New examples of obstructed complex manifolds

in higher dimension

Masa—Hiko Saito

Max—Planck—Institut Institute of Mathematics
fiir Mathematik " Faculty of Education
Gottfried—Claren—Strafle 26 Shiga University

5300 Bonn 3 Otsu, 520, Japan

West Germany

MPI/88 —45






New examples of obstructed complex manifolds

in higher dimension

by

Masa—Hiko Saito

Institute of Mathematics & Max—Planck—Institut
Faculty of Education fir Mathematik

Shiga University Gottfried—Claren—Strafle 26
Otsu, 520, Japan 5300 Bonn 3

West Germany

Introduction. In the present paper, we will generalize some results of Burns—Wahl
[2] and Kas [10] to varieties of dimension n > 3 and we will give new examples of ob-

structed compact complex manifold of dimension > 2 .

Let Z be a compact complex manifold and OZ its tangent sheaf. An element
g€ Hl(Z,G)Z) is obstructed if there are no deformations F— A ={t € C: |t|<e} of
Z such that the image of Kodaira—Spencer map p[g{] is 6. A complex manifold Z is
obstructed if there is an element # which is obstructed. This is also equivalent to that the

Kuranishi space of Z is not smooth.

In the case where Z is a surface (i.e. dim Z = 2) , examples of obstructed surfaces
are given by (as far as I know), Kas [10], Burns—Wahl {2], Horikawa [8], Pinkham
[16] and Catanese [3]. Except for Horikawa’s examples, all examples arise from the mini-

mal resolution of surfaces with rational double points.
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To be more precise, let V be a surface with only ratinal double points
p= {pl, ,pt} , T: X — V the minimal resolution and E = r'_l(p) the exceptional

divisor.

Burns—Wahl showed that there exists a natural inclusion H%)(E)X) — Hl(G)X)
where Hé(@x) is the local cohomology group with support E and they studied the con-
tributions of elements of Hé(@x) to the deformation functor Dy of X . Moreover they
showed there is a morphism of the deformation functors Dy — Dy, which fits into the

commutative diagram: ([2], [16])

(0.1) Dy ——— Ly

l 1

DV_—»LV

Here Ly and Ly, are local deformation functors of small neighborhoods of E and P
and the mophism Ly — Ly, is obtained by blowdowns. Since Ly — I’V is well
understood by a theory of Brieskorn, one can describe the functor DX or the Kuranishi
space of X by DV and the morphism DV —_— LV . From the theory of deformation, we

have an exact sequence

b

1 1 0 1, & 9

(0.2) 0—H (V,G)V) — Ty —H (V,ﬁ'v) — H (V,G)V)
| 2 | 2

Dy(C[t])  Ly(C[t])

where C[t] = C[t] /t2 and Dy,(C[t]) are the Zariski tangent spaces of functors.
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From (0.1) and (0.2), one can show that if ob is non—zero map X is obstructed. (cf.
[10], [2] and [16]). Using this result, Burns—Wahl [2] and Kas [10] gave many
examples of obstructed surfaces X when the singularities of the surfaces V are only

ordinary double (= A,) points.

Recently, using the result (0.1) and a description of the dual of the map ob in (0.2)
(due to Kas [10] and Pinkham [16] ), Catanese constructed examples of surfaces of
general type whose Kuranishi spaces are isomorphic to the product T x S of smooth
schemes T and nilpotent schemes S . (cf. [3].) These examples contain the former

examples of Kas and Miranda.

To generalize these results in [2], [10], [16] and [3] to higher dimensional varie-
ties, we will introduce a kind of n—dimensional singularity which is a generalization of
rational double points. A complex space S has equisingular rational double points (RDP)
along a subvariety B of codimension 2in S if for each point p € B, the germ (S,p) is
isomorphic to the germ (B,p) x (rational double points). These types of singularities often

appear when one takes a quotient variety or a double covering of a smooth variety.

Let V be a compact complex space of dimension n > 2 all of whose singularities are
equisingular RDP and set B = support of Sing. V. If one wants to generalize the result
(0.1) to the case where n > 3, one should define a suitable local deformation functor Ly
of singularity. But since dim B > 1, some global structures of B have to make some
affects on LV and I do not know what is the reasonable definition of Ly, and how can

one generalize the results (0.1) for such singular varieties.

Since these difficulties are not overcomed, (as far as I know), in this paper, we make

very strong global assumptions on V. That is, V is a double covering of a smooth proper
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variety Y whose branched locus is a divisor D = D1 + D2 where D1 and D2 are
smooth and intersecting each other transversally. In this case, the support of Sing. V isa
smooth subvariety B which is isomorphic to D1 n D2 and V has equisingular Al
points along B . Moreover, one can obtain 2 unique resolution r: X — V. Though our

objects V and X are very simple, these give many examples of obstructed manifolds.

In order to mention the statement of our main theorem (Theorem 6.1), we shall give
some notations and results. Let E be the exceptional divisor of r: X —— V . Then, as in
2 dimensional case, one has an inclusion HEI}(GX) — HI(G)X) . Moreover we have an iso-
morphism Hrl:(ex) i) HO(B,LB) where Lp is a line bundle on B . On the other hand,
we have the exact sequence (0.2) for V and an isomorphism HO(V, J%,) sl HO(B,L123) .
Considering an element @ € HO(B,LB) as an element of HI(E)X) , we construct a
deformation 7, : $— S, = Spec (C[t] /t2) of X . Then we have the following

Main Theorem: (Theorem 6.1.) The deformation 7y : $— S, can be extended to a
deformation over S, = Spec (C[t] /t3) if and only if ob (¢ 2) = 0 where gb is defined
as in (0.2).

This theorem shows that the primary obstruction of the element ¢ € HO(B,LB) is
given by ob (¢ 2) up to nonzero constant. (c¢f. Corollary 6.2.).

Moreover we can construct examples of Y and D1 , D2 such that for the corres-
ponding V the obstruction map ob is nontrivial on the image of the square map
HO(B,LB) — HO(B,L%) . Thus, by Main Theorem, the corresponding resolution X is

obstructed.
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We remark that there exist examples of compact complex manifolds of dimension
n > 3 whose Kuranishi spaces are not reduced and which are not products of Catanese’s
examples and some other complex manifolds. We will discuss such examples elsewhere .

(See § 8.)

The organization of this paper is as follows. § 1 is a review from deformation theory
of complex spaces. § 2 is definition of double cover V and its resolution X which are
main objects in this paper. In § 3, we will generalize some results in Burns—Wahl [2] and
Wah! [19] and compute the local cohomology group Hé(@x) . In § 4, we will construct
the first order deformations of X corresponding to elements of HE(G)X) by using Cech
cocycles. In § 5, the first obstruction map ob is introduced and calculated by Cech
cocycles. Using the results in § 1 - § 5, in § 6, we prove our Main Theorem 6.1. After we
study the first obstruction map ob more carefully in § 7, in § 8, we will give two kinds of

examples of obstructed manifolds of dimension > 2.

Acknowledgements. The author would like to thank Professors Miyajima and A. Fujiki for

helpful discussions. Professor F. Catanese kindly informed me of his results in [3] and
discussions with him at Max—Planck-Institut in Bonn gave some improvements to this
paper. Many discussions on the deformation theory with Professor S. Zucker at MPI gave a
motivation of this paper. The author would like to thank them for their help. Finally, the
author is grateful to the Max—Planck—Institut fir Mathematik in Bonn for their
hospitality.
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§1 Tangent cohomology and deformation theory.
In this section, we shall review some facts about tangent cohomology and deforma-
tions of compact complex spaces which we will use in the later sections. For details, one

may refer to the articles [15], [6] and [5]. (A good summary can be found in [20].)
1.1. Let Z bea compact complex space and let .% denote the cotangent complex of Z
which is defined as an object of derived category. If we denote by Q% the sheaf of Kdhler
differential of Z , we have a natural morphism .% t— Qé . To describe the local defor-

mation of Z , the cohomology groups of the cotangent complex are most important. As in

[15], [6] and [20], we define for i €N
(11) T) = Exth(%",4)
(1.2) 7 = gm’a;(.%',dz).

The objects T% and .9’% are called the tangent cohomology group and sheaf. The sheaf

.9’iZ is coherent to G — module for all i € N . Moreover we have the spectral sequence
(1.3) EPS = BP(z,99) 3 TH Y.
1.2. A deformation of Z over a germ (S,0) of complex space is a Cartesian diagram

Z— Z

[

0 ——(5,0)
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with a flat morphism u: Z— (S,0) . Let .6, (resp. of=4) denote the category of germs
of complex spaces (resp. sets). For any base change (T,0) — (S,0), one gets a deformation

Zx T — (T,0) . Thus we get the deformation functor
S

(1.4) D, : £y, — Feb.

0

This functor can be extended to the category of formal complex spaces.

Let us set Sy = Spec(C[t] /t‘u'+1) for €N andlet u: £— (T,0) be a deforma-
tion of Z . For any morphism (SI,O) — (T,0) , one gets a deformation

Zx §; —(5,,0) . Thus we can define
- T

(1.5) p:0 T,0= Hom((S,,0),(T,0)) —— D,(S,) .

Here © ., denotes the Zariski tangent space of (T,0) . This map p is called the

Kodaira—Spencer map.

Definition 1.1. A deformation %— (T,0) of Z is called semiuniversal (or simply versal)
if

(i) the Kodaira—Spencer map p in (1.5) is bijective,

(ii) any deformations of Z are induced by some morphism (S,0) — (T,0) .

It follows from the definition that two semiuniversal deformation of Z (after shrinking the

parameter spaces) are isomorphic to each other and the parameter space of the semiuniver-
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sal deformation is uniquely determined by Z as a germ of a complex space. Hence we

denote by DefZ the germ of this parameter space.

By a work of Kuranishi, the semiuniversal deformation of Z exists if Z is smooth
and Def; is called the Kuranishi space. Later, Grauert, Forster—Knorr [6] and
Palamodov [15] proved the existence of the semiuniversal deformations of all compact

complex spaces. Due to Palamodov [15], we have the following theorem.

Theorem 1.2. ([15], Theorem 5)
Let Z be a compact complex space and TiZ the tangent cohomology group of Z . Then

we have the following:
(1) T% is the Zariski tangent space of Defy , (i.e. T% ~ Dy (S;))
(2) There exists a germ of holomorphic map

ol 2

defined near 0 such that (Def;,0) is isomorphic to (q"'l(O),O) as a germ.

o
(3) Let q= & Q be its extension in a series of homogeneous polynomials. Then
k=1

q; =0 and q, is the restriction of the Lie bracket T% ® T% T% to the diagonal.

1.3. We will restrict to the following situation. Let Z be a compact complex space which
is embedded as a hypersurface in a smooth variety W . In this case, if IZ denotes the

ideal sheaf of Z , we have the following exact sequence
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2 1 al
The cotangent complex .ifz * is isomorphic to IZ/I% — QVIV 1Z thus we have
. 1
(1.7) T, = Ext'(2;,4))
i P |
(1.8) %' = gda;(nz,az) .
Dualizing (1.6) yields an exact sequence
a 2,*
|
0
7z
where we set 0, = 5,0 = me(nl )
2= % 2%) -
Lemma 1.3. Let ZC W be as above.
(1) &' = coker Oy, — (I,/12)')
% = W|Z 2!z

(2 %'=0 ifix2.

(3) There exists an exact sequence
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0 — 8 (2,0,) — T — B'(2,%) — BY(2,0,)

2 1 1
~ Ty %H(Z?%)

Proof. The assertions (1) and (2) follow directly from (1.6) and the locally freeness of
QVIVI 7 and IZ/I% . The assertion (3) follows from the spectral sequence (1.3) and (2).
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2. Singul ble covering V and its resolution X.
In this section, we will introduce a special variety V which has singularities along a

subvariety of codimension 2. We will also introduce a "minimal" resolution X of V and

we will calculate the tangent cohomology groups and sheaves of V and X.

2.1. From this section to the end of this paper, we will consider the following quadruplet

(Y,Dl,Dz,L) which consists of:

(2.1)

(i) Y : a smooth projective variety over € of dimension n > 2,

(ii) D,,D, : smooth divisors on Y intersecting transversaly each other,

(iii) L :aline bundle on Y satisfying that L% =L, ® L, where L, and L,

are line bundles corresponding to D, and D2 respectively.

For each quadruplet (Y,Dl,Dz,L) of (2.1), we can define the double covering

¢:V——Y asfollows.

Let n:P = [P(aY ® L) —— Y be the projective bundle associated to 2% ®L over
Y, (1) the tautological line bundle of P, and y € H'(P, (1)) and
w € HO([P,;(L—I) ® 4,(1)) sections corresponding to the natural inclusions
O — &, ® L and L — &, ®L respectively. Moreover, let { € HO(Y,LI) and
gt HO(Y,L2) denote the sections defining the divisors D; and D, respectively.

Considering f - g as a section in HO([P,vr*(LZ)) , we can define section of %(2)
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(2.2) H=y?—f-g- w € H(P,4(2).

Then we define the hypersurface

(2.3) | V={H=0} —P.

The natural projection 7: Z —— Y induces the morphism ¢:V — Y of degree 2.

It follows from the definition of V that:

(i) V is a double cover of Y branched along the divisor D = D, + D, ,
(i) puy 2 4 0L
(iii) V is a normal projective variety whose singularities are analytically

isomorphic to (y2 —xz = 0) x (smooth (n—2)—dim. variety),
(iv) the singular locus of V coincides with the subvariety

B={y=f=g=0}CP.

The subvariety B in (iv) is isomorphic to D; N D, C Y . Thus we will identify B in P
with D; 1D, in Y.

2.2. Tangent cohomology groups of V.
Let V be asin 2.1. We will calculate the tangent cohomology groups T\i, and sheaves

%
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Proposition 2.1. Let V beasin21and B = Sing V. Then we have the following.

(1) %1=L2®0Y0B as a sheafof B.

() %'=0 fori>2.
Proof. From lemma 1.3, we have an isomorphism

1
& ¥ coker (@IP|V LI Ny)
*
where Ny, = (IV/I%) . Since V is a hypersurface and (V) & 4(2) , Ny i8 the line
bundle isomorphic to 45(2) |v 2 4;(2) . Let Ig = (v,fg) denotetheideal of B in P .
Then by a local calculation, one can easily see that the image of a coincides with IgNy -

Thus we have an isomorphism

1

(2.4) % ngsavaBgzﬁ,(z)a%aB.

Identifying Y with a section {y =0} in P, we also get 4,(2)® &, » L2, Combining
this with (2.4), we have

%'y cﬁ,(z)e%aYeayaBgL%ayaB.
The assertion (2) follows directly from Lemma 1.3, (2). q.e.d.

2.3. Let V beasin 2.1. By assumption on the quadruplet (Y,D,,D,,L) in (2.1), if we

=2
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once blow up V along B = Sing V , we obtain a smooth projective variety X . Let us

denote by
(2.5) r:X——V
this resolution and let E be the exceptional divisor of r.

Since X is smooth, the tangent cohomology groups T)l( are isomorphic to

H(X,0y) .

Next we will see that X can be embedded into a projective bundle over Y . Let
7 / /
& = OYGLQLII be the rank 2 vector bundleover Y and 7:P =P(& )—Y
/
the associated projective bundle. Let x € HO(IP ,0 +(1)) and
P

A
z € HO([P ,7 (L le L;)® ¢ ,(1)) denote the section corresponding to the natural inclu-
P
/ /
sions &, — & and L® LII —— & respectively. Then we have the section

(2.6) G=fC—g € HO(rP',a[P,(z) @r (L))

/
It is easy to see that the hypersurface {G =0} in P  isisomorphic to X and the
exceptional divisor E of r in (2.5)isgivenby XN {f=g=0} =XN T_I(B) : From

this fact, we have the following proposition.

Proposition 2.2. Let E C X be as above.

(1) The Pl-bundle r\g: E—— B is isomorphic to P(43 ®L @ 1'eq)—B.
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(2) Let Np denote the normal bundle of E in X . Then we have the isomorphism
*
Here §g(1) denotes the tautological line bundle of 7: E— B .
The proof is easy and left for the reader.

’
Remark 2.3. There exists an elementary transformation e: P —— P . It is easy to

check that the resolution r: X — V is induced by this birational map e .
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§3 Local cohomology group H(X.0y) and its contribution.

Let X and E be as in 2.2. In this section we will compute the local cohomology
group HE(X,GX) and its contribution to global deformations of X . Moreover we will

consider the relation between deformations of X and thoseof V.

We note that if dim V =2,V has only isolated (A;—) singularities. In this case,
Burns—Wahl [2] and Wahl [19] have dealt with these problems in the context of the
deformation theory of normal two—dimensional singularity. Our work in this section is
based on their works and may be viewed as a generalization to special non—isolated singula-

rities.

3.1. Let V be as defined in 2.1 and r: X —— V its resolution defined in 2.2. Recall
that weset B =S8ingV and E= r—l(B) denote the exceptional divisor of r . In this
section, we will consider V and X as complex spaces and all cohomology groups are com-

puted by the analytic topoiogy.

Lemma 3.1.

(1) j(Oy_p) = Oy where j: V—B——V is the inclusion .

(2) Oy 0Oy .

Proof.: (1): Since V has only quotient singularities, this follows from a general argument

(cf. [7]). (2): Since r: X — 'V is the blowing—up of the maximal ideal Ip of B, we

have this assertion.
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From this lemma, we can prove the following

Proposition 3.2. (cf. [2], 1.1 and [19] Prop. 1.8.)

Let X, E, V be as above.
(1) There is a natural inclusion H%}(X’GX) — HI(X,GX)

(2) We have the following commutative diagram with exact rows:

(3.1) 0 — Hy(X,04) — B'(X,0y) — BI(X - E,04).
l 6 |
0 — Ty — H(V-Boy).

Proof: (1) From the long exact sequence for local cohomology, we set
10(X,04) — BO(X - E,04) — Hi(X,0,) — H(X,04)
' "IX E\WM9x %)

Set U=X—-E =V —B. By lemma, one obtains an isomorphism
HO(X,GX) n HO(V,I*GX) n HO(V,@X) . Thus it suffices to show that
HO(V,GV) — HO(U,@V) is surjective. The local cohomology sequence on V gives

B9(v,0,,) — BYU,0,,) — HL(V,0,)

Oy "Iy B\V.Pv/-

Let &% IiB(GV) denote the local cohomology sheaves of Oy . Since j#(Oy,_g) = Oy, , one

obtains JJ{),(OV) = J;\l,(ev) =0 (see [9], § 1) . From the spectral sequence, we have
Hé(V,GV) = 0 . Thus we get the assertion (1).
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(2) Let "5(/V denote the cotangent complex of the morphism r: X — V. Weget a

short exact sequence in the derived category

*
00— Lr .z(/—-—».z;—-y .z;;,—-»o.

(cf. [20]). This induces the exact sequence of cohomology

2

1 1 1 * .
TX/V—oTx——vExt (Lr & ,ax)—-»Tx/V

1| I
H'(X,04)

Since V has only rational singularities, we can see Rr¢q » 4, (in the derived category).

By this, we get (by projection formula)
Exti(Lr £°,0) 2 Ext (% Rred) v Extl( %" a) > T)
’%{7x= 4’*I= 4’0\,=V'
This defines §: T+ — TL
: Ty V-
Next we will show that there exists a natural inclusion
T\l,C—-» HO(V - B,G)V) .On U=YV-B, we have the exact sequence

(cf. 2.2). This gives the exact sequence of cohomology

(3.2) 0 — B%(U,0,) — B(U,0p V) — B'(u,Ny) -2 BY(U,0,)
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Since eIP|V and NV are free sheaves on V and V is normal, we have
j*(eiP|U) = OIPIV and j*(Nle) = Ny, . Together with j,.,(E)U) = Oy, from (3.2), we
get the exact sequence

0 — B%V,08,) — E(V,0p V) — B(V,N) - B (V,8,).

Since the dual of cotangent complex .é(, * is represented by the complex GIP[V -— NV ,

the image of a is nothing but T\l, . Thus we obtain the assertion. q.e.d.

3.2. We will compute the local cohomology group H}IB(X,G)X) . The result is a8 follows.

Proposition 3.3. Let X,E be as above. Then we have the following isomorphism

(3.3) Hy(X,0y) ¥ BY(E,Ny) ¥ B(B/Ly) .

Here NE denotes the normal bundleof E in X and LB denotes the line bundle
L® aB on BCY.

5%

Proof: Let
1 ol 1

denote the algebraic local cohomology group where ¢ o & & /A(~mE). Since E can
be contracted to B = Sing V and codim(B C V) = 2, we can check that the local
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cohomology group Hé(x,(:)x) is isomorphic to the algebraic one. (cf. Proposition 1.6. in
[9]). Thus we will compute the algebraic one in (3.4). It is clear that:

Jb’aaax( 4. pPx) =0 and

o' 4 mEOx) = Ox ® Ning
where N5 : = 4 (mE)/4, . Therefore by a spectral sequence we get
(3.5) Hi(X,0y) = Lin B)(mE,04 ®N_p).
To compute the right hand side of (3.5), we consider the exact sequence
(3.6) 00— N(m—l)E — N_p~— G(mE)~——0 (m21).
First we claim that for m > 2
(3.7) B(E,8 ® Gy(mE)) = 0.
Consider the following two exact sequences:
(3.8) 0 — O ® 4(mE) — Oy ® gy(mE) — 4((m + 1)E) — 0
(39) 0— OE/B ® 4(mE) — 5 @ G(mE) — T*(E')B) ® 4y(mE) — 0

where 7: E —— B is the natural map and Op /B is the relative tangent sheaf of 7.
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Since by (2) of Proposition 2.2, we have
G((m + DE) = NB ! w g(~(om + 2)) @ 7 (L)
Op,p ® G(mE) = 4287 (L7 @1L))® g(-2m) @ r'(L})
= g(-2m-1))® 7 (LIOL OLT).
Therefore we have
T«G((m+1)E)=0 if m20,
(7 (05) ® G(mE) =0 if m21,
ry(Opp ® f(mE) =0 if m22.

From these and (3.8), (3.9), we can show that the assertion (3.7) is true. By means of (3.6)

and (3.7), we have the isomorphisms
0 0
H(mE,0y ®N )~ H(E,04x®Np) for m21.
Moreover putting m =1 in (3.8) and (3.9), one gets
8Y(E,0, ® N.)~ BU(E,0, ® N.)~ H)(E,O, 1 ®N,)
Ox ®Ng) = O ® Ng) = 2505 g ® Np)-

Therefore we obtain the isomorphism
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1 oo
Moreover from the relative Euler sequence for 7: E —— B, one has the exact sequence
* *
0—— Np—7(§® aE(—1)®T (Lz)—-»OE/BQNE——-—tO.
Since T4 Gy(-1) = Rl‘r* Gg(—1) = 0, one can easily see that
BY(E,0. - ® N) & HY(E,N,)
"“E/B "~ E/= i
Thus we have the isomorphism
Hl(X,0,) ~ HY(EN.)
E\MYx) = gl -
By Proposition 2.2, one can also check that ‘T*NE =0 and
Rl'r*NE n Rl'r* OE(—2) ® L, ® G - Since er,,, ﬂE(—-2) oY 1 le L, @ Gy » we get
Rl'r*NE o L_1 @ L1 ® L2 ® aB v @ aB . Thus we have the isomorphism
BY(E,N,) ~ H(B,L,,)
] E = t B
from the Leray spectral sequence for 7: E— B . q.e.d.
3.3. Let ECX beasin3.2. Let Oy(—log E) denote the sheaf of holomorphic vector

fields which preserve the ideal of E . This is a locally free sheaf on X and there exists an

exact sequence
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(3.10) 0 — Oy(~1log E) — © y N

X E 0 .

The sheaf @x(— log E) plays the same role in the deformation theory of the pair (X,E)
as Oy playsin that of X . (cf. [11], [19], see also [17], § 4. I). It i8 known that the
semiuniversal family of the deformation of the pair exists ([11] ). Moreover Wahl defined
the functor of equisingular deformation of the resolution ES which is convenient to our
context ( [19],§ 2). It is easy to see that the cohomology group Hl(X,GX(— log E)) is the
Zariski tangent space of the semiuniversal deformation of (X,E) and H2(X,®x(— log E))

is the set of the obstructions to the deformations.

In our context, the following proposition is important.

Proposition 3.4. Let E CX be as in 3.2. Then we have the following:

(1) there exists an exact sequence

(3.11) 0 — B (X,04 (- log E)) — H!(X,04) — B}(ENp) — 0,
(2) Hy(Ox(-logE)) =0,

(3) the subspace Hé(@x) in HI(OX) is isomorphic to HI(E,NE) and to the set of

the first order deformations of X to which the divisor E does not lift.

Proof. The assertion (3) follows from Proposition 3.3 and the assertion (2) can be proved
by the same argument as in the proof of Proposition 3.3. Hence we left the proofs for the
reader. To prove (1), we first note that HO(E,NE) = 0 because E is the exceptional

divisor of r: X — V . In view of (3.10), therefore, it suffices to show that the map
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H'(X,0y) — H'(E,Np)

is surjective. Consider the following diagram

Hy(Ox(~log E)) — HE(Oy) —I— Hg(N

| § | | |

0— B! (0y(-log B)) — H! (X,0,) —2» B (E,N

E)

E)

Since § is injective by (1) of Proposition 3.2 and dim HEI‘,(@X) = dim Hl(E,NE) , it suf-
fices to show that -6 isinjective. By the commutativity of the diagram, this is equiva-

7/
lent to the injectivity of 4 which follows from the assertion (2). q.e.d.

Remark 3.5. The exact sequence (3.11) has the splitting Hl(E,NE) —_— Hl(X,E)X) if we
identify H'(E,Np) with Hy(Oy) . Thus we can write as

H(X,05) = H'(©y(~log E)) @ Hy(0y)
= B (@4 (- log E)) ® H'(E,Ny) .

34. Let r: X—V beasin (2.5). Let D(r) : b q— el denote the deformation

functor of the morphism r: X —— V . We have the natural morphisms of functors

(3.12) @:Dy — Dy,

(3.13) ¥: Dy — Dy
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Let ¢ 5 denote the category of germs of complex spaces of dimension 0 and

D{r) , D)f( and D\fr the functors restricted to £ (f] .

Proposition 3.6. Let r: X — V be as above. Then we have a blow down morphism

g:pf — DL and p: DL — Dfr) which are compatible with (3.12) and (3.13).

Proof: The most important fact is R IO & G - Let (S,0) be an element of £ t and
&— (5,0) an element of Dy(S) . Considering O as the sheaf algebras on X, the
sheaf ry(04) on V defines a deformation of V over (S,0) . This is verified by the same

argument as in Proposition (2.3) in [2] because of the isomorphism R I+4 ¥ G; . Thus

we have §: D}f( —_ D\ff and 8: D)f( _— Dfr) as desired. q.e.d.

For the functor D(r) , DX and Dy, and we can prove the following

Proposition 3.7. Let r: X — V be as in (2.5). Let (S,0) € A be any germ of a com-

plex space. Then the natural map

(3.14) D(r)(S) —_— DX(S)
is surjective.

Proof: Let us denote by

(3.15) BlTd —Exi(1r 2, ) 120
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the natural induced map. By virture of Proposition 1.10 in [20],if 8 L s surjective and

B 2 is injective, the assertion is true. On the other hand, we have
. ,, .
Ext'(Lr 2y, &) 8 Ext( Ly, Rud)

~ Exti( .2y, &)

e

i
TV'

Thus 6i is isomorphism for each i > 0. q.ed.

Corollary 3.8. Let r: X ——V beasin (2.5). Let $— Def y and »— Defy, be

the Kuranishi families of X and V . Then we have a commutative diagram

(3.16) 5 1, ¥

]

Defy -1, Defy,

such that ;)0 =T.

Proof. By proposition 3.7, we have a commutative diagram

e ¥V’

,\/f
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with a flat morphism ¥’ — DefX . By the semiuniversality of ¥—— DefV , we get the
morphism 7: DefX —_ DefV and 7 : ¥/ —— ¥ Thus we obtain the assertion.

Remark 3.8. In the above case, 8 are all isomorphisms. This implies that

1
X

and

2

2

Moreover if S is Artinian (i.e. S€ £ é) or S is a formal analytic space, we have a cano-

nical section of ®¢ in (3.14)

E : Dy(8) — D(r)(S)
such that (® o E)S =id.

By using the existence of the relative Doudady space and a Artin’s theorem in [1],

we can prove that for any (5,0) € .6, the section g : Dy(§) — D( 1_)(S) exists and
hence s0 does g : Dy(S) — Dy/(S) .
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§4 First order deformations of X via ngh cocycles.

4.1. By a first order deformation of a compact complex space Z , we mean a deformation

of Z over §; = Spec(C[t] /t2) . The set of first order deformations of Z is isomorphic to
1

TZ .

Let X be asin (2.2). By Proposition 3.4, (1), we have an isomorphism

(4.1) Ty = B'(X,0y) = H'(X,04(~log E)) ® H'(E,N) .
We will construct first order deformations of X corresponding to elements of HI(E,NE)
by using Gech cocycles. To proceed to this, we shall introduce the following notations. Let

us define the followings:

(i) %= {U;} : a Stein covering of Y such that % = {U, N B} is also a Stein
covering of B,

(ii) {h, j} » {5 j} and {g; j} € Hl( ?40;) : sets of transition functions of the line
bundles L, L1 and L2 repectively with respect to %. We also assume that

2 _ =

hij_fijgij on Uij_Uint’

(iii) {f; € (U, &)}, {8; € T(v;,&)} : sets of defining equations D; and D,
respectively satisfying that

(iv) (t‘i") = (t}, ,t'il) : alocal coordinate system on U, with transision functions

{F’?J} satisfying that
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_ pQ
(4.3) %= F§ tﬁ) on Uy,
(v) {r;}, {x;} and {z;}: fiber coordinates of L, &, and L_1®L1 satis-
fying that
_ _ =1l
(4.4) y; = hijyj ) X=X, 5= hlJflJzJ

/
The P'-bundle 7:P =P(4 ®LOL") — Y has a trivialization
T"I(Ui) —= U, x P! with a local coordinate ((t?) , (#;;z;)) . The transition matrix of

this P'—bundle is given by

10
ij1ij

A local equation of X N U; x P! is given by

(4.6) G—fx —glz .

(cf. (2.6).) Note that on ,Uij x P , we have the equality

(4.7) G; = £,;6;.

We finally set X, = {G; = 0} CU.x P

4.2. Let B denote the submanifold of Y defined by theideal Ig = {f =g =0} (Recall

that B is isomorphic to Sing V .) Set LB =L® &5 - By Proposition 3.3, we have an

isomorphism
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(4.8) Hi(X,04) = BY(E,Ng) = E)(B,Ly).

Let @€ HO(B,LB) be a section of Ly and {4, € I'(U, N B,4;)} 2 Cech cocycle repre-
senting ¢ . On Uij N B, we have

(4.9) % =h3;.

Let us construct the first order deformation of X corresponding to this ¢ € HO(B,LB) .

Since U, is a Stein open set, we can take an extension Zﬁi € I‘(Ui,aY) of c'ﬁi . Take

an extension @, of $i for each i, and set

By (4.9), &, j vanishes on Uij N B, therefore we can set (not uniquely) as follows:

J ij-

By definition (4.10), { &, j} satisfies the 1—cocycle conditions

-1 _ =

Substituting (4.11) to (4.12), we have the identity

1 -1
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Since fk and g, are coprime, we get Tijk € I"(Ui ik OY) such that

-1 _
-1 _

Remark 4.1. Since B is a complete intersection of D1 and D2 , we have the resolution

of IB:

-1
1

1

(4.16) 0— L2 —1leryl —1;—o.

Tensoring L to this sequence, we have

1

4.17 0—Llsrerlerer! —1.L—0.
B

1 2

From this sequence, we can see that if H2(Y,L_l) = 0 we can choose an extension {¢i}

such that Tijk = 0 for all (i,j,k).

4.3. Now let us define a deformation of X; = {G, =0} by a hypersurface

~ 2 2
(4.18) B, = {G; = {x{ — 2t¢.x,z, — gz, = 0}

in U, x Pl x S, - We have the commutative diagram
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1
(4.19) &, — U, xP" x5,

S, = Spec(C[1]/t%) .

Let u, = J.:i/zi be an inhomogeneous coordinate of U, x P . Define the following auto-

morphism
Uj x IP1 Ui x pl
I
1)1] Uijx{P S Uijx{P
by
ﬂ — — Fa ﬁ —

where ”ij is given by the projective automorphism

u+tai.

(4.21) u = n(u) = ] J
MVl
hlqu( tbijuj + 1)
Since t2 =0 , we can express (4.21) as
(4.22) U= (u )= 13 lJ(u + t(a + bl.l J)))

By an easy calculation using (4.14) and (4.15), we have the following
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Lemma 4.2. On Uijk , we have

’ 1
(4.23) 5 © M) = My () = =By By -7 -Gy ot

-1 -~
Moreover, set G; = G,/ zi2 = fiu? — 2t¢;u, —g; . Then we have the following lemma.

Lemma 4.3. On Uij , we have

~ 7 ~ 7
(4.24) G o = glJ(l + 2tbijuj)Gj .

The proof of Lemma 4.2 and 4.3 is straightforward and left for the readers. By these lem-

mas, we have the following

Proposition 4.4. The collection of hypersurfaces {..%; } in (4.18) with automorphism
{nij} in (4.20) defines a deformation $— §; which corresponds to ¢ € HO(B,LB) .
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§ 5 The first obstruction map for V.

5.1. Let V be as in defined in (2.3). From (3) of Lemma 1.3 and Proposition 2.1, one has

the exact sequence

1 1 O 72y _0b 2
(5.1) 0 — H(V,8,) — Ty — H'(B,Lg) —=2— H*(V,0y) .

We call the map ob: HO(B,L%) — H2(V,ev) the first obstruction map for V . In this

section, we shall describe the map ob by means of Cech cocycles.

5.2. First we recall that the tangent complex of V C P = P( A @ L) is given by

a: @[P IV — NV which gives the two exact sequences (cf. Proposition 2.1):
(5.2) 0—-—-—>G)V——>G)[P|v—-——tIBNV—-——»O
(5.3) 0 — IgNy, — Ny, — L2 —0.

By definition of the spectral sequence, the map ob is the composition map of two connec-

ting homomorphisms:
0 2 61 1
(5.4) H (B,LB) ——H (IBNV)

e |6
BX(V,0y)

Moreover we have the following
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Lemma 5.1. Let ¢ = 7r| V' V —'Y be the natural projection. Then we have the fol-

lowing:

(1) wg el

(2) @NyeLeL?,

2
(3) wulgNy 2 LOILY,

-1
(4) ¢«Oy, 20Oy (-1logD)® O, ®L (where D =D, +D,),
(5) there exists an exact sequence
—1
(5.5) O—AOGL——rcp*(@u,lv)——a@Y@@Y@L — 0.

Proof. The assertion (1) is a standard fact of the double covering. Since Ny 2 4(2) @ 4,

and pxp(2) 2 0OL S 12 , wehave Ny, 2L & L2 . From the exact sequence (5.3), we

obtain
2 2

From a local computation and this sequence, the assertion (3) follows. The assertion (4)
follows from Proposition 2.1in [12]. Let ©p /Y denote the relative tangent sheaf of

*
7#:P——Y . Then G)IP/Y is isomorphic to %)(2) @r (L 1) . Moreover we have the

exact sequence



*
0—49“,/Y|V—-»®u,|v——up (0y)—0.

Taking a direct images and using ¢.Op Y|V oY (p*dv(2) oLl ~ 08 L, we get the exact
sequence in (5). q.e.d.

Let ¢: V— 'V be the natural involution corresponding to the double covering
¢ :V— Y. All sheaves in (5.2) and (5.3) have natural actions of this involution ¢,

hence we can consider the (~invariant direct image zpi' for these sheaves.

Lemma 5.2. Let ¢: V—=Y beasin Lemma 5.1. Then we have the following isomor-

phisms:
(1) vig =4
(2) iNy =12

+ _ 2

(4) g0y =0y(-lgD)

(5) gp'i'(G)[P | y) & I where E; is the sheaf of germs of differential operator of L of
degree < 1. Equivalently ¥ is defined by the following extension

(5.6) 0— & — B — Oy, —0

. . 1 1
whose extension class is C,(L) € H'(Y,Q2y) .
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Proof. The assertions (1) - (4) are clear. By using the exact sequence (5.5) and local com-

putation, we get the assertion (5). q.ed.

Taking the (—invariant direct image of (5.2) and (5.3), we get the exact sequence

2

(5.7) 0 — Oy (—log D) — Ep — IgL" — 0,

(5.8) 0-——»IBL2-———)L2——tL%-——-—>0.

Since HO(B,L123) is clearly t—invariant, the diagram (5.4) becomes

s
(5.9) B'(8,L2) 21— m(Y, 1515 —— BN

\ ob |4} |
B2(Y,0y(~ log D)) &— B*(V,0y))

Proposition 5.3. The map g¢b: HO(B,Lg) — H2(V,9V) coincides with the composite
map §3 o 61 in (5.9).

5.3. Next we will calculate the map ob by means of Bech cocycles. We keep the notations
in 4.1 The P'~bundle 7:P =P(4, ® L) — Y has a trivialization x *(U;) 2 U; x P!

with a local coordinate system (t? , yi) where y, denotes an inhomogeneous coordinate
B
J
hypersurface V in P defined in (2.3) is locally defined by

1 1 . .
of P~ .On Uij x P~ , we have an identity t? = F?j(t ) and y; =h Fi- The

2 1
(5.10) Vi={Hi=yi—igi=0}CUix[P .
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. _ 2 _ 1
(5.10) Vi = {Hi =y _figi =0} C Ui x Pt
Note that on Uij x Il , we have

(5.11) H. = h2. H, .

Let K = {K,} be an element of HO(B,LI%) which is represented by cocycles

K, € I(U; N B,&) - Taking an extension K, € I'(U,,4,) of each K, , we set

12 _ 2

Then {Rij} defines an clement of HI(Y,I L2) . In fact, we have the cocycle conditions

- 25 -
Kij + hijjk = Kik on Uijk
from (5.12) and f{ij IB= 0 by definition. Therefore we have
Lemma 5.4. Let 6‘1‘ be as in (5.9) . Then we have

5H(K) = {k;;} in H(Y,150%).

Next we consider the map 642' in (5.9). By definition, 6;’ is the map which fits into the

exact sequence

6+
(5.13) — al(y,z) Ly B (v 15L%) —2 H(Y,0(~log D)) .
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Let us analyse the image of g in (5.13).

Let 0 = {Eij} be a 1—cocycle of I . Then it can be written as

(5.14) 0 =0 +ﬂ1yl¢9
y1

where0 2 92,
a—l ‘Jat

ij

Moreover the 1—cocycle condition of 9 is equivalent to the following:
ie. {4} =0 defines an element in B'(Y,0y) , and

(5.16) Oy, + log by =— (By, — By + ) -

By definition, ,;(5) is represented by the 1—cocycle { Eij - H.} . This is given by

(5.17) ;5 Hy=—0, - (ig;) + 2B, fs; -

From these considerations, we have the following proposition ,
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From these considerations, we have the following proposition.

Proposition 5.5. Let K = {K;} be an element of H)(B,L3) . Then gb(K) is zero in

B%(V,0y,) if and only if there exists an extension K, of K, and

1 1 o .
6,8 = ({Hij},{ﬁij}) € H(Y,0y) x C( %4,) satisfying the conditions (5.15) and (5.16)
such that the following equality holds:

_ 2

Remark 5.6. The condition (5.16) is equivalent to § - C,(L) =0 in H2(Y,Q) and this
implies that under the first order deformation of Y corresponding to 0 = {Hi j} , the line
bundle L can be lifted.

5.4. Let K= {Eij} be an element of HO(B,L}%) .If ob (E) = 0, the exact sequence
(5.1) implies. that E comes from an element of T\lf , that is, the local deformation near
the singularities of V defined by E can be globalized to a first order deformation of V .
By using Cech cocycles, we will give a first order deformation of V corresponding to E

such that ob (K) = 0. Let us choose K = {K.} and (6,0) asin Proposition 5.5. Set

(5.19) h?jK

_ 2

J

Let us consider a deformation of V; in (5.10) for each i defined by

(W _ w2 _ _ 1
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a_pa .
(5.21) F=FH 41
(5.22) yi= hij(l + tﬁij)yj .

Setting Ei i= h, j(l + t4; j) , we can verify the following equality by using (5.16) and
(5.18).

- -

s _1r2.7 1

Therefore, we can define a deformation Y — Sy of V by patching 75 by the

automorphisms Py -
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§ 6. Proof of Main Theorem.

6.1. In this section, we shall prove the following theorem which we mentioned in the

Introduction.

Theorem 6.1. Let 7 : £—— S, be the first order deformation of X corresponding to an
element @ € HO(B,LB) (see Proposition 4.4). Then this deformation 7, : $— S, can
be extended to 7, : S— S, = Spec(€[t] /t3) if and only if

(6.1) ob(F% =0
where the map ob is defined as in (5.1).

Corollary 6.2. Let 6 ) € HI(X,G)X) be an element corresponding to ¢ € HO(B,LB) (cf.
Proposition 3.3). Then the primary obstruction [6 5,9 a] defined in H2(X,€)x) lies in
Hz(X,ex)"' = H2(Y,G)Y(— log D)) and we have an equality

2
(0505 =c-ob(57)
where ¢ is a non—zero constant.
For the definition of the primary obstruction, see the book [13].

6.2. We first prove the "if" part of Theorem 6.1.

Let §={3;} €H'(BLp), ¢ €T(V;,&), & =h}(d—hg)="f

.. .b
ij?) =4t §;

j ij

be as in 4.2. Moreover we define Aij by
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Then we have

2 2.2 .2
(63) Pi ~hi g5 = Ry At
= h?.(f.a.. A..+gb A ).
AR URE N B IR VR

Lemma 6.3. The following conditions are equivalent to each other.

(i ob(F4=0.

(ii) There exists (6,0) = ({6;,},{8,;}) € HY(Y.0y) x C'(%4,) satisfying (5.16)
and {a}, {b} € CO( %4,) such that

(6.4) — 0(f;) + 26, 8= (6% + fa, + gb,) —h2 j(q&? + 13,480

Proof: This follows from Proposition 5.5.

Now assume that ob (¢ 2) =0 and choose (0,8) € Hl(Y,@Y) x Cl( %4,) and {a},
{b;} 2sin Lemma 6.3.

From (6.3), we can see that (6.4) is equivalent to
(6.5) £10;;(8;) + gi2505 + (3 — &) — Azt
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Since f, and g, are coprime, we can get ¢, j € I‘(Ui j,OY) satisfying that
(6.6) 0;(g;) + &85 + (355~ &ipy) —Aijfi = &S
(6'7) gij(fi) + f- -b- -Aio + (bi - f- 'b') —"ﬁi f f-c« .

ij ij ] A A D I &

As we see in 5.4, we can construct a first order deformation ¥— §; = Spec (C[s] /32)

of V corresponding to ¢ 2sa.tisfying that ob(@ 2) =0. Set

-

2 2
= y? — (£, + sb;)(g; + s3;) — sd)? ,
and define the hypersurface
s 1
(6.9) ﬁ—{Hi—O}CUixIP xsl.

Moreover let G Uij x Pl x sl U i x P1 x S, denote the automorphism defined in

(5.21) and (5.22). Then { 75 } are patched together by automorphisms s - We denote

the corresponding deformation by

(6.10) Y — S, = Spec C[s] /82 .

The following lemma implies the "if" part of Theorem 6.1.
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Lemma 6.4. Let ¢ € HO(B,LB) be an element satisfying that ob(@ 2) =0 and

Y — S, = Spec C[s] /52 the first order deformation defined in (6.10). Let

v g Sy = Spec C[t] /t3 be the deformation induced from (6.10) by the base
extension € [s] /82 — C[t] /1'.3 , 8 — t2. Then ¥ g S, can be simultaneously
resolved, that is, we obtain a deformation & — S2 of X and a morphism

- - —~
% —— ¥ . This deformation & — 52 is an extension of F—— S1 defined in

Proposition 4.4.

Proof: Setting s =t in (6.8) and (6.9), we obtain

/

(6.11) H ;=i = + tb)(g; + ) - 1]

../_ -l_ 1
(6.12) v, ={H;=0}CU xP x5,

. 1 1

We also define the equation by

(2)

2, 1.2 24,2
(6.13) Gi = (fi +t bi)xi —2t¢ixizi - (g1 +t a’i)zi .

Moreover, setting u, = x./z, = % , we can write (6.13) a8
1

(6.14) Gy y = (& + t%b)u? — 2tpu; — (g, + 7)) (3#0)
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(6.15) G =(f + tzbi) —2tg.v. — (g; + t2ai)v‘i?. (x; #0).

Moreover we define

- (2)
(6.16) % ={G, =0}CUxP'xs,,
(6.17) 8§ ={G;y =0} CU;x () xSy,
and
-2
(6.18) £i= {Gi,2 =0} CU; *x €(v;) x 5, .

Note that .,%;1' =3 } Usg ; and .3’: is smooth. For each i, we can define the morphism

- -
ﬂi:.,%’i—-o Vi by

- 2

(6.19) y, =

2
L(g +t%a)v, +t4, on FI.

-7
This gives the local resolution of ¥, .

Next we show that the isomorphism 95 lifts to ¢'ij satisfying that



By using (6.19), we have for each i

yit 19

(6.20) 1 = .
o+ tibi)

This equality shows that the automorphism ‘oij induces a birational map

¢ Lﬁ’J JEJI and by using (5.21), (5.22), (6.7), (6.14), after a long but straightfor-

ward calculation, we can show that r,bi j can be written as

1 2,2
6.21 =1 h.(1 1
(6.21) Yy =1 J( +t[i){( +tR)uJ+t(a +b11 J)+tblJ J}
where Rij ﬁ + 3 Jle Thus ¢ gives the isomorphism : .,%’ i — 5 . (For the
coordinate v i the a.rgument is smular.)

Now let us consider the following automorphism on ‘,3: ik 0
= (9;; " ¢ © ¢ip)
Tk = \%ij " Pk © Pik) -

Since .5 and ¢J are extensions of .51 and ;o in4.3 to Sz,we can write as

Yk = =id+t fl g Where €1jk € I(X; jk’ex) SIIICB
(qi)*('yijk) ((p °pyoP 11{) id , we have r*fjk =0 in I(V, ﬂ{,r,.,ex) By the
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equality 140y = Oy, (Lemma 3.1), this implies that 5131‘ =0, and thus ik = id .

Therefore {.,3'- i} together with isomorphism {¢ij} gives the deformation 5 — S, of
X which is an extension of $—— S, in Proposition 4.4. q.e.d.

6.3. Next we prove the "only if" part of Theorem 6.1. Let 33— S1 be the first order

deformation corresponding to ¢ € HO(B,LB) as we defined in 4.3. Assume that there
exists an extension % —— 52 of — S1 . By Proposition 3.6, we have a deformation

5 LY — S, of V and a morphism u: .8 — ¥ which make the following diagram

commutative:
(6.22) g1 .y
N
59
This gives an extension of the following diagram:

u

(6.23) 02 ¥x S =¥

1
Ny ¢

5

Let & — ¥ denote the blow down morphism uI P This is written by the local coor-
1

dinate in 4.3 as

(6.24) y; = u(y,) = fu, —tg, .
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The image le , which is a deformation of Vi over S1 , 18 the hypersurface Ui x [P1 x S1
defined by

(6.25) v —fg —t%2 = y% —fg =0

Thus J{——r S1 is isomorphic to Vi X S1 —_— S1 . Since E|~5' is an extension of
1

~

ul . 4 i is isomorphic to a hypersurface in Ui x Pl S2 defined by
1

2 2,2
(6.26) y;i —fg —t7¢; =0 (mod fi,gi) .

~N ~

Moreover let 7..: —— ¥, denote the patching isomorphism of ¥ —— S, . By the
i Ji 2

A A
J 1)
commutative diagram (3.1) in Proposition 3.2, we can see that $—— S, can be blown

down to the trivial deformation V x S, — S1 since ¢ € HO(B,LB) corresponds to an

element H(X,0y) . Thus the deformation 5: ¥ x S, — S, is isomorphic to the
Sq
trivial deformation and this implies that we can write ™ by

.+ t2p..

o
(6.27) 7. = ni] i

1)
where "(i)j : Vi.i — Vj]. denote the patching isomorphism for V and P € I‘(Vi j,@v) I
we put t2 =5 in (6.26) and (6.27), we obtain

Ny

(6.28) V= {y? —-fg - s¢? =0} — 5, = Spec € [s] /32

/

0 . Ny Ny
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Ny ’
After we modify ¥ i and M5 we get the first order deformation

v’ ——»Sl=Spech[s]/s2

which corresponds to @ 2¢ HO(B,L%) and this implies that ob(¢ 2) =0.

q.e.d.
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§ 7. More analysis for the map ob .

7.1. For the general compact complex space Z , the fizst obstruction map
ob: HO(Z, .9’%) — H2(Z,®Z) is not easily computed. For a surface with rational double
points, the dual of the map ob is easily computed by the natural exact sequence

(7.1) 0— 0L (K,) — ! (K .) — (7})°

Z 7z Z

where Z is the minimal resolution of Z (cf. {10], [2], [16] and [3]). Since our
examples V in this paper have the good global structure (cf.. 2.1), the obstruction map is

easily computed by some connected homomorphisms of cohomology groups.

Lemma 7.1. Let Y, L, and D,, D, beasin (2.1). Then we have the following commu-

tative diagrams:

(7.2)
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(7.3)
0 0
|
h— %

|

0— Oy(~ logD) — B — IgL% — 0

I ]

0 — Oy/(—log D) — 0y — Ny &Ny —0

1 11 2

0 0

Proof. Except for the map IBL2 —_ ND ) Np the definitions of the morphisms in
2

1

(7.2) are obvious. The map IBL2 —_— ND1 ® ND2 is locally given by

fa+ gb — (b|p ,a|p ) - Then it is easy to see the commutativity of (7.2) and exactness
1 2
of each row and column. The commutative diagram (7.3) follows from (5.6), (5.7}, (7.2)

and the standard exact sequence 0 — Oy (—log D) — Oy — ND1 @ ND2 —0.

q.e.d.

From (7.2), we have the commutative diagram

s
(7.4) B(8,L2) 21— BY(Y,I15L?)

|2 [ m

+
n
B(B,L3) —1— Hl(Dl,NDl) ® HI(Dz,ND2) :

Moreover from (7.3), we also obtain the commutative diagram
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+
(7.5) Bl(zy) £~ E(Y,15L9) L2, B(@y(-log D))

[ | + a

1l (0y) £ Hl(NDl) ® Hl(NDz) 2, w%(0y(-og D))

(see, 5.2 and 5.3).

Then the following proposition follows from Proposition 5.3, (7.4) and (7.5).

Proposition 7.2. The obstruction map b : HO(B,L%) — H2(V,®v) is given by the

composite map

+
B'(B,L3) N Hl(DlNDl) ® Hl(Dz,ND2)
ob B%(0(~log D))
B2(V,0y) -

We will next consider the map q; . The map p.l:
1 1 1 A 1
B(Y,0y) — B'(D, Ny ) (D, Ny, ) isgiven by 4 (0) = (0 9,
(6 - 8)|p_) - Itis known that (6 - f), ) and (0 - g) y are obstructions to the lifting
I 2 l 1 | 2

of divisors D, and D, to the first order deformation of Y corresponding to

6 € Hl(Y,GY) . Moreover we can see that

Im 1)'1' N Im p,]' =Im 1]'{1' N Im pl(Hl(Y,GY)Cl(L))
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where HI(Y’GY)CI(L) ={0¢€ HI(Y,GY)W » C,(L) = 0} . This consideration with Pro-

position 7.2 yields the following

Proposition 7.3.
Assume that ,}(HI(Y,eY)Cl(L)) =0, that is, all elements 0 € HI(Y,GY)CI(L) pre-

serve the divisors D, and D, . Then we have the following

i The map ¢b is non—zero map if and only if 1]+ is non zero map.
1

(ii) The map ob is injective if and only if 1;"1' is injective .
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§ 8 Examples of obstructed manifolds.

8.1. Let Z be a compact complex manifold and # an element of Hl(Z,GZ) . Then 4 is
obstructed if there are no deformations £— A = {t € {;|t| <€} of Z such that
p[-gf] = where p is the Kodaira—Spencer map. We say that a complex manifold Z is
obstructed if it has an obstructed element § € HI(Z,OZ) . Moreover the followings are

equivalent:
Z is obstructed +—— dim Def, < dim Hl(Z,G)z) :

An element § € Hl(Z,GZ) is obstructed if the primary obstruction [6,4] € H2(Z,®z) is
not zero. (Kodaira [13]). In this section, we will show that by using Theorem 6.1 many
examples of obstructed manifolds of dimension > 2 can be constructed.As far as I know,
examples of obstructed surfaces are given by Kas [10], Burns—Wahl [2], Catanese [3],
Pinkham [16] and Horikawa [8]. Moreover Douady [4] and Kodaira—Spencer [14]

showed that the products of complex torus and [P1 are obstructed.

8.2. First examples. Our examples are compact complex manifolds X which are
resolutions of V constructed from the quadruplet (Y,Dl,Dz,L) in21 Let Y bea
smooth projective variety of dimension n > 2 and L an ample line bundle, D,,

D, € |L| satisfying the conditions (2.1). Let X be a compact complex manifold defined
in (2.5), that is, a resolution of the double cover V of Y branched along the normal
crossing divisor D; + D2 .

We assume that:

(81) B (Y,&)#0,
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(8.2) the cup product map H'(Y,4,) ® H(Y,&) — B*(Y,4,) is non-trivial,
(8.3) L®Ky' is ample.

Proposition 8.1. Under the conditions (8.1) - (8.3), the manifold X above is obstructed.
In fact, there exists an element § € HI(X,GX) whose primary obstruction [6,0] #0.

Proof: First we assume that n=dimY >3.Set B = D, n D, . By Main Theorem 6.1, it

suffices to show that there exists an element @ € HO(B,LB) such that ob(¢ 2) # 0. From

the exact sequences (cf. (4.16))

8.4 0—L 11— aea —I,L—0
O ® oy —1p

112
(8.5) 0— @ — LOL — IgL* —0

and Kodaira vanishing theorem (L"'1 and Ky ® L negative) , we have
(8.6) BY(1.L) ~ B(4,) @ H!(4)
: pl) 2 H 4 %)
1 2 2
(8.7) B (1gL%) o B(Y,4)) .

Moreover, by a standard exact sequence and Kodaira vanishing theorem, we obtain the

exact sequences

(8.8) B(Y,L) — B%(B,Lg) — H'(IgL) — 0



5t
(8.9) B(v,1%) — B9B,12) L Bl (15LY) —o0.

Take an element @ € HO(B,LB) and set
7P) = (a,b) € Hl(IBL) Y Hl(Y, a,) ® Hl(Y, &) - Then by an easy calculation, we can see
that

(8.10) 57 %) = 2(a Ub) € B¥(Y,4) 2 B (151%)

where U denote the cup product U: HY(Y,,) ® B'(Y,4,) — BX(Y,&/) . Thus from

(8.6) and (8.7) with assumption (8.2), we obtain an element ¢ € HO(B,LB) such that

67(3 %) # 0. Again from Kodaira vanishing, theorem, we have H'(Np ) » H¥(Y,4,) and
1

thus from (7.4), we obtain the following commutative diagram.

(8.12)
s+
B'(8,12) —— BY(Y, 4,) = B (1517

0 n
2, " 1 1
H'(B,L§) —— H (NDl) ® H (ND2)

12
B 0y) ® B>(4,)

It is easy o see that 7, is injective. Thereforeif 67(F2)# 0, then 77(52) # 0. More-
1. 41 2 1 1 ) .
over the natural map x4 : H (Y,@Y)C L ® H'(D;Np ) = H(Y,4,) " defined in
1 i=1 i

(7.5) is zero map by definition. Hence ob(¢ 2) $0 if 1]'{({5 2) # 0 by Proposition 7.3 and
this completes the proof for the case of dim Y =n > 3. Evenif dimY =2, (8.7), (8.9)

and (8.11) remain to be true. Since B is a set of finite of points,



S2H0(B,LB) — HO(B,L%) clearly surjective. Moreover it follows from (8.11) that the

map n"{ is non—trivial. Therefore the assertion again follows from Proposition 7.3. q.e.d.

Remark 8.2. A typical example of Y and L satisfying (8.1) ~ (8.3) is an abelian variety
and its ample line bundle. In this case, our example X are closely related to the example
of Douady and Kodaira—Spencer (cf. [4], [14]). In fact, X can be embedded as a hyper-

surface into the product [P1 xY.

8.3. Second examples. Next we will give examples for which the obstruction map ob is

injective. (cf. § 5, § 7).
Let W be a smooth projective variety of dimension n—12>1 and C a curve of
7/
genus g . Let D, bea smooth ample effective divisor on W divisible in Pic(W) by 2

and Dé an effictive divisor on C with degree 2d without multiple points.

x 7/ * 7/
Weset Y=WxC and D; =P,(D;), D, = P,(D,) where P, denote the pro-
jection to the i—th factor. We take a line bundle L such that 1.2 ~ &4(D; +D,) .

Now we assume that:
(8.12) HO(W,GW) = HO(C,OC) =0, (in particular g(C) > 2),
1 ! 2 0 ’
(8.13) H (W,D1)=H (W,ﬂY)=0 and dim H (W,Dl)22.
By assumption (8.12), we have the isomorphism

(8.14) B (Y,0y) ¥ H'(W,0,,) ®H'(C,04)
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2
1 1 1 .
Lemma 8.2. The natural map x : H(Y.© — ® H' (N, ) i8 zero map.
(Y-Oy)e, 1) — 2 H (Np,

14 /
Proof. Since D1 = D1 x C and D2 =W x D2 , we have the following isomorphisms

/

1 1
(8.14) H (Dl,NDl) v H (Dl,ND;)

0/ 1
&H (DI'NDi) @H (C,oC) ,
1 1,/ 2,7 1
(8.15) H (D2,ND2) ~H (DZ,ND;) ®H (Dz,ND;) ®H (W,aw).

Then ;41 is decomposed into the following maps

1 1 ’
(8.16) H (W,ew) —H (NDI)

1 1 Y
(8.17) H (C,@C) — H (NDQ) .

Since C is a curve, H'(Np’) = 0 and by (8.13) we have H'(Npy”) = 0 . These imply
2 1

that ,ul =0. g.e.d.

From this lemma, the obstruction map ob is injective (resp. non—trivial) if the map

q'{' in (7.4) is injective (resp. non—trivial). Moreover we can prove the following

Lemma 8.3. Under the above assumptions, we have the followings:

(i) The map q']IL' is always non—trivial.
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/ /
(ii) The map 1)'{' is injective if 2d = deg D, < g and D, is general or more
/
precisely if dim H'(C,D,) =1.

Proof. From the commutative diagram (7.2), we get

(8.18)

5t
0— 81,1 —  B%r?) 4 oE%B,Ld) 21—

| | LI

0— BN, ) e BO(N, )—BO(N ) B0(B,L2) —— .
D, D, D,+D, B

l 1

HI(Y’OY) HI(Y)OY)

It follows from this diagram that Im 7 =im 7.

/ /
Since B is isomorphic to 2d copiesof D, CW and L2®D1 n ND’ . Thus
1

/ / 4
(8.19) dim B'(B,L2) = 2d x dim YD N )> 2d x (dim EY(W,D}) - 1).
1
On the other hand, we can easily see that
. 0 2 . 0 ! . 0 !
(8.20) dim H°(Y,L) = dim H°(W,D ) x dim H'(C,D,) .

Moreover an exact sequence

2
(8.21) 0— 90— 0(D;) ® 9(D,) — IgL* — 0
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implies that
| PR N ! | PN
(8.22) dim B(1gL?) > dim BY(W,D,) + dim B(C,D,) 1.
From (8.20) and (8.22), it follows that
/ ’
(8.23) dim (Im 7) < (dim B%(W,D ) - 1)(dim B)(C,D,) 1)

I
From this inequality, the assertion (ii) follows. If D, is not a special divisor on C, by
7 4
Riemann—Roch, dim B'(C,D,) ~1=2d —g < 2d. If D, is a special divisor, by
/

Clifford’s theorem, dim HO(C,D,) —1 < d < 2d . Thus by (8.19) and (8.23) with assump-
/
tion that dim HO(W,Dl) 2 2, we have

dim (Im 7) < dim H(B,L3)
which implies the assertion (i). q.e.d.

Let (Y,Dl,Dz,L) be a quadruplet as above. From Lemma 8.2 and Lemma 8.3, we have the

following theorem.

Theorem 8.4. Let X be the manifold defined in § 2 from (Y,D;,D,,L) . Under the

1)
assumptions (8.12) and (8.13), we have the followings:

(i) X is always obstructed.
’ /
(ii) If degree of D, =2d < g(C) and D,, is general, or more precisely if
/
dim HO(C,D2) =1, all the elements in HEI}(@X) o Hl(NE) are obstructed.
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Remark 8.5. In case (ii) of Theorem 8.4, under some suitable conditions on W , we can

prove that the Kuraniski space X is non—reduced. We will discuss this topic in the future.

Remark 8.6. If W is also a curve, the above examples are given by Kas [10]}. Moreover

Catanese generalizes the example to surfaces which have An singularities in [3].
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