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Introduction. In the present paper, we will generalize some results of Burns-Wahl

[2J and Kas [lOJ to varieties of dimension n ~ 3 and we will give new examples of ob

structed compact complex manifold of dimension ~ 2 .

Let Z be a compact complex manifold and 8 Z its tangent sheaf. An element

BE Hl(Z,SZ) is obstructed if there are no defonnations ~---+ ß = {t E(: Itl < c} of

Z such that the image of Kodaira-Spencer map p [~] is (J. A complex manifold Z is

obstructed if there is an element B which is obstructed. This is also equivalent to that the

Kuranishi space of Z is not smooth.

In the case where Z is a surface (i.e. dim Z = 2) , examples of obstructed surfaces

are given by (as far as I know), Kas [10J, Burns-Wahl [2J, Horikawa [8J, Pinkham

[16J and Catanese [3J. Except for Horikawa's examples, all examples arise from the mini

mal resolution of surfaces with rational double points.
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Ta be more precise, let Y be a surface with only ratinal double points

p = {PI' ... ,Pt.} , r: X --+ V the minimal resolution and E = r-
1(p) the exceptional

divisor.

Bums-Wahl showed that there exists a natural inclusion H~(E>X) ---+ H1(E>X)

where Hi(ex) is the local cohomology group with support E and they studied the eon

tributions of elements of Hi(0X) to the deformation functor DX of X . Moreover they

showed there is a morphism of the deformation functors DX --+ Dy which fits into the

commutative diagram: ( [2], [16])

(0.1)

1 1

Here LX and Ly are loeal deformation funetors of small neighborhoods of E and P

and the mophisID LX --+ Ly is obtained by blowdowns. Sinee LX --+ Ly is well

understood by a theory of Brieskorn, one can deseribe the functor DX or the Kuranishi

space of X by Dy and the morphism Dy --+ Ly . From the theory of deformation, we

have an exact sequence

(0.2)
1 1 0 1 ob 2

o ---i H (Y,E>V) ---i Ty ----+ H (Y,9"V) -----i H (V,0y )

12 I 2
DV(( [t] ) LV(( [t])

where ([t] = ([t] /t2 and Dy (( [t]) are the Zariski tangent spaces of functors.
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From (0.1) and (0.2), one can show that if QQ is non-zero map X is 0 bstrueted. (cf.

[10], [2] and [16]). Using this result, Eurns-Wahl [2] and Kas [10] gave many

examples of obstrueted surfaces X when the singularities of the surfaces V are only

ordinary double (= Al) points.

Reeently, using the result (0.1) and a description of the dual of the map QQ in (0.2)

(due to Kas [10] and Pinkham [16]), Catanese construeted examples of surfaces of

general type whose Kuranishi spaees are isomorphie to the produet T x S of smooth

sehemes T and nilpotent sehemes S. (cf. [3].) These examples eontain the former

examples of Kas and Miranda.

To generalize these results in [2] I [10], [16] and [3] to higher dimensional varie

ties, we will introduce a kind of n-dimensional singularity whieh is a generalization of

rational double points. A eomplex space S has equisingular rational double points (RDP)

along a subvariety B of coclimension 2 in S if for each point p E B , the germ (S,p) is

isomorphie to the germ (H,p)( (rational double points). These types of singularities often

appear when one takes a quotient variety or a double covering of a sIDooth variety.

Let V be a compact complex spaee of dimension n ~ 2 all of whose singularities are

equisingular RDP and set B = support of Sing. V . If one wants to generalize the result

(0.1) to the ease where n ~ 3 , one should define a suitable Ioeal deformation funetor LV

of singularity. But sinee clim B 2: 1 , same global struetures of B have to make same

affects on LV and I do not know what is the reasonable definition of LV and how ean

one generalize the results (0.1) for such singular varieties.

Sinee these difficulties are not overeorned, (as far as I know), in tms paper, we make

very strong global assumptions on V . That is, V is a double covering of a smooth proper
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va.riety Y whose branched locus is a divisor D = D1 + 02 where 01 and 02 are

smooth and interseeting each other transversally. In this case, the support of Sing. V is a

smooth subvariety B whieh is isomorphie to 01 n02 and V has equisingular Al

points along B. Moreover, one can obtain a unique resolution r: X -----t V . Though our

objeets V and X are very simple, these give many examples of obstructed manifolds.

In order to mention the statement of our main theorem (Theorem 6.1), we shall give

some notations and results. Let E be the exceptional divisor of r : X -----t V . Then, as in

2 dimensional case, one has an inclusion Hi(8X) -----t H1(8X) . Moreover we have an iso

morphism Hi(E>x) ~ HO(B,LB) where LB is a line bundle on B . On the other hand,

we have the exact sequence (0.2) for V and an isomorphism HO(V,~) ~ HO(B,L~) .

Considering an element (fj EHO(B,LB) as an element of H1(8X) , we construct a

deformation 111 : $-----t 51 = 5pec (G: [tJ /t
2

) of X . Then we have the following

Main Theorem: (Theorem 6.1.) The deformation 111 : $-----t S1 can be extended to a

deformation aver 52 = 5pec (G: [tJ /t3) if and only if QQ (tp 2) = 0 where 2h is defined

as in (0.2).

This theorem shows that the primary obstruction of the element (fj EHO(B,L
B

) is

given by QQ (q; 2) up to nonzero constant. (cf. Corollary 6.2.).

Moreover we ean construct examples of Y and D1 , D2 such that for the corres

ponding V the obstruction map QQ ia nontrivial on the image of the square map

HO(B,LB) -----t HO(B,L~) . Thus, by Main Theorem, the corresponding resolution X is

obstructed.
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We remark that there exist examples of compact complex manifolds of dimension

n ~ 3 whose Kuranishi spaces are not reduced and whieh are not produets of Catanese's

exa.mples and some other complex manifolds. We will diseuss such examples elsewhere .

(See § 8.)

The organization of this paper ia as followa. § 1 is a review from deformation theory

of compiex spaces. § 2 ia definition of double cover V and ita resolution X which are

main objects in this paper. In § 3, we will generalize some results in Burns-Wahl [2J and

Wahl [19J and compute the Iocal eohomology group HiJ8X)' In § 4, we will construct

the first order deformations of X corresponding to elements of H~(8X) by using Cech

cocycles. In § 5, the first obstruction map 2h ia introduced and calculated by Cech

coeycles. Using the results in § 1 _ § 5, in § 6, we prove our Main Theorem 6.1. After we

study the first obstruction map QQ more carefully in § 7, in § 8, we will give two kinds of

examples of obstructed manifolds of dimension ~ 2 .

Acknowledgements. The author would like to thank Professors Miyajima and A. Fujiki for

helpful discussions. Professor F. Catanese kindly informed me of bis results in [3] and

discussions with him at Max-Planck-Institut in Bonn gave same improvements to this

paper. Many discussions on the deformation theory with Professor S. Zucker at MPI gave a

motivation of this paper. The author would like to thank them for their help. Finally, the

author ia grateful to the Max-Planck-Institut für Mathematik in Bonn for their

hospitality.
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§ 1 Tangent cohornology ß:llil deformation theory.

In this section, we shall review sorne facts about tangent cohomology and deforma

tiOnB of compact complex spaces which we will use in the later sections. For details, one

may refer to the articles [15], [6] and [5]. (A good summary cau be found in [20].)

1.1. Let Z be a compact complex space and let ~. denote the cotangent complex of Z

which is defined as an object of derived category. If we denote by ni the sheaf of Kähler

differential of Z , we have a natural ffiorphism JZ. --+ ni .To describe the local defor

mation of Z , the cohomology groups of the cotangent complex are most importaut. As in

[15], [6] and [20], we define for i E IN

(1.1)

(1.2)

The objects Ti and ..ri are called the tangent cohoffiology group and sheaf. The sheaf

9~ ia coherent to tz - module for all i EIN. Moreover we have the spectral sequence

(1.3)

U. Adeformation of Z over a germ (8,0) of complex space is a Cartesian diagram

Z I ~

1 1
o I (8,0)
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with a ßat morphism u: ~--+ (8,0) . Let A ° (resp. #~) denote the category of germs

of complex spaces (reap. sets). For any base ehange (T,O) --+ (8,0) , one gets a deformation

~x T --+ (T,O) . Thus we get the deformation funetor
8

(1.4)

This funetor can be extended to the category of formal complex spaces.

Let us set 8# =8pec(( [t] /tl'+l) for # EiNand let u: ~--+ (T,O) be a deforma

tion of Z . For any morphism (81'0) --+ (T,0) , one gets adeformation

~x 81 ------i (81'0) . Thus we ean define
. T

(1.5)

Here 8 TOdenotes the Zariski tangent space of (T,0) . This map p is called the,
Kodaira-Spencer map.

Definition 1.1. A deformation ~--+ (T,O) of Z is ealled semiuniversal (or simply versal)

if

(i) the Kodaira-Spencer map p in (1.5) is bijective,

(ii) any deformations of Z are induced by some morphism (8,0) --+ (T,0) .

1t follows from the definition that two semiuniversal deformation of Z (after shrinking the

parameter spaees) are isomorphie to each other and the parameter spaee of the semiuniver-
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aal deformation ia uniquely determined by Z aB a germ of a complex space. Rence we

denote by DefZ the germ of this parameter space.

By a work of Kuranishi, the semiuniversal deformation of Z exists if Z is smooth

and DefZ is ca.lled the Kuranishi space. Later, Grauen, Forster-Knorr [6] and

Pala.modov [15] proved the existence of the semiuniversal deformations of all compact

complex spaces. Due to Palamodov [15], we have the following theorem.

Theorem 1.2. ([15], Theorem 5)

Let Z be a compact complex space and T ~ the tangent cohomology group of Z . Then

we have the following:

(1) Ti is the Zariski tangent spaee of Defz ' (i.e. Ti ~ Dz(S1))

(2) There exists a germ of holomorphie map

defined near 0 such that (DefZ'O) is isomorphie to (q-1(0),0) as a germ.

m
(3) Let q = E qk be its extension in aseries of homogeneous polynomials. Then

k=1

q1 == 0 and q2 is the restrietion of the Lie bracket Ti ~ Ti -----+ T~ to the diagonal.

1.&. We will restrict to the following situation. Let Z be a compact complex space whieh

is embedded as a hypersurface in a smooth variety W . In this case, if IZ denotes the

ideal sheaf of Z , we have the following exaet sequenee
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(1.6)

The eotangent eomplex JZ' is isomorphie to Iz/I~ ----I {}~ Iz ' thus we have

(1. 7)

(1.8)

Dualizing (1.6) yields an exact sequence

(1.9) a 2 *o---+ E> Z ------. E> W Iz ---+ (IZ/IZ)

I I
3;:0
z

Lemma 1.3. Let Z (W be as above.

(1) 12*az = eaker (8W IZ---+ (IZ/IZ) )

(2) 311 = 0 if i ~ 2 .

(3) There exists an exact sequenee



-10-

D---t H1(Z,8Z) ---t Ti ---t HD(Z,~1) ---t H2(Z,BZ)

---t T~ ---t H1(Z, az1)

Proof. The assertions (1) and (2) follow directly from (1.6) and the loca11y freeness of

nir Iz and Iz/Ii· The assertion (3) follows from the spectral sequence (1.3) and (2).
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§ 2. Singular double coyering V and its resolution X.

In this section, we will introduce a special variety V which has singularities along a

subvariety oe codimension 2. We will also introduce a "minimal" resolution X oe V and

we will calculate the tangent cohomology groups and sheaves oe V and X.

2.1. From this section to the end of this paper, we will consider the following quadruplet

(Y,Dl'D2,L) which consists of:

(2.1)

(i) Y : a smooth projective variety over ( oI dimension n ~ 2 ,

(ii) Dl'D2 : smooth divisors on Y intersecting transversaly each other,

(iii) L : a line bundle on Y satisfying that L~ 2 = L1 ~ L2 where L
1

and L
2

are line bundles corresponding to D1 and D2 respectively.

For each quadruplet (Y,Dl'D2,L) oe (2.1), we can define the double covering

cp : V ---+ Y as folIows.

Let 1r: IP =IP( '\r EB L) ---+ Y be the projective bundle associated to '\r EB L aver

Y, tß>(1) the tautologicalline bundle of IP, and y E HO(IP , tW( 1)) and

w E HO(IP ,1r*(L-1) ~ t.ff.( 1)) sections corresponding to the natural inclusians

Oy ---+ Oy EB L and L ---+ Oy EB L respective1y. Moreover, let fE HO(Y,L1) and

g E HO(Y,L2) denote the sections defining the divisors D1 and D2 respective1y.

Considering f · g aB a section in HO(lP,1r*(L2)) I we can define section of lß>(2)
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2 2 0H = y - f · g • wEH (IP, qp(2)) .

Then we define the hypersurface

(2.3) v = {H = O} --+ IP .

The natural projeetion 1t': Z --+ Y induees the morphism <p: V ----t Y of degree 2.

It follows from the definition of V that:

(i) V is a double eover of Y branehed along the divisor D = D1 + D2 I

(ii) 'P*Ov ~ Oy mL-
1

,

(iii) V is anormal projeetive variety whose singularities are analytieally

isomorphie to (y2 - xz = 0) )( (smooth (n-2)-dim. varietY)J

(iv) the singular loeus of V eoincides with the subvariety

B = {y = f = g = O} C IP .

The subvariety B in (iv) is isomorphie to D1 nD2 ( Y . Thus we will identify B in IP

with D1 nD2 in Y.

2.2. Tangent cohomology groups of V .

Let V be as in 2.1. We will ealeulate the tangent eohomology groups Tt and sheaves

:J:~/ .
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Proposition 2.1. Let V be a.s in 2.1 and B = Sing V . Then we have the following.

(2) 9"yi = 0 for i ~ 2 .

Proof. From lemma 1.3, we have an isomorphism

where NV = (IV/I~)* . Since V ia a hypersurface and ~(V) ~ ~(2), NV is the line

bundle isomorphie to ~(2) IV ~ Oy(2) . Let IB = (y,f,g) denote the ideal of B in IP.

Then by a loeal calculation, one ean easily see that the image of a coincides with IBNV '

Thus we have an isomorphism

(2.4)

Identifying Y with a section {y = O} in IP, we also get ~(2) ~ Oy ~ L2 . Combining

this with (2.4), we have

The assertion (2) {ollows directly !rom Lemma 1.3, (2). q.e.d.

2.3. Let V be as in 2.1. By assumption on the quadruplet (Y,Dl'D2,L) in (2.1), if we
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onee blow up V along B = Sing V , we obtain a smooth projeetive variety X. Let UB

denote by

(2.5) r:X----+V

this resolution and let E be the exeeptional divisor of r .

Since X is smooth, the tangent cohomology groups T~ are isomorphie to

Hi(X,8X) .

Next we will see that X ean be embedded into a projective bundle over Y. Let
I 1 I I

6 = ty E9 L 0 LI be the rank 2 vector bundle over Y and T: IP = IP( ~ ) ---+ Y

the associated projective bundle. Let x E HO(IP I ) () 1(1)) and
IP° I * 1zEH (IP ,T (L- ~ L1) 0 tJ I (1)) denote t he section corresponding to the natural inclu-

IP

sions ty ---+ ~ I and L ~ L'11 ---+ ~ I respectively. Then we have the seetion

(2.6) 2 2 ° I *G = fx - gz E H (lP )() I (2) ~ T (L1)) .
IP

I

It is easy to see that the hypersurface {G = O} in IP is isomorphie to X and the

exceptional divisor E of r in (2.5) ia given by X n{f = g = O} = X nT-
1(B) ; From

this fact, we have the following proposition.

Proposition 2.2. Let E CX be as above.

(1) The D'I-bundle TI E : E --+ B is isomorphie to D'( th 1Il L GD L11 GD th) --I B .
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(2) Let NE denote the normal bundle of E in X. Then we have the isomorphism

Here tk(l) denotes the tautologicalline bundle of r: E --+ B .

The proof ia easy and left for the reader.

I

Remark 2.3. There exists an elementary transformation e: IP ------i IP . It ia easy to

check that the resolution r: X --+ V is induced by this birational map e.
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§ 3 Local cohomology group H~~E>X) and its contribution.

Let X and E be as in 2.2. In this section we will compute the local cohomology

group H~(XJeX) and its contribution to global deformations of X . Moreover we will

consider the relation between de!ormations of X and those of V .

We note that if dim V = 2 J V has only isolated (A1-) singularities. In trus ca.se,

Bums-Wahl [2] and Wahl [19] have dealt with these problems in the context of.the

deformation theory of normal two-dimensional singularity. Dur work in trus section is

based on their works and may be viewed a.s a generalization to special non-isolated singula-

rities.

3.1. Let V be as defined in 2.1 and r: X -----i V its resolution defined in 2.2. Recall

that we set B = Sing V and E = r-1(B) denote the exceptional divisor of r . In trus

section, we will consider V and X as complex spaces and all cohomology groupa are com-

puted by the analytic topology.

Lemma 3.1.

(1) j*(SV-B) = Sv where j: V - B ---+ V is the inclusion .

Proof.: (1): Since V has only quotient singularities, this follows from a general argument

(cf. [7]). (2): Since r: X ---+ V is the blowing-up of the maximal ideal IB of B J we

have this assertion.



-17-

From this lemma, we can prove the following

Proposition 3.2. (cf. [2], 1.1 and [19] Prop. 1.8.)

Let X, E, V be as above.

(1) There ia a natural indusion H~(X,E>X) ---+ H1(X,E>X)

(2) We have the following commutative diagram with exact rows:

Proof: (1) From the lang exact sequence for loeal cohomology, we set

Set U = X - E = Y - B . By lemma, one obtains an isomorphism

HO(X,8x) ~ HO(Y,r*8x) ~ HO(Y,8x) . Thus it suffiees to show that

HO(Y,8y ) --+ HO(U,GV) is surjeetive. The loeal eohomology sequence on V gives

Let R~(ey) denote the loeal eohomology sheaves of GV ' Sinee j*(Gy _B) = Sv ' one

obtains a ~(Sy) = R ~(Sy) = °(see [9], § 1) . From the spectral sequenee, we have

H~(y,ey) = °.Thus we get the assertion (1).
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(2) Let .:lxiv denote the cotangent complex of the morphism r: X --+ V . We get a

short exact sequence in the derived category

(cf. [20]). This induces the exact sequence of cohomology

Since V has only rational singularities, we can see IR r. t'x ~ '" (in the derived category).

By this, we get (by projection formula)

Ext
1
( l r*JV. ,Ox) ~ Ext

1
( JV .,IR r*0x) ~ Ext

1
( JV .,Oy) ~ T~ .

This defines ß : Ti --+ T~ .

Next we will show that there exists a natural inclusion

T~C-..--t HO(V - B,E>V) . On U = V - B , we have the exact sequence

(cf. 2.2). Trus gives the exact sequence of cohomology

(3.2)
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Sinee BIP Iy and NV are free sheaves on Y and Y is normal, we have

j.(SIP IU) = SIP IV and j.(Ny IU) = Ny . Together with j.(E>U) = ey , from (3.2), we

get the exact sequenee

Sinee the dual of cotangent eomplex ~. is represented by the eomplex GIP IV ----i NV '

the image of Cl ia nothing but T~. Thus we obtain the assertion. q.e.d.

3.2. We will eompute the loeal eohomology group H~(X,ex) . The result is as follows.

Proposition 3.3. Let X,E be as above. Then we have the following isomorphism

(3.3)

Here NE denotes the normal bundle of E in X and LB denotes the line bundle

L~ tB on BCY.
Oy

Proof: Let

(3.4)

denote the algebraie loeal cohomology group where 0mE ~ Ox,./ Ox,.(- mE) . Since E can

be contracted to B = Sing V and cowm(B C V) = 2 , we can check that the Ioeal
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cohomology group H~(X,E>X) is isomorphie to the algebraie one. (cf. Proposition 1.6. in

[9J). Thus we will compute the algebraie one in (3.4). It is clear that:

and

where NmE : = o.x(mE)I o.x . Therefore by a spectral sequenee we get

(3.5)

To compute the right hand side of (3.5), we eonsider the exaet" sequenee

(3.6) 0 ----t N(m-l)E ----t NmE ----t ~(mE) ----t 0 (m ~l) .

First we claim that for m ~ 2

(3.7) oH (E,8X ~ tk(mE)) = 0 .

Consider the following two exaet sequenees:

(3.8)

(3.9)

o--+ SE ~ t'E(mE) ----t eX ~ ~(mE) ---+ ~((m+ l)E) ---+ 0

where T: E ---+ B is the natural map and SE/B is the relative tangent sheaf of T.



-21-

Since by (2) of Proposition 2.2, we have

Therefore we have

T*tE((m + 1)E) = 0 if m ~ 0 ,

From these and (3.8), (3.9), we can show that the assertion (3.7) is true. Hy means of (3.6)

and (3.7), we have the isomorphisms

Moreover putting m = 1 in (3.8) and (3.9), one gets

Therefore we obtain the isomorphism
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Moreover from the relative Euler sequence for T: E --+ B , one has the exact sequence

Thus we have the isomorphism

By Proposition 2.2, one can also check that T*NE = 0 and

1 1 . 1 -1
R T*NE ~ R T*~(-2) ~ L2 ~ tl3 . Slnce R T*~(-2) ~ L ~ L1 ~ tl3 ' we get

R
1T*NE ~ L-1 ~ L1 ~ L2 ~ t.13 ~ L ~ tB .Thus we have the isomorphism

from the Leray spectral sequence for T: E --+ B . q.e.d.

3.3. Let E (X be as in 3.2. Let 8 X(-log E) denote the sheaf of holomorphic vector

fields which preserve the ideal of E . This is a locally free sheaf on X and there exists an

exact sequence
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o--t E>X(-log E) --t 8 X --t NE --t O.

The sheaf E>X(-log E) plays the same role in the deformation theory of the pair (X,E)

as E>X plays in that of X . (cf. [11], [19], see also [17], § 4. I). It ia known that the

semiuniversal family of the deformation of the pair exists ([11] ). Moreover Wahl defined

the functor of equisingular deformation of the resolution ES which is convenient to our

context ( [19J ,§ 2). It is easy to see that the cohomology group H1(X,E>X(-log E)) is the

Zariski tangent space of the semiuniversal deformation of (X,E) and H2(X,E>X(-log E))

ia the set of the obstructions to the deformations.

In our context, the following proposition is important.

Proposition 3.4. Let E C X be as in 3.2. Then we have the following:

(1) there exists an exact sequence

(3.11)

(2)

(3) the subspace H~(E>X) in H1(E>X) is isomorphie to H
1

(E,NE) and to the set of

the first order deformations of X to which the divisor E does not lift.

Proof. The assertion (3) follows from Proposition 3.3 and the assertion (2) can be proved

by the same argument as in the proo! of Proposition 3.3. Hence we left the proofa for the

reader. To prove (1), we first note that HO(E,NE) = °because E is the exceptional

divisor of r : X --t V . In view of (3.10), therefore, it suffices to show that the map
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is surjective. Consider the following diagram

I

1 1HE(8X(-log E}} ----+ HE (eX)

1 5 1 11

0----+ H1(8x(-log E}} ----+ H 1 (X, 8 x)~ H1 (E, NE)

Since 5 ia injective by (I) of Proposition 3.2 and dim H~(8X} = dim H1(E,NE} , it suf

fices to show that 1-6 is injective. By the commutativity of the cliagram, this ia equiva-
I

lent to the injectivity of 'Y which follows !rom the assertion (2). q.e.d.

Remark 3.5. The exact sequence (3.11) has the splitting H1(E,NE) ----+ H1(X,eX) if we

identify H1(E,NE) with H~(8X) . Thus we can write as

3.4. Let r: X ----+ V be as in (2.5). Let D(r): vi0 ----+ c!/dJ denote the deformation

functor of the morphism r: X ----+ V . We have the natural morphisms of functors

(3.12)

(3.13)
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Let .A~ denote the category of germs of complex spaces of dimension °and

f f f . f
D{r) ,DX and Dy the functors restncted to .A°.

Proposition 3.6. Let r: X -----i Y be aB above. Then we have a blow down morphism

f f N f f
ß: DX -----i Dy and ß: DX -----i D{r) which are compatible with (3.12) and (3.13).

Proof: The most important fact is IR r* Ox ~ q, .Let (8,0) be an element of A f and

$-----i (8,0) an element of DX(8) . Considering 0$ as the sheaf algebras on X J the

sheaf r*{ 0$) on Y defines a deformation of Y over (5,0). This ia verified by the same

argument as in Proposition (2.3) in [2] because of the isomorphism IR r* tJc ~ t\r .Thus

f f N f f
we have ß: DX -----i Dy and ß: DX -----i D{r) as desired. q.e.d.

For the functor D{r) 1 Dx and Dy , and we can prove the following

Proposition 3.7. Let r: X -----i Y be as in (2.5). Let (8,0) E .A°be any germ of a com

plex space. Then the natural map

(3.14)

ia surjective.

Proof: Let us denote by

(3.15)
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the natural induced map. By virture of Proposition 1.10 in [20], if ß1 is surjective and

ß2 is injective, the assertion is true. On the other hand, we have

N Ti= V·

Thus ßi is isomorphism for each i ~ 0 . q.e.d.

Corollary 3.8. Let r: X --+ V be as in (2.5). Let $--+ Def X and Y--+ DefV be

the Kuranishi families of X and V . Then we have a commutative diagram

(3.16) 1] • r

1 1
Defx 1]. Defv

such that f/O = r .

Proof. By proposition 3.7, we have a commutative diagram
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with a flat morphism '1" --+ DefX . Hy the semiuniversality of 1'---+ DefV ' we get the

mOrphiSID 1J: DefX --+ DefV and 1]': 1" --+ 1": Thus we obtain the assertion.

Remark 3.8. In the above case, ß i are all isomorphisms. This implies that

and

T2
rv T 2

[r] = X·

Moreover if S is Artinian (Le. S E .A~) or S is a formal analytic space, we have a cano

IDCal section of ~S in (3.14)

N

such that (~o ß)S = id .

By using the existence of the relative Doudady space and a Artin's theorem in [1],

we can prove that for any (8,0) E A ° the section ßS : DX(S) --+ D(r)(S) exists and

hence so does ßS : DX(S) --+ DV(8) .
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§ 4 First order defonnations of X via Öech cocycles.

4.1. Hy a first order deformation of a compact complex. space Z, we mean a deformation

of Z over SI = Spec(G: [t] /t2) . The set of first order deformations of Z is isomorphie to

1
TZ·

Let X be as in (2.2). Hy Proposition 3.4, (1), we have an isomorphism

(4.1)

We will construet first order deformations of X corresponding 'to elements of H1(E,NE)

by using Öeeh eocycles. To proceed to this, we shall introduee the following notations. Let

us define the followings:

(i)

(ii)

(iii)

(4.2)

(iv)

u= {Ui} : aStein covering of Y such that ~ = {Vi nB} is also aStein

eovering of H ,

{h. .} , {f. .} and {2:..} E H1( 'i<Oy*): sets of transition functions of the line
IJ IJ '-'lJ

bundles L, LI and L2 repectively with respeet to U. We also assume that

2h.. = f. ~Jt:. on U.. = u. nu. ,
IJ 1.r1J IJ 1 J

{fi E r(ui'Oy)} I {~E T(vi'tY)} : sets of defining equations D1 and D2

respectively satisfyjng that

f. = f. .f. and e:. = e:.:.e:. on U.. ,
1 IJ J ..., UIJ-J IJ

(t~) = (t~, ... ,t~): a Ioeal coordinate system on U. with transision functions
1 1 1 1

{Ffj} satisfying that



(4.3)

(v)

(4.4)
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t~. = F~.(tfh on U.. ,
1J 1J J 1J

-1,Q
{Yi} , {Xi} and {zi} : fiber coordinates of L , cy and L 'Ot LI satis-

fying that

The !p1-bundle T: IP I = IP( Oy mL ~ L11) ---+ Y has a trivialization

T-1(Ui) --=--. Ui )( !pI with a Ioeal coordinate ((t~), (a'i ; Z i)) . The transition matrix of

this !p1-bundle is given by

(4.5)
[

I 0 ]
A.. = I

1J 0 h- .. f..
1J lJ

on U...
lJ

A Ioeal equation of X nUi )(!p1 is given by

(4.6) 2 2G. = f.x. - e:.z ..
1 1 1 0) 1

(cf. (2.6).) Note that on Uij )( IPI , we have the equality

(4.7) G. =f..G..
1 lJ J

1We finally set X. = {G. = O} CU.)(!p .
1 1 1

4.2. Let B denote the Bubmanifold of Y defined by the ideal IB = {f = g = O} (Recall

that B is isomorphie to Sing V .) Set LB = L 0 tB .By Proposition 3.3, we have an

isomorphism
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(4.8)

Let (fi EHO(B,LB) be a section oI LB and {(fii E r(Ui nB,th)} a ~ech cocycle repre

senting rp. On u.. nB , we have
1J

(4.9) "if,. = h..rp..
1 1J J

Let us construct the first order deformation oI X corresponding to trus (fi E HO(B,LB) .

Since Ui is a Stein open set, we can take an extension (}ii Er(Ui ' t1y) of (}ii . Take

an extension t/Ji of (fii for each i I and set

(4.10) fjJ. - h..t/J. = h.. '.. on U...
1 1J J 1J 1J 1J

By (4.9), ~ .. vanishes on U.. nBItherefore we can set (not uniquely) as follows:
1J 1J

(4.11) K.. = I.a.. + g.b...
IJ J IJ J IJ

By definition (4.10), { , ij} satisfies the 1--eocycle conditions

(4.12) -1
hik~"+ 8·k = 8'k on u'jk=u.nu.nuk ·J IJ J 1 I 1 J

Substituting (4.11) to (4.12), we have the identity
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Since fk and gk are coprime, we get iijk E r(Uijk, t7y) such that

(4.14)

(4.15) -1
h ikg ikb.. + bjk - b'k =- {ki' ik .J J IJ 1 1J

Remark 4.1. Since B is a complete interseetion of D1 and D2 , we have the resolution

of IB :

(4.16)

Tensoring L to this sequence, we have

(4.17)

From this sequence, we can see that if H2(y,L-1) = 0 we can choose an extension {t,h.}
1

such that lijk = 0 for all (i,j,k).

4.3. Now let us define a deformation of Xi = {Gi = O} by a hypersurface

(4.18)
- 2 2

$. : = {G. = f.x. - 2tcP·x.z. - lZ.Z. = O}
1 111 111 UJ1

in Ui x !p
1

x S1 . We have the commutative diagram
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1
$. -----+ U. )( lP )( SI '

1 1

Let u. = x· /z. be an inhomogeneous coordinate of U
1
• )( [pI . Define the following auto-1 1 1

morphism

U . )( [p1 U. )( [pI
J 1

J 1 J 1
f) .. : U.. )( [p ----+ U.. )( [p

IJ 1J 1J

by

(4.20) ~ ..(t~,u.) = (t~ = F~ .(tf!) , u· = 1]..(u.)) ,
1J J J 1 1J J 1 IJ J

where fJij ia given by the projective automorphism

(4.21)
u. + ta ..

U - 1] (u) - J 1J. - ... - 1
1 1J J h- f ( ).... - tb..u.+ 1

, 1J 1J 1J J

Since t 2 = 0 , we can express (4.21) as

(4.22) u. = '1' .(u.) = h. .f ~~(u. + t(a.. + b..u~))).
1 IJ J 1J 1J J IJ IJ J

By an easy calculation using (4.14) and (4.15), we have the following
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Lemma 4.2. On Uijk , we have

(4.23)

- I - 2 2
Moreover, set Gi = Gi/ zi = fiu i - 2t,piui - gi . Then we have the following lemma.

Lemma 4.3. On U.. , we have
IJ

(4.24)
- I _ I

G. 0 1].• = 2:••(1 + 2tb..ll .)G ..
1 IJ O}J IJ J J

The proof of Lemma 4.2 and 4.3 is straightforward and left for the readers. By these lem

mas, we have the following

Proposition 4.4. The collection of hypersurfaces {..%} in (4.18) with automorphism
1

{"ij} in (4.20) defines adeformation $--. 81 which corresponds to "ifi E HO(B,LB) .
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§ 5 The first 0 bstruction map for Y .

U. Let V be as in defined in (2.3). From (3) of Lemma 1.3 and Proposition 2.1, one has

the exact sequence

1 1 0 2 ob 2( )(5.1) 0 --+ H (YJ8 y ) --+ Ty --+ H (B,LB) I H V,Sy .

We call the map ob: HO(B,L~)--+ H2(V,ey ) the first obstruction map for Y . In this

section, we shall describe the map QQ by means of Öech cocycles.

.Q.:Z. First we recall that the tangent complex of V ( IP = IP( Oy ED L) is given by

Q : SIP Iy --+ Ny which gives the two exact sequences (cf. Proposition 2.1):

(5.2)

(5.3)

By definition of the spectral sequenceJ the map ob is the composition map of two connec

ting homomorphisms:

(5.4)

Moreover we have the following
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Lemma 5.1. Let rp = 11"1 V : V ----+ Y be the natural projection. Then we have the fol

lowing:

(5) there exists an exact sequence

(5.5)

Proof. The assertion (1) is a standard fact of the double covering. Since NV ~ ~(2) ~ q,
2 2and rp*'1P(2) ~ OEB LEB L ,we have rp*NV ~ L EIl L . From the exact sequenee (5.3), we

obtain

From a loeal eomputation and this sequenee, the assertion (3) folIows. The assertion (4)

follows !rom Proposition 2.1 in [12]. Let 8 rPIY denote the relative tangent sheaf of

11": 11' --I Y . Then ElIP/Y is isomorphie to ti>(2) ~ -/(L-1) . Moreover we have the

exact sequence
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Taking a di reet images and using !p*ElIP/Y Iv ~ !p* t7y(2) 0 L-1 ~ 0$ L , we get the exact

sequence in (5). q.e.d.

Let l,: Y --+ Y be the natural involution corresponding to the double covering

cp : V --+ Y . All sheaves in (5.2) and (5.3) have natural actions of this involution t,

hence we can consider the tr-invariant direct image CPt for these sheaves.

Lemma 5.2. Let cp: V --+ Y be as in Lemma 5.1. Then we have the following isomor

phisms:

(1) + -CP. Oy - Oy

(2) + 2cp.NV = L

(3) + 2
cp.IBNy = IBL

(4) CPt8y = 8y{-log D)

(5) cpt(8lP Iy) ~ EL where EL is the sheaf of germs of differential operator of L of

degree ~ 1 . Equivalently EL is defined by the following extension

(5.6)

whose extension dass is Cl(L) EHl(y,n~) .
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Proof. The assertionB (1) _ (4) are clear. Hy using the exact sequenee (5.5) and Ioeal com-

putation, we get the assertion (5). q.e.d.

Taking the lr-invariant direct image of (5.2) and (5.3), we get the exact sequence

(5.7)

(5.8)

Since HO(B,L~) is clearIy lr-invariant, the diagram (5.4) becomes

(5.9) • H!(Y ,IßL2) • H1(IBN~)

ob 1ö! 1
H2(Y,8y (-Iog D)) c:......... H2(V,8v )

022Proposition 5.3. The map QQ: H (B,LB) ---+ H (V,8V) coincides with the composite

map i'+ 0 i'+ . (5 9)u 2 U I In . .

Q&. Next we will calculate the map ob by means of Öech eocycles. We keep the notations

in 4.1. The !pI-bundle 1I":!P = !P(ty E9 L) ---+ Y has a trivialization 1r-
1(Vi ) ~ Vi )(!p!

with a Iocal coordinate system (t~, Yi) where Yi denotes an inhomogeneous coordinate

oI !p! . On U.. )(!p1 J we have an identity t<:t = Fe:t .(t~) and y. = h. ~ .. The
IJ 1 1 J J 1 1]" J

hypersurlace V in IP defined in (2.3) is locally defined by

(5.10) 2 IV. = {H. = y. -fe:. = O} (U. )( [p .
1 1 1 IV] 1
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. 2 1
V. = {H. = y. - f.g. = O} ( U. )( IP .

1 1 1 1 1 1

Note that Oll U.. x 0)1 I we have
lJ

(5.11) 2H, = h .. H ..
1 1J J

Let K = {Kj } be an elelnent of HO(B,L~) which ia represented by cocycles

Ki E r(Ui nB, '13) . Taking an extension Kj E r( Uj' Oy) of each Kj I we set

(5.12) - 2 2
K .. = h ..Koo =!C -ho .K.

lJ 1J IJ 1 1J J

'Then {i<:..} deIincs an cleUlcnt of Hl(y,I n L2) . In fact, we have thc cocyclc conuitions
IJ

- 2 - -
1(00 + h 'kK 'k = l('k Oll U" klJ J J 1 IJ

-
from (5.12) and Kij IB = 0 by definition. Therefore we have

Lemma 5.4. Let 6t be as in (5.9) . Then we have

Next we consider the lllap 6! in (5.9). By definition, o! js the map which fits into the

cx.act scqucllce
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Let ua analyse the image cf p. in (5.13).

- -
Let () = {() . .} be a 1-oocycle cf EL . Then it can be written as

IJ

(5.14)
- IJ
B.. =Boo+ß·:y·-

IJ IJ IJ- 1 IJ y.
1

n

where B.. = L BIf. {) Er(u..,0y) and ß·· Er(u..,ty) .
IJ a = 1 1J 8 t C!- IJ IJ IJ

1

-
Moreover the 1-eocycle condition of B is equivalent to the following:

(5.15) Bik - B'k + B.. = 0 on U. ik 'J 1 IJ IJ

Le. {B..} = () defines an element in H1(y,Sy) J and
IJ

(5.16) Bik • log h.. = - (ß ik - ß'k + ßoo) .J IJ J 1 IJ

- -
By definition, p( (J) ia represented by the 1-eocycle {O.. • H.} . Trus is giyen by

IJ 1

(5.17)
-
(J •• • H. = - 0.. • (f.g.) + 2ß· .f.'l..
~ 1 ~ 11 ~l~

From these considerations, we have the following proposition.
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From these considerations, we have the following proposition.

Proposition 5.5..Let K = {Ki} be an element of HO(B,L~) . Then 2J2(K) is zero in

H2(y,8y ) if and only if there exists an extension Ki of Kj and

(B,{fJ = ({Bij},{ßij}) E H
1(y,8y ) x C

1
( ~Oy) satisfying the conditions (5.15) and (5.16)

such that the following equality holds:

(5.18) 2- B•.(f.~.) + 2ß..f.~. =K. - h ..K ..
IJ lu:l IJ IUJ. 1 IJ J

Remark 5.6. The condition (5.16) ia equivalent to 0 • Cl(L) = 0 in H2(y, Oy) and this

implies that under the first order deformation of Y corresponding to 0 = {(Jij} , the line

bundle L can be lifted.

5.4. Let K = {Kij} be an element of HO(BJL~) . If ob (J() = 0 , the exact sequence

(5.1) implies. that K comes !rom an element of T~ , that is, the Ioeal deformation near

the singula.rities of Y defined by K can be globallzed to a first order deformation of V .

By using Öech cocycles, we will give a first order deformation of V corresponding to K

such that QQ (K) = 0 . Let us choose K = {Ki} and (O,ß) as in Proposition 5.5. Set

(5.19) 2 2h..K.. = K. - h..K ..
1J IJ 1 1J J

Let us consider adeformation of Vi in (5.10) for each i defined by

(5.20)
- - 2 1

1': = {H. = y. -f.g. -tK. = O} ( U. x lP x Sl
1 1 1 11 1 1
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te:t = F t;t .(t~ + t · 8"1 1J J) IJ

y. = h,,(l + tß,,)y· .
1 IJ IJ J

-
Setting hij = hij(l + tßij) , we can verify the following equality by using (5.16) and

(5.18).

(5.23)

(5.24)

- - -
h. .(cp. .)h·k = h'k on U'jk)( SIIJ IJ J 1 1

- - 2 - 1
H.(cp,,) = h.. • H. on U"k)( IP )( 81 .

1 IJ IJ J IJ

- -
Therefore, we can define a deformation r ---t SI of V by patching 'i by the

automorphisms CPij'
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§ 6. Proof of Main Theorem.

6.1. In this section, we shaU prove the following theorem which we mentioned in the

Introduction.

Theorem 6.1. Let 111 :$~ SI be the first order deformation of X corresponding to an

element (fi E HO(B,LB) (see Proposition 4.4). Then this deformation 111 :$~ .SI can

be extended to 172: $~ S2 = Spec(G: [t] /t3) if and only if

(6.1)

where the map ob is defined aB in (5.1).

Corollary 6.2. Let () (fi E H1(X,8x) be an element corresponding to rp E HO(B,LB) (cf.

Proposition 3.3). Then the primary obstruction [0 (p,O (fi] defined in H2(X)E>X) lies in

H2(X,eX)+ = H2(Y,8y (-10g D)) and we have an equality

where c is a non-zero constant.

For the definition of the primary obstruction, see the book [13J.

~. We first prove the "if" part of Theorem 6.1.

Let (fi = {(frl'} E HO(B,LB), r/J1' E r(Ul·, f2 ~) I ~. = h- ~ .( r/J. - h. ;t,6.) = La.. + g .b..
-Y 1J 1J 1 1J J J 1J J IJ

be a.s in 4.2. Moreover we define Aij by
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tjJ. + h..tjJ. = h..A...
I IJ J IJ IJ

2 2 2 2tjJ. - h ..tjJ. = h.. ~ .A..
1 IJ J IJ IJ IJ

2= h..(La..A.. + g.b..A..) .
IJ J IJ IJ J IJ IJ

Lemma 6.3. The following conditions are equivalent to each other.

(i)

(ii)

and

2
ob (q; ) = °.
There exists (O,ß) = ({O..},{ß.. }) E H1(y.ey ) x Cl ( ~11.)IJ IJ -Y

{ai}' {bi} E CO( ~Oy) such that

satisfying (5.16)

(6.4) -."0 .(f.e:.) + 2ß· .f.e.= (4).2 + f.a. + e.b.) - h~ .(tjJ~ + La. + g.b.) .
I 1'-'1 IJ IV] I I 1 '-'l I IJ J J J J J

Proof: This follows from Proposition 5.5.

Now assurne that ob (7$ 2) = °and choose (O,ß) EHI(Y,ey ) x Cl ( ~ty) and {ai}'

{bi} as in Lemma 6.3.

From (6.3), we can see that (6.4) is equivalent to

(6.5) f.{O..(e:.) + e..a. .A.. + (a. - e:..a.) - ß·:R:·}
1 IJ OJ. '"'lJ IJ IJ 1 '-'1J J ITIJ

+ e:.{0..(f.) + f..b..A.. + (b. -f..b.) -ß..f.} = o.
V] IJ I IJ IJ IJ 1 IJ J IJ 1
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Since fi and ~ are coprime, we can get cij Er(Uij'8y ) satisfying that

(6.6) 8..(2.) + 2..a· .A.. + (a.. - e:. .a.) - ~Jt: = e:·c··
IJ VI UJJ IJ IJ IJ ~J J lrl ~ IJ

(6.7) 8..(f.) + f..b..A.. + (b. - f..b.) - ß..f. = - f.e...
1J 1 IJ IJ IJ 1 IJ J IJ 1 1 IJ

As we see in 5.4, we can construct a first order deformation Y--+ SI = Spec (G: [8J /82)

of V corresponding to qi 2satisfying that ob(qi 2) = 0 . Set

(6.8)

and define the hypersurface

(6.9)

- 2 2H. = y. - f.2. - s(tJ>. + f.a. + e:.b.)
1 1 1'-'1 1 1 1 '-'l 1

2 2=y. - (f. + sb.)(e:. + sa.) - stJ>. ,
1 1 lu] 1 1

- - 1'i = {Hi = O} ( Ui x!p x SI'

Moreover let cp.. : U.. x !pI x SI --+ u.. x !pI x SI denote the automorphism defined in
IJ IJ J1

-
(5.21) and (5.22). Then { 'r

1
·} are patehed together by automorphisms cp... We denote

IJ
the corresponding deformation by

(6.10) - 2
Y --+ SI = Spec 4: [8] /8 .

The following lemma implies the "ir' part of Theorem 6.1.



-45-

Lemma 6.4. Let lfj E HO(B,LB) be an element satisfying that ob(lfj 2) = 0 and

r ----t 51 = Spec ([s] /52 the first order deformation defined in (6.10). Let

r 1 ----t S2 = Spec ([t] /t3 be the deformation induced from (6.10) by the base

2 3 2 -I
extension ([s] /s ----t ([t] /t , 8 ----t t . Then Y ---+ 82 can be simultaneously

-
resolved, that is, we obtain adeformation .$ ----1 52 of X and a morphism

- -I _

.$ ----t Y . This deformation .$ ----t 82 is an extension of $----t SI defined in

Proposition 4.4.

Proo!: Setting s = t 2 in (6.8) and (6.9), we obtain

(6.11)

(6.12)

-I 2 2 2 22
H . = y. - (f. + t b. )(~. + t a..) - t f/J.

I I I IV]. I I

-I - 1 1
r i = {H i = O} C Ui x IP x 82

1 1and cp.. : U.. x IP x 82 --t U.. x IP x 82 .
IJ IJ Jl

We also define the equation by

(6.13)
(2) 2 2 2 2

G. = (f. + t b.)x. - 2ttjJ.x.z. - (e:. + t a..)z ..
I I I I I I I U] I I

Moreover, setting u
l
' = x.jz. = !.. , we can write (6.13) as

I I V.
I

(6.14) 222
G. 1 = (f. + t b.)u. - 2ttjJ.u. - (e:. + t a.) (z. *0)

I, I I I I I.., I, I
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222 ~G. 2 = (f. + t b.) - 2tt/J.v. - (e:. + t a.)v., (x. .,. 0) .
1, 1 1 1 1..., 1 1 1

Moreover we define

(6.16)

(6.17)

and

(6.18)

- (2) 1
$. = {G. = o} CU. )( IP )( 82 '

1 1 1

-2
.$ . = {G. 2 = O} C U. )( G:(v.) )( 82 .

1 1, 1 1

- -1 -2 -
Note that $. = ..% . U ..%. and $. is smooth. For each i , we can define the morphism

1 1 1 1

- -I

fJ· : $. ----+ r. by
1 1 1

2 -1
(f. + t b. )u. - tt/J. on $.

1 1 1 1 1

(6.19) y. =
1

2 -2
(~ + t ai)vi + tcPi on $ ..

1

-I

This gives the loeal resolution of r i •

Next we show that the isomorphism <t'ij lifts to tPij satisfying that
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-
$..

IJ

1
- 1

r;.
IJ

By using (6.19), we have for each

(6.20)

,p.. -IJ
• $ ..

JI

1
C{J. . -IIJ

I '1':.
J 1

y . + tt/J.
1 1

This equality shows that the automorphism tp... induces abirational map
IJ

- -
t/Jij : ~j - - -+ ~i and by using (5.21), (5.22), (6.7), (6.14), after a long but straightfor-

ward calculation) we can show that t/J .. can be written as
IJ

(6.21) 1 2 2 2 223u· = C. h..(1 + t ~.){(1 + t R..)u. + t(a.. + b..u.) + t b ..u.}
1 1J IJ IJ IJ J IJ IJ J 1J J

- -
where R.. = c·· - ß·· + a..b... Thus ,p.. gives the isomorphism ; $. . --=-+ $ ... (For the

IJ IJ IJ IJ IJ IJ 1J J1

coordinate vj ' the argument is similar. )

-
Now let UB consider the following automorphism on ~jk;

-
Since $. and t/J .• are extensions of $ and C{J•• in 4.3 to S2 J we can write as1 IJ 1 IJ

1"k = id + t2e"k where e'jk Er(X'jk,8X) . SinceIJ IJ 1 1

(1Ji).( lijk) = (epij 0 C{Jjk 0 C{J-~k) = id ) we have r*eijk = 0 in r(Vijk,r.6X) . By the
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equality r*8X = Sv (Lemma 3.1), this implies that eijk = °)and thus 1iJ"k = id .

- -
ThereIore {$ i} together with isomorphism {q,ij} gives the deformation $ --+ 82 of

X which is an extension of $--+ 81 in Proposition 4.4. q.e.d.

6.3. Next we prove the "only if" part oI Theorem 6.1. Let $--+ 81 be the first order

deformation corresponding to ;p E HO(B,LB) as we defined in 4.3. Assume that there

-
exists an extension .$ --+ 82 oI $--+ 81 . By Proposition 3.6, we have adeformation

- - - - -
fJ: r --+ 82 of V and a morphism u: $ --+ r whicli make the following diagram

commutative:

(6.22)

fJ

This gives an extension 01 the following diagram:

(6.23)

Let ~ --+ ~ denote the blow down morphism u I$i . Thie ia written by the local coor

dinate in 4.3 aa

(6.24) y. = u(u.) = f.ll. - tq,..
1 1 1 1 1
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1The image ~,whieh ia adeformation of Vi over 81 ' ia the hyperaurface Ui x IP x 81

defined by

(6.25) 2 2 2 2y. - f.2'. - t 4J. = y. - f. e:. = 0
1 I~ 1 1 1'"1

Thus ~ ---+ SI is isomorphie to Vi lC SI ---+ SI · Since 11 I$i is an extension of

1Y i ia isomorphie to a hyperaurfaee in Ui x!p x 82 defined by

(6.26) 222y. -f.2'.-t 4J. =0
1 1'"1 1

(mod f. g.) .
I, 1

Moreover let '1ij: Jf j ----+ 'j i denote the patching isomorphism of r~ 82 . By the

commutative diagram (3.1) in Proposition 3.2, we can see that $----+ 81 can be blown

down to the trivial deformation V x 81 --+ SI sinee 7P EHO(B,Lß ) eorresponds to an

IV

element H~(X,ex)' Thus the deformation '1: r)( SI --+ 81 ia isomorphie to the
82

trivial deformation and this implies that we can write '100 by
IJ

(6.27)
o 2

1].. = 1J. . + t p..
IJ 1J IJ

where f/'?: V.. ----+ V .. denote the patching isomorphism for V and p.. Er(v..,GV ) . If
1J IJ J1 IJ IJ

we put t 2 = s in (6.26) and (6.27), we obtain

(6.28)

(6.29)

N, 2 2 2r. = {y. - f.2'. - sf/J. = O} ----+ 81 =Spec ([s] /8
1 1 l~ 1
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N, I

After we modify Y i and fJ i j 1 we get the first order deformation

r I --i SI = Spec 4: [s] /82

which corresponds to tp 2 E HO(B,L~) and this implies that ob(iP 2) = 0 . q.e.d.
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§ 7. More analysis for the map ob.

7.1. For the general compact complex space Z, the first obatruction map

ob : HO(Z, 9'~) ----+ H2(Z,SZ) ia not easily computed. For a aurlace with rational double

points, the dual of the map QQ ia easily computed by the natural exact sequence

(7.1)

-
where Z ia the minimal resolution of Z (cf. [10], [2J, [16J and [3J). Since our

examplea V in tbis paper have the good global structure (cf.. 2.1), the obstruction map is

easily computed by some connected homomorphisms of cohomology groups.

Lemma 7.1. Let Y, L, and D1 ' D2 be as in (2.1). Then we have the following commu

tative diagrams:

1 11
2

EB ND ----+ ND +D ----+ LB ----+ 0
212

1 1° 0

°1
Oy

1xf · g

I L2 ----+B

1
0--+

(7.2)
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(7.3)
o 0

o----t 8 y{- log D)

11

----t 0

Proof. Except for the map IBL2
--t ND EB ND ' the definitions of the morphisms in

1 2

(7.2) are obvious. The map IBL2
--t ND fB ND is locally given by

1 2

fa+ gb ----+ (b I D ,a 1D ) . Then it is easy to see the commutativity of (7.2) and exactness
1 2

of each lOW and column. The commutative diagram (7.3) follows from (5.6), (5.7), (7.2)

and the standard exact sequence 0 --t Ely(-log D) ----+ ey ---i ND EB ND ---i 0 .
1 2

q.e.d.

From (7.2), we have the commutative diagram

HO(B, L~)
,5+

H1(y,I BL2)(7.4) 1
I

1~ 1'11

HO(B,L~)
'7t 1 1H (Dl'Nn ) $ H (D2,ND ) .

1 2

Moreover from (7.3), we also obtain the commutative diagram
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H2(Ely (-log D))

I I
H2(8y (-log D)}

(see, 5.2 and 5.3).

Then the following proposition follows !rom Proposition 5.3, (7.4) and (7.5).

Proposition 7.2. The obstruction map QQ: HO(B,L~} ----+ H2(V,ElV) is given by the

composite map

We will next consider the map 71! . The map I}:

H1(y,Ely } ----+ H1(Dl'Nn ) tB H1(D2,Nn ) is given by p.l(O) = ((0 • f) ID '
1 2 1

(0 • g) ID
2

) . It is known that (0 • f) ID
1

and (0 • g) ID
2

are obstructions to the lifting

of divisors D1 and D2 to the first order deformation of Y corresponding to

1oE H (Y,Sy) . MOrE~over we can see that
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where H
1(y,8Y)C

1
(L) = {O E H

1(y,8y ) 10 • C1(L) = O} . This consideration with Pro

position 7.2 yields the following

Proposition 7.3.

Assume that Ii(H
1(y,8Y)C

1
(L)) = 0 , that is, all elements 0 E H

1(y,8Y)C
1
(L) pre-

serve the divisors D1 and D2 . Then we have the following

(i) The map QQ ia non-zero map if and only if 11t ia non zero map.

(ii) The map ob is injective if and only if 11t is injective .
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§ 8 Examples of obstructed manifolds.

8.1. Let Z be a compa.ct complex manifold and () an element of H1(Z,ez) . Then () is

obstructed if there are no deformations !&"--+ 6. = {t E(; It I < c} of Z such that

p[~J = (J where p ia the Kodaira-8pencer map. We aay that a complex manifold Z ia

obstructed if it has an obstructed element () E H1(Z,Sz) . Moreover the followings are

equivalent:

Z is obstructed +---t dim DefZ < dim H1(Z,8Z) .

An element () E H
1
(Z,SZ) is obstructed if the primary obstruction [8,0] E H2(Z,SZ) is

not zero. (Kodaira [13]). In tms section, we will show that by using Theorem 6.1 many

examples of obstructed manifolds of dimension 2: 2 ca.n be constructed.As far as I know,

examples of obstructed surfaces are given by Kas [10], Burns-Wahl [2], Catanese [3],

Pinkham [16] and Horikawa [8]. Moreover Douady [4] and Kodaira-Spencer [14]

showed that the products of complex torus and !p
1 are obstructed.

8.2. First examples. Dur examples are compact complex manifolds X which are

resolutions of V constructed from the quadruplet (Y,Dl'D2,L) in 2.1. Let Y be a

smooth projective variety of dimension n 2: 2 and L an ample line bundle, D1 ,

D2 EIL I satisfying the conditions (2.1). Let X be a compact complex manifold defined

in (2.5), that ia, aresolution of the double cover V of Y branched along the normal

crossing divisor D1 + D2 .

We assume that:
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(8.2)

(8.3) L ~ K-1 is ample.. y

Proposition 8.1. Under the conditions {8.1} _ (8.3), the manifold X above is obstructed.

In fact, there exists an element BE H1(X,eX) whose primary obstruction [6,8] f °.

Proof: First we assume that n = dim Y ~ 3 . Set B = D1 nD2 . By Main Theorem 6.1, it

suffices to show that there exists an element "ifi E HO(B,LB) such that ob(q; 2) t °.From

the exact sequences (cf. (4.16))

(8.4)

(8.5)

and Kodaira vanishing theorem (L-1 and Ky S L-1 negative), we have

(8.6)

(8.7)

Moreover, by a standard exact sequence and Kodaira vanishing theorem, we obtain the

exact sequences

(8.8)
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(8.9)

Take an element (fi E HO(ß,Lß ) and set

[((fi) = (a,b) E H1(Iß L) ~ H1(y,Oy) EB H1(y,Oy) . Then by an easy calculation, we can see

that

(8.10)

where U denote the cup product U: H1(y,tiy) ~ H1(y,tiy) --+ H2(y,tiy) . Thus from

(8.6) and (8.7) with assumption (8.2), we obtain an element (fi E HO(B,Lß ) such that

öt(qi 2) =1= °.Again from Kodaira vanishing, theorem, we have H1(NO) ~ H
2(y,Oy) and

1

thus from (7.4), we obtain the following commutative diagram.

(8.11)

fJ+1
HO(B,L~) ----+1 H1(No ) EB H1(NO )

1 2

, 11 2

H2( Oy) EB H2 (ty )

It is easy to see that '1 is injective. Therefore if öt(;p 2) =1= 0 ,then fJt(tp 2) =1= °.More-

1 1 2 1 1 ED2
over the natural map p : H (Y,ElY)C

1
(L) --+ i~lH (0i'N

Di
) = H (Y,Oy) defined in

(7.5) is zero map by definition. Hence ob((fi 2) :f 0 if fJt((fi 2) :f 0 by Proposition 7.3 and

this completes the proof for the case of dim Y = n ~ 3 . Even if dim Y = 2 , (8.7), (8.9)

and (8.11) remain to be true. Since ß is a set of finite of points,
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S2HO{B,L
B

) ----i HO{B,L~) clearly surjective. Moreover it followB from (8.11) that the

maP 1]t is non-trivia!. Therefore the assertion again follows from Proposition 7.3. q.e. d.

Remark 8.2. A typical example of Y and L satisfying (8.1) _ (8.3) is an abelian variety

and its ample line bundle. In this case, our example X are closely related to the example

of Douady and Kodaira-Spencer (cf. [4J I [14J). In fact, X can be embedded as a hyper

surface into the product [pI x Y .

8.3. Second examples. Next we will give examples for which the obstruction map ob is

injective. (cf. § 5, § 7).

Let W be a smooth projective variety of dimension n - 1 ~ 1 and C a CUIve of
/

genus g. Let D 1 be a smooth ample effective divisor on W divisible in Pic{W) by 2

and D2 an effictive divisor on C with degree 2d without multiple points.

* / * /
We set Y = W )( C and D1 = P 1{D 1) , D2 = P 2{D 2) where Pi denote the pro-

jection to the i-th factor. We take a line bundle L such that L2 ~ Oy{D1 + D2) .

Now we assume that:

(8.12)

(8.13) 1 / 2 . ° /H (W,D 1) = H (W,Oy) =°and dim H (W,D 1) ~ 2 .

By assumption (8.12), we have the isomorphism

(8.14)
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1 1 2 1
Lemma 8.2. The natural map J1 : H (Y.8y )C (L) --t . fD H (ND) ia zero map.

1 1=1 1

I I

Proof. Since D1 = D1 )( C and D2 = W x D2 ' we have the following is~morphisms

(8.14)

(8.15)

Then p.1 is decomposed into the following maps

(8.16)

(8.17)

1that p = 0 .

Since C is a curve, H1{Nn') = 0 and by (8.13) we have H1{ND') = 0 . These imply
2 1

q.e.d.

From this lemma) the obstruction map QQ is injective (resp. non-trivial) if the map

f/t in (7.4) is injective (resp. non-trivial). Moreover we can prove the following

Lemma 8.3. Under the above assumptions, we have the followings:

(i) The map f/t is always non-trivial.
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I I

(ii) The map fl1 is injective if 2d = deg D2 5 g and D2 is general or more

precisely if dim BO(C,D;) = 1 .

Proof. From the commutative diagram (7.2), we get

(8.18)

1 1 11

fJ+1o 0 0 T' ° 2o--+ H (ND ) ED H (ND ) ----i H (ND +D )~ H (B,LB) I .

1 2 1 2

1 1
BI (y , Oy ) = H1 ( Y, Oy)

It follows from this diagram that Im T = im r' .

Since B ia isomorphie to 2d copies of D ~ C W and L2 ~ D ~ ~ ND I • Thus
1

On the other hand, we ean easily see that

(8.20)

Moreover an exact sequenee

(8.21)
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implies that

(8.22)

From (8.20) and (8.22), it follows that

I

From this inequality, the assertion (ii) follows. If D2 ia not a special divisor on C, by

Riemann-Roch, dim HO(C,D~) -1 = 2d - g < 2d . If D~ ia a special divisor, by

Clifford's theorem, dim HO(C,D~) - 1 ~ d < 2d . Thus by (8.19) and (8.23) with assump

tion that dim HO(W,D~) ~ 2 , we have

which implies the assertion (i). q.e.d.

Let (Y,Dl'D2,L) be a quadruplet as above. From Lemma 8.2 and Lemma 8.3, we have the

following theorem.

Theorem 8.4. Let X be the manifold defined in § 2 hom (Y,Dl'D2,L). Under the

assumptions (8.12) and (8.13), we have the followings:

(i)

(ii)

X is always obstructed.
I I

If degree of D2 = 2d ::; g(C) and D2 is general, or more precisely if

dim HO(C,D~) = 1 , all the elements in H~«:>X) ~ H1(NE) are obstructed.
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Remark 8.5. In case (ii) of Theorem 8.4, under same suitable conditions on W , we can

prove that the Kuraniski space X ia non-reduced. We will discuss this topic in the future.

Remark 8.6. If W is also a curve, the above examplea are given by Kas [10]. Moreover

Catanese generalizes the example to surfaces which have An singularities in [3].
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