrm{~N}_{\mathrm{E}}\right)=\mathrm{H}^{0}\left(\mathrm{~B}, \mathrm{~L}_{\mathrm{B}}\right) . \tag{4.8}
\end{equation*}
$$

Let $\bar{\phi} \in \mathrm{H}^{0}\left(\mathrm{~B}, \mathrm{~L}_{\mathrm{B}}\right)$ be a section of L_{B} and $\left\{\phi_{\mathrm{i}} \in \Gamma\left(\mathrm{U}_{\mathrm{i}} \cap \mathrm{B}, \mathrm{O}_{\mathrm{B}}\right)\right\}$ a Cech cocycle representing $\bar{\phi}$. On $U_{i j} \cap B$, we have

$$
\begin{equation*}
\phi_{\mathrm{i}}=\mathrm{h}_{\mathrm{ij}} \bar{\phi}_{\mathrm{j}} . \tag{4.9}
\end{equation*}
$$

Let us construct the first order deformation of X corresponding to this $\bar{\phi} \in H^{0}\left(B, L_{B}\right)$.

Since U_{i} is a Stein open set, we can take an extension $\phi_{i} \in \Gamma\left(U_{i}, Q_{Y}\right)$ of ϕ_{i}. Take an extension ϕ_{i} of $\bar{\phi}_{\mathrm{i}}$ for each i , and set

$$
\begin{equation*}
\phi_{\mathrm{i}}-\mathrm{h}_{\mathrm{ij}} \phi_{\mathrm{j}}=\mathrm{h}_{\mathrm{ij}}{ }^{\delta}{ }_{\mathrm{ij}} \text { on } \mathrm{U}_{\mathrm{ij}} . \tag{4.10}
\end{equation*}
$$

By (4.9), $\mathscr{E}_{\mathrm{ij}}$ vanishes on $\mathrm{U}_{\mathrm{ij}} \cap \mathrm{B}$, therefore we can set (not uniquely) as follows:

$$
\begin{equation*}
\xi_{i j}=f_{j} a_{i j}+g_{j} b_{i j} \tag{4.11}
\end{equation*}
$$

By definition (4.10), $\left\{\boldsymbol{\delta}_{\mathrm{ij}}\right\}$ satisfies the 1-cocycle conditions

$$
\begin{equation*}
h_{j k}^{-1} \delta_{i j}+\delta_{j k}=\delta_{i k} \text { on } U_{i j k}=U_{i} \cap U_{j} \cap U_{k} . \tag{4.12}
\end{equation*}
$$

Substituting (4.11) to (4.12), we have the identity

$$
\begin{equation*}
f_{k}\left(h_{j k}^{-1} f_{j k} a_{i j}+a_{j k}-a_{i k}\right)=-g_{k}\left(h_{j k}^{-1} b_{j k} b_{i j}+b_{j k}-b_{i k}\right) . \tag{4.13}
\end{equation*}
$$

Since f_{k} and g_{k} are coprime, we get $\gamma_{i j k} \in \Gamma\left(U_{i j k}, Q_{Y}\right)$ such that

$$
\begin{gather*}
h_{j k}^{-1} f_{j k} a_{i j}+a_{j k}-a_{i k}=g_{k} \gamma_{i j k} \tag{4.14}\\
h_{j k}^{-1} g_{j k} b_{i j}+b_{j k}-b_{i k}=-f_{k} \gamma_{i j k} \tag{4.15}
\end{gather*}
$$

Remark 4.1. Since B is a complete intersection of D_{1} and D_{2}, we have the resolution of I_{B} :

$$
\begin{equation*}
0 \longrightarrow \mathrm{~L}^{-2} \longrightarrow \mathrm{~L}_{1}^{-1} \oplus \mathrm{~L}_{2}^{-1} \longrightarrow \mathrm{I}_{\mathrm{B}} \longrightarrow 0 \tag{4.16}
\end{equation*}
$$

Tensoring L to this sequence, we have

$$
\begin{equation*}
0 \longrightarrow \mathrm{~L}^{-1} \longrightarrow \mathrm{~L} \otimes \mathrm{~L}_{1}^{-1} \oplus \mathrm{~L} \otimes \mathrm{~L}_{2}^{-1} \longrightarrow \mathrm{I}_{\mathrm{B}} \mathrm{~L} \longrightarrow 0 \tag{4.17}
\end{equation*}
$$

From this sequence, we can see that if $\mathrm{H}^{2}\left(\mathrm{Y}, \mathrm{L}^{-1}\right)=0$ we can choose an extension $\left\{\phi_{\mathrm{i}}\right\}$ such that $\gamma_{i j k}=0$ for all ($\mathrm{i}, \mathrm{j}, \mathrm{k}$).
4.3. Now let us define a deformation of $X_{i}=\left\{G_{i}=0\right\}$ by a hypersurface

$$
\begin{equation*}
\mathscr{S}_{\mathrm{i}}:=\left\{\overline{\mathrm{G}}_{\mathrm{i}}=\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}-2 t \phi_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} z_{\mathrm{i}}-\mathrm{g}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}^{2}=0\right\} \tag{4.18}
\end{equation*}
$$

in $\mathrm{U}_{\mathrm{i}} \times \mathbb{P}^{1} \times \mathrm{S}_{1}$. We have the commutative diagram

$$
\begin{align*}
\mathscr{x}_{\mathrm{i}} & \longrightarrow \mathrm{U}_{\mathrm{i}} \times \mathbb{P}^{1} \times \mathrm{S}_{1}, \tag{4.19}\\
\mathrm{~S}_{1} & =\operatorname{Spec}\left(\mathbb{C}[\mathrm{t}] / \mathrm{t}^{2}\right) .
\end{align*}
$$

Let $u_{i}=x_{i} / z_{i}$ be an inhomogeneous coordinate of $U_{i} \times \mathbb{P}^{1}$. Define the following automorphism

$$
\oint_{i_{i j}}^{U_{\mathrm{j}} \times \mathbb{P}^{1}} \int_{\mathrm{ij}}^{\mathrm{U}_{\mathrm{i}} \times \mathbb{P}^{1}}{ }_{\mathrm{P}}^{\mathrm{U}} \mathrm{U}_{\mathrm{ij}} \times \mathbb{P}^{1}
$$

by

$$
\begin{equation*}
\tilde{\eta}_{\mathrm{i} j}\left(\mathrm{t}_{\mathrm{j}}^{\beta}, \mathrm{u}_{\mathrm{j}}\right)=\left(\mathrm{t}_{\mathrm{i}}^{\alpha}=\mathrm{F}_{\mathrm{i} \mathrm{j}}^{\alpha}\left(\mathrm{t}_{\mathrm{j}}^{\beta}\right), \mathrm{u}_{\mathrm{i}}=\eta_{\mathrm{ij}}\left(\mathrm{u}_{\mathrm{j}}\right)\right) \tag{4.20}
\end{equation*}
$$

where η_{ij} is given by the projective automorphism

$$
\begin{equation*}
u_{i}=\eta_{i j}\left(u_{j}\right)=\frac{u_{j}+t a_{i j}}{h_{i j}^{-1} f_{i j}\left(-t b_{i j} u_{j}+1\right)} \tag{4.21}
\end{equation*}
$$

Since $\mathfrak{t}^{2}=0$, we can express (4.21) as

$$
\begin{equation*}
\left.u_{i}=\eta_{i j}\left(u_{j}\right)=h_{i j} f_{i j}^{-1}\left(u_{j}+t\left(a_{i j}+b_{i j} u_{j}^{2}\right)\right)\right) \tag{4.22}
\end{equation*}
$$

By an easy calculation using (4.14) and (4.15), we have the following

Lemma 4.2. On $\mathrm{U}_{\mathrm{ijk}}$, we have

$$
\begin{equation*}
\eta_{i j} \circ \eta_{j k}\left(u_{k}\right)-\eta_{j k}\left(u_{k}\right)=-h_{i k} f_{j k}^{1} \cdot \gamma_{i j k} \cdot G_{k} \cdot t \tag{4.23}
\end{equation*}
$$

Moreover, set $\tilde{G}_{\mathrm{i}}^{\prime}=\tilde{\mathrm{G}}_{\mathrm{i}} / \mathrm{z}_{\mathrm{i}}^{2}=\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}^{2}-2 \operatorname{t} \phi_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}-\mathrm{g}_{\mathrm{i}}$. Then we have the following lemma.

Lemma 4.3. On U_{ij}, we have

$$
\begin{equation*}
\tilde{G}_{\mathrm{i}}^{\prime} \circ \eta_{\mathrm{ij}}=\mathrm{g}_{\mathrm{ij}}\left(1+2 \mathrm{tb}_{\mathrm{ij}} \mathrm{u}_{\mathrm{j}}\right) \tilde{\mathrm{G}}_{\mathrm{j}}^{\prime} \tag{4.24}
\end{equation*}
$$

The proof of Lemma 4.2 and 4.3 is straightforward and left for the readers. By these lemmas, we have the following

Proposition 4.4. The collection of hypersurfaces $\left\{\mathscr{S}_{1}\right\}$ in (4.18) with automorphism $\left\{\tilde{\eta}_{\mathrm{ij}}\right\}$ in (4.20) defines a deformation $\mathscr{S} \longrightarrow \mathrm{S}_{1}$ which corresponds to $\bar{\phi} \in \mathrm{H}^{0}\left(\mathrm{~B}, \mathrm{~L}_{\mathrm{B}}\right)$.

§5 The first obstruction map for V .

5.1. Let V be as in defined in (2.3). From (3) of Lemma 1.3 and Proposition 2.1, one has the exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathrm{H}^{1}\left(\mathrm{~V}, \Theta_{\mathrm{V}}\right) \longrightarrow \mathrm{T}_{V}^{1} \longrightarrow \mathrm{H}^{0}\left(\mathrm{~B}, \mathrm{~L}_{\mathrm{B}}^{2}\right) \xrightarrow{\mathrm{ob}} \mathrm{H}^{2}\left(\mathrm{~V}, \Theta_{\mathrm{V}}\right) \tag{5.1}
\end{equation*}
$$

We call the map ob: $\mathrm{H}^{0}\left(\mathrm{~B}, \mathrm{~L}_{\mathrm{B}}^{2}\right) \longrightarrow \mathrm{H}^{2}\left(\mathrm{~V}, \Theta_{\mathrm{V}}\right)$ the first obstruction map for V . In this section, we shall describe the map ob by means of Cech cocycles.
5.2. First we recall that the tangent complex of $V \subset \mathbb{P}=\mathbb{P}\left(\Omega_{Y} \oplus \mathrm{~L}\right)$ is given by $\alpha: \Theta_{\mathbb{P} \mid \mathrm{V}} \longrightarrow \mathrm{N}_{\mathrm{V}}$ which gives the two exact sequences (cf. Proposition 2.1):

$$
\begin{align*}
& 0 \longrightarrow \Theta_{V} \longrightarrow \Theta_{\mathbb{P}} \mid V \longrightarrow I_{B} N_{V} \longrightarrow 0 \tag{5.2}\\
& 0 \longrightarrow I_{B} N_{V} \longrightarrow N_{V} \longrightarrow L_{B}^{2} \longrightarrow 0 \tag{5.3}
\end{align*}
$$

By definition of the spectral sequence, the map $\underline{\mathrm{b}}$ is the composition map of two connecting homomorphisms:

$$
\begin{equation*}
\mathrm{H}^{0}\left(\mathrm{~B}, \mathrm{~L}_{\mathrm{B}}^{2}\right) \xrightarrow{\delta_{1}} \mathrm{H}^{1}\left(\mathrm{I}_{\mathrm{B}} \mathrm{~N}_{\mathrm{V}}\right) \tag{5.4}
\end{equation*}
$$

Moreover we have the following

Lemma 5.1. Let $\varphi=\pi_{\mid \mathrm{V}}: \mathrm{V} \longrightarrow \mathrm{Y}$ be the natural projection. Then we have the following:
(1) $\varphi_{*} Q_{V} \cong \emptyset_{Y} \oplus L^{-1}$,
(2) $\varphi_{*} \mathrm{~N}_{\mathrm{V}} \cong \mathrm{L} \oplus \mathrm{L}^{2}$,
(3) $\varphi_{*} \mathrm{I}_{\mathrm{B}} \mathrm{N}_{\mathrm{V}} \cong \mathrm{L} \oplus \mathrm{I}_{\mathrm{B}} \mathrm{L}^{2}$,
(4) $\varphi_{*} \Theta_{V} \cong \Theta_{Y}(-\log \mathrm{D}) \oplus \Theta_{\mathrm{Y}} \otimes_{L^{-1}} \quad\left(\right.$ where $\left.\mathrm{D}=\mathrm{D}_{1}+\mathrm{D}_{2}\right)$,
(5) there exists an exact sequence

$$
\begin{equation*}
0 \longrightarrow 0 \oplus \mathrm{~L} \longrightarrow \varphi_{*}\left(\Theta_{\mathbb{P} \mid \mathrm{V}}\right) \longrightarrow \Theta_{\mathrm{Y}} \oplus \Theta_{\mathrm{Y}} \otimes \mathrm{~L}^{-1} \longrightarrow 0 \tag{5.5}
\end{equation*}
$$

Proof. The assertion (1) is a standard fact of the double covering. Since $N_{V} \cong q_{p}(2) \otimes q_{V}$ and $\varphi_{*} \mathscr{O}_{\mathbb{P}}(2) \cong O \oplus \mathrm{~L} \oplus \mathrm{~L}^{2}$, we have $\varphi_{*} \mathrm{~N}_{\mathrm{V}} \cong \mathrm{L} \oplus \mathrm{L}^{2}$. From the exact sequence (5.3), we obtain

$$
0 \longrightarrow \varphi_{*} \mathrm{I}_{\mathrm{B}} \mathrm{~N}_{\mathrm{V}} \longrightarrow \mathrm{~L} \oplus \mathrm{~L}^{2} \longrightarrow \mathrm{~L}_{\mathrm{B}}^{2} \longrightarrow 0
$$

From a local computation and this sequence, the assertion (3) follows. The assertion (4) follows from Proposition 2.1 in [12]. Let $\Theta_{\mathbb{P} / \mathrm{Y}}$ denote the relative tangent sheaf of $\pi: \mathbb{P} \longrightarrow Y$. Then $\Theta_{\mathbb{P} / Y}$ is isomorphic to $\mathcal{Q}_{\mathrm{P}}(2) \otimes^{*}{ }^{*}\left(\mathrm{~L}^{-1}\right)$. Moreover we have the exact sequence

$$
0 \longrightarrow \Theta_{\mathbb{P} / \mathrm{Y} \mid \mathrm{V}} \longrightarrow \Theta_{\mathbb{P} \mid \mathrm{V}} \longrightarrow \varphi^{*}\left(\Theta_{\mathrm{Y}}\right) \longrightarrow 0
$$

 sequence in (5). q.e.d.

Let $\iota: \mathrm{V} \longrightarrow \mathrm{V}$ be the natural involution corresponding to the double covering $\varphi: \mathrm{V} \longrightarrow \mathrm{Y}$. All sheaves in (5.2) and (5.3) have natural actions of this involution ι, hence we can consider the ι-invariant direct image φ_{*}^{+}for these sheaves.

Lemma 5.2. Let $\varphi: \mathrm{V} \longrightarrow \mathrm{Y}$ be as in Lemma 5.1. Then we have the following isomorphisms:
(1) $\varphi_{*}^{+} q_{V}=a_{Y}$
(2) $\varphi_{*}^{+} \mathrm{N}_{\mathrm{V}}=\mathrm{L}^{2}$
(3) $\varphi_{*}^{+} \mathrm{I}_{\mathrm{B}} \mathrm{N}_{\mathrm{V}}=\mathrm{I}_{\mathrm{B}} \mathrm{L}^{2}$
(4) $\varphi_{*}^{+} \Theta_{V}=\Theta_{\mathrm{Y}}(-\log \mathrm{D})$
(5) $\quad \varphi_{*}^{+}\left(\Theta_{\mathbb{P} \mid \mathrm{V}}\right) \cong \Sigma_{\mathrm{L}}$ where Σ_{L} is the sheaf of germs of differential operator of L of degree ≤ 1. Equivalently Σ_{L} is defined by the following extension

$$
\begin{equation*}
0 \longrightarrow a_{\mathrm{Y}} \longrightarrow \Sigma_{\mathrm{L}} \longrightarrow \Theta_{\mathrm{Y}} \longrightarrow 0 \tag{5.6}
\end{equation*}
$$

whose extension class is $C_{1}(L) \in \mathrm{H}^{1}\left(\mathrm{Y}, \Omega_{\mathrm{Y}}^{1}\right)$.

Proof. The assertions (1) ~ (4) are clear. By using the exact sequence (5.5) and local computation, we get the assertion (5). q.e.d.

Taking the \ddots-invariant direct image of (5.2) and (5.3), we get the exact sequence

$$
\begin{gather*}
0 \longrightarrow \Theta_{\mathrm{Y}}(-\log \mathrm{D}) \longrightarrow \mathrm{L}_{\mathrm{L}} \longrightarrow \mathrm{I}_{\mathrm{B}} \mathbf{L}^{2} \longrightarrow 0 \tag{5.7}\\
0 \longrightarrow \mathrm{I}_{\mathrm{B}} \mathrm{~L}^{2} \longrightarrow \mathrm{~L}^{2} \longrightarrow \mathrm{~L}_{\mathrm{B}}^{2} \longrightarrow 0
\end{gather*}
$$

Since $H^{0}\left(B, L_{B}^{2}\right)$ is clearly \ddots-invariant, the diagram (5.4) becomes

$$
\begin{equation*}
\mathrm{H}^{0}\left(\mathrm{~B}, \mathrm{~L}_{\mathrm{B}}^{2}\right) \xrightarrow{\delta_{1}^{+}} \mathrm{H}^{1}\left(\mathrm{Y}, \mathrm{I}_{\mathrm{B}} \mathrm{~L}^{2}\right) \longrightarrow \mathrm{H}^{1}\left(\mathrm{I}_{\mathrm{B}} \mathrm{~N}_{\mathrm{V}}^{2}\right) \tag{5.9}
\end{equation*}
$$

Proposition 5.3. The map $\mathrm{ob}: \mathrm{H}^{0}\left(\mathrm{~B}, \mathrm{~L}_{\mathrm{B}}^{2}\right) \longrightarrow \mathrm{H}^{2}\left(\mathrm{~V}, \Theta_{\mathrm{V}}\right)$ coincides with the composite $\operatorname{map} \delta_{2}^{+} \circ \delta_{1}^{+}$in (5.9).
5.3. Next we will calculate the map ob by means of Cech cocycles. We keep the notations in 4.1. The \mathbb{P}^{1}-bundle $\pi: \mathbb{P}=\mathbb{P}\left(\mathbb{G}_{Y} \oplus L\right) \longrightarrow Y$ has a trivialization $\pi^{-1}\left(U_{i}\right) \cong U_{i} \times \mathbb{P}^{1}$ with a local coordinate system ($\left(\mathrm{t}_{\mathrm{i}}^{\alpha}, \mathrm{y}_{\mathrm{i}}\right)$ where y_{i} denotes an inhomogeneous coordinate of \mathbb{P}^{1}. On $U_{i j} \times \mathbb{P}^{1}$, we have an identity $t_{i}^{\alpha}=F_{i j}^{\alpha}\left(t_{j}^{B}\right)$ and $y_{i}=h_{i j} y_{j}$. The hypersurface V in \mathbb{P} defined in (2.3) is locally defined by

$$
\begin{equation*}
V_{i}=\left\{H_{i}=y_{i}^{2}-f_{i} g_{i}=0\right\} \subset U_{i} \times \mathbb{P}^{1} \tag{5.10}
\end{equation*}
$$

$$
\begin{equation*}
V_{i}=\left\{H_{i}=y_{i}^{2}-f_{i} g_{i}=0\right\} \subset U_{i} \times \mathbb{P}^{1} \tag{5.10}
\end{equation*}
$$

Note that on $\mathrm{U}_{\mathrm{ij}} \times \mathrm{pr}^{1}$, we have

$$
\begin{equation*}
\mathrm{H}_{\mathrm{i}}=\mathrm{h}_{\mathrm{i} j}^{2} \mathrm{H}_{\mathrm{j}} \tag{5.11}
\end{equation*}
$$

Let $\bar{K}=\left\{\bar{K}_{\mathrm{i}}\right\}$ be an element of $\mathrm{H}^{0}\left(\mathrm{~B}, \mathrm{~L} \mathrm{~L}_{\mathrm{B}}^{2}\right)$ which is represented by cocycles $\bar{K}_{i} \in \Gamma\left(U_{i} \cap B, o_{B}\right)$. Taking an extension $K_{i} \in \Gamma\left(U_{i}, o_{Y}\right)$ of each \bar{K}_{i}, we set

$$
\begin{equation*}
\tilde{K}_{i j}=h_{i j}^{2} K_{i j}=K_{i}-h_{i j}^{2} K_{j} \tag{5.12}
\end{equation*}
$$

Then $\left\{\tilde{K}_{i j}\right\}$ defines an element of $H^{1}\left(Y, l_{B} L^{2}\right)$. In fact, we have the cocycle conditions

$$
\bar{K}_{i j}+\mathrm{h}_{\mathrm{jk}}^{2} \tilde{K}_{j k}=\bar{K}_{i k} \text { on } U_{i j k}
$$

from (5.12) and $\tilde{\mathrm{K}}_{\mathrm{ij} \mid \mathrm{B}}=0$ by definition. Therefore we have

Lemma 5.4. Let δ_{1}^{+}be as in (5.9). Then we have

$$
\delta_{1}^{+}(\overline{\mathrm{K}})=\left\{\overline{\mathrm{K}}_{\mathrm{ij}}\right\} \text { in } \mathrm{H}^{1}\left(\mathrm{Y}, \mathrm{I}_{\mathrm{B}} \mathrm{~L}^{2}\right)
$$

Next we consider the map δ_{2}^{+}in (5.9). By definition, δ_{2}^{+}is the map which fits into the exact sequence

$$
\begin{equation*}
\longrightarrow \mathrm{H}^{1}\left(\mathrm{Y}, \Sigma_{\mathrm{L}}\right) \xrightarrow{\mu} \mathrm{H}^{1}\left(\mathrm{Y}, \mathrm{I}_{\mathrm{B}} \mathrm{~L}^{2}\right) \xrightarrow{\delta_{2}^{+}} \mathrm{H}^{2}\left(\mathrm{Y}, \Theta_{\mathrm{Y}}(-\log \mathrm{D})\right) . \tag{5.13}
\end{equation*}
$$

Let us analyse the image of μ in (5.13).

Let $\tilde{\theta}=\left\{\tilde{\theta}_{\mathrm{ij}}\right\}$ be a 1-cocycle of $\mathrm{\Sigma}_{\mathrm{L}}$. Then it can be written as

$$
\begin{equation*}
\tilde{\theta}_{\mathrm{ij}}=\theta_{\mathrm{ij}}+\beta_{\mathrm{ij}} \mathrm{y}_{\mathrm{i}} \frac{\partial}{\partial \mathrm{y}_{\mathrm{i}}} \tag{5.14}
\end{equation*}
$$

where $\theta_{\mathrm{ij}}=\sum_{\alpha=1}^{\mathrm{n}} \theta_{\mathrm{ij}}^{\alpha} \frac{\partial}{\partial \mathrm{t}_{\mathrm{i}}^{\alpha}} \in \Gamma\left(\mathrm{U}_{\mathrm{ij}}, \Theta_{\mathrm{Y}}\right)$ and $\beta_{\mathrm{ij}} \in \Gamma\left(\mathrm{U}_{\mathrm{ij}}, O_{\mathrm{Y}}\right)$.

Moreover the 1 -cocycle condition of $\bar{\theta}$ is equivalent to the following:

$$
\begin{equation*}
\theta_{\mathrm{jk}}-\theta_{\mathrm{ik}}+\theta_{\mathrm{ij}}=0 \text { on } \mathrm{U}_{\mathrm{ijk}} \tag{5.15}
\end{equation*}
$$

i.e. $\left\{\theta_{\mathrm{ij}}\right\}=\theta$ defines an element in $\mathrm{H}^{1}\left(\mathrm{Y}, \Theta_{\mathrm{Y}}\right)$, and

$$
\begin{equation*}
\theta_{\mathrm{jk}} \cdot \log \mathrm{~h}_{\mathrm{ij}}=-\left(\beta_{\mathrm{jk}}-\beta_{\mathrm{ik}}+\beta_{\mathrm{ij}}\right) . \tag{5.16}
\end{equation*}
$$

By definition, $\mu(\bar{\theta})$ is represented by the 1 -cocycle $\left\{\bar{\theta}_{\mathrm{ij}} \cdot \mathrm{H}_{\mathrm{i}}\right\}$. This is given by

$$
\begin{equation*}
\bar{\theta}_{\mathrm{ij}} \cdot \mathrm{H}_{\mathrm{i}}=-\theta_{\mathrm{ij}} \cdot\left(\mathrm{f}_{\mathrm{i}} \mathrm{~g}_{\mathrm{i}}\right)+2 \beta_{\mathrm{ij}} \mathrm{f}_{\mathrm{i}} \mathrm{~g}_{\mathrm{i}} \tag{5.17}
\end{equation*}
$$

From these considerations, we have the following proposition .

From these considerations, we have the following proposition.

Proposition 5.5. Let $\overline{\mathrm{K}}=\left\{\overline{\mathrm{K}}_{\mathrm{i}}\right\}$ be an element of $\mathrm{H}^{0}\left(\mathrm{~B}, \mathrm{~L} \mathrm{~L}_{\mathrm{B}}^{2}\right)$. Then $\mathrm{ob}(\overline{\mathrm{K}})$ is zero in $H^{2}\left(\mathrm{~V}, \Theta_{\mathrm{V}}\right)$ if and only if there exists an extension K_{i} of $\overline{\mathrm{K}}_{\mathrm{i}}$ and $(\theta, \beta)=\left(\left\{\theta_{\mathrm{ij}}\right\},\left\{\beta_{\mathrm{ij}}\right\}\right) \in \mathrm{H}^{1}\left(\mathrm{Y}, \Theta_{\mathrm{Y}}\right) \times \mathrm{C}^{1}\left(2 \ell_{\mathrm{Y}}\right)$ satisfying the conditions (5.15) and (5.16) such that the following equality holds:

$$
\begin{equation*}
-\theta_{i j}\left(f_{i} g_{i}\right)+2 \beta_{i j} f_{i} g_{i}=K_{i}-h_{i j}^{2} K_{j} \tag{5.18}
\end{equation*}
$$

Remark 5.6. The condition (5.16) is equivalent to $0 \cdot \mathrm{C}_{1}(\mathrm{~L})=0$ in $\mathrm{H}^{2}\left(\mathrm{Y}, \mathrm{Q}_{\mathrm{Y}}\right)$ and this implies that under the first order deformation of Y corresponding to $\theta=\left\{\theta_{\mathrm{ij}}\right\}$, the line bundle L can be lifted.
5.4. Let $\overline{\mathrm{K}}=\left\{\overline{\mathrm{K}}_{\mathrm{i}}\right\}$ be an element of $\mathrm{H}^{0}\left(\mathrm{~B}, \mathrm{~L}_{\mathrm{B}}^{2}\right)$. If $\underline{\mathrm{ob}}(\overline{\mathrm{K}})=0$, the exact sequence (5.1) implies that $\overline{\mathrm{K}}$ comes from an element of $\mathrm{T}_{\mathrm{V}}^{1}$, that is, the local deformation near the singularities of V defined by $\overline{\mathrm{K}}$ can be globalized to a first order deformation of V . By using Cech cocycles, we will give a first order deformation of V corresponding to $\overline{\mathrm{K}}$ such that $\underline{\mathrm{ob}}(\overline{\mathrm{K}})=0$. Let us choose $\mathrm{K}=\left\{\mathrm{K}_{\mathrm{i}}\right\}$ and (θ, β) as in Proposition 5.5. Set

$$
\begin{equation*}
\mathrm{h}_{\mathrm{ij}}^{2} \mathrm{~K}_{\mathrm{ij}}=\mathrm{K}_{\mathrm{i}}-\mathrm{h}_{\mathrm{ij}}^{2} \mathrm{~K}_{\mathrm{j}} \tag{5.19}
\end{equation*}
$$

Let us consider a deformation of V_{i} in (5.10) for each i defined by

$$
\begin{equation*}
\tilde{\mathscr{F}}_{\mathrm{i}}=\left\{\tilde{H}_{\mathrm{i}}=\mathrm{y}_{\mathrm{i}}^{2}-\mathrm{f}_{\mathrm{i}} \mathrm{~g}_{\mathrm{i}}-\mathrm{tK} \mathrm{~K}_{\mathrm{i}}=0\right\} \subset \mathrm{U}_{\mathrm{i}} \times \mathbb{P}^{1} \times \mathrm{S}_{1} \tag{5.20}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{t}_{\mathrm{i}}^{\alpha}=\mathrm{F}_{\mathrm{ij}}^{\alpha}\left(\mathrm{t}_{\mathrm{j}}^{\beta}\right)+\mathrm{t} \cdot \theta_{\mathrm{ij}} \tag{5.21}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{y}_{\mathrm{i}}=\mathrm{h}_{\mathrm{ij}}\left(1+\mathrm{t} \beta_{\mathrm{ij}}\right) \mathrm{y}_{\mathrm{j}} \tag{5.22}
\end{equation*}
$$

Setting $\tilde{h}_{\mathrm{ij}}=\mathrm{h}_{\mathrm{ij}}\left(1+\mathrm{t} \beta_{\mathrm{ij}}\right)$, we can verify the following equality by using (5.16) and (5.18).

$$
\begin{gather*}
\tilde{h}_{\mathrm{ij}}\left(\varphi_{\mathrm{ij}}\right) \tilde{\mathrm{h}}_{\mathrm{jk}}=\tilde{\mathrm{h}}_{\mathrm{ik}} \text { on } \mathrm{U}_{\mathrm{ijk}} \times \mathrm{S}_{1} \tag{5.23}\\
\tilde{H}_{\mathrm{i}}\left(\varphi_{\mathrm{ij}}\right)=\tilde{\mathrm{h}}_{\mathrm{ij}}^{2} \cdot \tilde{\mathrm{H}}_{\mathrm{j}} \text { on } \mathrm{U}_{\mathrm{ijk}} \times \mathbb{P}^{1} \times \mathrm{S}_{1} .
\end{gather*}
$$

Therefore, we can define a deformation $\tilde{\mathscr{V}} \longrightarrow \mathrm{S}_{1}$ of V by patching $\tilde{\mathscr{V}}_{\mathrm{i}}$ by the automorphisms φ_{ij}.

§6. Proof of Main Theorem.

6.1. In this section, we shall prove the following theorem which we mentioned in the Introduction.

Theorem 6.1. Let $\eta_{1}: \mathscr{H} \longrightarrow \mathrm{S}_{1}$ be the first order deformation of X corresponding to an element $\bar{\phi} \in \mathrm{H}^{0}\left(\mathrm{~B}, \mathrm{~L}_{\mathrm{B}}\right)$ (see Proposition 4.4). Then this deformation $\eta_{1}: \mathscr{L} \longrightarrow \mathrm{S}_{1}$ can be extended to $\eta_{2}: \tilde{\mathscr{S}} \longrightarrow \mathrm{S}_{2}=\operatorname{Spec}\left(\mathbb{C}[\mathrm{t}] / \mathrm{t}^{3}\right)$ if and only if

$$
\begin{equation*}
\underline{\mathrm{ob}}\left(\bar{\phi}^{2}\right)=0 \tag{6.1}
\end{equation*}
$$

where the map ob is defined as in (5.1).

Corollary 6.2. Let $\theta_{\phi} \in H^{1}\left(X, \Theta_{X}\right)$ be an element corresponding to $\bar{\phi} \in H^{0}\left(B, L_{B}\right)$ (cf. Proposition 3.3). Then the primary obstruction [$\theta_{\phi^{\prime}} \theta_{\bar{\phi}}$] defined in $\mathrm{H}^{2}\left(\mathrm{X}, \Theta_{\mathrm{X}}\right)$ lies in $H^{2}\left(X, \Theta_{X}\right)^{+}=H^{2}\left(Y, \Theta_{Y}(-\log D)\right)$ and we have an equality

$$
\left[0 \bar{\phi}^{\theta} \bar{\phi}^{\prime}\right]=\mathrm{c} \cdot \underline{\mathrm{ob}}\left(\bar{\phi}^{2}\right)
$$

where c is a non-zero constant.

For the definition of the primary obstruction, see the book [13].
6.2. We first prove the "if" part of Theorem 6.1.
be as in 4.2. Moreover we define $A_{i j}$ by

$$
\begin{equation*}
\phi_{i}+h_{i j} \phi_{j}=h_{i j} A_{i j} \tag{6.2}
\end{equation*}
$$

Then we have

$$
\begin{align*}
& \phi_{i}^{2}-h_{i j}^{2} \phi_{j}^{2}=h_{i j}^{2}{\underset{i j}{\prime} A_{i j}} \tag{6.3}\\
& \quad=h_{i j}^{2}\left(f_{j} a_{i j} A_{i j}+g_{j} b_{i j} A_{i j}\right)
\end{align*}
$$

Lemma 6.3. The following conditions are equivalent to each other.

$$
\begin{equation*}
\underline{\mathrm{ob}}\left(\bar{\phi}^{2}\right)=0 . \tag{i}
\end{equation*}
$$

(ii)

$$
\text { There exists }(\theta, \beta)=\left(\left\{\theta_{\mathrm{ij}}\right\},\left\{\beta_{\mathrm{ij}}\right\}\right) \in \mathrm{H}^{1}\left(\mathrm{Y} \cdot \Theta_{\mathrm{Y}}\right) \times \mathrm{C}^{1}\left(4 \zeta \sigma_{\mathrm{Y}}\right) \text { satisfying (5.16) }
$$

and $\left\{a_{i}\right\},\left\{b_{i}\right\} \in C^{0}\left(\mathscr{L}_{4} a_{Y}\right)$ such that
$(6.4)-\theta_{i}\left(f_{i} g_{j}\right)+2 \beta_{i j} f_{i} g_{i}=\left(\phi_{i}{ }^{2}+f_{i} a_{i}+g_{i} b_{i}\right)-h_{i j}^{2}\left(\phi_{j}^{2}+f_{j} a_{j}+g_{j} b_{j}\right)$.

Proof: This follows from Proposition 5.5.

Now assume that $\underline{\mathrm{ob}}\left(\phi^{2}\right)=0$ and choose $(0, \beta) \in \mathrm{H}^{1}\left(\mathrm{Y}, \Theta_{\mathrm{Y}}\right) \times \mathrm{C}^{1}\left(\mathscr{u}_{4} Q_{\mathrm{Y}}\right)$ and $\left\{\mathrm{a}_{\mathrm{i}}\right\}$, $\left\{b_{i}\right\}$ as in Lemma 6.3.

From (6.3), we can see that (6.4) is equivalent to

$$
\begin{align*}
& f_{i}\left\{\theta_{i j}\left(g_{i}\right)+g_{i j} a_{i j} A_{i j}+\left(a_{i}-g_{i j} a_{j}\right)-\beta_{i j} g_{i j}\right\} \tag{6.5}\\
& +g_{i}\left\{\theta_{i j}\left(f_{i}\right)+f_{i j} b_{i j} A_{i j}+\left(b_{i}-f_{i j} b_{j}\right)-\beta_{i j} f_{i}\right\}=0
\end{align*}
$$

Since f_{i} and g_{i} are coprime, we can get $c_{i j} \in \Gamma\left(U_{i j} \Theta_{Y}\right)$ satisfying that
$\left\{\begin{array}{l}(6.6) \quad \theta_{i j}\left(g_{i}\right)+g_{i j} a_{i j} A_{i j}+\left(a_{i j}-g_{i j} a_{j}\right)-\beta_{i j} g_{i}=g_{i} c_{i j} \\ (6.7) \\ \theta_{i j}\left(f_{i}\right)+f_{i j} b_{i j} A_{i j}+\left(b_{i}-f_{i j} b_{j}\right)-\beta_{i j} f_{i}=-f_{i} c_{i j} .\end{array}\right.$

As we see in 5.4 , we can construct a first order deformation $\mathscr{V} \longrightarrow \mathrm{S}_{1}=\operatorname{Spec}\left(\mathbb{C}[\mathrm{s}] / \mathrm{s}^{2}\right)$ of V corresponding to $\bar{\phi}^{2}$ satisfying that $\mathrm{ob}\left(\bar{\phi}^{2}\right)=0$. Set

$$
\begin{align*}
\tilde{H}_{i} & =y_{i}^{2}-f_{i} g_{i}-s\left(\phi_{i}^{2}+f_{i} a_{i}+g_{i} b_{i}\right) \tag{6.8}\\
& =y_{i}^{2}-\left(f_{i}+s b_{i}\right)\left(g_{i}+s a_{i}\right)-s \phi_{i}^{2}
\end{align*}
$$

and define the hypersurface

$$
\begin{equation*}
\tilde{\mathscr{r}}_{\mathrm{i}}=\left\{\tilde{\mathrm{H}}_{\mathrm{i}}=0\right\} \subset \mathrm{U}_{\mathrm{i}} \times \mathbb{P}^{1} \times \mathrm{S}_{1} . \tag{6.9}
\end{equation*}
$$

Moreover let $\varphi_{\mathrm{ij}}: \mathrm{U}_{\mathrm{ij}} \times \mathbb{P}^{1} \times \mathrm{S}^{1} \longrightarrow \mathrm{U}_{\mathrm{ji}} \times \mathbb{P}^{1} \times \mathrm{S}_{1}$ denote the automorphism defined in (5.21) and (5.22). Then $\left\{\tilde{\mathscr{Y}}_{\mathrm{i}}\right\}$ are patched together by automorphisms φ_{ij}. We denote the corresponding deformation by

$$
\begin{equation*}
\tilde{\mathscr{V}} \longrightarrow \mathrm{S}_{1}=\operatorname{Spec} \mathbb{C}[\mathrm{s}] / \mathrm{s}^{2} \tag{6.10}
\end{equation*}
$$

The following lemma implies the "if" part of Theorem 6.1.

Lemma 6.4. Let $\bar{\phi} \in \mathrm{H}^{0}\left(\mathrm{~B}, \mathrm{~L}_{\mathrm{B}}\right)$ be an element satisfying that $\mathrm{ob}\left(\bar{\phi}^{2}\right)=0$ and $\tilde{\mathscr{V}} \longrightarrow \mathrm{S}_{1}=\operatorname{Spec} \mathbb{C}[\mathrm{s}] / \mathrm{s}^{2}$ the first order deformation defined in (6.10). Let $\tilde{\mathscr{V}}^{\prime} \longrightarrow \mathrm{S}_{2}=\operatorname{Spec} \mathbb{C}[\mathrm{t}] / \mathrm{t}^{3}$ be the deformation induced from (6.10) by the base extension $\mathbb{C}[\mathrm{s}] / \mathrm{s}^{2} \longrightarrow \mathbb{C}[\mathrm{t}] / \mathrm{t}^{3}, \mathrm{~s} \longrightarrow \mathrm{t}^{2}$. Then $\mathscr{\mathscr { V }}^{\prime} \longrightarrow \mathrm{S}_{2}$ can be simultaneously resolved, that is, we obtain a deformation $\tilde{\mathscr{S}} \longrightarrow \mathrm{S}_{2}$ of X and a morphism $\tilde{\mathscr{B}} \longrightarrow \tilde{\mathscr{V}}^{\prime}$. This deformation $\tilde{\mathscr{S}} \longrightarrow \mathrm{S}_{2}$ is an extension of $\mathscr{\mathscr { B }} \longrightarrow \mathrm{S}_{1}$ defined in Proposition 4.4.

Proof: Setting $\mathrm{s}=\mathrm{t}^{2}$ in (6.8) and (6.9), we obtain

$$
\begin{equation*}
\tilde{H}_{i}^{\prime}=y_{i}^{2}-\left(f_{i}+t^{2} b_{i}\right)\left(g_{i}+t^{2} a_{i}\right)-t^{2} \phi_{i}^{2} \tag{6.11}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{\mathscr{V}}_{\mathrm{i}}^{\prime}=\left\{\tilde{\mathrm{H}}_{\mathrm{i}}^{\prime}=0\right\} \subset \mathrm{U}_{\mathrm{i}} \times \mathbb{P}^{1} \times \mathrm{S}_{2} \tag{6.12}
\end{equation*}
$$

and $\varphi_{i j}: U_{i j} \times \mathbb{P}^{1} \times S_{2} \longrightarrow \mathrm{U}_{\mathrm{j}} \times \mathbb{P}^{1} \times \mathrm{S}_{2}$.

We also define the equation by

$$
\begin{equation*}
G_{i}^{(2)}=\left(f_{i}+t^{2} b_{j}\right) x_{i}^{2}-2 t \phi_{i} x_{i} z_{i}-\left(g_{i}+t^{2} a_{i}\right) z_{i}^{2} \tag{6.13}
\end{equation*}
$$

Moreover, setting $u_{i}=x_{i} / z_{i}=\frac{1}{v_{i}}$, we can write (6.13) as

$$
\begin{equation*}
G_{i, 1}=\left(f_{i}+t^{2} b_{i}\right) u_{i}^{2}-2 t \phi_{i} u_{i}-\left(g_{i}+t^{2} a_{i}\right), \quad\left(z_{i} \neq 0\right) \tag{6.14}
\end{equation*}
$$

$$
\begin{equation*}
G_{i, 2}=\left(f_{i}+t^{2} b_{i}\right)-2 t \phi_{i} v_{i}-\left(g_{i}+t^{2} a_{i}\right) v_{i}^{2},\left(x_{i} \neq 0\right) \tag{6.15}
\end{equation*}
$$

Moreover we define

$$
\begin{equation*}
\tilde{\mathscr{D}_{\mathrm{i}}}=\left\{\mathrm{G}_{\mathrm{i}}^{(2)}=0\right\} \subset \mathrm{U}_{\mathrm{i}} \times \mathbb{P}^{1} \times \mathrm{S}_{2} \tag{6.16}
\end{equation*}
$$

$$
\begin{equation*}
\mathscr{S}_{\mathrm{i}}^{-1}=\left\{\mathrm{G}_{\mathrm{i}, 1}=0\right\} \subset \mathrm{U}_{\mathrm{i}} \times \mathbb{C}\left(\mathrm{u}_{\mathrm{i}}\right) \times \mathrm{S}_{2}, \tag{6.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{S}_{\mathrm{i}}^{2}=\left\{\mathrm{G}_{\mathrm{i}, 2}=0\right\} \subset \mathrm{U}_{\mathrm{i}} \times \mathbb{C}\left(\mathrm{v}_{\mathrm{i}}\right) \times \mathrm{S}_{2} \tag{6.18}
\end{equation*}
$$

Note that $\tilde{\mathscr{D}}=\tilde{\mathscr{D}_{\mathrm{i}}} \tilde{\mathrm{i}}_{\mathrm{i}}^{1} \cup \tilde{\mathscr{S}}_{\mathrm{i}}^{2}$ and $\tilde{\mathscr{D}}$ is smooth. For each i , we can define the morphism $\eta_{\mathrm{i}}: \tilde{\mathscr{D}}_{\mathrm{i}} \longrightarrow \tilde{\mathscr{V}}_{\mathrm{i}}^{\prime}$ by

$$
\text { (6.19) } y_{i}= \begin{cases}\left(f_{i}+t^{2} b_{i}\right) u_{i}-t \phi_{i} & \text { on } \mathscr{S}_{i}^{2} \\ \left(g_{i}+t^{2} a_{i}\right) v_{i}+t \phi_{i} & \text { on } \mathscr{\mathscr { S }}_{\mathrm{i}}^{2}\end{cases}
$$

This gives the local resolution of $\tilde{\mathscr{r}}_{\mathrm{i}}^{\prime}$.

Next we show that the isomorphism $\varphi_{i j}$ lifts to $\phi_{i j}$ satisfying that

By using (6.19), we have for each i

$$
\begin{equation*}
u_{i}=\frac{y_{i}+t \phi_{i}}{\left(f_{i}+t^{2} b_{i}\right)} \tag{6.20}
\end{equation*}
$$

This equality shows that the automorphism φ_{ij} induces a birational map $\phi_{\mathrm{ij}}: \tilde{\mathscr{S}}_{\mathrm{ij}}--\rightarrow \tilde{\mathscr{L}}_{\mathrm{ji}}$ and by using (5.21), (5.22), (6.7), (6.14), after a long but straightforward calculation, we can show that ϕ_{ij} can be written as

$$
\begin{equation*}
u_{i}=f_{i j}^{1} h_{i j}\left(1+t^{2} \beta_{i j}\right)\left\{\left(1+t^{2} R_{i j}\right) u_{j}+t\left(a_{i j}+b_{i j} u_{j}^{2}\right)+t^{2} b_{i j}^{2} j_{j}^{3}\right\} \tag{6.21}
\end{equation*}
$$

where $\mathrm{R}_{\mathrm{ij}}=\mathrm{c}_{\mathrm{ij}}-\beta_{\mathrm{ij}}+\mathrm{a}_{\mathrm{ij}} \mathrm{b}_{\mathrm{ij}}$. Thus ϕ_{ij} gives the isomorphism : $\tilde{\mathscr{D}}_{\mathrm{i} j} \longrightarrow \tilde{\mathscr{S}}_{\mathrm{ji}}$. (For the coordinate v_{j}, the argument is similar.)

Now let us consider the following automorphism on $\tilde{\mathscr{F}_{\mathrm{i} j \mathrm{k}}}$;

$$
\gamma_{\mathrm{ijk}}=\left(\phi_{\mathrm{ij}} \cdot \phi_{\mathrm{jk}} \circ \phi_{\mathrm{ik}}^{-1}\right)
$$

Since $\tilde{\mathscr{L}}_{\mathrm{i}}$ and ϕ_{ij} are extensions of \mathscr{L}_{1} and $\tilde{\varphi}_{\mathrm{ij}}$ in 4.3 to S_{2}, we can write as
$\gamma_{\mathrm{ijk}}=\mathrm{id}+\mathrm{t}^{2} \xi_{\mathrm{i} j \mathrm{k}}$ where $\xi_{\mathrm{ijk}} \in \Gamma\left(\mathrm{X}_{\mathrm{ijk}} \Theta_{\mathrm{X}}\right)$. Since
$\left(\eta_{\mathrm{i}}\right)_{*}\left(\gamma_{\mathrm{ijk}}\right)=\left(\varphi_{\mathrm{ij}} \circ \varphi_{\mathrm{jk}} \circ \varphi_{\mathrm{ik}}^{-1}\right)=\mathrm{id}$, we have $\mathrm{r}_{*} \xi_{\mathrm{ijk}}=0$ in $\Gamma\left(\mathrm{V}_{\mathrm{ijk}}, \mathrm{r}_{*} \Theta_{\mathrm{X}}\right)$. By the
equality $\mathrm{r}_{*} \Theta_{\mathrm{X}}=\Theta_{\mathrm{V}}$ (Lemma 3.1), this implies that $\xi_{\mathrm{ijk}}=0$, and thus $\gamma_{\mathrm{ijk}}=\mathrm{id}$. Therefore $\left\{\tilde{\mathscr{S}}_{\mathrm{i}}\right\}$ together with isomorphism $\left\{\phi_{\mathrm{ij}}\right\}$ gives the deformation $\tilde{\mathscr{H}} \longrightarrow \mathrm{S}_{2}$ of X which is an extension of $\mathscr{S} \longrightarrow \mathrm{S}_{1}$ in Proposition 4.4. q.e.d.
6.3. Next we prove the "only if" part of Theorem 6.1. Let $\mathscr{X} \longrightarrow \mathrm{S}_{1}$ be the first order deformation corresponding to $\bar{\phi} \in H^{0}\left(B, L_{B}\right)$ as we defined in 4.3. Assume that there exists an extension $\tilde{\mathscr{S}} \longrightarrow \mathrm{S}_{2}$ of $\mathscr{S} \longrightarrow \mathrm{S}_{1}$. By Proposition 3.6, we have a deformation $\tilde{\eta}: \tilde{\mathscr{V}} \longrightarrow \mathrm{S}_{2}$ of V and a morphism $\tilde{\mathrm{u}}: \tilde{\mathscr{S}} \longrightarrow \tilde{\mathscr{V}}$ which make the following diagram commutative:

This gives an extension of the following diagram:

Let $\mathscr{L}_{1} \longrightarrow \mathscr{K}_{1}$ denote the blow down morphism $\mathbf{u}_{\mathscr{S}_{i}}$. This is written by the local coordinate in 4.3 as

$$
\begin{equation*}
y_{i}=u\left(u_{i}\right)=f_{i} u_{i}-t \phi_{i} \tag{6.24}
\end{equation*}
$$

The image \mathscr{K}_{i}, which is a deformation of V_{i} over S_{1}, is the hypersurface $U_{i} \times \mathbb{P}^{1} \times S_{1}$ defined by

$$
\begin{equation*}
y_{i}^{2}-f_{i} g_{i}-t^{2} \phi_{i}^{2}=y_{i}^{2}-f_{i} g_{j}=0 \tag{6.25}
\end{equation*}
$$

Thus $\mathscr{K}_{1} \longrightarrow \mathrm{~S}_{1}$ is isomorphic to $\mathrm{V}_{\mathrm{i}} \times \mathrm{S}_{1} \longrightarrow \mathrm{~S}_{1}$. Since $\tilde{\mathrm{u}}_{\mathscr{H}_{\mathrm{i}}}$ is an extension of ${ }^{\mathrm{u}} \mathscr{\mathscr { S }}_{\mathrm{i}}, \quad \tilde{\mathscr{V}}_{\mathrm{i}}$ is isomorphic to a hypersurface in $\mathrm{U}_{\mathrm{i}} \times \mathbb{P}^{1} \times \mathrm{S}_{2}$ defined by

$$
\begin{equation*}
y_{i}^{2}-f_{i} \mathrm{~g}_{\mathrm{i}}-\mathrm{t}^{2} \phi_{\mathrm{i}}^{2}=0 \quad\left(\bmod \mathrm{f}_{\mathrm{i}}, \mathrm{~g}_{\mathrm{i}}\right) \tag{6.26}
\end{equation*}
$$

Moreover let $\eta_{i \mathrm{j}}: \tilde{\mathscr{V}}_{\mathrm{ij}} \longrightarrow \tilde{\mathscr{V}}_{\mathrm{ji}}$ denote the patching isomorphism of $\underset{\mathscr{V}}{\sim} \mathrm{S}_{2}$. By the commutative diagram (3.1) in Proposition 3.2, we can see that $\mathscr{B} \longrightarrow \mathrm{S}_{1}$ can be blown down to the trivial deformation $V \times S_{1} \longrightarrow S_{1}$ since $\bar{\phi} \in H^{0}\left(B, L_{B}\right)$ corresponds to an element $\mathrm{H}_{\mathrm{E}}^{1}\left(\mathrm{X}, \Theta_{\mathrm{X}}\right)$. Thus the deformation $\eta: \underset{\mathrm{S}_{2}}{\stackrel{\sim}{\mathscr{V}}} \times \mathrm{S}_{1} \longrightarrow \mathrm{~S}_{1}$ is isomorphic to the trivial deformation and this implies that we can write $\eta_{i j}$ by

$$
\begin{equation*}
\eta_{i j}=\eta_{i j}^{\circ}+t^{2} \rho_{i j} \tag{6.27}
\end{equation*}
$$

where $\eta_{\mathrm{ij}}^{\circ}: \mathrm{V}_{\mathrm{ij}} \longrightarrow \mathrm{V}_{\mathrm{ji}}$ denote the patching isomorphism for V and $\rho_{\mathrm{ij}} \in \Gamma\left(\mathrm{V}_{\mathrm{ij}}{ }^{\circ} \Theta_{\mathrm{V}}\right)$. If we put $\mathrm{t}^{2}=\mathrm{s}$ in (6.26) and (6.27), we obtain

$$
\begin{equation*}
\tilde{\mathscr{V}}_{\mathrm{i}}^{\prime}=\left\{y_{\mathrm{i}}^{2}-\mathrm{f}_{\mathrm{i}} \mathrm{~g}_{\mathrm{i}}-\mathrm{s} \phi_{\mathrm{i}}^{2}=0\right\} \longrightarrow \mathrm{S}_{1}=\operatorname{Spec} \mathbb{C}[\mathrm{s}] / \mathrm{s}^{2} \tag{6.28}
\end{equation*}
$$

$$
\begin{equation*}
\eta_{\mathrm{ij}}^{\prime}=\eta_{\mathrm{ij}}^{0}+\mathrm{s} \rho_{\mathrm{ij}}: \tilde{\mathscr{V}}_{\mathrm{ij}}^{\prime} \longrightarrow \tilde{\mathscr{V}}_{\mathrm{ji}}^{\prime} \tag{6.29}
\end{equation*}
$$

After we modify $\stackrel{\sim}{\mathscr{V}}_{\mathrm{i}}^{\prime}$ and $\eta_{\mathrm{ij}}^{\prime}$, we get the first order deformation

$$
\mathscr{V}^{\prime} \longrightarrow \mathrm{S}_{1}=\operatorname{Spec} \mathbb{C}[\mathrm{s}] / \mathrm{s}^{2}
$$

which corresponds to $\bar{\phi}^{2} \in \mathrm{H}^{0}\left(\mathrm{~B}, \mathrm{~L}_{\mathrm{B}}^{2}\right)$ and this implies that $\mathrm{ob}\left(\bar{\phi}^{2}\right)=0$. q.e.d.
§ 7. More analysis for the map ob.
7.1. For the general compact complex space Z , the first obstruction map $\underline{\mathrm{ob}}: \mathrm{H}^{0}\left(\mathrm{Z}, \mathscr{S}_{\mathrm{Z}}^{1}\right) \longrightarrow \mathrm{H}^{2}\left(\mathrm{Z}, \Theta_{\mathrm{Z}}\right)$ is not easily computed. For a surface with rational double points, the dual of the map ob is easily computed by the natural exact sequence

$$
\begin{equation*}
\left.0 \longrightarrow \Omega_{\mathrm{Z}}^{1}\left(\mathrm{~K}_{\mathrm{Z}}\right) \longrightarrow \Omega_{\tilde{Z}}^{1} \mathrm{~K}_{\tilde{\mathrm{Z}}}\right) \longrightarrow\left(\mathscr{T}_{\mathrm{Z}}^{1}\right)^{*} \tag{7.1}
\end{equation*}
$$

where $\tilde{\mathrm{Z}}$ is the minimal resolution of Z (cf. [10], [2], [16] and [3]). Since our examples V in this paper have the good global structure (cf.. 2.1), the obstruction map is easily computed by some connected homomorphisms of cohomology groups.

Lemma 7.1. Let Y, L, and D_{1}, D_{2} be as in (2.1). Then we have the following commutative diagrams:

(7.3)

Proof. Except for the map $\mathrm{I}_{\mathrm{B}} \mathrm{L}^{2} \longrightarrow \mathrm{~N}_{\mathrm{D}_{1}} \oplus \mathrm{~N}_{\mathrm{D}_{2}}$, the definitions of the morphisms in (7.2) are obvious. The map $\mathrm{I}_{\mathrm{B}} \mathrm{L}^{2} \longrightarrow \mathrm{~N}_{\mathrm{D}_{1}} \oplus \mathrm{~N}_{\mathrm{D}_{2}}$ is locally given by $\mathrm{fa}+\mathrm{gb} \longrightarrow\left(\left.\mathrm{b}\right|_{\mathrm{D}_{1}},\left.\mathrm{a}\right|_{\mathrm{D}_{2}}\right)$. Then it is easy to see the commutativity of (7.2) and exactness of each row and column. The commutative diagram (7.3) follows from (5.6), (5.7), (7.2) and the standard exact sequence $0 \longrightarrow \Theta_{Y}(-\log \mathrm{D}) \longrightarrow \Theta_{\mathrm{Y}} \longrightarrow \mathrm{N}_{\mathrm{D}_{1}} \oplus \mathrm{~N}_{\mathrm{D}_{2}} \longrightarrow 0$. q.e.d.

From (7.2), we have the commutative diagram

$$
\begin{array}{cc}
\mathrm{H}^{0}\left(\mathrm{~B}, \mathrm{~L}_{\mathrm{B}}^{2}\right) \xrightarrow{\delta_{1}^{+}} & \mathrm{H}^{1}\left(\mathrm{Y}, \mathrm{I}_{\mathrm{B}} \mathrm{~L}^{2}\right) \tag{7.4}\\
\downarrow 2 & \downarrow \gamma_{1} \\
\mathrm{H}^{0}\left(\mathrm{~B}, \mathrm{~L}_{\mathrm{B}}^{2}\right) \xrightarrow{\eta_{1}^{+}} & \mathrm{H}^{1}\left(\mathrm{D}_{1}, \mathrm{~N}_{\mathrm{D}_{1}}\right) \oplus \mathrm{H}^{1}\left(\mathrm{D}_{2}, \mathrm{~N}_{\mathrm{D}_{2}}\right) .
\end{array}
$$

Moreover from (7.3), we also obtain the commutative diagram

(see, 5.2 and 5.3).
Then the following proposition follows from Proposition 5.3, (7.4) and (7.5).

Proposition 7.2. The obstruction map $\mathrm{ob}: \mathrm{H}^{0}\left(\mathrm{~B}, \mathrm{~L}_{\mathrm{B}}^{2}\right) \longrightarrow \mathrm{H}^{2}\left(\mathrm{~V}, \Theta_{\mathrm{V}}\right)$ is given by the composite map

$$
\mathrm{H}^{0}\left(\mathrm{~B}, \mathrm{~L}_{\mathrm{B}}^{2}\right) \xrightarrow{\eta_{1}^{+}} \mathrm{H}^{1}\left(\mathrm{D}_{1} \mathrm{~N}_{\mathrm{D}_{1}}\right) \oplus \mathrm{H}^{1}\left(\mathrm{D}_{2}, \mathrm{~N}_{\mathrm{D}_{2}}\right)
$$

We will next consider the map η_{2}^{+}. The map μ^{1} :
$\mathrm{H}^{1}\left(\mathrm{Y}, \Theta_{\mathrm{Y}}\right) \longrightarrow \mathrm{H}^{1}\left(\mathrm{D}_{1}, \mathrm{~N}_{\mathrm{D}_{1}}\right) \oplus \mathrm{H}^{1}\left(\mathrm{D}_{2}, \mathrm{~N}_{\mathrm{D}_{2}}\right)$ is given by $\mu^{1}(\theta)=\left((\theta \cdot \mathrm{f}) \mid \mathrm{D}_{1}\right.$,
$\left.(\theta \cdot \mathrm{g}) \mid \mathrm{D}_{2}\right) \cdot$ It is known that $(\theta \cdot \mathrm{f}) \mid \mathrm{D}_{1}$ and $(\theta \cdot \mathrm{g}) \mid \mathrm{D}_{2}$ are obstructions to the lifting of divisors D_{1} and D_{2} to the first order deformation of Y corresponding to $\theta \in \mathrm{H}^{1}\left(\mathrm{Y}, \Theta_{\mathrm{Y}}\right)$. Moreover we can see that

$$
\operatorname{Im} \eta_{1}^{+} \cap \operatorname{Im} \mu^{1}=\operatorname{Im} \eta_{1}^{+} \cap \operatorname{Im} \mu^{1}\left(\mathrm{H}^{1}\left(\mathrm{Y}, \Theta_{\mathrm{Y}}\right)_{\mathrm{C}_{1}(\mathrm{~L})}\right)
$$

where $H^{1}\left(\mathrm{Y}, \Theta_{\mathrm{Y}}\right)_{\mathrm{C}_{1}(\mathrm{~L})}=\left\{\theta \in \mathrm{H}^{1}\left(\mathrm{Y}, \Theta_{\mathrm{Y}}\right) \mid \theta \cdot \mathrm{C}_{1}(\mathrm{~L})=0\right\}$. This consideration with Proposition 7.2 yields the following

Proposition 7.3.
Assume that $\mu^{1}\left(\mathrm{H}^{1}\left(\mathrm{Y}, \Theta_{\mathrm{Y}}\right)_{\mathrm{C}_{1}(\mathrm{~L})}\right)=0$, that is, all elements $\theta \in \mathrm{H}^{1}\left(\mathrm{Y}, \Theta_{\mathrm{Y}}\right)_{\mathrm{C}_{1}}(\mathrm{~L})$ preserve the divisors D_{1} and D_{2}. Then we have the following
(i) The map $\underline{\mathrm{ob}}$ is non-zero map if and only if η_{1}^{+}is non zero map.
(ii) The map ob is injective if and only if η_{1}^{+}is injective.

§ 8 Examples of obstructed manifolds.

8.1. Let Z be a compact complex manifold and θ an element of $H^{1}\left(Z, \Theta_{Z}\right)$. Then θ is obstructed if there are no deformations $\mathscr{G} \longrightarrow \Delta=\{\mathrm{t} \in \mathbb{C} ;|t|<\varepsilon\}$ of Z such that $\rho\left[\frac{\partial}{\partial t}\right]=\theta$ where ρ is the Kodaira-Spencer map. We say that a complex manifold Z is obstructed if it has an obstructed element $\theta \in H^{1}\left(Z, \Theta_{Z}\right)$. Moreover the followings are equivalent:

$$
Z \text { is obstructed } \longmapsto \operatorname{dim} \operatorname{Def}_{Z}<\operatorname{dim} H^{1}\left(Z, \Theta_{Z}\right)
$$

An element $\theta \in H^{1}\left(Z, \Theta_{Z}\right)$ is obstructed if the primary obstruction $[\theta, \theta] \in H^{2}\left(Z, \Theta_{Z}\right)$ is not zero. (Kodaira [13]). In this section, we will show that by using Theorem 6.1 many examples of obstructed manifolds of dimension ≥ 2 can be constructed.As far as I know, examples of obstructed surfaces are given by Kas [10], Burns-Wahl [2], Catanese [3], Pinkham [16] and Horikawa [8]. Moreover Douady [4] and Kodaira-Spencer [14] showed that the products of complex torus and \mathbb{P}^{1} are obstructed.
8.2. First examples. Our examples are compact complex manifolds X which are resolutions of V constructed from the quadruplet ($\mathrm{Y}, \mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{~L}$) in 2.1. Let Y be a smooth projective variety of dimension $\mathrm{n} \geq 2$ and L an ample line bundle, D_{1}, $\mathrm{D}_{2} \in|\mathrm{~L}|$ satisfying the conditions (2.1). Let X be a compact complex manifold defined in (2.5), that is, a resolution of the double cover V of Y branched along the normal crossing divisor $\mathrm{D}_{1}+\mathrm{D}_{2}$.

We assume that:

$$
\begin{equation*}
\mathrm{H}^{2}\left(\mathrm{Y}, a_{\mathrm{Y}}\right) \neq 0 \tag{8.1}
\end{equation*}
$$

(8.2) the cup product map $H^{1}\left(Y, Q_{Y}\right) \otimes H^{1}\left(Y, Q_{Y}\right) \longrightarrow H^{2}\left(Y, Q_{Y}\right)$ is non-trivial,
(8.3) $\quad \mathrm{L} \otimes \mathrm{K}_{\mathrm{Y}}^{-1}$ is ample.

Proposition 8.1. Under the conditions (8.1) - (8.3), the manifold X above is obstructed. In fact, there exists an element $\theta \in \mathrm{H}^{1}\left(\mathrm{X}, \Theta_{\mathrm{X}}\right)$ whose primary obstruction $[\theta, \theta] \neq 0$.

Proof: First we assume that $n=\operatorname{dim} Y \geq 3$. Set $B=D_{1} \cap D_{2}$. By Main Theorem 6.1, it suffices to show that there exists an element $\bar{\phi} \in \mathrm{H}^{0}\left(\mathrm{~B}, \mathrm{~L}_{\mathrm{B}}\right)$ such that $\underline{\mathrm{ob}}\left(\boldsymbol{\phi}^{2}\right) \neq 0$. From the exact sequences (cf. (4.16))

$$
\begin{equation*}
0 \longrightarrow \mathrm{~L}^{-1} \longrightarrow a_{Y} \oplus a_{Y} \longrightarrow \mathrm{I}_{\mathrm{B}} \mathrm{~L} \longrightarrow 0 \tag{8.4}
\end{equation*}
$$

$$
\begin{equation*}
0 \longrightarrow o_{Y} \longrightarrow \mathrm{~L} \oplus \mathrm{~L} \longrightarrow \mathrm{I}_{\mathrm{B}} \mathrm{~L}^{2} \longrightarrow 0 \tag{8.5}
\end{equation*}
$$

and Kodaira vanishing theorem (L^{-1} and $K_{Y} \otimes L^{-1}$ negative), we have

$$
\begin{gather*}
H^{1}\left(I_{B} L\right) \cong H^{1}\left(q_{Y}\right) \oplus H^{1}\left(Q_{Y}\right) \tag{8.6}\\
H^{1}\left(I_{B} L^{2}\right) \cong H^{2}\left(Y, q_{Y}\right)
\end{gather*}
$$

Moreover, by a standard exact sequence and Kodaira vanishing theorem, we obtain the exact sequences

$$
\begin{equation*}
H^{0}(Y, L) \longrightarrow H^{0}\left(B, L_{B}\right) \longrightarrow H^{1}\left(I_{B} L\right) \longrightarrow 0 \tag{8.8}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{H}^{0}\left(\mathrm{Y}, \mathrm{~L}^{2}\right) \longrightarrow \mathrm{H}^{0}\left(\mathrm{~B}, \mathrm{~L}_{\mathrm{B}}^{2}\right) \xrightarrow{\delta_{1}^{+}} \mathrm{H}^{1}\left(\mathrm{I}_{\mathrm{B}} \mathrm{~L}^{2}\right) \longrightarrow 0 \tag{8.9}
\end{equation*}
$$

Take an element $\phi \in H^{0}\left(B, L_{B}\right)$ and set $\gamma(\bar{\phi})=(a, b) \in H^{1}\left(I_{B} L\right) \cong H^{1}\left(Y, \propto_{Y}\right) \oplus H^{1}\left(Y, q_{Y}\right)$. Then by an easy calculation, we can see that

$$
\begin{equation*}
\delta_{1}^{+}\left(\phi^{2}\right)=2(a \cup b) \in H^{2}\left(Y, Q_{Y}\right) \cong H^{1}\left(I_{B} L^{2}\right) \tag{8.10}
\end{equation*}
$$

where U denote the cup product $U: H^{1}\left(Y, q_{Y}\right) \otimes H^{1}\left(Y, Q_{Y}\right) \longrightarrow H^{2}\left(Y, Q_{Y}\right)$. Thus from (8.6) and (8.7) with assumption (8.2), we obtain an element $\phi \in H^{0}\left(B, L_{B}\right)$ such that $\delta_{1}^{+}\left(\Phi^{2}\right) \neq 0$. Again from Kodaira vanishing, theorem, we have $H^{1}\left(N_{D_{i}}\right) \cong H^{2}\left(Y, Q_{Y}\right)$ and thus from (7.4), we obtain the following commutative diagram.

$$
\begin{gather*}
\mathrm{H}^{0}\left(\mathrm{~B}, \mathrm{~L}_{\mathrm{B}}^{2}\right) \xrightarrow{\delta_{1}^{+}} \mathrm{H}^{2}\left(\mathrm{Y}, \mathrm{o}_{\mathrm{Y}}\right) \cong \mathrm{H}^{1}\left(\mathrm{I}_{\mathrm{B}^{\mathrm{L}}}{ }^{2}\right) \tag{8.11}\\
\downarrow^{2} \\
\mathrm{H}^{0}\left(\mathrm{~B}, \mathrm{~L}_{\mathrm{B}}^{2}\right) \xrightarrow{\eta_{1}^{+}} \mathrm{H}^{1}\left(\mathrm{~N}_{\mathrm{D}_{1}}\right) \oplus \mathrm{H}^{1}\left(\mathrm{~N}_{\mathrm{D}_{2}}\right) \\
\mathrm{H}^{2}\left(0_{\mathrm{Y}}\right) \oplus \mathrm{H}^{2}\left({\left.q_{\mathrm{Y}}\right)}^{\gamma_{1}}\right.
\end{gather*}
$$

It is easy to see that γ_{1} is injective. Therefore if $\delta_{1}^{+}\left(\phi^{2}\right) \neq 0$, then $\eta_{1}^{+}\left(\phi^{2}\right) \neq 0$. Moreover the natural map $\mu^{1}: H^{1}\left(Y, \Theta_{Y}\right)_{C_{1}(L)} \longrightarrow \underset{i=1}{\underset{~}{\oplus}} H^{1}\left(D_{i}, N_{D_{i}}\right)=H^{1}\left(Y, q_{Y}\right)^{\oplus 2}$ defined in (7.5) is zero map by definition. Hence $\underline{o b}\left(\phi^{2}\right) \neq 0$ if $\eta_{1}^{+}\left(\phi^{2}\right) \neq 0$ by Proposition 7.3 and this completes the proof for the case of $\operatorname{dim} \mathrm{Y}=\mathrm{n} \geq 3$. Even if $\operatorname{dim} \mathrm{Y}=2$, (8.7), (8.9) and (8.11) remain to be true. Since B is a set of finite of points,
$\mathrm{S}^{2} \mathrm{H}^{0}\left(\mathrm{~B}, \mathrm{~L}_{\mathrm{B}}\right) \longrightarrow \mathrm{H}^{0}\left(\mathrm{~B}, \mathrm{~L}_{\mathrm{B}}^{2}\right)$ clearly surjective. Moreover it follows from (8.11) that the map η_{1}^{+}is non-trivial. Therefore the assertion again follows from Proposition 7.3. q.e.d.

Remark 8.2. A typical example of Y and L satisfying (8.1) ~ (8.3) is an abelian variety and its ample line bundle. In this case, our example X are closely related to the example of Douady and Kodaira-Spencer (cf. [4], [14]). In fact, X can be embedded as a hypersurface into the product $\mathbb{P}^{1} \times Y$.
8.3. Second examples. Next we will give examples for which the obstruction map ob is injective. (cf. § 5, § 7).

Let W be a smooth projective variety of dimension $n-1 \geq 1$ and C a curve of genus g . Let D_{1}^{\prime} be a smooth ample effective divisor on W divisible in $\operatorname{Pic}(\mathrm{W})$ by 2 and D_{2}^{\prime} an effictive divisor on C with degree 2 d without multiple points.

We set $Y=W \times C$ and $D_{1}=P_{1}^{*}\left(D_{1}^{\prime}\right), D_{2}=P_{2}^{*}\left(D_{2}^{\prime}\right)$ where P_{i} denote the projection to the i-th factor. We take a line bundle L such that $L^{2} \cong \sigma_{Y}\left(D_{1}+D_{2}\right)$.

Now we assume that:

$$
\begin{align*}
& \left.\mathrm{H}^{0}\left(\mathrm{~W}, \Theta_{\mathrm{W}}\right)=\mathrm{H}^{0}\left(\mathrm{C}, \Theta_{\mathrm{C}}\right)=0, \text { (in particular } \mathrm{g}(\mathrm{C}) \geq 2\right) \tag{8.12}\\
& \mathrm{H}^{1}\left(\mathrm{~W}, \mathrm{D}_{1}^{\prime}\right)=\mathrm{H}^{2}\left(\mathrm{~W}, \mathrm{O}_{\mathrm{Y}}\right)=0 \text { and } \operatorname{dim} \mathrm{H}^{0}\left(\mathrm{~W}, \mathrm{D}_{1}^{\prime}\right) \geq 2 \tag{8.13}
\end{align*}
$$

By assumption (8.12), we have the isomorphism

$$
\begin{equation*}
H^{1}\left(Y, \Theta_{Y}\right) \cong H^{1}\left(W, \Theta_{W}\right) \oplus H^{1}\left(C, \Theta_{C}\right) . \tag{8.14}
\end{equation*}
$$

Lemma 8.2. The natural map $\mu^{1}: \mathrm{H}^{1}\left(\mathrm{Y} . \Theta_{\mathrm{Y}}\right)_{\mathrm{C}_{1}(\mathrm{~L})} \longrightarrow \underset{\mathrm{i}=1}{\underset{\oplus}{2}} \mathrm{H}^{1}\left(\mathrm{~N}_{\mathrm{D}_{\mathrm{i}}}\right)$ is zero map.

Proof. Since $\mathrm{D}_{1}=\mathrm{D}_{1}^{\prime} \times \mathrm{C}$ and $\mathrm{D}_{2}=\mathrm{W} \times \mathrm{D}_{2}^{\prime}$, we have the following isomorphisms

$$
\begin{align*}
& \mathrm{H}^{1}\left(\mathrm{D}_{1}, \mathrm{~N}_{\mathrm{D}_{1}}\right) \cong \mathrm{H}^{1}\left(\mathrm{D}_{1}^{\prime}, \mathrm{N}_{\mathrm{D}_{1}^{\prime}}^{\prime}\right) \oplus \mathrm{H}^{0}\left(\mathrm{D}_{1}^{\prime}, \mathrm{N}_{\mathrm{D}_{1}^{\prime}}^{\prime}\right) \otimes \mathrm{H}^{1}\left(\mathrm{C}, \mathrm{O}_{\mathrm{C}}\right) \tag{8.14}\\
& \mathrm{H}^{1}\left(\mathrm{D}_{2}, \mathrm{~N}_{\mathrm{D}_{2}}\right) \cong \mathrm{H}^{1}\left(\mathrm{D}_{2}^{\prime}, \mathrm{N}_{\mathrm{D}_{2}^{\prime}}^{\prime}\right) \oplus \mathrm{H}^{2}\left(\mathrm{D}_{2}^{\prime}, \mathrm{N}_{\mathrm{D}_{2}^{\prime}}^{\prime}\right) \otimes \mathrm{H}^{1}\left(\mathrm{~W}, \mathrm{a}_{\mathrm{W}}\right) \tag{8.15}
\end{align*}
$$

Then μ^{1} is decomposed into the following maps

$$
\begin{align*}
& \mathrm{H}^{1}\left(\mathrm{~W}, \Theta_{\mathrm{W}}\right) \longrightarrow \mathrm{H}^{1}\left(\mathrm{~N}_{\mathrm{D}_{1}^{\prime}}^{\prime}\right) \tag{8.16}\\
& \mathrm{H}^{1}\left(\mathrm{C}, \Theta_{\mathrm{C}}\right) \longrightarrow \mathrm{H}^{1}\left(\mathrm{~N}_{\mathrm{D}_{2}^{\prime}}^{\prime}\right)
\end{align*}
$$

Since C is a curve, $\mathrm{H}^{1}\left(\mathrm{~N}_{\mathrm{D}_{2}}^{\prime}\right)=0$ and by (8.13) we have $\mathrm{H}^{1}\left(\mathrm{~N}_{\mathrm{D}_{1}^{\prime}}^{\prime}\right)=0$. These imply that $\mu^{1}=0$. q.e.d.

From this lemma, the obstruction map $\underline{o b}$ is injective (resp. non-trivial) if the map η_{1}^{+}in (7.4) is injective (resp. non-trivial). Moreover we can prove the following

Lemma 8.3. Under the above assumptions, we have the followings:
(i) The map η_{1}^{+}is always non-trivial.
(ii) The map η_{1}^{+}is injective if $2 \mathrm{~d}=\operatorname{deg} \mathrm{D}_{2}^{\prime} \leq \mathrm{g}$ and D_{2}^{\prime} is general or more precisely if $\operatorname{dim} \mathrm{H}^{0}\left(\mathrm{C}, \mathrm{D}_{2}^{\prime}\right)=1$.

Proof. From the commutative diagram (7.2), we get

$$
\begin{aligned}
& 0 \longrightarrow \mathrm{H}^{0}\left(\mathrm{I}_{\mathrm{B}^{2}} \mathrm{~L}^{2}\right) \longrightarrow \mathrm{H}^{0}\left(\mathrm{~L}^{2}\right) \xrightarrow{\tau} \mathrm{H}^{0}\left(\mathrm{~B}, \mathrm{~L}_{\mathrm{B}}^{2}\right) \xrightarrow{\delta_{1}^{+}} \\
& 0 \longrightarrow \mathrm{H}^{0}\left(\mathrm{~N}_{\mathrm{D}_{1}}\right) \oplus \mathrm{H}^{0}\left(\mathrm{~N}_{\mathrm{D}_{2}}\right) \longrightarrow \mathrm{H}^{0}\left(\mathrm{~N}_{\mathrm{D}_{1}+\mathrm{D}_{2}}\right) \xrightarrow{\tau^{\prime}} \mathrm{H}^{0}\left(\mathrm{~B}, \mathrm{~L}_{\mathrm{B}}^{2}\right) \xrightarrow{\eta_{1}^{+}} . \\
& \underset{\mathrm{H}^{1}\left(\mathrm{Y}, \mathrm{O}_{\mathrm{Y}}\right)}{\downarrow}=\mathrm{H}^{1}\left(\mathrm{Y}, 0_{\mathrm{Y}}\right)
\end{aligned}
$$

It follows from this diagram that $\operatorname{Im} \tau=\operatorname{im} \tau^{\prime}$.

Since B is isomorphic to $2 d$ copies of $\mathrm{D}_{1}^{\prime} \mathrm{CW}$ and $\mathrm{L}^{2} \otimes \mathrm{D}_{1}^{\prime} \cong \mathrm{N}_{\mathrm{D}_{1}^{\prime}}^{\prime}$. Thus

$$
\begin{equation*}
\operatorname{dim} \mathrm{H}^{0}\left(\mathrm{~B}, \mathrm{~L}_{\mathrm{B}}^{2}\right)=2 \mathrm{~d} \times \operatorname{dim} \mathrm{H}^{0}\left(\mathrm{D}_{1}^{\prime}, \mathrm{N}_{\mathrm{D}_{1}}^{\prime}\right) \geq 2 \mathrm{~d} \times\left(\operatorname{dim} \mathrm{H}^{0}\left(\mathrm{~W}, \mathrm{D}_{1}^{\prime}\right)-1\right) \tag{8.19}
\end{equation*}
$$

On the other hand, we can easily see that

$$
\begin{equation*}
\operatorname{dim} \mathrm{H}^{0}\left(\mathrm{Y}, \mathrm{~L}^{2}\right)=\operatorname{dim} \mathrm{H}^{0}\left(\mathrm{~W}, \mathrm{D}_{1}^{\prime}\right) \times \operatorname{dim} \mathrm{H}^{0}\left(\mathrm{C}, \mathrm{D}_{2}^{\prime}\right) \tag{8.20}
\end{equation*}
$$

Moreover an exact sequence

$$
\begin{equation*}
0 \longrightarrow O \longrightarrow O\left(\mathrm{D}_{1}\right) \oplus O\left(\mathrm{D}_{2}\right) \longrightarrow \mathrm{I}_{\mathrm{B}} \mathrm{~L}^{2} \longrightarrow 0 \tag{8.21}
\end{equation*}
$$

implies that

$$
\begin{equation*}
\operatorname{dim} \mathrm{H}^{0}\left(\mathrm{I}_{\mathrm{B}} \mathrm{~L}^{2}\right) \geq \operatorname{dim} \mathrm{H}^{0}\left(\mathrm{~W}, \mathrm{D}_{1}^{\prime}\right)+\operatorname{dim} \mathrm{H}^{0}\left(\mathrm{C}, \mathrm{D}_{2}^{\prime}\right)-1 \tag{8.22}
\end{equation*}
$$

From (8.20) and (8.22), it follows that

$$
\begin{equation*}
\operatorname{dim}(\operatorname{Im} \tau) \leq\left(\operatorname{dim} \mathrm{H}^{0}\left(\mathrm{~W}, \mathrm{D}_{1}^{\prime}\right)-1\right)\left(\operatorname{dim} \mathrm{H}^{0}\left(\mathrm{C}, \mathrm{D}_{2}^{\prime}\right)-1\right) . \tag{8.23}
\end{equation*}
$$

From this inequality, the assertion (ii) follows. If D_{2}^{\prime} is not a special divisor on C , by Riemann-Roch, $\operatorname{dim} \mathrm{H}^{0}\left(\mathrm{C}, \mathrm{D}_{2}^{\prime}\right)-1=2 \mathrm{~d}-\mathrm{g}<2 \mathrm{~d}$. If D_{2}^{\prime} is a special divisor, by Clifford's theorem, $\operatorname{dim} \mathrm{H}^{0}\left(\mathrm{C}_{2} \mathrm{D}_{2}^{\prime}\right)-1 \leq \mathrm{d}<2 \mathrm{~d}$. Thus by (8.19) and (8.23) with assumption that $\operatorname{dim} \mathrm{H}^{0}\left(\mathrm{~W}, \mathrm{D}_{1}^{\prime}\right) \geq 2$, we have

$$
\operatorname{dim}(\operatorname{Im} \tau)<\operatorname{dim} \mathrm{H}^{0}\left(\mathrm{~B}, \mathrm{~L}_{\mathrm{B}}^{2}\right)
$$

which implies the assertion (i). q.e.d.

Let ($\mathrm{Y}, \mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{~L}$) be a quadruplet as above. From Lemma 8.2 and Lemma 8.3, we have the following theorem.

Theorem 8.4. Let X be the manifold defined in $\S 2$ from ($\mathrm{Y}_{1} \mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{~L}$). Under the assumptions (8.12) and (8.13), we have the followings:
(i) X is always obstructed.
(ii) If degree of $\mathrm{D}_{2}^{\prime}=2 \mathrm{~d} \leq \mathrm{g}(\mathrm{C})$ and D_{2}^{\prime} is general, or more precisely if $\operatorname{dim} \mathrm{H}^{0}\left(\mathrm{C}, \mathrm{D}_{2}^{\prime}\right)=1$, all the elements in $\mathrm{H}_{\mathrm{E}}^{1}\left(\Theta_{\mathrm{X}}\right) \cong \mathrm{H}^{1}\left(\mathrm{~N}_{\mathrm{E}}\right)$ are obstructed.

Remark 8.5. In case (ii) of Theorem 8.4, under some suitable conditions on W , we can prove that the Kuraniski space X is non-reduced. We will discuss this topic in the future.

Remark 8.6. If W is also a curve, the above examples are given by Kas [10]. Moreover Catanese generalizes the example to surfaces which have A_{n} singularities in [3].

References

[1] Artin, M.: On the solutions of analytic equations, Inventiones math. 5, 277-291 (1968).
[2] Burns, D.M., Wahl, J.M.: Local contributions to global deformations of surfaces, Inventiones math. 26, 67-88 (1974).
[3] Catanese, F.: Everywhere non reduced moduli spaces, MPI preprint (1988).
[4] Douady, A.: Obstruction primarie à la déformation, Sém. Henri Cartan 1960/61, exposé 4.
[5] Flenner, H.: Uber Deformationen holomorpher Abbildungen. Habilitationsschrift, Osnabrück 1978.
[6] Forster, O., Knorr, K.: Konstruktion verseller Familien kompakter komplexer Räume. Lect. Notes Math. Vol. 705, Berlin, Heidelberg, New York: Springer 1979.
[7] Fujiki, A.: On primitively symplectic compact Kähler V-manifolds of dimension four, Progress in Math. 39, Classification of Algebraic and Analytic manifolds (ed. K. Ueno), 71-250 (1982).
[8] Horikawa, E.: On deformations of holomorphic maps, III, Math. Ann. 222, 275-282 (1976).
[9] Karras, U.: Local cohomology along exceptional sets, Math. Ann. 275, 673-682 (1986).
[10] Kas, A.: Ordinary double points and obstructed surfaces, Topology Vol. 16, 51-64 (1977).
[11] Kawamata, Y.: On deformations of compactfiable manifolds, Math. Ann. 235, 247-265 (1978).
[12] Kawamata, Y.: Minimal models and the Kodaira dimension of algebraic fiber spaces, Journ. für d.r.u.an. Math. 363, 1-46 (1985).
[13] Kodaira, K.: Complex manifolds and deformations of complex structures. Grund. math. Wissensch. 283, New York, Berlin, Heidelberg, Tokyo, Springer Verlag (1985).
[14] Kodaira, K.: Spencer, D.C.: On deformation of complex analytic structures, I - II, III, Ann. of Math. 67 (1958), 328-466; 71 (1960), 43-76.
[15] Palamodov, V.P.: Deformations of complex spaces, Usp. Math. Nauk. 31, 3, 129-194 (1976). [Engl. Transl.: Russ. Math. Surveys 31, 3, 129-197 (1976)].
[16] Pinkham, H.: Some local obstructions to deforming global surfaces, Nova acta Leopodia NF 52 Nr. 240, 173-178 (1981).
[17] Saito, M.-H., Shimizu, Y., Usui, S.: Variation of Mixed Hodge structure and the Torelli problem, Advanced Stud. in Pure Math. Vol. 10, Algebraic Geometry, Sendai, 649-693 (1985).
[18] Schlessinger, M.: Rigidity of quotient singularities, Inventiones math. 14, 17-26 (1971).
[19] Wahl, J.H.: Equisingular deformations of normal surface singularities, I. Annals of Math., 104, 325-356 (1976).
[20] Wehler, J.: Cyclic covering: deformation and Torelli theorem, Math. Ann. 274, 443-472 (1986).

