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Abstract

In the present article and a subsequent paper we shall develop a pseudodifferential calculus
for boundary value problems on manifolds with finitely many conical singularities.
Outside the singular set we use Boutet de Monvel’s calculus. Near a singularity, we
identify the manifold with X x [0,00)/X x {0}, where X is a smooth compact manifold
with boundary, and use operators of Mellin type on R, with values in Boutet de Monvel’s
algebra on X. To this end, the present part provides a parameter-dependent version
of Boutet de Monvel’s calculus and a class of weighted Sobolev spaces with discrete
asymptotics based on the Mellin transform.

Moreover, we introduce the Green operators, the residual operators in the calculus, and
the smoothing Mellin operators with asymptotics, a class of operators which is regularizing
but in general non-compact.
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Introduction

One large program of contemporary analysis of which the present paper is a part, has as
its goal the establishment of an index theory for elliptic operators on singular manifolds.
In analogy with the classical theory, this program has two phases: first and foremost, the
construction of a natural algebra of pseudodifferential operators, and second, a thorough
exploration of parametrices to elliptic elements at the symbol level.

Moreover, for any such approach to be useful in practice, it should be ’iterative’. That
is, whenever one kind of singularity has been treated successfully and the corresponding
algebra has been constructed, then it should be possible to also treat the ’cone’ which
has the present singularity as its base and then the edge over this cone. The previously
constructed operator algebras should always serve as the basis for the following ones.
This is the first of two papers devoted to the former part of this program, namely the
construction of an algebra of pseudodifferential operators for manifolds with boundary
and conical singularities. Such manifolds are smooth outside a finite set of so-called
'singularities’, where they locally have the structure of a cone X x {0,1)/X x {0}. The
base of the cone, X, is a compact manifold with boundary. Notice that this already gives
elements of a corner theory since we have two ’singular directions’, that normal to the
boundary and that along the axis of the cone, coming together at the tip of the cone.

In the larger program of analysis on singular manifolds there always is a certain freedom in
the choice of the algebra one intends to work with. In view of a wide range of applications
in mathematical physics, where the primary interest is in differential boundary value
problems, it seemed natural for us to rely here on Boutet de Monvel’s calculus, even
though from the analytical point of view a more general concept, avoiding the transmission
condition, might have been desirable.

Similarly as in Boutet de Monvel’s approach to the case of manifolds with smooth bound-
ary, the algebra of differential operators will be completed to an algebra of pseudodiffer-
ential operators; the present situation, however, requires the introduction of additional
new elements, namely the analogues of the Mellin and Green operators. These played an
important role already in the analysis on singular manifolds without boundary.

What we eventually would like to have is an algebra of operators with a symbolic struc-
ture that

(i) contains the classical boundary value problems

(i) gives asymptotic expansion formulae for the symbols of compositions and adjoints,
and

(i) provides a notion of ellipticity in terms of (principal) symbols that allows the con-
struction of parametrices to elliptic elements within the calculus; furthermore these
parametrices should also be Fredholm inverses.

It 1s well-known that the solutions to classical boundary value problems on manifolds
with conical singularities have particular asymptotics close to the singular points, cf.
Kondrat’ev [14]. An additional task therefore is to provide suitable classes of spaces that
contain the typical asymptotics and also are mapped continuously into each other by the
operators.

Our method is the following: On the regular part of the manifold we use Boutet de
Monvel’s calculus in its standard form. Near the singularities we work with the cylinder



X x R4. We denote by z the coordinate in X, by ¢ that in R,. The operators we shall
be dealing with are Mellin operators with respect to ¢t with values in Boutet de Monvel’s
algebra over X. In order to make this rigorous we need the concept of meromorphic func-
tions with values in Boutet de Monvel’s algebra and additionally a parameter-dependent
version of Boutet de Monvel’s calculus. It is given in Section 2 of the present paper which
is of independent interest. It provides a self-contained introduction to Boutet de Monvel’s
calculus with and without parameters based on the concept of operator-valued symbols
on spaces with group actions. In our set-up, the parameter plays the role of an additional
covariable, the parameter-dependence therefore is slightly less general than that in Grubb
[9]. On the other hand, the new concept yields a very fast approach.

Section 3 starts with the definition of the Sobolev spaces H*7, 5,4 € R, the operators are
acting on. Qutside the singular set, H*"” coincides with the standard Sobolev space H*. On
the cylinder X x R, it is defined in terms of an intertwined action of the Mellin transform
with respect to the t—variable and order-reducing operators on X, combined with a weight
function of the form ¢7,4 € R. For s = 0,1,2,..., we may characterize H*" in local
coordinates as the space of all functions f such that t3-7(t9,)¥92f € L? for k + |a| <
s. Moreover, we introduce asymptotics of the form $324 S"p2 aje(z) t™ In* tw(t). Here
p; € C,Rep; —» —oco as j — 0o,m; € N, aj; € C*®(X), and w is a cut-off function near
Zero.

We may then introduce the Green operators, the residual operators with respect to the
calculus: essentially, they are described by the fact that they map all the above spaces
to spaces of smooth functions with asymptotics. For dim X = 0 and Taylor asymptotics
near t = 0 they coincide with Boutet de Monvel's singular Green operators of type zero.
In Section 4 we develop the theory of t—independent Mellin symbols with values in Boutet
de Monvel’s algebra. We study their mapping properties and their relation to the Green
operators. We conclude this paper with the analysis of the algebra Cupya(X X R4, 9)
consisting of all operators of the form A = ¢’ A4; 4 G, with smoothing Mellin operators
Aj; and a Green operator G. This algebra is of particular interest since it will turn out to
be an ideal in the final operator algebra.

Differential boundary value problems for manifolds with conical singularities and espe-
cially ellipticticity, regularity, and asymptotics have been studied in great detail by Kon-
drat’ev [14]. Also the concept of Plamenevskij (20}, developed originally for closed man-
ifolds, allows generalizations to manifolds with boundary. His techniques as well as his
objects, however, are quite different from ours.

The present article focuses on the concept of ellipticity and the construction of paramet-
rices in terms of symbols for the full pseudodifferential algebra with a very small class of
residual elements.

There are formal analogies to the construction of the pseudodifferential calculus on man-
ifolds with conical singularities without boundary, cf. Schulze [27], [30]. Our approach
continues the analysis of Boutet de Monvel 2], Vishik & Eskin [35], Eskin [7], Plamenevskij
[20], Rempel & Schulze [21], [22], and Schulze [27], [29]. In order to further pursue the
program initiated by Schulze in {29], [30] it will be necessary to also consider boundary
value problems without the transmission property and eventually their edge theory; this,
however, will be the subject of a future paper by the authors.



1 Manifolds with Conical Singularities

1.1 Notation

An n—dimensional manifold with boundary is a topologigal (second countable) Hausdorff
space M such that each point m € M has a neighborhood which is diffeomorphic to either
R" or the closed half-space ﬁ: The former points are called the interior points of M,
the latter the boundary points. We will use the standard notation int M and dM.

1.1.1 Definition. A manifold with boundary and conical singularities D of dimension
n is a topological (second countable) Hausdorff space with a finite subset £ C D ("sin-
gularities”) such that D\Z is an n-dimensional manifold with boundary, and for every

v € ¥ there is
e an open neighborhood U of v.
e a compact manifold with boundary X of dimension n — 1.
e asystem F # 0 of mappings with the following properties

(1) For all ¢ € F
$:U—- X x[0,1)/X x {0}

is a homeomorphism with

#(v) = X x 0/ X x {0}.

(2) Given ¢y, ¢, € F, the restriction
$1d7' : X x (0,1) = X x (0,1)

extends to a diffeomorphism ‘
X x (~1,1) = X x (=1,1).

(3) The charts ¢ € F are compatible with the charts for the manifold for D\X :
The restriction ¢ : U\{v} = X x (0,1) is a diffeomorphism.

If there is no fear of confusion, we will simply speak of a manifold with conical singulari-

ties.

1.1.2 Remark. We can and will assume that for each singularity v € £, the system F
is maximal with respect to the properties (1), (2), and (3) in Definition 1.1.1.



1.1.3 Definition and Remark. Let D be a manifold with boundary and conical sin-
gularities. By assumption, D\X is a manifold with boundary. Properties 1.1.1(1) and (2)
imply that any neighborhood of a point v € ¥ contains points of the topological boundary
of D\Z, namely of 8X x (0,1).

We may therefore define the interior and the boundary of D just as usual: z € D is an
intertor point of D if there is an open neighborhood of z which is homeomorphic to an
open ball in R™, and int D is the collection of all interior points; 3D = D\rmint D is the
boundary of D. We always have ¥ C 9D.

1.1.4 Lemma. Let D be a manifold with boundary and conical singularities. Then the
topological boundary D of D is a (boundaryless) manifold with conical singularities in
the sense of [29], 1.1.2 Definition 10.

Proof. By Definition 1.1.3, 0D\E = (D\Z)\int(D\Z) is the boundary of a manifold with
boundary, thus a manifold.
Let v € I, and let U, X, ¢ be as in 1.1.1. Then U N @D is an open neighborhood of v in
dD, and

Blynap : UNOD — 0X x [0,1)/0X x {0}

is a homeomorphism for every ¢ € F : Injectivity and continuity are trivial; it remains to
show that ¢ maps indeed to the right hand side and that it is surjective.

By assumption, ¢(v) = X x {0}/X x {0} = X x {0}/0X x {0}. Since ¢|y\{n} —
X x (0,1) 1s a homeomorphism, it maps boundary points to boundary points, so ¢ maps
(U\{v}) N 8D = (U N 8D)\{v} to 8X x (0,1). The same argument now applies to ¢~
and shows that ¢|,.,p is surjective. :

Therefore, dD satisfies the conditions in [29] 1.1.2, Definition 10. <

1.1.5 Remark. We even have somewhat more in 1.1.4, namely
$167" : X x (0,1) = 8X x (0,1) (1)
has an extension to a diffeomorphism
8X x (—1,1) = 8X x (~1,1). (2)

In fact [29] 1.1.2 Definition 10 should be modified in the sense that (1) and (2) are required
to hold.

1.1.6 Definition. Let D be a manifold with conical singularities. By ID denote the
topological space constructed by replacing for every singularity v the neighborhood U in
Definition 1.1.1 by X x (0,1) via glueing with any one of the diffeomorphisms ¢.

ID is called the stretched object associated with D. Note that at the same time this
procedure defines a stretched object IB associated with B = 0D.



1.1.7 Notation and Assumptions. Throughout this article we will keep the following
notation fixed.

e D is a manifold with conical singularities of dimension n + 1 with singularity set L.
o DD is the associated (n + 1)—dimensional stretched object defined in 1.1.6.

e B = 3D is the boundary of D, cf. 1.1.3, it is of dimension n and a manifold with
conical singularities (without boundary).

e B is the corresponding stretched boundary object defined in 1.1.6.
In a neighborhood of one of the singularities,

o X will denote the cross-section as in 1.1.1;. by definition, X is a manifold with
boundary of dimension n, in particular, X contains its boundary. For practical
purposes, this is often inconvenient. We shall therefore agree to denote by X the
open interior, and by X the manifold including the boundary.

e X=X xRy; X" =X xR,
e Y = 0X is the topological boundary of X;Y is a closed manifold of dimension n—1.
s Y=Y xR;.

We will assume that

e X is endowed with a Riemannian metric, and embedded in a closed Riemannian

manifold Q.

e ID has a Riemannian metric which coincides with the canonical (cylindrical) metric
on X X (0,1) near each singularity.

1.2 Motivation: Operators of Fuchs Type

Working on manifolds with conical singularities, one usually concentrates on a particular
class of operators, the so-called totally characteristic operators or operators of Fuchs type.

1.2.1 Definition. Asin 1.1.7 let X be a compact manifold with boundary Y, and denote
by Diff "(X ) the differential operators of order £ on X. A boundary value problem of Fuchs
type on the cylinder X = X x R, is a system (P,T1,...,T,),» € N, consisting of a
differential operator P of order p that can be written

P .
P(z,t,D;, D) = t™* ) ¢;(t)(—td) (1)
-+ j=0
with ¢; € C®°(R,, Diff*7(X)) and boundary operators T of order y; given by
Hk i
Tk(x)t:Da:v-Dt) = Zijt_J Y5 (2)

=0



Here, the Pj; are operators of Fuchs type of order px — 7 on YA, i.e.

L Be—J
ij = Hkts Z djk;(t)(—tat)’

=0

with suitable d;; € C*(R,,Diff**7=(Y)), and ~; is the evaluation operator at the
boundary. Introducing normal coordinates (y,z,) on X, where z, denotes the direction
normal to the boundary of X and y € Y*, we may write |

(7J'f)(y1t) = xljgoai,.f(ya -Tmt)° (3)

Operators of Fuchs type are also called totally characteristic operators.

1.2.2 Remark. In practice it is very inconvenient to have different orders appearing in
one boundary value problem. Fortunately, there are order-reducing operators for (bound-
aryless) manifolds with conical singularities, cf. [27] and [26]. We may employ them to
make all orders equal. This is why in Sections 3 and 4, we will deal with one order only for
the operators on both the manifold and the boundary. If one is interested, however, in the
asymptotics of solutions for a concrete problem, then it can be advisable to return to the
original problem, because the order reducing operators contribute additional asymptotic
data.

In order to motivate the choices in 1.2.1 it is instructive to compute the following almost
trivial example.

1.2.3 Polar Coordinates and Differential Operators. Introduce polar coordinates
in R", i.e. write
x

r = IiCI = r5(¢1,...,¢n_1) = 112(1‘,¢).

|z]

Here, S is a smooth function from an interval D C R™*! to S*"!. For a differentiable
function f the chain rule gives

Lo200) = 3 2Liar,) 520r,6) and

ar 1=1 J
Ofozx - 9f Oz
a¢j (T‘, QS) = E -TJ'(I(T" ¢))a'_¢J(Ta 4’))

In other words,

af of __(Bfom df oz af ){ oz 17!
(axl’“"axn T\ O 7 8¢ T 0¢un ) |O(9)]

Now
9e S1(¢)
_ . 85;(¢)
(. : e
"9 | se)



By Cramer’s rule, the inverse is of the form (zl(gb),zz(qb)/r,...,zn(¢)/r)T, where the

z;,7 = 1,...,n are row vectors depending only on ¢ (and T stands for the transpose).
Correspondingly we may write
af i} f oz 122 4 f oz

Bz; = d;(9) Z Cki—5— (1)

and a differential operator P(z, D;) = ¥ ja|<u @a(T) D] transforms into an operator of the
form
P(¢sT’D¢a Z bﬂk ¢=T) |ﬁ|DﬁDk (2)
|ﬂ|+k<n
on the cylinder D x Ry. The coefficients b (¢, r) can be computed from (1) and the a,.
Notice that they are smooth up to r = 0. In particular, we can also write

P(gyr, Do, Dy) = 7 3" Cilg,r, D) (—r0,)" 3)

k=1

with differential operators Cy of order < p — k, depending smoothly on r up to » =0, so
that P is an operator of Fuchs type.

In a similar way we may look at the function spaces. One of the easiest examples is
L*(R™). Suppose the function f is measurable in R". Consider a neighborhood of the
origin, say U = {z : |z| < ¢}. Then

J@ide= [ [ 1(foo)r, @) do(@)dr (4)

with the sphere $™~! and the surface measure do. So f € L*(U) if and only if the function
F = f oz satisfies F(r, ¢)r("=1)/2 € L2((0,c) x S™71).

1.2.4 Boundary Value Problems. Now suppose M is a smooth n—dimensional man-
ifold with boundary and A is the operator corresponding to a differential boundary value
problem on M. Then we can pick an arbitrary point in the boundary of M and make it
an artificial conical point simply by introducing polar coordinates in a neighborhood of
this point. Instead of the variable r usually used for the Euclidean distance, we shall in
this situation employ the variable ¢ to denote the distance from the singularity.

Let us see what happens to A. Since the problem is purely local, we may as well assume
that the manifold is R}*' = {& € R™!' : £,4, > 0} and that the point is the origin. The
operator A can be written in the foorm A = (P,T},...,T,) with a differential operator
P =% ,¢,aa(Z)Dg on R and a vector (T1,...,T,) of boundary operators on R} =
R". Each of them is of the form T; = v,B;(&, Dz) with a differential operator B; of order
u; and the evaluation operator at the boundary .

Now introduce polar coordinates. According to 1.2.3, P and the B; transform to Fuchs
type operators P and B on the cylinder D x Ry, where D C R+ is relatively open.
The operators B; have the particular form of 1.2.3(2), and the introduction of normal
coordinates on the base D — which in this case reduces to using the standard Euclidean
coordinates — will leave it invariant. Suppose that ¢, is the normal coordinate in D. Then



B; has the form

Bj(¢at:D¢:Dt) = Z bj'k,i((ﬁ,t)t_lm_‘Dg,D;’an
|Bl+k+1< ;)
by
= 31 X bae)PIDLDE D
I=0 {|8|+k<p;-1

Since o commutes with the differentiations along OR} = R*~!, we may write B; in the
form 1.2.1 (2).

Let us now look at a particular example.

1.2.5 Example. Let X denote a smooth compact n—dimensional manifold with bound-
ary Y. Suppose that X is embedded in a smooth closed manifold 2, also of dimension n,
and let {A(t): 0 <t £ 1} be a smooth family of Riemannian metrics on §). Consider the
cone C = X x R;/X x {0} as the Riemannian manifold X x R, with the degenerate
metric g given locally on X x {t} by the tensor

g9(t) = (6i;(1) )ij=1,.mt1 = [ tz%(t) g ] .

In this example we are denoting the coordinates by (zi,...,Zu41), identifying z,41 and
t. Let A denote the Laplace-Beltrami operator on C associated to the metric g. Write
Ay, for the Laplace-Beltrami operator on X with respect to A(t). In order to compute
A, we note that the determinant of g(#) is t*" det h(t), and that the inverse of the matrix
(gi;(t)) is the matrix
oy _ | TTERTYE) 0
=] O .

The Laplace-Beltrami operator then is given in local coordinates as

, ntl 1.
A = [detg(t)]—f Z axg[detg(t)]rgu(t)a”j

= et h(0)]3 Y B e{det k(O] RS (1)a,
+£7*[det h(t)]‘;"att“[det (1)), + t~"[det A(t)]~3 8,t™[[det h(t))T]'8,
= t7*Ax,;+nt710, + %[det h(t)]'/ det h(t) 8; + 8
= t72(Axe+ [0 = 1+ fO)20) + (10)?) (1)

where we have denoted f(t) = }t[det k(t)]'/ det A(t). Note that this is a smooth function
up to t = 0. In order to obtain a good boundary value problem, we add Dirichlet boundary
conditions at Y. The evaluation operator 4y has the same form in these cordinates.
From this example we learn that if we want to establish a notion of ellipticity on a manifold
with a conical singularity, then the natural candidates for elliptic symbols are those that
are degenerate close to the singularity in a form similar to (1). Instead of asking that the
symbol be elliptic in the usual sense, we will look for those symbols p(z,t,€,7), where
g(z,t,€,7) = p(z,t,&,t7) is elliptic.

Similarly, 1.2.3(4) suggests on which kind of spaces we should consider these operators.

10



2 A Short Description of Boutet de Monvel’s Algebra
with and without Parameters

2.1 Symbol Spaces

It is the aim of this section to give an introduction to Boutet de Monvel’s algebra with
parameters. At the same time we take the opportunity to present the standard algebra
in a new and simpler way.

In Section 4 we will consider Mellin symbols with values in Boutet de Monvel’s algebra.
This requires a topology on Boutet de Monvel’s algebra, and we take some time to explain
the topologies on the various spaces.

As before, X will be a compact n—dimensional manifold with smooth boundary Y. In
a collar neighborhood of the boundary we introduce normal coordinates. A point there
can be written z = (y,r) with y € Y,r > 0. Coordinates in ' x R, with an open subset
¥ C R™ ! will also be denoted by (z',7) or likewise (2, 7,),2' € V.

For functions or distributions on ¥ x R let rt denote restriction to Y x R..; for functions
on Y x R4, et denotes extension (by zero) to Y x R.

2.1.1 Definition. (a) Let @ C R* be open, g€ R. Then 5#¥(Q, R") is the space of all
smooth functions p such that for every K CC 1,

|Dg DEp(z, €)| < Ciap (€)1 (1)

for all z € K,{ € R™, with constants Ck . The Fréchet topology on S#(2, R") is given
by the choice of the best constants in (1). '

(b) By S*(R")const denote the subspace of functions p independent of z, topologized
correspondingly by the best constants in

1DEp(€)] < Ca ()1 2)

(c) We will sometimes also need the uniform version of the symbol classes: S7((2, R*) is
the space of all p € 5#(2, R"), where the constant Ck . g is independent of K.

(d) A symbol p € S*(Q, R") is said to be classical (write p € S5(2,R™)) if it has an
asymptotic expansion into symbols which are homogeneous in £ for |¢] > 1, i.e. there are
symbols p; € $¥77(Q,R*),5 = 0,1,... such that

pi(z, X) = )‘#_jp:'(x’g)’
for A>1,|€] 21, and p~ T2, p;-

2.1.2 Remark. (a) In the same way, we can define symbol spaces where p takes values

in matrices.
(b) The topology on 5¥(£2, R") coincides with that of C°(Q, S*(R")const). In view of the
nuclearity of C*°(§?) we therefore have

SH(Q,R™) = C(Q)&rS*(R™)const.

11



2.1.3 Definition. Let HY = {(e*f)": f € S(R+)}, Hy = {(e™f)": f € S(R_)}, where
the hat * indicates the Fourier transform on R. H’ denotes the space of all polynomials.
Then let

H=Ht"® H; @ H

Write Ha,d € N, for the subspace of all functions f € H with f(v) = O((x)*™).

2.1.4 Lemma. Letz = (z',r) € Q= Q' xR, C R open, and let p ~ =2, p; €
4, R*) as in 2.1.1(c). Then for each fixed (z',£') € ' xR}, the symbol ¢ € S*(R,R)
defined by
q(r,p) = p(a’,7, €', p)

is classical. In fact,
1 ' ra -yl
a(r,p) ~ 30 30 —08pi(ayr, 0, £1)E7pl* 77, p s oo,
A

Proof. Without loss of generality assume that p is homogeneous of degree p for |£] > 1.
Then ¢(r,p) = p(’, r, ]%l’ +1)|p|*. Now let 7 = |p|~1,z = (2/,r) and consider p(z, p€’, £1).
By Taylor’s formula,

1
ple, 7€, £1) = 3 —08p(a,0,£1)67 + ru(a, &', 7)
laj<N &

with |rn(z,€,7)] € Coe V¥ as 7 — 0%, and C a continuous function of z and ¢'. <

2.1.5 Definition. Let § = ' x R, C R*~! open. A symbo!l p € S#*(Q,R") has the
transmission property at r = 0 1f for every k € N

Dfp(:c', r, &, (€) p)lr=0 € S*(U, R?'_1)®frﬂd.ps (1)

where d = entier(y) + 1. Write p € 5,.(2,R"),p € 5} ,.(R,R"), etc. We shall also say
that p has the transmission property with respect to (r, p).
There is an easier formulation for classical symbols p. Let u € Z, p € §5(Q, R"), and

P~ 2P
3=0
with p; homogeneous of degree u — j for [£] > 1. Then we ask that for all k£, &
DfDgpi(«',0,0,1) = (1)~ DEDgp;(s',0,0, 1), (2)

cf. [21], 2.2.2.3, Proposition 1.
A third variant is the following. By 2.1.4 we know that for every fixed (', ¢’),

q(r,p) = p(z’,r, &', p) € Sy(R x R),

12



and q(r, p) ~ T2 a5 (r,z’,€')p*7 as p — oo for suitable a
Then we have to ask that for all k, 5, z', ¢’
Dk (af (r,2',¢) = a5 (r, @', €)) lr=o (3)

cf. [29], 2.1.12(2).

Now suppose that @ = Q; x R x 3 x R with open subsets Q;,Q0, C R™! and p €
S#(2,R™) is a ’double’ symbol. Then p is said to have the transmission property if for
all £,/ € N,

DkD'p(:r 7y 8,8 (€Y p)lrms=0 € SH( X Qz,R"'l)®,Hd'p, (4)

where d = entier(p) + 1.

2.1.6 Symbols with parameters. (a) A smooth function p on 2 x R* x R/ is called
a parameter-dependent symbol of order p € R, with parameter A € R/, if

p(z,&,X) € S*(, RE x RY).

Write p € S*(f2, R™; RY).

(b) It is called classical in S*(2, R™; R), if it belongs to S4(,R" x R!); write p €
2(Q,R™ RY).

(c) Let @ = Q' xR, C R*! open. Then a symbol p € S*(Q' x R,,R*! xR, x R}) is

said to have the transmission property (with parameter), if it has the transmission property

with respect to (r, p); similarly for 'double’ symbols.

(d) A symbol a € S*(Q,R";R') is called parameter-elliptic of order p, if there is a

be 5#(Q,R"; R) such that ab~ 1 and ba — 1 belong to S~1(f2, R™; R').

2.1.7 Operator-valued symbols.

Let E, F be Banach spaces with strongly continuous group actions k), &, A € Ry, i.e
A= Ky € C(R+,£0(E)), A fé,\ € C(R_‘.,EU(F)), and KoK, = IC,\L,,ITC,\;C“ = ;{1)\#.

Let 8 C R* and p € C®(Q x R", L(E, F)), 1 € R. We shall write

p € S*(Q,RY E, F),

provided that for every K C Q and all multi-indices «, 3, there is a constant C =
C(K, @, B) with

1% qy=1 D5 DEp(y, m)kimpll ey < C (m)* 1, (1)

cf. [27] 3.2.1, Definition 1. The space S*(2, R™; E, F') is Fréchet topologized by the choice
of the best constants C'.

A symbol p € S¥(),R™; E, F) is said to be classical, if it has an asymptotic expansion
P~ L2 p; with pj € §#7(Q, R™; E, F) satisfying the homogeneity relation

pi(y, An) = X7 &y pi(y,n) K-

forall A > 1,|g| > 1.
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For the usual or weighted Sobolev spaces on R, we will always use the group action

(kA f] () = A3 f(Ar). (2)

On E = C use the trivial group action «) = id.
If ;i « F; « ... is a sequence of Banach spaces with the same group action, and F is
the Fréchet space given as the projective limit of the Fy, then let

SHQ, R E, F) = proj — lim, S¥(Q,R™ E, Fy). (3)

Vice versa, if E is the inductive limit of the Banach spaces £y, — FE; < ... with the same
group action, then

SE(Q,R™ E, F) = ind ~ lime S* (2, R™; Ey, F), (4)
Finally, a symbol p belongs to S*(Q,R"; E, F'), E = ind — limF, F = proj — lim F}, if the

group actions coincide on the £ and Fj, respectively, and p € S*(Q}, R™; Ei, F) for all k
and I. We give it the topology induced by all the topologies of the spaces S#(2, R™; E, F7).

2.1.8 Remark. Note that

S(R+) = proj — lima.rEN HU'T(R+)a
S’(R+) = ind - lil'no'-,-eN HO-U'FT(R+),

where Ho"(R,), H3"(R4) are the weighted Sobolev spaces defined by

HP(Ry) = {{r)7uiue HY(Ry,),
H(Ry) = () "w:ue H'(Ry,).

2.1.9 Remark. We will, in particular, deal with the spaces S*(Q2, R"; S'(R4), S(R4)).
For the inductive and projective limit constructions in 2.1.7 (3), (4) we will then use the
description of §'(R;) and S(R,), respectively, given in 2.1.8.

2.1.10 Lemma. For p € S*(},R™; E, F') and g € S¥(Q,R™; F,G), the symbol r defined
by r(y,n) = q(y,n)p(y, n) (point-wise composition of operators) belongs to S***(Q, R*; E, G),
and D2 DPp belongs to S*~1°I(Q,R™ E, F).

Proof. See [27] Section 3.2.1, Proposition 2. <

2.1.11 Definition. Let = £; x Q; C R" x R™ be open and p € S*(Q},R"; E, F) an
operator-valued symbol. Then op p is defined as usual by

lopp(N)l(y) = (27r)'"//02 eV Mp(y, i, 1) f(§)didn, (1)
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f € CL(Qa, E),y € 4. This reduces to the usual
lop(AN(y) = (2m)7F [ e¥p(y,n)f(m)en, 2

for ’simple’ symbols. Here, f(n) = Fynf(n) = (27)7"2 [ e=¥" f(y)dy is the vector-valued
Fourier transform of f.

We may also consider the case that part of the covariables serve as parameters: For
1 C R" open, p € S¥(,, R} x R!; E, F) then defines a parameter-dependent operator

a

lop (N )(w) = (2m)™* [ e¥p(y, 1, A) (), (3)

f € C°(82, E), similarly for ’double’ symbols.

A subscript, say t, associated with the ’op’ notation will indicate that we only let the
operator act with respect to the variable ¢ and the corresponding covariable. We will
employ this notation particularly for operators acting with respect to the normal variable
only.

2.1.12 Definition. Let E, &) be as in 2.1.7, ¢ € N,s € R. The wedge Sobolev space
W?*(RY, E) is the completion of S(R?, E) = S(R?)®,E in the norm

, H
lullwrcus = ([ 1) gy Fymnslizen)

cf. [27], Section 3.1. W?(RY, E) is a subset of S'(RY, E) := L(S(RY), E).
Suppose {Ey} is a sequence of Banach spaces, Ery1 — Ex, E = proj — limFE}, and the
group action coincides on all spaces. Then

W*(RY, E) = proj — limW* (R, ).

Vice versa, if Ex < Ei.,, E = ind — limEy, and the group action is the same for all
spaces, then

W (R, E) = ind — limW?*(RY, E}).
We shall write u € W?

eomp(RY, E), if there is a function ¢ € Cg°(R?) such that u = u.
Similarly, for u € §'(R7, E), write v € W}, (R?, F), if for arbitrary ¢ € C(RY), du €
W?(RY, E), cf. Hirschmann [11]. It will also be useful to define the weighted wedge
Sobolev spaces

WH(R?, E) = {(y) ™ w:u € WHRY, E)}.

2.1.13 Elementary properties of wedge Sobolev spaces.
(a) W (R4, H*(R,)) = H‘(Riill),s > 0.

(b) W*(R?, H3(Ry)) = Hg(RY™),s < 0.

(C) pl'Oj - limk,l,a,f—»oowk“(qu HU‘T(R+)) = S(Rf-l)

(d) ind — img g, W™ F~H (R, Hy 7 "(R4)) = S'(RYT).

(e) W*(R?,C) = H*°(R9), using the trivial group action ) = id.
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2.1.14 Theorem. Let E, F' be Banach spaces as in 2.1.7, s, 1 € R, and a € S*(RJ, RS x
RY; E,F) ora € S*(R¢ x R}, R x R}; E, F). Then for every A € R

0p a(A) : Wi, (RY, E) — WiZ*(RS, F)

comnp

is bounded. If a is independent of y and §, then we may omit the subscripts ‘comp’ and
loc’.
The mapping op : symbol +— operator is continuous in the corresponding topolo-
gies.

A proof may be found in [27] Section 3.2.1. <

2.1.15 Remark. In fact, 2.1.14 is Theorem 6 in Section 3.2.1 of [27]. There, the addi-
tional assumption is made that C§°(R7) acts continuously on W?(R?, E) and W*(RY, F).
Hirschmann has meanwhile shown that this assumption is always fulfilled [11], Theorem
3.2.

2.1.16 Definition. Let @ C R* be open. By C$°(f2 x R,.) denote the space of all
f € C*®(f) x Ry.) which are restrictions of functions f € C§°(Q x R).

2.1.17 Singular Green Operators. Let ' C R* ! beopen, @ = O'xR,,p € R,d,l €
N.
(a) A family {Go{}) : A € R'} of operators

Go(X) : C2(R x Ry) — D/(Q)

is a parameter-dependent regularizing singular Green operator of type d on Q, if Gy can
be written as an operator of the following form

d |
(GaN)e) = 3 [ 33 )55 S, )

where ¢; € S(R!, C®(Qp x D)), % = &' x R,. Write Go € G™¢(Q; RY).

We topologize this space as the Cartesian product of d + 1 copies of S(R!,C%(Qp x Qo))
modulo the quotient of functions inducing the same operators. It is then a Fréchet space.
(b) A family {G()) : A € R'} of operators

G\ : C2(Y x R,) — D/(Q)

is a parameter-dependent singular Green operator of order u and type d, if it can be written

d
G(A) =3_opg;(}) 0 8], + Go(}), (2)
§=0
where g; € S (¥ x U, R*! x R, 8'(R4),S(Ry)), and G is a parameter-dependent
regularizing singular Green operator. Write G € G*4(Q; RY).
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Notice that if all g; in (2) belong to S™(f x &', R*"! x R!; §'(R;),S(Ry)), then G
is parameter-dependent regularizing. This is a consequence of the mapping properties
which we will establish in Theorem 2.2.1.

We shall call the (operator-valued) symbol

9(z',y, €\ A) = ZgJ ',y &, M) o (3)
3=0
the singular Green symbolof G. It is well-defined as an equivalence class of tuples (go, . . . , g4),

g; € S*7I(Q x U, R*! x R, 8'(R,),S(R,.)) with the property that

) —op Zg, 08 € G Q;RY).

7=0

Like in (a), the Fréchet topology in G*¢ is induced by the representation (2) via the
topologies on the symbol spaces and that on G=°°

In order to avoid additional notation, we have given these definitions for the scalar case.
In general, all symbols or kernel functions will take values in n; X ns-matrices, ny,n, € N.

2.1.18 Remark. Compare this with the usual situation, cf. [21], [9]. There, the
operator-valued symbol ¢ € S*(¥ x ', R*1; 8 (R,),S(R4)) of 2.1.17 is replaced by
a so-called "singular Green symbol kernel” § of order u — 1 satisfying the estimates

”:BﬁDk Dm DaDﬂD‘yg(y y n)xmyn)”L’(R (1)

k+k'—m4m’
< Cripmmape (1)1

for every subset K CC Q,y,7 € K, all k,k',m,m’ € N and all multi-indices ¢, 3,vy. We
are using the notation R2, = Ry x Ry.

These symbol kernels act as integral operators on R.; they induce operators g(y, §,m, Dx)
by

l9(y, 9,7, Du) fl(20) = fom (Y, 7,7 Tny Yn) f (Yn ) dyn (2)
for f € S(R4).

The present definition has been established by Schulze in [29], vol. VIIL.

At first, it is surprising that in 2.1.17(1) and (2) we have partial derivatives of orders
0,...,d to the right of the kernels and symbols instead of evaluations of derivatives of
orders 0,...,d — 1 at the boundary like in the usual set-up. The explanation, however, is
simple: Integrating by parts we have

_/‘;Joo 7($n,yn)aynf(yn)dyn = 7($n, O)f(O) - v/om 3yn’7($n,yn)f(yn)dyn (3)

for v € S(R3, ). By iteration, one obtains the ’standard’ representation, cf. also 2.2.13,
below, for a detailed exposition.

The only point to clarify is whether for type zero the usual definition coincides with that
given in 2.1.17. This is the contents of Theorem 2.1.19, below.

For the formulation and the proof we may omit the parameters, since they only play the
role of an additional covariable, and we can confine ourselves to symbols independent of

~

Y.
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2.1.19 Theorem. Let ' C R™ ! be open, and suppose that for all y € {V,n €
R*! g(y,n) € L(L*(R,)). Then the following is equivalent:

(a) g(y,n) = §(y,n, Dn) for a singular Green symbol kernel § satisfying the estimates
2.1.18(1).
(b) g € S¥(V,R*1;S'(Ry),S(R4)).
(

(c) g € S*(QV,R™ 1 L¥R,),S(R,)), and the formal z,-adjoint, point-wise defined by
g"(y,n) = g(y,n)*, with respect to the inner product in L*(R,), also belongs to
SH(E R LA(R), S(Re).

Proof. (a) = (b). It is easy to check that n<n)-1Dngg(y,n)m(n) is the integral operator
with the symbol kernel
ho,8(ys 1 EasYa) = [y DY)y, ()7 @ay (1) ™ ) ()™

The fact that § satisfies the estimates of 2.1.18 implies that
1% DX 47 D b g (4,1 s ¥e)ll1ama,y < € (m)* 1.

So hepa(y,7,,-) is a function in S(RZ,), and all its semi-norms are O((n)"_lal). This
implies (b), for a rapidly decreasing kernel yields an operator from S'(R4) to S(Ry).
Moreover, for all choices of E € {Hy """ (Ry): 0,7 2 0}, F € {H"(Ry) : 0,7 > 0},

1% y=1 Dy D29 (y, m)smyll c2.7) = I1hous(y2 7, Do)l i,y

can be estimated by finitely many of the above semi-norms which are all O({n)*~1}).
(b) = (c). If g € S*(&V, R 1; 8'(R4), S(R4)), then g(y,n) has a rapidly decreasing inte-
gral kernel on Ry x R, say g(y,n,-,) for every fixed choice of y, 5. This is a consequence
of the continuity of k-1 and &, on S(R4) and S'(R4), respectively.
The adjoint ¢*(y,7) = g(y,n)* thus is the integral operator with the adjoint kernel
h(Y, 1, Tny Yn) = (Y, 7, Tn, Un), while finally K(m=19" (Y, 1)K my is the integral operator with
the kernel i

Ry, 7, ()™ oy (1) ) ()7

Now pick k,k,m,m’ € N, and show that

ok D2, w7 Dy by, 1, 2 Yo lowp = O((0)"): (1)

Since the same considerations can be applied to Dngg(y,n), we obtain the assertion.
So let us show (1). We have

lzh DXy D Ry, n, ()" @a, (1) yn) ()7
= |akym ()™ (DY D gl (1) s () a) ()71

Letting u= ()" 250 =(9)"ya, E = H*(Ry) for some choice of o,7 (large), E' =
Hy”77(Ry) its dual space, we can rewrite this last expression as

k=k'+m-m'—~ ' m' ~
) YU DEV DT Gy, n,u,v).
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We now use the fact that the integral kernel of the operator g(y,n) : £ — E’ can
be written as g(y,n,u,v) = (9(y,7)év,6u) gz With the translation of Dirac’s function
6u : f = f(u). Correspondingly, u*v™D¥ D™ §(y,n,u,v) is the integral kernel of the
operator w* D¥ g(y,n)w™D™ . Notice the distinction between the variable, namely w, and
the points where we evaluate, namely u and v; here w* and w™ are to be understood as
multiplication operators. Therefore,

[uto™ D5 D §(y, m,u,v)|

= [(w*DE oty DT 66, |

(otw,mywm DI 6, DFwb6), |

= (n(ﬂ)—1g(y, n)N(,,)rc(n)-x (met’:“&,,), m(n)-ngwk6u>E'E’
< ||'°(n)-'9(yaW)"(n)HC(E,E') "N(q)_lme;’:'a""E’ ||’5(n)-1Dﬁ:wk5u||E’»
Now -2 (w™ D™ 8,) = (7)™ k16, while (kiy-16,)f = 8u(sinf) = (0)¥ F({n) v)
for f € S(Ry). Therefore, ()5~ ™™ =1 4% D¥'u™ D™ 5(y, n, u,v) = O((7)*). This yields
the assertion.

(c) = (). Kpy-19(y, n)sgy) - L*(R,) — S(R,) is continuous. In particular, it is a Hilbert-
Schmidt operator on L*(R) and thus has an integral kernel ky(y,7,-,-) € L*(R2,), and

(w1 @ns wn)llaqma )y = Iy 9(ws MEmlrs@2ms - (2)
By a direct calculation, the operator g(y,n) then has the integral kernel

ﬁl(%’?,zmyn) = hl(yﬂ?a(ﬂ) mﬂv(ﬂ) yﬂ) (71) (3)

Correspondingly, the operator £ ,y-19"(y, 7)) has an integral kernel hz(y, 7, zn, Yn), and

hl(yanyxmyn) = Z(y’ﬂ,ymmn)- (4)

The mapping :r:ﬁD';;rc(n)-x D2DBg(y,m)kemy: L2(Ry4) — S(Ry) also is continuous. There-
fore, as in (2)
llz DX DS DL ha(y, 1, %, ¥ llama ) = O((m)* ). (5)

Using relation (4) we also have
ly D DEDE ki (y, 0, 2y ¥l aqms,, ) = O(()* ™). (6)
Together, the estimates (5) and (6) show that
||$ﬁD§:.yTD::.’D3th1(y,U,xm yn)||L2(n3+) = 0((’))”_|0|)- (7)

For a proof see [22], 1.2.2 Proposition 10. By combining (7) with (3), we obtain (a). <
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2.2 Mapping Properties. Boutet de Monvel’s Algebra on the
Half-Space

2.2.1 Theorem. Let & C R™! be open, s € R, and let G be a parameter-dependent
singular Green operator of order p and type zero on 0 = V' x R,.. Then

GA) : Wiy (¥, ' (Ry)) — Wi (€, S(R4) 1)

mp loc

is continuous for all A € R/

Note: Since the symbol topology is stronger than the operator topology we may es-

timate the operator norm in terms of A. In particular, if ¢ € S~V x ¥, R*1 x

R'; 8'(Ry), S(R4)), then op g is an integral operator with a kernel function in S(R!, C*(£g
xQ)), % = Q' x R,.

Proof. This is an immediate consequence of the definition of the singular Green operators
and Theorem 2.1.14.

The application to symbols of order —co follows from the fact that for all a, 8, u, the
operator A®D?op g(A) has property (1), uniformly in A, in connection with 2.1.13(c),(d).
<

2.2.2 Theorem. For an open subset ) of R*™! let G be a parameter-dependent singular
Green operator of order y and typed on Q¥ xR,. Let s € R,0 = (0y,07) € R*, 0y > d— -;-
Then

G(N) : Wi, (S, H(Ry)) — WA, S(Ry))

loc

is continuous for all A € R!, and we may estimate the operator norm in terms of .

Proof. This follows from the definition of the singular Green operators, Theorem 2.1.14,
and Lemma 2.2.3(a), below. The proof of 2.2.3 is immediate from the definition of the
norms in the wedge Sobolev spaces. g

2.2.3 Lemma. Let s € R,0 = (01,02) € R%.

(a)
Dn . W’(Rn_l,HU(R+)) — Ws-l(Rn—l,Ha—(l,U)(R+))

is bounded.
(b) Multiplication by z,,

T, W"(Rn_l,HO(R+)) N Wa+1(Rn_l,Ha_(0’l)(R+))

is bounded.
2.2.4 Definition. Let ' C R"! be open, ! = ' x R, and let p € S*(©}, R™; R). For
fixed (z/,€,)) € @' x R*"! x R! let

op Inp(z’a Ey D, A) = r+0p ::,,P(w’: Zn, 5'1 €ns /\)e+a (1)
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where the action in op ;, is with respect to z,, and the covariable £,,.
The operator in (1) is well-defined on H*(R4),s > -—%, since then extension by zero
makes sense. More generally, given an operator T on distributions over ' x R define the

operator T, on sufficiently smooth distributions over ' x R by T, = rtTe*,

2.2.5 Theorem. Let u,v € R,, Q' be as in 2.2.4. Moreover, let p € SL(Q,R*; R}, q €
S2(Q,R™; R!), and suppose that p(z,£, A) or ¢(z,£, A) vanishes for x, outside a compact
set. Then

op$.p 0n 0P g — (0P z,P On 0D 2,q),
induces a parameter-dependent singular Green operator of order pu + v and type d =

max(entier(v),0).

For completeness the proof will be given in Appendix 2. <

2.2.6 Lemma. Let Q,Q be as in 2.2.4, and let p € Si(Q,R*;R!). Then for fixed
(z',&,)) € ¥ x R* x R,

' Tn '
K({;’,\)—l op an(z’:', Ty, 5’1 €n: /\)K(f',,\) = op d:n(:r 3 (_6'—)‘)’6 3 (Ela )‘> €n= ’\)

Similarly, for a *double’ symbol ¢ = ¢(z,y,£, ), the transformed symbol has the form

q(z’, (E:::ﬂ/\) e (;fﬂ/w (€, A ny A)-

Proof. Let f € S(R). Then for p = (€', A}, (k,f)" (&) = P_;_f(fpﬂ), and

p(I,s Ln, ‘fs Dn? A)(‘K:.Of)(a”'ﬂ) = (2W)—% / eznpﬂnp%p(xl, Tny Ef! P’?m A)f(nﬂ)dnﬂ'

This gives the assertion. The argument also applies to 'double’ symbols. <

2.2.7 Lemma. Let p € R. Then the symbol
(€0 = (6, A)" € S4(R", R™ RY)
induces the operator-valued symbol
r#(¢',Dp, ) = op.,7* € S*(R*, R*", H°(R), H#(R))

for arbitrary s € R.
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Proof. We have to consider
Kierny=0P 20 DE DX (€' 6ny ) ger -

Now 9, (€', A} = u&; (€, A% so by induction D¢ yr* is a linear combination of terms
of the form £2 (¢/, \)*™* with k — |8] > |a|. From Lemma 2.2.6 we conclude that
K1, 2)=10P 2, D (€',&n, A)" K(er zy is @ linear combination of terms of the form

{’30p Tn (Era (E’a /\> €n, )‘)“—k = Fﬁ (6” ’\)u_k Op ¢z, (fn)u-k )

since k — |8] > la|, €8 (€', "™ = O((¢', A}*7°!). Moreover, op ., (£.)*™* : H'(R) —
H*=#(R) is bounded. This completes the proof. <

2.2.8 Theorem. Let ' C R be open, 0 =Q' xR, p € SH(, RE; R!). Assume that
p is independent of =, or that it vanishes for z, outside a compact set.
Then
op «Tnp(a:? §, Dn, )\) € S#(Q’1 R x Rls HU(R)1 HU"#(R))

for every o € R.
Proof. Consider the symbols r* introduced in 2.2.7. For every v, the operator r*(¢’, D,,, A)
is invertible with inverse r™ (¢, Dy, A).
Applying Lemma 2.1.10 it is sufficent to prove that

q(z, &, Dn, A) = 7€, Dn, A) 0, p(z, €', Dy A) 0, 72 (€', Dy M) (1)

e SYY,R"! x R, LA(R), L*(R)).

By the standard calculus, ¢(z,¢’, D,,A) is a pseudodifferential operator with a symbol
g € S°(,R™ x RY). For fixed (z',¢'), we have q(z', 24,6, &0, A) € S°(Ra,, Re, X RY Junit
by assumption, and all symbol semi-norms depend continuously on z’. For all multi-indices
o

(€, N D DL (', Tay €' £ny M) < cal2).

with a continuous function ¢,. By Lemma 2.2.6
K'(f'-f\)-l <£’, /\) lo1 D?er;Q’(fB, 5’, Dn, )\)K(e',\)

= 0P, (¢, NN (DE DL, 257 € (€, 6n M),
(€, )
Lemma 2.2.9, below, shows that the norm of this family of operators is bounded by a
continuous function &(z’) as (z/,¢', X) varies over R*™! x R""! x R/,
This gives the desired result. <

2.2.9 Lemma. cf. Coifman & Meyer [4], Chapter 11, Lemma 1. Let p € S o(R"XR" )ynir.
Then for o € R, the mapping

a —

0pp(§,a€)

L(L*(R"))

is a constant.
Note that the boundedness of the right hand side is a consequence of Calderén and
Vaillancourt’s theorem.
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2.2.10 Lemma. Let u € Z and choose a function x € S(R) with suppF~'x C R_ and
x(0) = 1. On R™ x R' define the function r* by

en = (x (i ) €0 -ie)

Here, a is a real parameter with a >> ||x'||sup; X’ is the first derivative of x. Moreover let

Ti(f, )_T (5, )

be the complex conjugate of r. Then

(a) r% belongs to S*(R",R™; R') and is parameter-elliptic.
(b) op} r¥ € SH(R™,R*! x R, HO(Ry), H#*(Ry)) for all o > —1
we even have
(c) opt rt € S#(R 1, R™! x RE HO"(Ry), HO™*"(Ry)) for allo > —2,7 € R.

(d) op? ri € SH(R™1, R x R Hy"(Ry), Hg*"(Ry)) for all 0,7 € R. Here, et is
regarded as a trivial action on Hy" (R).

(e) Let v € Z, and assume that o — u > —1. Thenop} r¥ o, op} v =opf r r* in

particular, op} r¥ o, 0pF r7* = id on H"(R,).

Note: In (b) and (c) the operator e* a priori requires the regularity ¢ > —1. On the
other hand, the proof of (b) will show that

rfop g, rlet f=rtop L Ef

for any extension operator F, whenever o > —%. We therefore have the results of (b)

and (c) for all o, provided we replace the extension e* by an arbitrary extension operator
H°(Ry) — H°(R).

Proof. (a) First note that

x(atm) €N it L x (i) - XO) 1)

(‘5’1 ) - zfn (5'3 ’\) - Ifn

= 147,

‘where |r| < [[x’[|sup({€’s A) d%,)/ (6,2} < ||Xllsup/@ << 1. In particular, |r#(£, )| >
c (&, A) for some ¢ > 0; this implies parameter-ellipticity of both, r§ and rZ.

Using (1), it is easily checked that Dg,rf(¢, A) = O((¢, /\)u—lal), just as asserted.
(b) Together with (a), 2.2.8 shows that

oprt € S*(R™',R™ x R, H(R), H"*(R))
for arbitrary o.
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As a function of £,,7_ = r! belongs to H~, since supp F !y C R_. Also rZ! belongs to
H=, by [21], Section 2.1.1.1, Corollary 2, for it has an analytic continuation to the upper
half plane {Imz > 0}, and it has an asymptotic expansion into negative powers of £,.
Since H~ is an algebra, r belongs to H~ for every p € Z.
Now let 0 > —1 and E = E(0) be an extension operator from H?(R,) to H°(R). Given
f € H(Ry),Ef — et f is a distribution belonging to H?,5 = min{s, § — ¢} for all ¢ > 0;
moreover, it is zero on R .
Therefore, rtop , t (Ef —et f) =t F U F(Ef —et f)] =t [F v x (Ef —et f)] = 0,
since both, F~'r* and (Ef — e*f) vanish on R;.
We conclude that

optrif=rtoprtoEf. (2)

Both £ and rt are bounded operators, and the norm of K.(C,'{\}—ID?JDQOP zaToK(erny I

L(H°(R),H°#(R)) is O(({¢', \}* ~lal-181y by (a) and 2.2.8 Hence we obtain the a.ssertlon
(c) Without loss of generallty assume that 7 € Z. The norm of '{(E’ A)"DE'DAOPI rE R
in L(H*"(R), H*=*"(R)) equals the norm of (z.)" k4 A)-xDE,Dl\op eaTE K2y (Za)77 In
L(H?(R), H"#(R)). One of the multiplication operators is a polynoxma,l in z,. Both com-
mute with the group action. Moreover, we may use the rule z,op } r2 = ([zn,0p} r2]) 4+ +
opfriz, =opt (—D¢,r2) +opt rlz, to move the polynomial part to the other side.
Since z* (z,)”" is a bounded operator for k£ < 7, and since we know already that D, r%
has the desired mapping properties, this completes the proof.

(d) In view of the fact that e? is a trivial action, (a) in connection with 2.2.8 implies that
op.etri € SH(R™, R Hy"(Ry), Hy ™" (R+))

All we have to show is that for v € S(R.,.) op z“e""r_,_v = 0 on R_. This, however, is easy:
r% is the sum of a polynomial and a function in H*, so riFetv € H+ {C[¢.) ® HTY,
and the inverse Fourier transform vanishes on R_.

(e) Since
opt " =rtop., riet = [rtop.,riet][rtop.,riet] + rtopa,rte T Top et
whenever the compositions make sense, equation (2) gives the assertion. <

2.2.11 Theorem. Let p € Si(R™, R™; R!), i € Z, and assume that p is independent of
Ty, or p(z,& A) =0 for z outside a compact set. Then

ops.p € S*(R",R" x R H"(Ry), H*™*"(R,)) (1)
for all o > —%,T € R. Moreover, if 0 <0, then

opfpe SHRLRY! x RS HY (R4 ), H™#"(Ry)) (2)
foro — p >0, and

opi.p e SRR x R Hy " (Ry), Ho ™" (R4)) (3)

whenever ¢ — u < 0.
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Proof. Let us first prove (1). For —1 < ¢ < } there is nothing to show, since then
extension by zero is continuous H2"(R,) — H%7(R). Using interpolation, we may assume
that ¢ € N, € 2Z. Now (1) is equivalent to having

opt 7™ o, (za) op} p(za)™" 0n opt I € SOR™, R x RY LA(Ry), LA(Ry)).
First note that (z,)"op p(z.)™" = op} gfor some g € 5 ,.(R",R™; R') which is either
independent of z,, or vanishes for z,, outside the above compact set: The proof is the same
as that of 2.2.10(c).
By 2.2.10(2), 0p £,7Z7* 0, op} g = op} (rZ7"#nq) with the Leibniz product #, in z,-
direction. Since o € N, composition of this operator with op} -7 produces

[op zaTo ¥ 0, 0D 5, q 0p OP an:a] L Te

Here g is a singular Green symbol of order and type zero (cf. 2.2.5, noting that ¢ > 0),
modulo remainders that induce parameter-dependent regularizing singular Green opera-
tors of type zero.

The term inside the brackets is op ¢; with some ¢; € S?,D't,. Moreover, either ¢ is indepen-
dent of z,, then also q; is, or p vanishes for z, outside a compact set. In that case, we
may use the asymptotic expansion formula for the composition of op r?™* with a multi-
plication operator ¢(z,}, ¢ € C°(R) to see that the term inside the brackets is the sum
of a pseudodifferential operator with compact z, —support and a singular Green operator
of order and type zero. Now 2.2.1 yields the assertion.

The proof of (2) and (3) is similar, using r% instead of rZ. <

2.2.12 Definition. Let ' € R™! be open, @ = ' x R, and Qp = ' x R.. Moreover,
let u € R,d € N.

(a) A parameter-dependent trace operator of order p and type d on ) is a family {T'(A) :
X € R} of operators T'(A) : C§°(S2) — D'(€') of the form

d
T(N) = 3 op (N, + To(A) (1)

3=0

with t; € §*791(Q' x V', R*1; §'(Ry), C) and Ty a parameter-dependent regularizing trace
operator of type d, which we define to be a family {To(A) : A € R'} of operators Tp()) :
C& () — D'() of the form

d o0 .
CIOVIETED DY B M TCRRN A R ©

j=0

with 7; € S(R!, C=(RY x ).

Notice: If all ¢; in (1) belong to S™°(' x ¥',R"*"!;§'(R4),C), then T is parameter-
dependent regularizing. This follows from the mapping properties in 2.2.15(c), below, in
connection with 2.1.13.

The topology on the space of all trace operators of order x and type d is defined via the
natural Fréchet topologies on 7; € S(RY, C®(f x €)) and those on the symbol spaces
via the representations (1) and (2).
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The parameter-dependent and operator-valued symbol

d
S opt; (M3 € S4( x @, R* x R H(R,), C),

=0

o € R* 0y > d— 1 is called a trace symbol for T. As in the case of singular Green

symbo]s, it is not uniquely defined; we obtain an equivalence class of tuples (to,...,%4),¢; €
SE=i(QY x ,R™! x RY; H°(R, ), C), with the property that

T(-)=op 3_t;(-)

is a regularizing parameter-dependent trace operator of type d.
(b) A parameter-dependent Poisson or potential operator K of order u on &' is a family
{K(X) : A € R'} of operators K()) : C& (V) — T'(Q) of the form

K(X) = op k(A) + Ko(\) (3)

with a symbol k£ € S*(Q x ', R™! x R, C,S5(R;)) and a regularizing parameter-
dependent Poisson or potential operator, i.e. a family {Ko(X) : A € R!} of operators
Ko(A) : CP(Q) = D'() of the form

Ko (&, 0) = [ kola'sa, ', NS (6)d' ®)

with a function ko € S(R!, C®(Qo x O')).

If the symbol k in (3) belongs to S~ (V' x ', R*~! x R/; C,S(R.;)), then K is parameter-
dependent regularizing in view of the mapping properties in 2.2.15(d), below.

The representations (3) and (4) together with the topologies on the symbol spaces and
the space S(R!, C®(g x (V")) give a Fréchet topology for the potential operators of order

73
Call k in (3) a potential symbol for K. Again, it is unique up to symbols inducing regu-
larizing potential operators.

In general all symbols will take values in matrices.

2.2.13 Remark. Like in Theorem 2.1.19 one can check that the usual definition of a
trace operator of order p — % and type d coincides with that of a trace operator of order
¢ and type d in this set-up.

In particular, the standard trace operators 5; : S(R7}) — S(R™') defined by

i f (") = limeo(8], f)(z,1)

for € N are trace operators of order and type j + 1 in the usual set-up; they are of order
7+ % and type 7+ 1 here. Similarly, a usual potential operator of order x4 % corresponds
to a potential operator of order x in the sense of 2.2.12(b).

Let us now check that we have the usual representation also for a parameter-dependent
singular Green operator of order p and type d:
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2.2.14 Lemma. Let Q,,Q be as in 2.2.12, p € R,d € N. A family {G(}) : A € R'}
of operators

G(\) : C2() — D(R)

is a parameter-dependent singular Green operator of order p and type d if and only if it
can be written in the form

d-1
G(N) =2 KN + G°(\) (1)

with parameter-dependent potential operators K; of order p — j — % and a parameter-
dependent singular Green operator G° of type 0.

Note: Already in Theorem 2.1.19 we saw that our definition of singular Green operators
of type zero coincides with the usual one. Together with Remark 2.2.13 we have therefore
checked that both concepts coincide.

Proof. First part. Suppose an operator of the form (1) is given. For simplicity assume
that d = 1, i.e. G(A\) = K(A)vo + G°(\) with a parameter-dependent potential operator
K of order y — 3. We can then write

K()) = op k() + K°())

with a regularizing parameter-dependent operator K° and a potential symbol of order
p — 3. The operator op k can also be given by a symbol kernel k(z', ¢, z,, A) satisfying

! 1o — Lol |y =kt k!
lz* DF, Dg DE DIk(x', €', T Mllz2qry ) = O((€') 771011

and K° has an integral kernel £ = k(z,y’,}) in S(R},C=(Q x ©')). We will now make
use of the simple integration by parts identity f° f¢' + f° f'g = fg|° : Choose a function
é € S(R,) with ¢(0) = 1. Then for f € C5°(£)

K°OVwof = [ Kz, NI, 0)dy
= - l::(m,y',A)(ﬁ(yn)@y,,f(y)dy

Qp

_ jn 0 k(z,y', \)¢'(yn) f(y)dy

Therefore K°(-)v, is a regularizing parameter-dependent singular Green operator of type
1. Now consider op k(-)y,. We have for f € C§ ()

70f($’) = f(z',O)
= @0 F [T Fu e f(€,0)dE
= —@n) [ [T (08N vn) Fymtr Oy € 90 e’
~(@m) 7 [ [T 460 $UEN) v Fyme S (€ va)dunde'

We can therefore write op k(A)yo f = op go(A) f+o0p ¢1(X)0:,, f, whereop g;,7 = 0,1, are the
operators with the symbol kernels go(z', €', Zn,yn, A) = k(z', €', 2p, A) (€', A) ¢'({€', A) yn)
and ¢1(z', &, Ty Yn, A) = k(' €', 20, A)P((€', A) yn). Cauchy-Schwarz’ inequality gives

lo1(=", €1 Ml < k(' € Va1 M) Hlzacmyy = O(E AP H7H),

27



where the O denotes a constant depending continuously on z’ and y’. This immediately
leads to the desired estimate

’ m rm' ol b — ,
”-'Enk_DI;nyn DU"Dg‘Dg'DIgI(CU’,f’,','a)‘)HL?(R?H) =O(<£r’/\)u 1-|a|-|y|-k+K —m+m );

similarly for go with x —1 replaced by u. In view of Theorem 2.1.19, op go is a parameter-
dependent singular Green operator of order p and type 0, while op g, is of order p — 1
and type 0. Now the case d > 1 follows by iteration.

Second part. For simplicity suppose again that d = 1 and

G(2) = 0p go(}) + 0P ¢1(A)8z, + Go(}) + G1(1)s,,

where gq is a parameter-dependent singular Green symbol of order p and type zero, given
by a symbol kernel go(z’, &', 24, Yn, A), g1 is a parameter-dependent of order u — 1 and
type 0, and Go), G, are regularizing parameter-dependent singular Green operators of
type zero.

Then op go + Go is already of the right form, while an integration by parts yields for
f € C ()

(2n)~ T / &= ] 91(2, €, Ty Yny ) Fyragr By, S(€, ) dyndlt’
= (27")-21}1— /eimls'gl(xla €,?zﬂ70’)‘)]:y'—‘f'f(ﬁ,’o)dél
—(27'?)-2:,):l / e‘.x'sf ‘/0 8;4,,9‘1(55’,{', Tn, 0: ’\)Fv'—'f'f(f’1 yﬂ)dyndél'

Now the inequality |¢(0)]* < 2||@[lr2(ry)|| 4] L2(my), valid for ¢ € S(Ry4), together with
the symbol kernel estimates for gy, cf. 2.1.18(1), implies that

l2a* DX, D& DL D3gr (&', €', 0, Mllzaqyy = O((€, 27311+

so that ¢1(z', &', z,,0, ) induces a parameter-dependent potential operator of order u — %
The symbol kernel d,, g, induces a parameter-dependent singular Green operator of order
u and type 0. With a similar procedure we may write G;(A\)ds, = K (Ao + G2(}), where
K is a regularizing parameter-dependent potential operator and (; is a regularizing sin-
gular Green operator of type zero. Hence G(A\) = opk(A)vy + G°()\) with a potential
operator of order ;1 — 7 and a singular Green operator of order s and type 0. <

2.2.15 Theorem. For parameter-dependent trace and potential operators we have the
following mapping properties. Let Q,Q be as in 2.2.12, s € R,c e R, u € R,d € N,
(a) Let T' be a parameter-dependent trace operator of order u and type d on . If oy >
d — 3, then

T(’\) : W:amp(n'iHo(R'P)) - W;;“(Q’,C) (1)
is bounded for every A.
In particular, 2.1.13 implies that

T(X) 0 Hopmp(§2) — Hyp () (2)
is bounded for all s > d — -;—
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Ifd =0, then

T(A) : Weomp (2, 8'(Ry)) = WK, C) (3)

loc

is continuous.
(b} Let K be a parameter-dependent potential operator of order u. Then

I{(’\) : comp(‘Q’ C) - wl’o:u(Q’1S(R+)) (4)
is continuous for all M.
In particular,
K(A) + Hpp (V) = Hp K (Q) (5)

is continuous.

(c) If T is a regularizing trace operator of type d, then A*D?T()) has property (1) for
arbitrary p,a, 8, uniformly in A, If T even is of type zero, then we have property (3) for
all choices of the parameters.

(d) If K is a regularizing potential operator then A*D? K()) has property (4) for every
i, a, 3, uniformly in A

Proof. This is a consequence of the definition in connection with Theorem 2.1.14. For (c)
and (d) use the fact that the kernels are rapidly decreasing with respect to A. <

2.2.16 Theorem. Let §2,Q be as in 2.2.12. Let G, K,T be parameter-dependent singu-
lar Green , potential, and trace operators of order p and denote the type of G and T by
d.

Choose a function ¢ € C°(R,) with ¢ = 1 near zero. Then

(a) (1 — @)K is a regularizing potential operator.

(b

) T(1 — @) is a regularizing trace operator of type 0.
(c) G(1 — @) is a regularizing singular Green operator of type 0.
y(1-

(d

Proof. (a) We start with the following observation.
Let k € S*(Q,R*! x R;C,S(R,)), i.e. for all o € R?, 0y > 0,

#)G is a regularizing singular Green operator of type d.

5,92 DE DL, €, Mlleqepreman < C (€, N*71 (1)

For r € N consider z], as the multiplication operator on H?(R.). Since z, : H°(R}) —
H?-07)(R,) is bounded, and since

Koy nk(@', €, 0) = (€, 0) 7 2k k(2 € N, (2)

we have

zTk(z', €, 0) € S*T (Y, R*! x R, C,S(R,)). (3)

This yields the assertion: Choose any r € N. Since ¢ = 1 near zero, (1 —¢)z;" is bounded
in all derivatives, and we may write

(1-¢)K =[(1-¢)z"]z K,
which is a potential operator of order g — r.
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The proof of (b), (¢), and (d) is similar. For (b) and (c) note that the type can be reduced
to zero by writing e.g. T(1 — ¢) = Ty,[y.;"(1 — ¢)], r > d and integration by parts as in

2.1.18(3). <

2.2.17 Definition. Let ' € R™ ! be open, = ' x Ry, and Qp = @' x R,. A
parameter-dependent operator of order 4 € R and type d € N in Boutet de Monvel’s
calculus on  is a family {A(X) : A € R'} of operators

C3° (o) (L)
e - 8, (1)
Coo (&) Ce(8Y)

PO+ G0 KO
a0 =[5 s

where

P(-) =opp(:) with p € SH(Q x Q, R R, Py =rtPet,

G(-) is a parameter-dependent singular Green operator of order u and type d,
K(-) is a parameter-dependent potential operator of order g,

T(-) is a parameter-dependent trace operator of order g and type d,

S(-) is a parameter-dependent pseudodifferential operator of order p on V.

We shall write A € B*¢(Q; R'). The topology on this space is that of a non-direct sum
of Fréchet spaces induced by (1) and the topologies on the spaces of pseudodifferential,
singular Green , trace, and potential operators.

A parameter-dependent regularizing operator A of type d in Boutet de Monvel’s calculus on
) is one that can be written in the form (1) with all entries being regularizing operators.
Write A € B~%(€}; R'), and give this space the obvious Fréchet topology.

It is a consequence of 2.2.15, 2.2.10, 2.2.1, and 2.1.14 that the operators in (1) indeed
have the desired mapping properties.

In general, all entries will be matrix-valued: given ny,ns,n3,ny € N, P and G will be
ng X n; matrices, K will be ny x nj, T of size ny x ny, and S of size nqy X n3. For shortness
call this an (n2,n4) X (n1,n3) matrix.

We may define a family {a{}) : A € R'} of parameter-dependent operator-valued symbols
for the family {A(A)} by letting

a(ml ¢ 2) = OPInp(xyf,/\)-i-g(m’,{’,A) k(2 €'0) . Cgo(g_'_)ﬂl _ Coo(g+)n2
o He', €5 A) s(#60 |7 o o

where p, g,1, k, s are symbols of P, G, T, K, and 5, respectively. We understand the symbol
a as an equivalence class of tuples in the corresponding symbol classes with the property
that

A—opa € B4R,

i.e. a; ~ az iff opa; — op a; € B~4(Q; RY).
Within this equivalence class, we may always find a representative which is properly
supported, cf. [27], p.296.
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2.2.18 Theorem. Let ,Q' be as in 2.2.17, A € B*4(;R') be an (ng,n4) X (m1,n3)
matrix, and B € B*¥(Q; R") an (n;,n3) x (ns, ng) matrix. Suppose that for one of them,
the pseudodifferential symbol vanishes for z, outside a compact set and that A or B is
properly supported.

Then the composition AB is defined; it is of size (na2,n4) X (ns,ng) and belongs to
B*" 4" (Q; RY) with u" = p+ p' and d" = max{y’ + d,d'}.

Proof. Choose symbols a, bsuch that A = op a+ A, B = op b+ By with Ay, By regularizing
and a,b properly supported. Then the assertion is a consequence of the composition
formulas for properly supported operator-valued symbols [27] Section 3.2.2 Theorem 14,
and Theorem 2.2.5. For the composition of regularizing operators with others use the
mapping properties in 2.2.15(c), (d) in order to show that the result also is regularizing.
q

For convenience, the following theorem will be formulated for a (1,1) x (1,1) matrix. The
case of arbitrary matrix sizes n; causes an evident modification.

2.2.19 Theorem. Let Q,Q be as in 2.2.17, A € B*4(Q;R!). Then for all A € R/,
3,0 €R,o>d—3
Wooms (¥, H°(R4)) Wiee" (€, H*#(Ry))
A(A) @ — D
Weomp (€', C) o’ (', C)

loc

is bounded. In particular, if s > d — %, then

H:omp(ﬂ) Iao:u(g)
A(X): ® — @
H:omp(al) [’;“(Q’)

1s bounded.
If d = 0, then we additionally have the bounded extensions
w:omp(Q’,Hg(R+)) Wfo:”(Q’1H{0()-}“(R+))
A(N) ® — @
W:omp(g,a C) wfo:”(ﬂfi C)
for o < 0. Here, Hf()_}“(R+) denotes the space H{™"(Ry) for o — p < 0 and H°"*(R,)
foro—p>0.
In all cases, the symbol topology is stronger than the operator topology.

Proof. This is immediate from the continuity properties of the various components, cf.
2.2.15, 2.2.10, 2.2.1, and 2.1.14. q

2.2.20 Theorem. Let Q,V be as in 2.2.17, A € B%(;R'). Then the adjoint A*
with respect to the extension of the L? inner product to the spaces in 2.2.19 belongs to

BYo((; RY).
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Proof. This follows from the corresponding result for all entries of A. For a pseudodifferen-
tial operator P of order zero, we have P,* = P*; while for the singular Green , potential
and trace operators the assertion relies on the fact that the adjoint of an operator-valued
symbol belongs to the calculus, cf. [27], Section 3.2.2, Theorem 15. <

2.2.21 Definition. Let Q be as before, u € Z,d € N and d < py = max{g,0}.
An operator A € B*4(Q; R/) with a symbol a is called parameter-elliptic, if there is an
operator B € B~#4 d' = (—pu),, with symbol b such that

a(Mb(X) = ids(ryym@cm = ci(X) (1)

and
b(M)a(X) — ids(r,ymgens = c2(N), (2)

where ¢, and ¢; are symbols of operators of order —1 and types dy = (—u)4,d2 = py.

Clearly, this definition is independent of the particular choice of the symbols ¢ and b.
We shall also say that the symbol is parameter-elliptic.

2.2.22 Theorem. Let 2,9 be as in 2.2.17, and let A € B*(Q;R'),d < py, be
parameter—elliptic. Then there is a B € B~*%(Q, R'),d’ = (—pu)4 such that the op-

erators
Ry =AB -1,

and

R2 = BA - I
belong to B~°>%(Q; RY), and B~*4(}; R"), respectively, with di = (—p)4, and dy = pt..

Proof. This is immediate from the usual Neumann series argument together with the
fact that operator-valued symbols can be summed up asymptotically, [27], Section 3.2.2
Theorem 4. <

2.2.23 Classical elements. Let 2, be as in 2.2.17. An operator A = opa + Ay €
B#4(Q; R') with Ao regularizing is called classical, if all entries of a can be chosen to be
classical elements in the sense of 2.1.7.

2.3 The Manifold Case

2.3.1 Definition. (a) Let X be an n-dimensional compact C* manifold with boundary
Y, embedded in a compact n-dimensional manifold 2 without boundary. In order to fix
the notation let {§2;} denote a finite open covering of §! and suppose that the coordinate
charts map XNQ; to U; C R} and YN, to R™! x {0}. We may identify a neighborhood
Y of Y with Y x (—1,1) and assume that this neighborhood is covered by open sets
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Q4 of the form Qx = Q}, x (-1,1), where the sets Q) form an open covering of Y by
coordinate neighborhoods.

Then let Y{;, denote the neighborhood of ¥ identified with Y x [—1,2] and choose coor-
dinate neighborhoods for the remaining part of { that do not intersect Y[%].

For a partition of unity {¢;:j =1,...,J} and cut-off functions {¢; : j = 1,...,J} with
$;1; = ¢; subordinate to the above covering of §2, write ®; for the multiplication operator

with the matrix
[ ¢; 0 |,
0 ¢J'|Y ’
correspondingly use the notation ¥; for multiplications with ;.

(b) The results of Theorem 2.2.16 now allow us to introduce Boutet de Monvel’s calculus
on X:

Suppose Vi, V; are finite-dimensional vector bundles over X and V3, Vj are finite-dimensional
vector bundles over Y and all are trivial over the above coordinate patches.
We will write A € B#4(X; R/), if

C=(X, V) Cce(X, V)
A(N) : ® — ® (1)
C(Y, Vs) Co(Y, Vi)

is an operator with the following properties: Writing

J J
A=) 0;AT;+ 3 0 A(1- ),

i=1 =1

we ask that

(i) For every j, the operator A; induced by ®;A¥; via the coordinate charts belongs
to B"’d(UJ‘; RY.
If the coordiante chart does not intersect the boundary, then we will assume that -

except for the pseudodifferential part — all entries in the matrix A, vanish; this is
motivated by Theorem 2.2.16 and (ii), below.

(i1)) The remaining sum Z;Ll ®;A(1 — ;) is induced by an integral operator from
C®(X, V1) ® C=(Y, V) to C*(X,V,) & C*(Y,V,) depending on the parameter
X € R/, Its kernel density is C*® and a rapidly decreasing function of X in all semi-
norms defining the Fréchet topology of the smooth densities.

G#4(X;R!) is the subspace of all elements in B**(X;R') where the pseudodifferential
part can be taken to be zero.

In order to keep notation at a low level, we will not indicate the vector bundles A is
acting on, understanding that this has to be made clear in the context unless their choice
is completely arbitrary.

(c) In each coordinate patch U; intersecting the boundary we may associate a symbol
with the operator A induced by asking that

A; = ®jop a;¥; + Aj, (2)
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with a symbol a; of order g and type d and regularizing A;,. Here, we have written ®;, ¥;
for the multiplication operators ®;, ¥; in local coordinates.

In an interior chart, only the pseudodifferential part in the matrix for A is non-zero; it
has a symbol p;. Letting a; = [ %’ g ] , we also obtain relation (2). We shall call the

tuple (ay,...,ay) a symbol for A.

(d) Call A classical, if all the operators A; are classical, i.e. if the pseudodifferential part
of A is classical, and if in all coordinate neighborhoods intersecting the boundary, the
operators A; are classical in the sense of 2.2.23. Write A € B4*(X;R'). The operator A
then has:

e a principal pseudodifferential symbol, oy(A4) = oy(A)(z,£, ), well-defined as a
function on (7*X x R')\0, (where 0 denotes the zero-section in the sense that
(&, A) = 0, with values in £(V;, V2), and

¢ a principal boundary symbol, operator-valued, ox(A4) = oA(A)(z’, &, A), defined on
(T*Y x RY)\0 with values in L(7* V) @7 V3, 7" Vo, B7"V,). Here, 7 : (T"Y xR)\0 —
Y is the canonical projection, Vi, = |y ® H*, V., = WValy ® H™, cf. [21], Section
3.1.1.1.

2.3.2 Definition. We will say that A € B*4(X;R'),d < py is parameter-elliptic if there
is an operator B € B~*4(X;R!),d < (—g)4 such that

o for each interior coordinate chart, the local pseudodifferential components p;, g; of
the symbols A and B, respectively, satisfy the relations

pig; — 1,q;p; — 1 € S (U; x U;,R*; RY),and (1)

e for each boundary chart, the corresponding boundary symbols a;,b; satisfy the
ellipticity relations

&)jajbjli!j—@jl = (2)
(ijbjajlilj—tf’jf = C2 (3)

with parameter-dependent symbols ¢;, ¢, of order —1 and types dy = (—p)4,d2 =
g4+ Like in 2.3.1(c), the tilde denotes the function in local coordinates, I is the
identity.

With the same argument as in 2.2.22 we may then construct a parametrix B for A:

2.3.3 Theorem. Let A € B*¢(X;R') be parameter-elliptic, d < u,. Then there is an
operator B € B~»%(X;R"),d" = (—pu)4 such that

Ry =AB—-1¢eB " (X;R') and Ry = BA— I € B~%(X;R"),

where dy = (—pt)4, d2 = p4. In particular, in the notation of 2.3.1:
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H' (X, W) H*=#(X, Vy)
A(A) : & — &
HY(Y,Ve)  H™H(Y, Vi)

is a Fredholm operator for s,s — p > —1.

2.3.4 Remark. (a) Vice versa, the existence of a parametrix as in Theorem 2.3.4 implies
the ellipticity of the operator A.

(b) From (a) we conclude that it is sufficient to ask that the symbols ¢; and c; in
2.3.2(2),(3) are of order —¢, e > 0 arbitrary.

2.3.5 Theorem. Let A € B4*(X;R/). Then A is parameter-elliptic if and only if

(i) The principal pseudodifferential symbol is invertible for all (z,£,)) € (T*X x R)\0,
and

(ii) for all (z',&', ) € (T*Y x RY)\0, the principal boundary symbol is an isomorphism.

2.3.6 Lemma. A family of operators {G()) : A € R'} acting on vector bundles as in
2.3.1(1) is an element of B~*°(X;R') if and only if for all multi-indices o, 8 and all
N € N the extension

A DSGO)  HyN(X, V) @ HN (Y, Va) —» HY (X, Vo) ® HY (Y, Vi)
exists and is uniformly bounded with respect to A,

Proof. By definition, {G()) : A € R'} € B~*Y(X;R/) if and only if it is an integral oper-
ator with a smooth kernel density, v(z, Z, A) such that A — ~(:,-, A) is rapidly decreasing
with respect to all C* semi-norms. In the proof of 2.1.19, on the other hand, we have
seen how the kernel semi-norms can be controlled in terms of the mapping properties. <

2.3.7 Theorem. Let A € B~°(X;R'). Then for all s € R,

H (X, W) H(X, W)
I+ AN : D - @ (1)
H*(Y,V3) H (Y, V3)

is invertible for large ), and (I + A(A\))™! = I 4+ B()) for some B € B~*°(X;R}).

Proof. Since ||A(M)||s = o(A), I + A(X) is invertible for large |A|; here the index s of the
norm refers to the situation in (1). By replacing A(A) by ¢(A)A(X) for a smooth function
0 < ¢ <1, vanishing in a sufficiently large ball around zero and equal to 1 near oo, we
may assume that A(}) is invertible for all A and |[A(})]], < 3.
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Now, (I + A)™' =T — A+ A(] + A)7'A. So all we have to check is that
MDA + AN AN - BV (X, Vi) @ HN(Y, V) —» HY (X, Vi) @ HY (Y, V)

is bounded. This however, is immediate from the fact that ||[T+A(X)] [, < &; AV} <
2, the differentiation rules and the corresponding properties of A(X). <

2.3.8 Theorem. Let G € B~*¢(X;R'), and suppose that for given s € R,s > d — %
T+ G H (X, V) @ H (Y, Va) —» H (X, V) ® H*(Y,V5)
is invertible for all A. Then there is an H € B=>%(X;R") such that
(I+G)y'=I+H.

Proof. For simplicity consider the case where G consists only of the singular Green part,
i.e. V3 = 0; moreover, we will assume that (7 is scalar, i.e. V] = C.

Wirte G = Ef=0 G;07, where G; € B~*%(X;R') and 8, denotes the normal derivative,
defined in a neighborhood of the boundary. We know that the norm of G(A) on H*(X)
tends to zero as |A| tends to infinity. We may thus replace G(A) by ¢(A)G(A) where ¢ is
an excision function as in the proof of 2.3.7. We now use the fact that

[+G™" = I-G+G+G|"'G
— 1= 33(Gs~ Gl + GGy

. J=0
In view of 2.3.6, all we have to check is that for all o, 8, N
ADR(G;(N) — GOV + G G;(N) : He™(X) — HY(X)

1s uniformly bounded. This, however, is immediate from the corresponding properties of
the Gj. <

2.3.9 Corollary. Let A € B*%(X;R'"),d = u, be parameter-elliptic. Then

HY (X, W) H*=*(X, W)
A(N): ) — &
H (Y, V) H*~#(Y, V3)

in invertible for large |A|, and A(A)~! = C(}) for some C € B~*%(X;R),d' = (—p)4.

Proof. By 2.3.3, there is a parametrix B € B~*¥(X;R') such that AB—1 = R, €
B~4(X;R!),BA -1 = R, € B~®4(X;R"). The operators I + R;(A),j = 1,2, are in-
vertible for large |A|. By multiplying with an excision function on a large ball as in the
proof of 2.3.7 we may assume that they are invertible everywhere. By 2.3.8 the inverses

are of the same kind, and C = B(I + R,)~' € B~*¥(X;R/). q
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2.3.10 Reduction of the Order. Let Q, X,Y be as in 2.3.1, and g € Z. Assume V
is a smooth vector bundle over §2, trivial over the chosen coordinate charts. Then there
exists a pseudodifferential operator with the transmission property R”(A) = op (r()))
with the following properties

(i) 2 € Sty (2, R™ RY) is parameter-elliptic.

(i) [RE(M)]4+ : H(X,V) —» H*#(X,V) is a topological isomorphism for all s € R, ||
large; its inverse also is pseudodifferential.

Similarly, there is a parameter-dependent pseudodifferential operator with the transmis-
sion property, R4 = opr, with
(iii) % € Sto.(Q, R R!) is parameter-elliptic, and

(iv) [RE(WN)]+ : HJ(X,V) — H3™#(X, V) is a topological isomorphism for all s and large

Al
Proof. Choose a global normal coordinate in a neighborhood of the boundary. Then pick
a function 7 € C°(R),0 < 7 < 1,7 =1 on [, 3], 7 = 0 outside [, }]. Let x be as in
Lemma 2.2.10. In the boundary charts define the symbols
bn vy e 17T e yuamrten)
——) (¢, \) =i, A " Iy, 1
sy €N =ital (€N v ()

assuming that the boundary neighborhoods have the properties of 2.3.1(a).
In the interior charts, define the symbols

(¢, N 1y. (2)
Then form the corresponding pseudodifferential operators. Transport them to the man-
ifold via the coordinate charts, and patch them together with a partition of unity and
cut-off functions as in 2.3.1. Call this operator R ()); its symbol (in the sense of a tuple
of complete local symbols) is denoted by r%()). It is then straightforward to check (i).
Property (i) implies that for all s € R,

RE(N) : HY(Q, V) — H#(Q, V) (3)

is a topological isomorphism provided |A| is large.

In a neighborhood of the boundary, the symbol r%(z,£,)) is an H~—function of £,,
up to regularizing pseudodifferential terms. This allows to construct a left and right
parameter-dependent parametrix P(A) with the same properties. Both left-over terms,
L(P(A), R (V) = [P+ [BE (N —[P(A) R (A)] and L(RE(X), P(V) = [RE (W)} [POV+
—[RE(A)P(N)]+ are then regularizing parameter-dependent singular Green operators, thus
also regularizing parameter-dependent pseudodifferential operators. This implies (ii) for
all s > —%.

In order to obtain statements (iii) and (iv) start with the complex conjugates of the sym-
bols in (1) and (2) and repeat the above process. This yields a parameter-elliptic symbol
ry = r4(z,€,)) which is in H* as a function of £,, up to regularizing pseudodifferential
terms.
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Now we can conclude the proof of (ii}: Let X_ = Q\X; then X_ is a manifold with
boundary Y. With respect to X_ the construction in (1) defines a symbol in H*. There-
fore the operator [R2(A)]- = r"R%(A)e” according to (iv) extends to an isomorphism
HY(X_,V)— Hy *(X_,V) for all s € R. On the other hand, e~ and r~ are trivial opera-
tions on these spaces. So, in view of (3), R” () gives an isomorphism H*(Q2, V)/H{(X-,V)
H(X,V)— H=(Q,V)/Hy "(X_,V) = H™*(X, V). <
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3 Weighted Sobolev Spaces with Asymptotics

3.1 Sobolev Spaces Based on the Mellin Transform

Let ID, B, X,Y be as in Section 1, and assume that X is embedded in a compact manifold
) without boundary, V is a vector bundle over {2.

3.1.1 Proposition. For u € R,l € N there is a parameter-elliptic pseudodifferential
operator A* € op S*(€}, R™; R') such that

A¥(T): H(Q,V) - H™*(Q,V)
is an isomorphism for all + € R,

Proof. Choose an arbitrary parameter-elliptic pseudodifferential operator with symbol
M e SHQ,R™; R, f. 2.1.6(a); the parameter is (7,0) € R' x R (more about this in
Remark 3.1.2, below). Then there is an operator with symbol ¢~# € S~#(Q, R*;R"™*)
with

opAopg™# —IT=opr
and r € S71(Q, R™; R"!). Since the norm of op r(r, ) is o(1), a simplified version of the
argument in 2.3.9 yields a right inverse of op A*(7, o), provided |r,of > C. Similarly we
obtain a left inverse on the same set.
Now we simply let for 7 € R/

A#(1) = op M(7,C).

3.1.2 Remark. In order to obtain a parameter-eiliptic pseudodifferential operator as it
is needed in the proof of Proposition 3.1.1, one can e.g. start with symbols of the form
(&, (r,0))* € S*(R*,R™; R*1) and patch them together to an operator on the manifold
Q! with the help of a partition of unity {¢;} and cut-off functions {t;} as in 2.3.1(a).
Alternatively, one can choose a Hermitean connection on V and consider the operator
(C + |o|* — A)%, where A denotes the connection Laplacean, and C is a large positive
constant.

Then C + |o|?> — A is a parameter-dependent differential operator with principal symbol
(C + 1ol + e[ Iv.

Using a construction by Seeley we may form the powers (C + |o|* — A)7, and they are
parameter-elliptic pseudodifferential operators of order u.

In the following we will suppose we are given a fixed family {A* : p € R} of pseudodif-
ferential symbols with parameter-elliptic symbols of order u, depending on a parameter
T € R.

For this family we will define the spaces H*", s,y € R. It is easily seen that the spaces
do not depend on the particular choice of this family. However, it will often be helpful
to know that we have for the above special families an additional parameter, namely the
constant C, to influence the behavior of the family.
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3.1.3 Definition. (a) Let {A*(r) : 7 € R!} be a family of pseudodifferential operators
as in 3.1.1. For 3,4 € R, the space H*>?(Q2*) was introduced in [29], Section 1.1.1, and in
[27], Section 2.1.1, as the closure of C°(f2") in the norm

Jullsrian = {fr
T

Recall that n is the dimension of X and €. As usual, I's = {z € C: Rez = 3}.
(b) Now let r* denote restriction to X, and let

1

IA°(Im 2) Mu(2) | 22(q |d2|} . (1)

HXN) = {c¥f: f e H(QM)).
The space H>7(X*") carries the quotient norm:

lwllromxay = inf{|| fllseriany : f € H™(QY), 2% f = u}.

(c) H&Y(X™) is the space of all distributions in H*Y(Q") with support in X" = X x R.,.
Since, by definition, C§°(02") is dense in H*(Q"), Hgy 7 (X") is the closure of C§°(X") in
the topology of H*(").

3.1.4 Remark. (a) Suppose u € CP(Q"). For fixed z € ,u(z,-) € C(R4), so it has
a Mellin transform which is holomorphic in the whole plane. Moreover,

2z Mu(-, z) € A(C,C*()),

the space of entire functions with values in C*°(2), and it is rapidly decreasing on all lines
I'g, uniformly for 8 in compact intervals. Therefore the integral in 3.1.3(1) makes sense.
It turns out that H>7(02") is a subspace of D'(Q"), cf. 3.1.7, hence H*7(X") C D'(X").
In order to evaluate the integral in 3.1.3(1) it is in fact sufficient to know Mu only on
the line F%_q. We can therefore extend the concrete definition of the norm in 3.1.3(a)

to a larger space of functions by replacing M by the weighted Mellin transform M,_3z :
=% [}*(Ry) — Lz(l"q_.__,r), cf. 5.1.5.
(b) For s =! € N we obtain the alternative description

u € HY(QM) iff t37(t9,)°02 ... 8% u(z,t) € LAH(Q)
for all ag + a1 + ... an <1, cf. [27], Section 2.1.1, Proposition 2.

The well-known properties of the space H*?(Q") immediately imply the statements of
the lemma, below.

3.1.5 Lemma. (a) The space H*7(X") is independent of the particular choice of the
order-reducing family.

(b) H>Y(X7) C Hpo(X").

(c) H* (X)) = tVHO(X1).
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(d) HO,O(XA) = t—n]2L2(XA)'
(e) HO°(X") has a natural inner product
1
(u, V)roo(xmy = 5= jr _#(Mu(z),Mv(z))Ln(x) dz.

(f) Let ¢ € CP(R,), and denote for the moment by My the operator of multiplication
by ¢. Then M, induces continuous operators

My : H(X™) = H*(XM)
for all s,y € R. Moreover, ¢ — M, induces a continuous embedding

Co°(Ry) = [N L(H™(X™)).

(g) Similarly, if ¢ is the restriction to X* of a function in C{°(£2 x R), then

My : H7 (X)) = H(X7)
is bounded for all 5,7 € R, and the mapping ¢ — M, is continuous in the corresponding
topology.

Notice that (a) is a simple consequence of the fact that if {A*: x € R} and {A*: p e R}
are two order-reducing families, then for each p, the operator A*A~* is parameter-elliptic
of order zero. This yields the corollary, below.

3.1.6 Corollary. Suppose that {; : j =1,...,J} is an open covering of 1, and {¢;} is
a subordinate partition of unity.

Moreover, let {R* : 4 € R} be an order-reducing family on R", and || - |5+ (rrxr,) the
corresponding norm. Then

J %
[[leflfsr = (z_: |l(¢j”)*|l%m(nnxn+)) (1)

furnishes an equivalent norm on H*7(Q"). Here, (¢;u). is the distribution induced on
R" x R, via the coordinate functions.

Proof. We have
lull3. ~ar) = Z/ ||¢JA’ (Im z)Mu(z)HL;(Q) |dz| (2)

in terms of equivalent norms. Choose cut-off functions 3; supported in 2; with ¢;1; = ¢;.
Again in terms of norms, expression (2) is equivalent to

> j A (M) oy 2], 3)

=1

provided the parameter C in the choice of the order reduction, cf. 3.1.2, is chosen suf-
ficiently large. The reason is the following. Since ¢;A’(1 ~ ;) is parameter-dependent
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regularizing, its norm becomes rapidly small as C tends to infinity. In particular, its norm
is small compared to those of ¢;A*(Im z)y; and ¢;A°(Im z).

The continuity of the transport of functions to Euclidean space shows that (3) in turn is
equivalent to the expression

J
Z]'/Fg;_l [1(¢;A°(Tm z)M('ijU)).-(Z)”%z(Rn) |dz|; (4)

here the asterisk indicates that the corresponding function is taken in local coordinates.
Now there is a parameter-elliptic operator A, on Euclidean space such that

(¢;A°(Im2)p; M (), = ¢ A (Im 2)hju Mun(2).
We can write

$is AL (Im 2)¢5e — AL (Im )40 = =45 A5 (Im 2)(1 — 5.) + [ALL(Im 2), By

For the first operator on the right hand side we apply the same argument we have used
above. The commutator [A%,(7), ;.] is a parameter-dependent operator of order s — 1, so
its norm is O({r, C)*~!) while the norm of A;,(7) is > const (r,C)*. By making C larger,
we can make the quotient arbitrarily small; i.e. the norm of the commutator is negligible
with respect to that of the two operators on the left hand side. We obtain the assertion
from 3.1.5(a). <

3.1.7 Remark. On R" we may choose a particularly simple order reduction, namely
A¥(1) = op (£, 7). Using the transformation ¢, . defined by

P e = () e

Bnyvlr) = exp(r(
one can then check that
lullsermnxry) = [|Prytill memoxry;
in other words,
H(R™ x Ry) = {t7F (s, Int) : v € H'(R” x R)}, (1)

cf. [27], 2.1.6(4).
For X =R} in 0 = R" we obtain

H(RY xRy) = {t“%*‘”u(m,ln t):u € H'(R} x R)}, (2)
H'(RY x Ry) = {t™F Mu(z,Int) 1 u € HY(R: x R)). (3)

Moreover, it is easily checked that, in the notation of (2) and (3), we have the following
relation between the Fourier and the weighted Mellin transform:
n+1 }
[My-3 f(2, (= =7 +17) = [Fu(z,))(7).

As the notation indicates, both transforms act with respect to the last variable only.
Therefore

M,_2H*"(R} x R,) is isomorphic to F,—..H*(R} x R)
if we identify the lines I‘%l_,f and R.
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3.1.8 Remark. The well-known fact that for —1 < s < 7 we have H{(R}) = H*(R})
together with 3.1.7 then implies that

1 1
HY (X)) = Hy"(XM), -3 <s< 3 (1)
Moreover, using a partition of unity, we conclude from Remark 3.1.7 that
M.,_%H""(X") =FH(X x R), (2)

where the action of both transformations is with respect to the last variable and we

identify F_rﬂzi_,y and R.

Here we define the norm in H°(X x R) in the canonical way: for a finite partition of unity
— i

{#;} on X subordinate to the coordinate charts we let ||u||gs(xxn) = (E ||45ju||H'(Rng)) 7.

H*(X") is the space of restrictions of distributions in H*(X x R) to X x R;.

3.1.9 Proposition. (a) For s € Z,y € R, H"7(X") is the completion of Cg°('f"),"5(““ =
X x Ry with respect to the norm

Flfessgxn, = { J
a1,

where {R” : u € Z} is the special parameter-dependent reduction of the order with the
transmission property of 2.3.10.

Recall that the operators R’ are defined by patching together corresponding operators
on Euclidean space with a partition of unity and cut-off functions:

Ri.f = Z ¢j*0p ri.¢j*i

IR (Im 2)]+ Mu(2)l 72 (x) ld2|} : (1)

where the 2 are as in 2.2.10.

We may replace the operator e in the definition of [R>(-)]+ by any other extension
operator modulo equivalent norms. Therefore expression (1) makes sense for all s € Z,
not just s € N,

Similarly

[ullbgrixn) = {/F_?_l 1025 (Tm 2))4- Mu(2) |2 x) IdZI} , (2)

with the corresponding family {RY : u € Z} gives an equivalent norm on H{"(X").

We may also replace the operators [R%.(-)]+ in (2) by [RZ*]7'*, consisting of the inverses
of the formal L* adjoints of the operators [R_"];. As we have noted in Remark 3.1.4(a)
we could replace M in both cases by the weighted Mellin transform M,_z.

(b) The inner product in 3.1.5(e) extends from CP(X") x C*(X") to a non-degenerate
sesquilinear form
HY (XM x Hg "™ (X") — C.
This admits the identification Hg* 7 (X") = (H*7(X")). Moreover,
I fllreaxay = sup {|(f, v)mooxayl = [vll=n-1(xn) = 1}

furnishes another equivalent norm on H*7(X").
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Proof. (a) Since the symbol 7 of RZ belongs to H~ as a function of &,, we have for any
extension U of u

[RZ(V)]4u =T RE(NU

modulo perturbations that are operators with norm = O({\)™"), where N € N is arbi-
trarily large, cf. (2) in the proof of 2.2.10. Therefore the corresponding norms will be
equivalent, provided we choose an additional parameter sufficiently large, cf. the argument
in the proof of 3.1.6. Note that we have such a parameter by by 2.3.10.

Trivially, ||[R2(Im 2)}4 Mu||z2xy < R (Im z)et Mul|12(q). On the other hand, the cal-
culus shows that, up to reflection at the boundary and regularizing terms, r~ B2 (-)e* is
a parameter-dependent singular Green operator in Boutet de Monvel’s calculus of order
s and type zero, cf. [9], Theorem 2.7.6. Hence r™ R’ (:)e*t[R2(-)]7' is a singular Green
operator of order zero and type (—s)4, and we also get the converse inequality, up to a
constant independent of Im z.

Finally we may replace the family {RY : ¢ € Z} by {[RZ*]™!* : u € Z}, because the latter
operators are also parameter-elliptic of order g, and, by duality, [RZ]} : HS(X,V) —
H3™#(X,V) also is invertible. The operator [RZ]7! differs from [(RZ)~']; only by a
regularizing parameter-dependent pseudodifferential operator, and this is also true for
the adjoints.

(b) In view of the identity M({"u)(z) = (Mu)(z + ) we may suppose that ¥ = 0. Now
the result follows from the last statement in (a) and the fact that

(Mu(2), Mv{z))2x) = (Mu(z))[R‘i(lmz)];l[Ri(lmz)]-I-MU(Z))La(X)
([Rf(Im 2)|7"Mu(z),[R%(Im z)]+MU(Z)) £2(x)
I[RE (Im 2)]37" Mu(2)|| 22 (x) | [RE (Im 2) ] Mo(2) | 22 )

IA

3.1.10 Theorem. Let s > 3,7 € R,u € H*"(Q"). Then the restriction you = ulys of u
to Y is well-defined and belongs to H*=+7-3(Y); the mapping

Yo 1 AN — HTETTE(Y)
is continuous. Clearly, the same assertion holds if we replace Q" by X”.

Proof. By Corollary 3.1.6 and Remark 3.1.7 we may assume that 8 = R Y = {z, =0} =
R""!. Relation 3.1.7(1) gives the assertion, if we use the standard restriction theorem for
Sobolev spaces. The shift in 4 simply is due to the fact that the dimension of Y isn—1. <

3.1.11 Corollary. Let s > j+ 3,7 € N,y € R,u € C°( x R). By r denote the normal
coordinate in a neighborhood of Y. Then the operators 7; : u — &?uly+ define continuous

mappings -
7 M) = W EE (YR,
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In view of the definition of the spaces and their topology, this result extends to «; :
HeN(XA) = He-i=h- (XA,

Proof. This follows from 3.1.9 in connection with the lemma, below. <

3.1.12 Lemma. Choose a smooth function ¢ equal to 1 in a neighborhood of Y and
supported in the neighborhood of Y, where the normal derivative is defined. Then the

?

operator f — 8,(¢f), defined for f € C(Q") has a bounded extension to an operator
Ha,—y(QA) - Hs—l,'y(QA)_

Proof. This is a local result; it follows from 3.1.7(1) together with the fact that multipli-
cation by ¢ is continuous on H*7(Q2*). <

The following theorem states that the spaces H*7(Q1") are invariant under changes of
coordinates if we restrict ourselves to the subspaces of functions with support in a compact
set ) x {¢t:0 <t < R}, and if we ask that the diffeomorphism, say ®, respects the set
{t = 0}, i.e. @ is the restriction of a diffeomorphism of 2 x R,. In particular, we then
have ®(z,0) € Q x {0}.

Alternatively, we might ask that there are neighborhoods U, U’ of R4 in R such that the
diffeomorphism is the restriction of a diffeomorphism Q@ x U — @ x U'.

3.1.13 Theorem. Let ® be a diffeomorphism on Q1 x Ry, respecting {t = 0}. Then the
space

{ue H(2"):u=0 on {t > R} forsuitable R}

is invariant under the change of coordinates induced by ®.
Proof. In view of Corollary 3.1.6 and Remark 3.1.7 we may assume that we are given a
distribution v € H*'(R" x R;) with support in a bounded set and that ® is a diffeo-

morphism of bounded open sets in R* x R,. Moreover, we may assume s > 0 using the
duality in 3.1.5. By 3.1.7 we have

v(z,t) =t~ Pu(z, Int)

for some u € H*(R" x R). Clearly,

u(z,r) = eF = y(z, €")

by letting r = Int. Now write (z,t) = ®(z,t) = (®1(z, ), P2(z,t)) so that the transformed
function v is given by

wz,t) = 2(®(z,1) = v(z,8) = ¢ F (g, )
—ntl
= Oy(z, )" F Pu(d(z, 1), 1In By(z, 1))
In order to show the invariance under coordinate transforms, it is sufficient to show two
facts. First, there is a function ®,(z,t) € C5°(Q") (i.e. all derivatives are bounded) such

that 3
@2(&3,1) = (I)Q(.'L',t) - t,
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with )
c < Oy(z,t) < ! (1)

with a constant ¢ > 0 independent of z. Second, the function
u(z,r) = u(®i(z,€"),In Bo(z,e"))

belongs to H*(R"*!).
Now it is well-known, cf. {15], that H*(R™*!) is invariant under all coordinate transfor-
mations ¥ satisfying

U € CX(R™),  a#0 2)

and

c< |det(D¥)| <!, >0, (3)

The change of coordinates we have to consider is
U(z,7) = (®1(z,e),In Py(z,e)). (4)

Let us check that it does satisfy conditions (1), (2), and (3). We may restrict our attention
to bounded z and bounded t, equivalently —oo < r < ¢g, ¢ € R.
The diffeomorphism ® respects {t = 0}. Therefore

‘DQ(E'I t) = @2(27, t) - 62(130)
1
= / 0 ®q(z, Tt)dr -
0
= ®y(z,t)t
with a smooth function ég(m,t), bounded in all derivatives, since our parameter space is
bounded. By considering the inverse we see that ®,(z,t) also is bounded away from zero.
This gives (1).

On the bounded parameter space, ®; is bounded in all non-zero derivatives; therefore also
(z,r) +— ®y(z,e") is bounded in all derivatives. Let us show that the same is true for

U, : (z,r) > In Oz, €7 :

sz(I)g(:c, Cr)
Or;Vo(z,7) = ETOE
This is bounded, since ®2(z,t) > ct, while d;,®2(z,t) = szé’g(m,t)t; similarly,
9, ®s(z, e")e”
P = 7 e

is bounded.

In view of the quotient rule for differentiation, we conclude that all derivatives are
bounded.

Finally, the Jacobian is

- 8,9, (z, ) 0,0, (z, ¢ )‘3
IdetDII’(-T,r” - a @2(1}3 e )¢. 2(ze7) 6:@2(:5 € )¢ {(z)e7)
e’ T
= 55 |det D®(z, ")
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which is both bounded and bounded away from zero because of property (1) and the fact
that we are considering ® on a bounded set. 4

We have not used that we have a diffeomorphism of the entire manifold *. The result is
also true, if ® : U; — U, is a diffeomorphism of open subsets Uy, U; C 2 and respects
{t = 0} in the sense that ® extends to a diffeomorphism of the closure of U; and U, in
xR,

We say that a diffeomorphism ® of X” is boundary-preserving if there are open neighbor-
hoods Uy, U; of X* in 2%, and ® extends to a diffeomorphism @ : U; — U, respecting

{t = 0}.
This immediately leads to the following corollary.
3.1.14 Corollary. Also the subspace of H*7(X") consisting of the distributions that

vanish for large ¢ is invariant under changes of coordinates induced by boundary-preserving
diffeomorphisms.

3.1.15 Definition. Let F be a subspace of /(X") or D’'(Q") with a stronger topology.
Suppose that ¢ is a smooth function on R4 and that multiplication by ¢ is continuous
on F. Then [¢]F denotes the closure of the space {¢u:u € F}in F.

3.1.16 Theorem. Let w € C°(Ry),w = 1 near zero. Then for s > &',y >+
W H(X) = w7 (X)

is continuous. For s > s',v > +' the embedding
IR (X ") = ] (X)

is compact.

Proof. This is immediate from 3.1.7(1) together with the embedding results for the Sobolev
spaces. <

3.1.17 Proposition. Let {R% : u € Z} be the parameter-dependent order-reducing
family in Boutet de Monvel’s calculus in 2.3.10, 7,3 € R. Denote by M,,_z the weighted
Mellin transform of 5.1.5.

Then the Mellin operator op;;%[R’_‘(Im 2)} 4t HYY(X?) = H~#7(X") given by

op 37 FRE(Im2))4f = M2 [R:(Im2))s M,y f
is an isomorphism.

Note: More on Mellin operators in Section 4.1.
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Proof. By interpolation we can confine ourselves to the case where s € Z. We have
according to 3.1.9

HOP},{_%[RLL(IHIZ)].;.)(I ;{'-#n(xh)

= /I,_F NRZH (1m 2)) My g My [RE (I 2)]s My )33 2]

= [ MR Im ) (R ()] My-g f s lde]

Y3
< 0 [ MR ) Myog Fgldz] = |l
2

the constant in the final estimate is the norm of
[R2*(Im 2)}4 (R (Im 2)} [R2 (Im 2)];*
in L{L*(X)). <

3.1.18 Definition. For s,y € R,w a cut-off function on R, let
KX = {u € D(X") :wu € H*(XM),(1 -—w)tFue HY(XM)}. (1)

Here, H*(X") is as in 3.1.8. The definition is independent of the choice of w by 3.1.5(b).
In the notation of 3.1.15,

(XY = (WM (XM + [ - w)t73 (X7 (2)

similarly,
Ko7(X") = [wIHG™(X") + [ — w]t™% H3(X™), (3)

cf. 3.1.3(c). In fact, the left hand side clearly is contained in the sum of spaces on
the right hand side of (2). On the other hand, if u, € WH*7(X") converges to u in
H*Y(X"), then we have wu = u for all cut-off functions & equal to 1 in a sufficiently large
neighborhood of {¢t = 0}; in particular, @u = u € H*(X?), and (1 —&)u =0 € H*(X"),
sou € K (X*). If v, € (1 —w)H*(X") tends to v in H*(X*), then a similar argument
shows that v € K*7(X"). Therefore we have equality in (2).

We shall give K*7(X") the Banach topology induced by (2):

l[llicon(xry = llwullremxay + (1 —w)t¥ |l gagxn,

Notice that £%3(X*) = L}(X").

This also allows us to introduce the space H*7([D) : Near each singularity v, ID is
diffeomorphic to X, with suitable X, as in 1.1.1. We define H*7(ID ) as the space of all
distributions belonging to H*7(X) near a singularity v and belonging to H*(ID) in the
interior; for the precise construction use a cut-off function w, near each singularity v.
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3.1.19 Remark. (Non-direct sums of Fréchet spaces) Let E, F' be Fréchet spaces and
suppose both are continuously embedded in the same Hausdorff vector space.

Then we may form the exterior direct sum E @ F, which is Fréchet and has the closed
subspace A = {(a,—a): a € EN F}. The non-direct sum of £ and F then is the Fréchet
space

E+F:=E®F/A.

3.1.20 Definition. Let © be the interval (6,0],6 < 0, and let s,y € R.

Kg"(X") is defined as the intersection 5o £*70~¢(X*). We endow this space with the
projective limit topology.

For © = (—o0,0] define Kg"(X") as the intersection of all the above spaces for § < 0.

3.1.21 Remark. (a) Let u € K*7(X"),s > 1. Then the restriction uly belongs to

K*=$7-%(Y") : This is immediate from Corollary 3.1.11 and the definition.
(b) In view of 3.1.5(e) we obtain natural dualities

K:a,q(XA)r o K:Ja,-’Y(XA)

and
(X)) = KT (XT)
for all 3,7 € R.
(c) Let ¢ be as in 3.1.5(g). Then the multiplication operator
My K2(XM) - K(X7)
and
My : Kg(X™) = Kg™(X7)
is continuous.

(d) Of course, all these distributions may take values in finite-dimensional vector bundles
with a Hermitean structure which are restrictions of smooth Hermitean bundles on 2 x R.

3.2 Spaces with Asymptotics
Throughout this section, X and Y will denote the manifolds of Section 1.

3.2.1 Definition. cf. [29], 1.1.2, Definition 1.

(a) A weight datum g = (7, ©) consists of a number v € R and an interval © = (6, 0] with
-0 <8 <.

(b) Given a weight datum g = (v, ), 5§ denotes the strip

1 1
Sg={zEC:§—7+0<RezS§—7}.
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(c) The collection of asymptotic types As(X,g) for a weight datum g = (v, (6,0]) with
6 > —oo ("finite weight interval”) is the set of all finite vectors
P ={(pj,m;,L;):3=0,...,N(P) € N}

consisting of

(i) p;j € int Sg—i-, where n = dim X,
(i) mj € N, and
(iii) L; a finite-dimensional subspace of C*(X).

The elements P of As(X,g) are called asymptotic types.

If g is a weight datum with 8 = —oo, ("infinite weight interval”) then As(X,g) is the
family of all vectors P = {(pj,m;,L;) : j = 0,...,N(P) < oo} with the additional
assumption that

(iv) Rep; — —o0 as j — oo, whenever P is infinite.
By nc P denote the set {p;: 5 =0,...,N(P)}.
Correspondlngly, As(Y, g) is the set of all P = {(pj,m;,L;) : j € N} with p; €

int Sg_ ? ,m; € N, and L; a finite-dimensional subspace of C®(Y). As before we as-
sume that Rep; — —o0 as j — oo whenever P is infinite. Finally we let for g = (v, 0)

As(X,Y,q) = {P = (P, Py): P € As(X,g), P € As(Y, (v — %,e))}.

(d) The space Kp"(X"), for P = {(p;,m;,L;) : § = 0,...,N} € As(X,g) with finite
weight interval consists of all u = u(z,t) € K*7(X") such tha.t for suitable ¢;x € L;,0 <
7 £ N,0 £k <my, and all cut-off functions near zero, w,

u_zz)% (z)t™P In* t w(t) € K§(X);
1=0k=0

cf. 3.1.20 for the definition of Kg”(X"). In the case of an infinite weight interval first let
gk = (7,(=k,0]),k=1,2,..., and define P, € As(X,g) by

1 1
i k<RwaS—§——7}

P = {(pj,mj,L;) € P:

Then let
K:sn‘ XA ﬂK (1)

K27(X") is the intersection of all Kp7{X"),s € R.
(e) For a finite weight interval g and P € As(X, g) let Ep(X") be the space of all functions

N m;
{ue C®XN) tu(z,t)= D) cist™ In*t: ¢ € L)

1=0 k=0

30



3.2.2 Remark. It is obvious from the considerations in 3.1.13 that the representation
of a function in the form

N mj

u(z,t) =YY cjp(z)t™ In* tw(t) + f(z,1) (1)

7=0 k=0

with f € Kg”(X") as in 3.2.1(d) depends on the particular choice of coordinates. In order
for the definition to make sense we shall check that under a change of coordina.tes, the func-

tion EJ—o Trdo cik(2) 277 In* tw(t) transforms to a function EJ-o PN (= z)t7% In* 1w/'(1)
+g(:c t) with g € K=M(X*) for arbitrarily large M. As indicated by the use of N’ and

P}, there may be more and different exponents in the resulting representation. We shall

see, however, that all p are of the form py — [, for a suitable p, and ! € N. Moreover, we

shall check that if the ¢, vary over a finite-dimensional subspace of C*°(X), then so will

the ¢,

We will use the notation of 3.1.13. The change of coordinates is (z,t) = ®(z,t) =

(®1(z,t), Bo(z, 1)), where @y(z,t) = By(z,t) - t with a function ®,(z,t) € C(Q x Ry),

satisfying ¢ < ®(z,t) < ¢! for a constant ¢ > 0. Recall that we are only interested in the

case t € (0,7],T < oco. Now we consider the various terms separately. Fix an arbitrary

M e N.

(1) We have t77 = t=Pi®y(x,t)"%i. The second factor is a smooth function up to t = 0
thus has a Taylor expansion

(z,t)7% = Z die(z)t? + tM d;(z,1),

where d; € C°(X x Ry).

(ii) Similarly, In*¢ = [Int + In ®2(z,¢)]*. A Taylor expansion of In ®;(z,t) (which is
smooth up to ¢ = 0) then yields a linear combination of terms of the form e;;{z)t7 In't
with j = 0,...,M — 1,1 = 0,...,k and smooth e;;, plus a remainder of the form

tMey(z,t) with ex € CP°(X x Ry).

(iii) Finally, we use a Taylor expansion for ¢;¢(®,(z,t)) at ¢t = 0 which yields a finite sum
of terms of the form fju(z)t' with I =0,..., M — 1, smooth £, and a remainder
of the form tM f (z,t) with fir € C(X x R,).

Writing out the product, we obtain the assertion. Notice that the finite-dimensional
spaces in the asymptotic type can be replaced by other finite-dimensional spaces; the
corresponding changes can be read off from the above Taylor expansions.

Spaces with asymptotics are therefore well-defined if we either keep coordinates fixed or
else interpret the subscript P associated with an asymptotic type P as an equivalence
class of of possible asymptotic types. This is the sense in which all the notation involving
asymptotic types should be understood.

3.2.3 Lemma. (a) Thespace Ep(X") in 3.2.1(e) (finite weight interval) is finite-dimensional,
and we have

Kp'(X") = £g"(X") + [w]ép(X™) (1)
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for every cut-off function w near zero.

(b) For a finite weight interval we may make K3"(X") a Fréchet space by endowing it
with the topology of the sum of Fréchet spaces in (1).

(c) For an infinite weight interval Kp7(X") becomes a Fréchet space, if we give it the
projective topology induced by (b) and 3.2.1(1)

Proof. This is immediate from the definition. <

3.2.4 Theorem. Let P = {(p;,mj, L;)}2, € As(X,(7,(—00,0])), and let c;x € Lj,j €
N,k =0,...,m;. Then there is a distribution u € K7 (X") with the following property.
For every 8 < 0 there is an N = N(f) such that

N
u—3Y cir(z)t™P In* tw(t) € K§(X™),

=0
© = (8,0). In particular,
K3 (XM = K37 (X" + KET(XP),

(=00.0]

For the proof of Theorem 3.2.4 we shall employ the following lemma.

3.2.5 Lemma. Fix a cut-off function, w, near zero, p € C,k € N. Consider the function
flo,t) =t7?In* tw(ot)

for o,t > 0.
(a) For every v with Rep + v — % < 0 and every s > 0,

| f(o,t)||nerry) =0 as o — co.
(b) If c € C®(X) and Rep+ v — % <0, then

@) £(0, ) lsnnny = 0 as & = oo.

Proof. (a) By interpolation we only have to consider the case s = [ € N; using 3.1.4(b),
we simply have to estimate t7(t9,)? f(o,t) in L*(R.,) for j = 0,...,[. This is elementary.
(b) The argument is almost the same; we now have to consider t¥~7(t4,) f(o,t)8%¢ in
LE X" for la|+5 <L <4

Proof of Theorem 3.2.4. Choose an increasing sequence y; — oo with Rep, +v; — &211 <0
for all » > j. Using Lemma 3.2.5 we may choose o;; > 1 such that

llesut ™ 1n* tw(ojet) i xny < 277 /(5 +1). (1)
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Let us check that

oo M™mj

Z Z Cjkt_pj In* tw(a_,-;,t) (2)

§=0 k=0

converges in Kp"(X"), i.e. in each Kp'(X"),s € R. This means we have to show
convergence in Ky (X*) + [w]€p, (X ") for all 6 < 0. Here, Py is the set

n+1 n+1
{(pjvmj1Lj):T—7+9<Reij T——Y}_

Without loss of generality we may use the same w as above.
To this end choose j; so large that v;, > v — 8 and jo > s. Rewrite (2) as three sums:

3 ot > D R

{i<joRep;>2E —v46} {i<jo:Rep;< 2t —y+8} 3270

The finitely many terms in the first sum belong to £p,(X"), those in the (finite) second
summation to (‘570](}(“). For j > jo, relation (1) implies that

m; '
Z ||Cjkt-pj lnktw(ajkt)”;co,-y—e(xf\) <277,
k=0

noting that, on these functions, the H—norms and the X— norms coincide. Therefore,
the third summation converges in Ky (X*).

So, if u € KE"(X"), and uo € Kp"7(X") is the function in (2), then u — up € K7iy(X")
for every § < 0. In fact, let uy = Z_?’:o Yt cixt P In* tw(ojet). Then u —up = (u —
un) — (up — un). For large N, the above argument shows that ug —uy € KZ;@TO](X"), while
u —uny € Kijiy(X") in view of Definition 3.2.3(d), since the finitely many terms of the
form

¢;xt ™% In* t (w(t) — w(ojkt))

belong to K°¥(X*) for all §. We obtain the assertion. <

3.2.6 Definition. cf. [29], 1.1.1, Definition 4. Let E be a Fréchet space.

(a) For an open subset U of C let A(U, E) = A(U)®,E denote all holomorphic functions
on U with values in E.

(b) Let ¢ = (v,0) be a weight datum with finite or infinite weight interval and P €
As(X, g).

Then Ap"(X") is the space of all holomorphic functions f in the interior of Sg_%\wcP
with values in the space H°(X) and the following properties

(i) In p; € 7cP, f has a pole of order m; + 1 and a Laurent expansion

f(2) = 3 einlz — py) ™ + f(2)

k=0

with ¢;x € L; and f holomorphic near p;.
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(i1) For € > 0 choose a function x, € C*°(C), vanishing in an e—neighborhood of nc P
and equal to 1 outside a 2e—neighborhood of nc P.
For 8 € R define the semi-norms

lullap = M52 g ullsenixny 1)

using the 'weighted’ Mellin transform Mp, cf. 5.1.5.
We now ask that for every 8 with v+ < 8 < v — @ and every € > 0,

lIxefllsp < o0, (2)

uniformly for g in compact intervals.

(c) Let AP"(X") =N, ABT(X").
(d) For a weight datum g = (,©) and an ’empty’ vector P = § let

AZT(XM) = AF7(XM).

3.2.7 Lemma. (a) Ap"(X") is a Fréchet space with the topology induced from

(i) the topology of A(SY*\rcP, H*(X))
(i1) the countable set of semi-norms induced by 3.2.6(2).

For AZ"(X") use the projective topology.
(b) We then have
ApT(X7) = AG(X7) + AP7(X7).

3.2.8 Theorem. Let w be a cut-off function near zero. The weighted Mellin transform
M, 3 : C&P(X") — S(I‘g_;,_x_,,,Cm(X)), cf. 5.1.5, extends to continuous operators

D WKGT(XN) - AGT(XT),

(i) M‘r—’,l
() Mg WIELXY — AZ(X,
(iil) M,z : [WIKE'(X?") — AR(X").

Vice versa, if u € Ag"(X"), then 3.2.6(b) implies that M_;"_lgu € H*"4(X"),0 <6 <0.

Proof. cf. 5.1.6. (i) is just the definition, (ii) follows from the fact that the Mellin

transform of the function
u(t) = w(t)t " In*t

is meromorphic in the plane with a single pole in p of order & + 1 and that x.(z)(1 +
|2|2)* Mu(z) is L? on the line I's for all 8 and s.
Finally, (iii) follows from (ii) by linearity. <

3.2.9 Definition. Let P € As(X,9),9 = (7,0). Then
SP(X") = [WIKPT(X7) + 1 — w]S(X7).

Remember that everything depends on the choice of ©.
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3.2.10 Lemma. Let ¢ € C®(QxR),¢= &’IX"- Then the multiplication operator
My K*Y(X") - K¥(XH)

is bounded. If P € As(X, g) satisfies the "shadow condition” (i.e. given a triple (p,m, L) €
P and j € N, there is an element (p — j,m(3), L(3)) € P with m(j) > m,L(j) 2 L) then
also

My : KE(X") = KE1(X7)

1s continuous.

Proof. The first part is immediate from 3.1.21(c). In order to obtain the second state-
ment, use a Taylor expansion of ¢ at ¢ = 0. <

3.2.11 Remark. Of course, all notions make sense for distributions with values in finite-
dimensional Hermitean vector bundles which are smooth up to the boundary.

3.3 Green Operators. The Algebras Cg(X",g) and Cg(D ,g)

3.3.1 Definition. Let g = (v,6,0) with 4,6 € R,0 = (0,0],—c0 < § < 0;¢ is called
a ’double’ weight datum. Moreover, let P, @ be two asymptotic types, P = (P, P,) €
As(X,Y,(6,0)),Q = (Q1,Q2) € As(X,Y,(—v,0)),and W, V;,... smooth Hermitean vec-
tor bundles.

(a) Let
G € NLEK1(X™, Vi) @ K2 H(YA, V3), K=0(X", Vo) @ K203 (Y7, V4)).

We shall write G € CZ(X", g)pq if the following holds: for all s > 0

K (X™ W) Sf;l(X",Vz)
Ge Gk
Gr Gs - A §—% v
Kmb(YnVe)  Sp (Y V)
and
K8 (X, V) SFIXM VL)
G*: ® — @ (2)

Ks.—ﬁ—%(YI\, Vi) Sa:'%(}m, Vi)
are continuous. In (2), G* is the formal adjoint of G. It is defined from the duality between

Ko (XN Vi) @ K73 (YA, Va) and K7 "(XA, Vi) @ K~*~" (Y, V;), which comes from

an extension of the inner product

((f90), (fa92)) = frﬂ#(Mfl(Z),Mfz(Z))m(xﬂdZI
+ j;ﬁ#(Mgl(Z),Mgz(Z))L*(Y)WzI
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on H°(X") @ H® 3(Y"). Notice that the second term on the right hand side differs
from the standard inner product on H*Y(Y"), where the integration is over I'z_,, for

dimY = n — 1. Since (Mu)(z + }) = M(tu)(z), this term yields a duality between
Ho =4 (Y") and H-*=7-}(Y"). Clearly, (1) and (2) will be satisfied whenever they hold
for s = 0.

As before, we will not refer to the bundles in the notation.

b) C2(ID,g)pq is the corresponding space with X” replaced by ID and the spaces
G .Q

s;ﬁl(Xf\,vz),...,55;’“%()”,1/3) by Hj’.ﬁ"s(lD,Vz),...,7-(2;’2""'%(13,%). We call the ele-
ments of CZ(X", g)pq and C(ID,g)pq the Green operators of type zero on X” and D,
respectively.

Ge Gk

(c) Let k € N. An operator G = [ Gr Gs

of type k, if it can be written

} acting as in (1) is called a Green operator

G=36 [ o 0 ] (3)
j=0

with Green operators G; of type zero. The order s in (1) then is assumed to be > k.

With the replacements in (b) we can use the same definition for operators acting on

functions over ID. In (3), 8, denotes the normal derivative defined in a neighborhood

of the boundary of the Riemannian manifolds X* and ID, respectively, multiplied by a

cut-off function, so that it makes sense everywhere.

We shall write
G e C&(X",9)pq and G e CH(ID,g)rg,

respectively. Without loss of generality we assume that the asymptotic types P and @ in
(1) and (2) are the same for all G;,5 =0,...,k.

(d) The mapping properties (1) and (2) give a natural Fréchet topology for C&(X",¢)r.q
and C%(ID, g)p.q. The spaces CE(X", g)pq and CE(ID, g)pq are topologized as non-direct
sums of Fréchet spaces, cf. 3.1.18(a).

(e) We shall refer to the entries Gg, Gk, G, Gs of G as the proper Green, potential, trace,
and boundary parts of G, respectively.

In the following, g, P, @ will denote an arbitrary weight datum and arbitrary asymptotic
types. V1, V,, ... are Hermitean vector bundles smooth up to the boundary.
3.3.2 Theorem.
_ . _ 1
Ca(X*,g)ra = [$5,(X Wy @ sEHY, W) 6 [sTxr W e s v v ()

The isomorphism is given by the mapping that associates with G its integral kernel. Here,
@ = (Q,,Q,) is an asymptotic type in As(X,Y,g). @, is constructed by replacing each
element (p,m, L) € Qk by the complex conjugate (,m, L),k = 1,2. Similarly,

CA(D,g)rq = [HES(D, W) @ 5y H (B, W) &, [HZ (D, ) @ HE T H(B,VA)|
@)
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Proof. This is the same as in the classical case, cf. [29], Volume [, p. 44. The change in
the asymptotic type @ is, of course, due to the fact that the integral kernel of the adjoint

of the operator with kernel k(z,y) is k(y, z). <

3.3.3 Corollary. (a) Let ¢, and ¢; be excision functions for the singular set of D, and
let G € CZ(ID,g). Then ¢:G¢, is a regularizing singular Green operator in Boutet de
Monvel’s calculus for ID (we have defined these operators only for compact manifolds
with boundary; however, since G vanishes near the singularities we can consider it as an
operator on the manifold obtained by 'doubling’ ID along the cylinders X, x (0,1)).

(b) Let G € CE(X",g)pq- Then there are finite-dimensional operators GIV, N € N, with
G = limy—ooG™ in the topology of CE(X?, g)pe-

The same is true for G € CE(ID, ¢)pq.

Proof. (a) The mapping properties imply that both G and G* map L*(ID) to C=(D),
so they have a smooth integral kernel.

(b) This follows immediately from the representation 3.3.1(3), Theorem 3.3.2, and the
properties of the m—tensor product. <

3.3.4 Lemma. Let G, € C2(X",g)pq and G; € C2(ID,g)pq. Then the mappings

K:a,—y(XA’V'l) K:I,S(XA’%)
G] : 5] — @
Korms(YAVa)  KM-E(YA V)
and
HAD,V) KD, V)
G2 : D — &b

H* 5B, Va) HY=$(1B, Vi)

are compact for every choice of 3,t > 0.

Proof. Consider G;. Its image is in fact contained in K+ (X7, V,) @ KoS= 1+ (X1, V)
for small ¢, since KRT(XA, V) C K™(X*, V) and ch,f“**‘(w, Vi) C Kmé=t+(Y A V)
for all e with 0 < ¢ < dist (7¢ P, Pl'g—‘-s)- The assertion now follows from 3.1.16 and com-
pactness of [1 — w]S(X") in H*(X?") and [1 —w]S(Y") in H*(Y"). The consideration for
G is analogous. <

3.3.5 Theorem. Let g = (v,7,0), Gy € C(X",g)pq, and G, € C(ID, g)pg. Suppose
that for some given so > —%

K:mr“r(Xi\, Vl) IC"“""(XA, Vl)
I+G,: D — S (1)
K2o=3(YA V) Kor=3(Y" V)
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and

HOA(D, V) (D, V)
'H""""'%(B,Vg) H“’"""%(B ,Vs)

are invertible. Then there are H, € C&(X",g)pq and H, € C&(ID ,g)pgo with
(I+G)'=I+H, and (I+G2)' =1+ H,. (3)

Proof. Using the identity (1 — z)™! = 1 + z + 2(1 — =)~z we obtain the desired result
from the fact that, for every s, G\(I + G1)~'G, and G;[(I + G1)7!]*G} have the mapping
properties of 3.3.1(1),(2). The argument for G; is the same. <

3.3.6 Corollary. The operators I 4+ G; and I + G; in equations (1) and (2) of 3.3.5
are also invertible on K*7( X", V) EB}C"""%(Y", V2) and H*(ID, W) EB'H""”'%(B , V) for

every choice of s.

Proof. Again consider only G;. The operator F; of 3.3.5 has the mapping property (1) in
3.3.1. Therefore
(I+G)I+H)=(T+H)YI+G)=1 (1)

on §p (X", Vi) ® S;;%(Y’\, V2). Since this space is dense in all the spaces K*7"(X*, V) @
K*=%(Y", V,) identity (1) extends and shows that I + H, is an inverse to I + Gy also in
these spaces. <

3.3.7 Lemma. A Green operator G € CL(X",g)pq of type k can also be written

k—1
Ky 0
G = 770 |+ Go,
;[Sﬂ' 0} ’

where
e K; are potential parts of suitable Green operators of type zero,
e S; are boundary parts of suitable Green operators of type zero,
o v;: frr &flya, and
e (i is a Green operator of type zero.

Similarly for G € CE(ID,¢)pq-

Proof. Consider the left upper corner. It is a sum of terms H;8?,7 =0,...,&, where H;
are the proper Green parts of a Green operator of type zero. By 3.3.2 there are functions
hi € SH(X™, V1)®x 5 (X", V2) such that

Hﬁjf(x):/ hy(z, %)0; f(&)d3.

XA
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Integrate by parts in the normal direction. This gives terms of the form [y 8! h;(z, ) f(2)d%E
and of the form fia kji(z,y)¥m f(¥)dy, where kji(z,y) = 8'h;(z, %) s=yevr and m + 1 <
j—1L

Applying 3.3.2 again, the former operators define the proper Green parts of suitable Green
operators of type zero, while the integral operators with kernels k;; give rise to potential
parts of Green operators of type zero, since restriction to the boundary maps SQ—:"(X ™)

to S577F (Y1), <

3.3.8 Lemma. Let g, = (v,6,0),9. = (6,7,0) be weight data, P,Q,R asymptotic
types, let G; € C&(X",91)pq, and G, € CE (X", ¢2)0,r- Then

GGy € CE(X", g3)p R

with g3 = (v,7,0) and a resulting asymptotic type R depending on Gy and R. We will
have R = R for d' = 0.

We tacitly assume that G; and G act on vector bundles so that the composition makes
sense.

The corresponding result also holds with X" replaced by ID .

Proof. For d = d' = 0, this follows immediately from the definition. In view of 3.3.1(3),
we may assume that d = 0 and that the matrices for G; and G, only consist of the entry
in the upper left corner. Using 3.3.7, we even may suppose that G; = Ky, where K is
the potential part of a Green operator of type zero. Now we apply 3.3.2, writing

I(7d'G2f($) = _/k(miyl)7d’/I(y,Z)f(Z)dzdy'
= -/k(-’ﬂjy’)fad'l(y,z)lynzof(z)dz dyl

with corresponding kernels. A second application of 3.3.2 then yields the assertion. <«

3.3.9 Definition and Remark. In view of the preceeding result the Green operators
of arbitrary type form an algebra. In fact, C2(X”, ¢)p,p is an algebra in the usual sense,
while in general, the asymptotic types will change.

For g = (v,7,0) welet Cq(X”, g) denote the space of all operators that belong to any one
of the families C4(X", g)po for arbitrary d, P,@. In view of Lemma 3.3.8, the elements of
Ce(X?, g) that act on fitting vector bundles can be composed. In this more general sense,
this space also is an algebra. The proof of 3.3.8 shows that the composition is continuous
with respect to the corresponding topologies.

3.3.10 Theorem. Theorem 3.3.5 and Corollary 3.3.6 on invertibility extend to the case
where Gy € CE(X",g)pg and Gy € CE(ID,9)pq,0 # k € N; we have to assume that
S0,8 € N are > k in order to have all mappings well-defined. The corresponding operators
H, and H, belong to CE(X™, 9)p o and CE(ID,g)p@, respectively for suitable asymptotic

types P and Q, respectively.

59

t



Proof. Consider G;. For simplicity assume that the bundles V4 and V;, are trivial and
scalar. Introduce the Hilbert space £ = K%7(X") @ K*7~#(Y"). According to 3.3.7 we
can write

I+ Gy =1+ Hy+ Hy;

here Hj is of type zero, and Hy = j-‘;(‘, A; [ T.)’ g with A; = ?J
7

a potential part R; and a boundary part S; of a suitable Green operator of type zero.
We may rewrite Hy in the form Hy, = Y57} K;T;; here T : E — K%7=3(Y") is given by

J=0
Ti(f1 ® f2) = v f and Kj : K*7~3(Y") = E by K;g = Rjg @ Sjg.
Lemma 3.3.4 implies that the operator I + Hy is a Fredholm operator on E of index zero.
Choose bases {¢1,...,¢s} of its kernel and {¥1,...,%,} of the orthogonal complement

of its image. Define the operator

0 ] consisting of

J

P:f= Y (f,4;)e%;

=0

Then I + Hy+ P : E — F is invertible. More is true. P even is a Green operator: First,
_1

(I+Ho)d; = 0 implies that ¢; = — Hop; € S (X*)®SE, *(Y"). Moreover, we may replace

the functions ¥; by functions ¢; € C§*(X") @ C§°(Y") without losing the invertibility of

I+ Hy + P on FE; this is a consequence of the fact that the compactly supported smooth

functions are dense in E. In particular, Theorem 3.3.2 implies that P € CZ(X", ¢)rg,

since its integral kernel belongs to [S3 (X*) & 8;;;‘_(}”‘)] ® [85—;7()(") &) S;—:'_%(Y")] Let

us write P = ¥7_o L;U;; here U; : E — C is defined by U;f = (f, ¢;)g,and L; : C = E
by Ljc = c;. '

Now we shall use an analog of the method in [29], 2.1.12, Proposition 24. Let K =
K%7=%(Y"); denote by K, L the row vectors with components K1, ..., Kx_ and Ly, ..., Ly,
respectively, by T', U the column vectors with entries T',..., Tk~ and U4,...,U;.

Note that I + Gy : £ — F is an isomorphism 1iff

E E

I+Hy -K L @ @
T I 0|: KF o Kk (1)

U 0 I & S5

CJ CJ

is an isomorphism. In fact, this is a consequence of the matrix identity below, noting that

I K L [I+H+P -K L[ I 00 I+G, 00
0 I 0 T I ofl-rr1of=| o 10| (@
0 0 I U 0 I]|-U oI 0 01

By construction, I + Hy + P : E — E is an invertible Green operator of type zero. So by
3.1.5, its inverse is of the form I + G,G € C2(X",g)pq. Now

1 0 0V [I+Ho+P -K L 1[I U+G)K —-(I+G)L
~T(I+G) 1 0 T I oo I 0
~U(I+G) 0 I U o I]|o 0 I
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I+Ho+P 0 0
= 0 I+TUI+G)K -T(U+G)L (3)
0 UT+G)K I1-U{I+G)L

The 2 x 2 matrix in the lower right corner is invertible, since the whole matrix is. Consider
the operator T(I +G)K : K* — K*. It is a Green operator of type zero on the surface, i.e.
in C2(Y",9)pg, since it has an integral kernel in S;T%(Y’\)@,Sc;?_%()"\), computable
from those of G and K with suitable asymptotic types P’ and @'.

Just like before we may determine operators W; : K¥ = Cand V; : C - K¥,5 =1,... J
such that I + T(I + G)K + 3 V;W; is invertible. With the notation and technique of
before, cf. (2), the inverse to the matrix in the lower right corner of (3) can be computed
from the inverse to

[I+TU+®K+VW ~T(I+G)L V}
(4)

Ul +G)K I-UI+G)L 0
W 0 1

in C(IC"EBCJEBCj). Since the upper left corner is invertible, we may apply a decomposition
as in (3) leading to an invertible matrix of the form

0 * ¥
0 * K

I+TU+G)K+VW 0 0
| | ©

The lower right 2 x 2 matrix then is an invertible operator on £(C’*7), and so is its
inverse. This allows us to compute, step by step, the inverses of the matrices in (5), (4),
(3), and (1). We obtain the inverse of I + G in the desired form.

For 3, the proof is similar. <
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4 Mellin Symbols with Values in Boutet de Monvel’s
Algebra

4.1 The Spaces of Mellin Symbols with Asymptotics. Mapping
Properties

4.1.1 Definition. (a) A Mellin asymptotic type is a sequence

P =A{(p;mj; Lj)}jez
with p; € C, Rep; — +o00 as j — Foo, m; € N, and L; a finite-dimensional subspace of
finite-dimensional operators in B~*4( X).

We denote the collection of all these asymptotic types by As (B'm'd(X)). Just like in
3.2.1, we let 1cP = {p; : j € Z}.

(b) Let P € As (B‘“'d(X)), g€ R,deN. M&%(X) denotes the space of all functions

a € A(C\rcP,B*(X)) (1)

with the following properties

(1) in a neighborhood of p; € 7cP

m;
a(z) = vir(z ~ p;)) ™! + ao(2) (2)
k=0
with vjx € L;, k=0,...,m;, and ag holomorphic near p;.

(i) Let 0 < &1 < €,. For every function y € C®(C) supported in {z : dist (2, 7cP) > £}
and equal to 1 outside an e;-neighborhood of mc P, and for every 8 € R

(xa)(B +1i1) € B** (X;R,), (3)
uniformly for § € [¢1, 2], &1 < c2 € R.
We call the elements of MA4%(X') Mellin symbols of order s, type d, with asymptotic type
P.

Of course, we are assuming in (1) that the vector bundles a(z) is acting on, cf. 2.3.1(1),
are independent of z.

(c) M,‘;:f,(X) is the corresponding space with B#4(X) replaced by B4*(X).

(d) If P = 0 then we shall write M5*(X) and M5%(X).

sel
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4.1.2 Remark. The topology of M&?(X ) is given by three semi-norm systems
(i) that for the topology of A (C\vrcP, B (X)) ;

(ii) that induced by a — vjx € L; C B~94X), where « € Mp? (X) is as in 4.1.1(2),
and the topology of B~¢(X);

(iii) that given by

Gaei(@)(B+iT)= sup ri(xa)(B+i7), e,a€Z,jEN,
c1£8<c;
where {r; : 7 € N} is a semi-norm system for the topology of B*4(X;R,), and ¥ is
fixed.

4.1.3 Remark. (a) M5*®(X) is a Fréchet space in the above topology.
(b) Mp=%(X) = N,Mp*(X) is a nuclear Fréchet space.
Proof. (a) is obvious from the definition.

(b) Follows from a representation of M5*(X) as a projective limit of Hilbert spaces with
nuclear embeddings. The construction is analogous to that in {27}, 1.1.3, Proposition 6. <

4.1.4 Examples. (a) Let 4,k € N and Ay € B**4(X), k=0,...,p. Then

a(z) = i Agz* € ME®(X).

k=0

(b) Let » € B~>>?(X) have finite-dimensional range. Moreover, let p € C with Rep <

)
3,k € N,w a cut-off function near zero. Then

b(2) = vMi_,(t P In* tw(t)) € Mp=*(X)

whenever P is an asymptotic type that contains an entry (p, k, L) with v € L.
(c) Under the same assumptions but with Rep > 3,

e(z) = vM_,(t P In* tw(1/t)) € Mp™4(X).

Proof. (a) Clearly,a € A (C,B“'d (X)). Since Ax(B +i7)* is a polynomial in 8 and 7 of
degree k, we have a(8 + i) € B¢ (X;R,), uniformly for B in compact sets.

(b) The function M,_.(t7? In* tw(t)) is meromorphic in C with a single pole of order k+-1
in p, cf. 5.1.6, so the relations (1) and (2) in 4.1.1(b) are trivially fulfilled. If x is a smooth
function on C which is zero near p and 1 near infinity, then yu is rapidly decreasing on
each line I'g, uniformly for 8 in compact intervals, cf. 5.1.6. Therefore xb satisfies the
relation (3) in 4.1.1(b) for every u € R.

The proof of (c) is similar. g
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4.1.5 Theorem. Let P be a Mellin asymptotic type, 1 € R,d € N. The function
a € A(C\rcP,B*4(X)) is a Mellin symbol in M&*(X) if and only if it can be written

=S a5 9] )

with a; € MQ_k’O(X). Here, O, stands for the operator given by the normal derivative
in a neighborhood of the boundary, multiplied by a suitable cut-off function. @ is a
slightly modified asymptotic type; it contains the same p, and m;, but the L; are now
finite-dimensional spaces of finite-dimensional operators in B*%(X).

Proof. Clearly a function with the representation (1) belongs to M&%(X). So we only
have to prove the converse. We write

_{ P(2)+G(z) K{z2)
= 1w s
as a matrix in Boutet de Monvel’s calculus depending on z.
For P(z),K(z),S(2) there is no 'type’, so we only have to consider G(z) and T'(z). The
proof is almost the same for both, so let us concentrate on G(z).
Fixing 8 € R, and an excision function x for the poles, we have

X(B+1:7)G(B +1i7) € G (X;R.),

uniformly for 8 in compact intervals (for G#¢(X;R.,) cf. Definition 2.3.1(b)). We may
write in a unique way

d=-1
G(B+ir) = gf(j(ﬁ+ir)~y,-+G°(ﬁ+i,.), (2)

where x (8 +1-)I;(8 +t-) is a parameter-dependent potential operator of order y — j — %
and G%(B +ir) € G*%(X;R,), uniformly for 8 in compact intervals. On the other hand,
we may write for each fixed 2

ZK ()i + G°(2) (3)

j=0

with K;(z) a potential operator of order y — j — 1 and G%(z) € G#°(X). The mapping
G(z) — f{j(z) is continuous in the symbol topology. Since the decomposition is unique
in both (2) and (3), we have, fixing 7, K;(8+1i7) = K;(2)|2=p4ir- Moreover, the mapping
z +— I;(z) is a holomorphic function of z on C\ncP : Since G(z) € A(C\rc P, G#4(X)) =
A(C\1cP)®.G**(X) we have

G(Z) = i)\;h;(z)h’; (4)
=0

with {}} € &, and {h;} C A(C\vrcP) and {H;} C G*4(X) null sequences. Again we
may write in a unique way H; = EJ-o Ki;v; + H}. Interchanging the summation in (4)

we see that
d—-1 oo

Z(Z )\lhl I((J ’}'J Z A;h[

3=0 (=0
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By uniqueness,

Yo Nhi(2)Kj = Ki(z) and Y Mh(z)HP = G°(2)
! {

for each fixed z. Since the left hand side is holomorphic in 2 we see that K; and G° are
holomorphic functions of z outside mcP. Multiplying by powers of z — p; we see that all
singularities are poles of order m;, just as before.

Now we may also fix a way to convert an expression of the (unique) form Z:‘;;é Liv; + L°
with potential operators L; of order p—j — % and a type zero singular Green operator L°
of order y to the (non-unique) form $%_o H;0? with singular Green operators H; of order
g — j and type zero, with or without parameters, cf. 2.2.14. Using (2) we may therefore
write

d
G(B+1ir) =Y Gi(B+ir)d!
7=0
with .
X(B +ir)Gi{B +17) € G*7°(X;R.),

uniformy for 8 in compact intervals, and, applying (3),
d -~ .
G(z) =) G;(2)8]
j=0

with G;(8 4 47) = G;(2)ls=p+ir- In view of the considerations above, G; is a holomorphic
function of z on C\7r¢P, all singularities are poles, namely of orders y;.
It remains to check that, near p; € #c P, we have

Gi(z) = ZJ: vin(z = p;) ™57 + hj(z)

k=0

with suitable v;y € B=>%(X) of finite-dimensional range. By definition, the coefficients
of (z = p;)™* Y,k = 0,...,m; in the power series of G(z) are finite rank operators in
B~>%(X). The uniqueness of the representation (3) together with Lemma 4.1.6, below,
then implies that the corresponding coefficients for all K;(z) are regularizing potential
operators of finite rank. The pointwise conversion according to 2.2.14 preserves this
property. This concludes the proof. q

In the proof we have used the following lemma.

4.1.6 Lemma. Let s € R,d € N,v € B~4(X), and suppose that for some s > d — 3,
v: H*(X) — H*(X) has finite rank. Then in the representation

d—-1
v = Z I(j")‘j -+ Yo
=0

with regularizing potential operators K; and g € B~9(X) the operators vy, Ko, . .., Ka—1
all have finite-dimensional range.
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Proof. The operator vy has an integral kernel in C*°(X x X), hence extends to L*(X).
Since C(X) is dense in L*(X) we have

u(C3(X)) € vo(H*(X)) € vo(L*(X))

with the first space dense in the third. If the second were infinite-dimensional, so were
the first. But this is not the case, for on C§°(X), v and v coincide.

In the following we may therefore assume that vy = 0. Choose a smooth function p
supported in a small neighborhood of the boundary and vanishing to first order on Y.
Clearly, I;(C*°(Y)) is dense in the range of K;. For ¢ € C*°(Y), however,

d=-1
v(p" g) = D Kvi(p"N ) = Kd-l[‘rd—md'l. - ).

3=0

As ¢ runs over C®(Y), v4_1p%"" - ¢ runs over C®(Y), for v4-1p%"! is a nowhere vanishing
smooth function. By assumption, v has finite-dimensional range, therefore also the range
of K4_, is finite-dimensional. Iteration completes the argument. q

4.1’7 PrOPOSition’ Let’ i, nu’ € Z: da d’ € N; a.ﬂd Jet P = {(pj’mj!Lj)}’ P' =
{(#},m}, L)} be two Mellin asymptotic types. For a € M54 (X) and b € MEY(X)

o(z) = a(z) b(2) (1)

the function

belongs to M&a,* (X), where

o p'=p+ s
o &' =max{y +d,d};

o P" is a suitable Mellin asymptotic type that can be determined from a and b; in
particular, rcP" C ncP UwcP'.

We are tacitly assuming that the composition in (1) makes sense, i.e. a(z) and b(z) are
acting on appropriately chosen bundles.

Proof. By 2.3.1 and 2.2.18, a(z)b(z) € A(C\(rcP U ncP"),B* 9" (X)). Also, if x is an
excision function for 7cP U mc P’ as in 4.1.1(b.ii), then we can find excision functions
xe and xp for 7cP and mcP’, respectively, with x = xxaxs- Then x(z)a(z)b(z) =
x(z) xa(2) a(z) xu(2) b(z), and we obtain 4.1.1(b.ii). Finally, let p € rcP U ncP’. Near p
write, according to 4.1.1 (b.i),

m m'+1

a(z) = Y ulz—p)F" + kZ vi(z = p)* + (2 — p)™ Fan(2) (2)
k=0 =0
m' m41

b(z) = Z:m(z -p)7 7 + Z: iz —p) + (2 —p)™*?ba(2) (3)
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Here, the v, are finite-dimensional operators in B=°%(X), the g are finite-dimensional
operators in B~ (X), v}, and g} are operators in B*%(X) and B*¥(X), respectively;
ay and by are holomorphic near p.

In view of the composition rules in Boutet de Monvel’s calculus, the finitely many opera-
tors vip, Vi, Vept), Vipt) are all finite-dimensional operators in B~>¢"(X), they generate
a finite-dimensional subspace. <

4.1.8 Theorem.
Mp® (X) = M5® (X) + Mp™*(X).

Proof. The proof is similar to that of 3.2.4. Let P = {(p;, m;, L;)} and v;; € L; for j € Z,
k=0,1,...,mj, and let a € M5* (X) have the form of 4.1.1(2).

Choose a line 'y C C that does not intersect rcP. Without loss of generality assume
that the line is 1"% and that the enumeration in P is such that Rep; < % for 3 > 0,
Rep; > § for j < 0.

Now fix a cut-off function w near 0 and let

0o mj -1 3
u(ty=>" i: vir 7P In* tw (c;t) + Yo S vt Pinttw ((Cjt)—l) -
j=0 k=0 j==00 k=0

Set b = Mu, the Mellin transform of u. For ¢; — oo sufficiently fast, the summation
will converge in the semi-norms of Mp°>*(X); the complete argument is given below.
Moreover, b has poles of order m,4, in p;, the coefficients of (z — p;) ™%~ are vjy, just as
for a. Thus a — b€ M4* (X).
Now for the missing part of the argument. A priort the sum converges to a holomorphic
function in the strip

{z: I?;DXRCPJ' <Rez < r&i(l)lRepj}

with values in B~>4(X). In fact, if the c; tend to infinity sufficiently fast, then the first
summation will converge for Rez > max;»o Rep;, while the second will converge for
Rez < minj¢o Rep; as a consequénce of Lemma 5.1.6.

Let us check that it converges indeed to a function in A(C\mcP,B*4(X)) for every
peR:

Let a < B € R be given. For N € N consider

oo My ~-N mj
bn(z) = M., LZ S vt In* tw(c;t) + 3 > vt Inftw ((Cjt)—l)
=N k=0 j==—00 k=0

Just as before, the summation for by will converge to a holomorphic function in the strip
{a < Rez < 8} provided N is sufficiently large. The difference b — by on the other hand
is a finite sum and meromorphic in the strip, again by 5.1.6.

In order to see that the convergence even is in M;w‘d(X), cf. 4.1.2, we now choose a
smooth function x on C, vanishing near 7c P and equal to 1 near infinity. By 5.1.6(c),

x(z)M, (177 ln“tw(cj-t))(z)
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is rapidly decreasing on each line I's, uniformly for 8 in compact intervals. Moreover, for
Rep; < % it tends to zero on {Rez > Rep;} as c; tends to infinity. Applying the corre-
sponding argument for Rep; > 3, the summation for (x bx)(8 + ir) will converge in the
topology of B**¢(X; R,), uniformly for 8 in compact intervals and arbitrary u’ € R, pro-
vided the ¢; tend to infinity sufficiently fast. Since there is nothing to check with respect

to 4.1.2(ii), this shows the convergence in M}‘;"d(X) for arbitrary g, thus in M;m‘d(X).
<

4.1.9 Definition. Let v € R, E, F Hilbert spaces.
(a) If f is a function on U C C, then let (T7f)(z) = f(z + ) whenever z + vy € U.

(b) For a polynomially bounded function g on Iy with values in L(E,F) let
opss9 : C (R, E) = C=(Ry, F)

be defined by
(opprg)(u) = Mg Mu

with the vector-valued Mellin transform M : L*(R,, E) — Lz(I‘%, E).
(c) For ¢ defined on Iy_y7 €ER, let

oprg =t opyy (T"’g) 17 = M,;lgMa,,

with the weighted Mellin transform M,, cf. 5.1.5.

4.1.10 Lemma. Let a € M,’;'d (X), n € Z,d€eN,d< py = max{y,0},y€ R, P a
Mellin asymptotic type with xcP NIy _, = B. Suppose that for fixed z, a(z) € B*¢(X)
acts on vector bundles as in 2.3.1. Then

Ce (X", V) Co(X", Vi)
opya: B — P (1)
Ceo (Y, Va) C=(Y", Vi)

is a continuous operator.

Proof. Without loss of generality assume V5 = V4 = 0, while V}, V; are trivial 1-
dimensional bundles, so we need not mention them.

If f € C&(X"), then so is ¢t f. Therefore, M;_..(t™" f) is rapidly decreasing on T'y. Since
cP N 1"4,_,7 =@, T™"a is holomorphic in a neighborhood of F,}-’ and

(T~"a) (% +ir) € B (X;R,).

Consequently, given any semi-norm r for B#?(X),
r (T"’a) (% + z"r) =0 ((r)").
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Hence (T™7a) M;_..(t77 f)(z) decays rapidly on Iy it has values in C®(X). Therefore

opjsa(f) € C=(X") by 5.1.2. Continuity follows from the continuity of the isomorphism
M : L*(R4) — L*(T}) and the closed graph theorem. <

4.1.11 Theorem. Under the assumptions of 4.1.10, opj; a has a bounded extension

HTE (XA, V) HeRTHE (XM, V)
opya: oy — D
RO (YA V) R (YA, V)

forallseR,s>d— .

4.1.12 Corollary. Let w,w' € C(R+). Under the assumptions of 4.1.10

(X ) Crmr (XA, V)
wopyla)w' : <) — D
TR ) KR (e 1)

is bounded for all s € R, s > d — 3.

Proof of 4.1.11. We make the same simplification concerning the vector bundles as in the
proof of 4.1.10. On the line F%--w a(z) is a parameter-dependent operator in Boutet de
Monvel’s calculus. We can write

d d
(s +ir) = 2 as(r)3l + 3 ri(r),
1=0 Jj=0

where the a; are local terms, given by symbols of order 4 — 7 and type zero, and the
second sum defines a global contribution: each r;(7) acts as an integral operator, and the
associated kernel is a rapidly decreasing function of T taking values in C®(X x X).
From 3.1.7 and 3.1.8 one concludes that the normal derivative 8, maps H*7(X") to
H*~17(X*) for s > 1. Moreover, the integral operators induced by the r; are continuous
on H*(X").

So we can focus on the first sum. In view of its locality and the above considerations
on the normal derivative we may assume that we are dealing with a single parameter-
dependent operator a = a(7) of order u and type zero in Boutet de Monvel’s algebra on
RY, supported by a compact set, uniformly in 7. Now use the observation made in 3.1.8
that M,_2H*"(R} x Ry) = Fop H*(R] x R). The index n +1 for F indicates that the
action is with respect to the last variable. Applying additionally the Fourier transform
with respect to the first n — 1 variables, F', the space F,H*(R]} x R) is mapped to
W (R™! x R, H*(Ry)). From all this we conclude that

opjw_g_a = M_:%}_'_lop w0F My_p cH™(R} x Ry) — H7*7(R] x Ry)
is continuous if and only if
(F Frp1) topopa (F Fop) : WHR™ x R, H*(R,)) = WH(R" x R, H**(Ry4))
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is bounded. The latter fact, however, was proven in 2.2.19. Notice that we can omit the
subscripts comp and loc, for a(7} is compactly supported. g

For completeness we note the lemma, below.

4.1.13 Lemma. Use the notation of 4.1.10 and assume additionally that d = 0,s > 0.
Then the operator A = opjsa has a formal adjoint A* with respect to the dualities

HOHE (XA, VR) @ HOTHER (YA, Va), 1T TR (XN V) @ Mo TR (Y, Va)
and
s—p+ 3 YA s~y +3-yA =Stu=T=F  yoA —stu—r-F-t A
H 2(X :%)@H 2 2(Y 11/‘1)1%{0} (X 3‘/2)@7{ E 2(Y 51/4)

Here, the index {0} means that we use the Hy—spaces for s — p > 0 and the usual
‘H—spaces otherwise, cf. 3.3.1. We have

A* =opyy "a® with o =a(n+1-32)% (1)

the last asterisk indicates the matrix adjoint. The fact that a € Mp°(X) implies that
a™ ¢ Ms’O(X) for a resulting asymptotic type Q.

Proof. Since the type is zero, this is easily deduced from the usual result, cf. [29] 1.1.4,
Proposition 16. For completeness, the detailed proof is given in 5.1.10 <

4.1.14 Theorem. Let a € Mp’d (X), with p,d, P as in 4.1.10. Moreover, let w,w' €
Ce(Ry) and g = (v + 2,0),0 = (0,0] be a weight datum.

Then for every asymptotic type @ = (Q1,Q2) € As(X,Y,g) there is an asymptotic type
R = (Ry, R2) € As(X,Y,g) such that

Kort% (XA W) K03 (XN W)
wopy(a)w' : o) —_ @
Kot % (YA, V) K2 (YA V)

is continuous for all s > d.

Proof. For simplicity we may assume that V; and V; are one-dimensional and scalar, while
Va = V4 = 0 and that v = 0. In view of the definition of the spaces Kp"(X"), cf. 3.1.18,
we may also assume that @ = (6,0] is a finite weight interval. Supposing that @, has the

form {(g;,n;, N;)}, write u € )CB'?(X") in the form

J ny

u(z,t) =YY cilz)t™¥ In* tw, (2) + uo(z, t) = wy(z,t) + uolz, t)

3=0 k=0

with ¢;x € Nj, a cut-off function wy, and ug € ICZ)&(X").
Writing P = {(p;,mj, L;)} and supposing that rcP 0 {% +80 <Rez < %} = {Pj1s - Pia}
we decompose

a(z) = a1(z) + ao(2),
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where ao(z) € M}‘;‘d (X) is holomorphic in the strip {% + 80 <Rez< %}, and

J2
ai1(z) = Y vjsMi—, (t"”' lnktwg(t))
j=n
with an arbitrary cut-off function w; near zero and suitable v i, cf. 4.1.4.
Now we consider the terms separately. By 4.1.12, wop ,(a)w' : Kg? (X*) = Kg ~* (X?)
is continuous. So we only have to consider the action of wop%,(a)w’ on u;. By linearity,
it is sufficient to assume that

U, = ct7? lnktwl(t) (1)
ay = vM_,(t7n twy(t)) (2)
for fixed p,qg € C,k,l € N,v € B~=¢(X),c € C*®(X). By 5.1.6
dk
—p1 k _
M, (tTPIn " tw () = E(z '®(2))(z - p),

where @ is the Mellin transform of a C§°(R) function. Applying the same argument to
ai, a1(Mu;) = v(e)y¥(z), where 1 is a meromorphic function on C with poles at p and g,
possibly p = ¢.

From Theorem 5.1.7 we know that v is rapidly decreasing outside the poles on all lines
[s. So we may choose coefficients dj,e;,7 = 1,..., N such that

N
P(z) = 3 M (dit™P In? twi (8) + e;t™7In twy (1)) (3)

1=0
is entire and therefore satisfies the estimates 5.1.7(2). Hence it is the Mellin transform
of a C°(R4) function, and a,(Mw,) € KZ;{IH'%(X") provided the asymptotic type takes
care of the singularities arising from (3).
The argument for wop §,apw’u; is similar: Let x € C*®(C) vanish near p and equal 1
outside a neighborhood of p. From the estimates in 4.1.1(3) for a¢ in connection with
those for M;_.,u; we conclude that

v(z) 1= ap(2)ex(2)Miez(t P In* twi () = O((2)™)

for arbitrary m, uniformly on all lines Fg,% +0<p< %, and with respect to all semi-
norms for the topology of C®(X). Therefore M~'v € H*"#%78(X"),0 < § < 0. Near
z = p, ao{z)c is a holomorphic function with values in C*°(X); so we can find coeffcients
d; € C*(X),l =0,...,k such that

ao(2)eM_,(t7P In* twy (1)) - Zk: dM,_.(t7"In tw(2)) (4)

=0

18 holomorphic near z = p. We know the behavior of the terms under the summation from
5.1.6, and conclude that

wMag(2)eMy_, (7P In* twy (1)) € IC;{“’EL(X’\),

provided the asymptotic type R contains entries corresponding to the singularities arising
in (4). <

71



4.2 Mellin Operators and Green Operators

The following lemma is elementary but useful.

4.2.1 Lemma. Let f be meromorphic in an open set U C C; let py,...,ps be the poles
of f with respective multiplicities m; 4+ 1. Choose a contour C in U around the poles with
winding number 1 for all poles. Define a holomorphic functional {; carried by {pi,...,ps}
by letting

(s, ) sz f()h(z)dz, ke AC).
Then, for t > 0,

(¢t = Z): S nk e,
j=ok=0 K

)-k—l

Here, the ¢;x,k = 0,...,m; are the coefficients of (z — p; in the principal part of the

Laurent expansion of f near p;.

4.2.2 Proposition. Let G be a regularizing singular Green operator of type zero with
finite-dimensional range, v € R,k € N,w,w, cut-off functions near 0 € R.;. Let C be a
smooth contour in the half plane {Rez > % — v}, and suppose C has winding number 1
with respect to the point p € C.
Then the operator A defined by

z —k-1
Au(t 2m j t7*G(z — p) M(wu)(2)dz
for u € C(X") maps any space K*7+%(X"),s > 0, to the finite-dimensional space of all
functions of the form

k
=Y c;(z)tPIn’ tw(t), ¢; € imG.

=0

Proof. Since u € K*"*3(X"), M(w,u) is holomorphic in {Rez > 1 — v} with values in
H?*(X). In particular, near p,

k
M(wiu)(z) = ; de(z)(z = p)* +7(2)

with d; € H*(X) and r a holomorphic function with a zero of order at least k + 1 in p.

By Lemma 4.2.1,
k

Au(z,t) = w(t) ¥ G(de)(z)t P In*~4 1.

=0
This proves the assertion. ' <
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4.2.3 Theorem. Leta € M,‘i_’i(X), i € Z,d € N, P a Mellin asymptotic type. Moreover,
let v € R, 2 0,w,un € C°(Ry), and suppose that

mcP N F%_,y =7ncP N F%-'H-ﬂ = 0.

Then

wt? oply(a)wy —wop(TPa)tP wy € CE(X", 9)o.R (1)
for suitable asymptotic types Q, R € As(X,Y,g),9 = (v + },7 + },(—00,0]), depending
on P. The operator in (1) has finite-dimensional range. It is given as in 4.2.2 by a contour
integral around the finitely many singularities of a in the strip between F%_., and Fg__ﬂ_ﬁ.

Recall that (T?a)(z) = a(z + B).
For 8 < 0, the same is true with the weight datum g = (v + % — 8,7+ § + 8,(—00,0]).

Proof. (cf. (29}, 1.1.4, Theorems 20, 21) Let us first consider the case 8 > 0. We may
assume that the vector bundles a is acting on, cf. 4.1.10(1), are trivial one-dimensional
over X and 0 over Y. Applying 4.1.5 and 4.1.8, we may write

d
a=ag+a = ﬂo+2blai.n
=0
with ag € M5%(X),a, € Mp*=*(X), and b € MEW‘O(X). Denote by A the operator on
the left hand side of (1). Then A = Ag + Ay = Ag + Tiy Bi8._ where A;, By are the

corresponding operators with a replaced by a;,7 = 0,1 and 4,1 = 0,...,d, respectively.
Choose u € C(X"), and let v = (27i)~' M (wu). By 5.1.9

Aju(t) = wt? t*a;(z)v(z) dz — w/ t™%a;(z + B)v(z + B) dz

Cioy Fy—y
= wt? (/[‘ t™*a;(z)v(z) dz _/r t™%a;(2)v(2) dz) .
- t—v+8
Since v decreases rapidly, Cauchy’s integral formula implies that
Aju(t) = wt? ]C 17%a;(z)v(z) dz, 2)
where C is a smooth curve around the finitely many poles po,...,ps of a; in the strip

{3 —v<Rez< ;—7+p8} Applying Lemma 4.2.1, Agu = 0, hence A = 0.
Now let us show that A, is a Green operator of type d. Recall that a; = 32, bgai“. Write

J m;

bi(z) =33 Gz —p;) "' + h(2),

1=0 k=0

where % is holomorphic in the strip, and G are regularizing singular Green operators of
type zero. "

Given s > 0, Proposition 4.2.2 shows that B; maps K*7+%(X?) to SZ,+T(X"‘), continu-
ously, whenever () is an asymptotic type containing the above singularity data.
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The opera.tor opasbr has a formal adjoint opjy 75 by 4.1.13. Now b{"(z) = b(n + 1 —
z) € M 20 with an asymptotic type P’ induced by the operation in 4.1.13(1). Moreover,
B! = wilopib)"t? T — oy tPlop}, TPb)" @
= wropy (6Nt T thﬂop;l"—"(T_ﬁb,(')) o
= witPopyy M(a)w —wropy M(TPe)w

where aq=-T" ﬁb(' Using 4.2.2 we conclude as above that B maps K*™"~3(X*) to

S-"- (X*) for a suitable asymptotic type R.
Now assume that 8 < 0. Write b = T%a. Then by (1)

wtfopls(a)wy = wtf op T P(b)wy = wopl(b)wy 1P + GtP = wop)(TPa)wy P + GtP.

<

4.2.4 Remark. In particular, the proof of 4.2.3 shows that the difference

wt? opls(a)w; — wopl(TPa)t w,

is zero if @ has no singularities in the strip {% —~v<Rez< % — v+ B}

4.2.5 Theorem. Leth € M"°°d(X) 7 € R, NcPﬂFl_ Y= 0. Moreover, let w,wy,ws, ws, wy
be arbitrary cut-off functions near 0 € R, and ¢ € C§° (R+). Then

(a) wopis(h) @ € CZ(X", 9)0.0-
(b) popy(h)w € C&E(X",g)o.r
(c) wyopis(h)wy — w3 opie(h)ws € CE(X™, 9)q R

In (a), (b) and (c), @ and R are suitable asymptotic types in As(X,Y,g) that can be
computed from P; O is the 'zero’ asymptotic type, and g is the weight datum g = (v +

‘%, Y + %’ (_001 0])
Proof. (a) We may write h = Y4, he8% with ke € Mp™°(X). Then

d
wopirhe = Y wopirhepd;,, (1)
=0

so we may assume without loss of generality that d = 0. Multiplication by ¢ maps any
space K*7+7 (X ") continuously into K 'ﬂ%(X") this in turn is mapped to [w] Kp 1+7(X")
— S‘H-’(X") by wopjish. The adjoint of wopishe is opy, "R T with A*® as in
4.1.13. Since h € M5;7°(X), the adjoint maps K*~7~¥(X") to [<p]ﬁC°°'-7-5l(X") —
80"-_(X") This proves (a). Note that the type of the resulting operator is zero, since

G is of type zero, if G is a Green operator of type d.
(b) is proven in the same way. Now, the type will remain d.
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(c) follows from (a) and (b) writing
wi0p s (h)wr — wsopjy(hws = (w1 — ws)opjs(h)wz + wsopis(h) (w2 — wa)

and noting that both (wy — w3) and (we — wy) belong to C&(Ry). <

4.2.6 Remark. (a) In the notation of 4.2.3, we have for f € C2°(X") and B € R

Poopli’@uw f = Yo / t=¢a(¢) M(w1 )(C)dC

k=740

= w / *a(z + B)M(w1f)(z + B)dz
= wopM(Tﬂa)wlt‘Bf. (1)

By 4.2.3, the last operator equals w t?op}s(a)w; f modulo a Green operator, say G. Here
we have assumed that I‘1 yNmcP = § = F%—ﬂ-ﬁ N wcP. For every j > B we therefore
have

wtioply(a)w; — wtioplrP(a)wy = PP G,

which also is a Green operator, namely with respect to (y + 3,7 + %,(—00,0}), even
(v+ 2,7+ 2 45— B, (=00,0]) for > 0 and with respec to (7+5 — 8,7+ & +3, (~00,0))
for 8 < 0.

(b) In view of 4.2.4 and the discreteness of the singularity set we note the followmg
consequence: If j > 0, I'y_, NwcP =0, and € > 0 is sufficiently small, then on C§° %)

wtioply(a)w; = wtioply(a)w. (2)
Part (a) of this remark is the basis for the proposition below.

4.2.7 Proposition. Let vy € R,j > 0, and 0 < pi,pk < j,k = 1,...,r. Moreover, let
Py, P, be Mellin asymptotic types with ¢ P Ty = 0= chéﬂr%_,ﬂ_p;, and finally

let ax € Mp(X), 0, € ME(X). Forw,wr € C°(R,) define

T
A = wt’d opir*(ar)wi, and
k=1

A = wt’ZopM (a})wr.
k=1

Then A — A’ € C4(X",¢)q,r, whenever 5, ax(z) = Thoy ak(z) for all z.
Here, g = (y+ 5,7+ %,(—00,0]); @ and R are resulting asymptotic types.

Proof. Choose any # with 0 < 8 < j such that 7c P N Pi-—%ﬁ =0 =rcPN F&—‘Hﬁ'

Consider the operators A = wt! T1_, opl7®(ax)wy and A’ = wt! S5, opXr”® (a}) wr. Ac-
cording to 4.2.6(a) we have

Gi=A- A' € Cé(XAagl)Pl.Ql and G = Al — /‘i’ € Cg;(XAa.(h)Pz,Qz
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with suitable asymptotic types and weight data. Moreover, A and A’ both define bounded
maps from K*7+ 5 (X*) to K*~#7+5(X ") for s > d—1, since K73 (XA) e Ko1+R-F(XA);
the latter space is mapped continuously to K*1+3-P+i( X)) — K#7+8(XA) by wifopls” (ax)uwr
in view of 4.1.12. By 4.2.3 the Green operators G; and G are given as contour integrals
around finitely many of the singularities of the a; and &} in the strip between L1,y and

Iy yyjo Writing G; = T2_o G;10F the same is true for the Gji. The continuity of A — A

and A’ — A’ on K*Y*% then implies that the weight data G, and G, can indeed be chosen
to be (v + 3,7+ 5,(—0,0]). Noting that by assumption A — A’ = 0 we obtain the
assertion. <

4.3 The Algebras Cy¢(X",¢) and Cyre(D,g).

4.3.1 Definition. Let p,v € R, u—v € N,d € N, and let ¢ = (,7—p, ©) be a (double)
weight datum, v € R. We suppose that @ = (—k 0] for some k € N\ {0}.
For d € N we let C} +G(X"‘,g) denote the space of all operators A = Ay + A, where

Ap is a Mellin operator of the form Ay =¢7* Zk_o w; P opyr(h;)@; with
i M\ w;

(i.1) suitable cut-off functions w;,@; near zero,
(2) y—(p=—v)-j-3<v<v-%,
(i.3) h; € Mp™%(X), and
(i.4) Mellin asymptotic types F; with rcP;NTy_, = 0.
(ii) Ag is a Green operator in C&(X",g)pq for suitable asymptotic types P,Q €
As(X)Y,g).

Clearly, Chfia(X",9) € Chta(X",9), since

k-1
t'"ZwJ 1 ops(h =1 F ij -y op;{’l(hj)cb_,
=0 =0

and g —v € N. CM+G(£D ,9) 1s the corresponding space where in (ii) we replace X* by
ID, and in (i) we additionally make the support of w;,&; so small that the operators are
well—deﬁned on the cylindrical parts of ID close to the singularities. In view of 4.2.5 we
might also ask that the cut-off functions w; and @; are independent of j.

In the following we will assume that +,x,v € R,d € N, and the weight datum ¢ =
(7,7 — u,©) are fixed with the properties in 4.3.1 unless specified otherwise. In order to
also fix the notation suppose that A acts on vector bundles V4,...,V, in the following
way:
Ceo(X"\ W) Ce (X", W)
A: @ - @
C&(YH, Va) C*® (Y™ V,).
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4.3.2 Remark. Using Theorem 4.1.5 and the definition of the Green operators, an
operator A € CM+G( A g) can be written

4.3.3 Theorem. For operators A € CM+G( ",9) and B € CM+G( ,g) the mappings

K (X" W) Koo “( V2)
A: @ —
Ksn'—%(y/\, %) Kooor—n= (Y/\’ Vd)
and
H*Y (D, V) Her (D, Vz)
B @ — @

HTE(B, V) HRTTEI(BL V)

are continuous for all s > d — .
IfP=(P,P,) € As(X,Y,(v,Q)) is an asymptotic type, then there is a resulting asymp-
totic type P' = (P|, P}) € As(X,Y,(y — u,©)) such that

8.')’(XA Vl) )CE.W—#(XA,%)
A: S — ®
K -‘7‘5'(1/,\ Vé) K:°°‘Y #'%(YA V4)
and
"*(ID ) HE (D, Vi)
B: — @

Hy *(IB V) MR,V

are continuous for all s > d — 5.

Note: Since © = (—k,0] is a finite weight interval, 7cP, and mcP, are finite sets in
the strip {3 — v —k < Rez < 2! — 4}; nc P and wcP, are finite sets in the strip
{(H+p—-v-k<Rez <2 4 p—q}, cf 321

Proof. This is immediate from the definition of the Green operators, see 3.3.1, and,
moreover, the mapping properties for Mellin operators: In view of the fact that v; >

—n/2, we have K*7(X") — K*%+3(X*); the latter space is mapped continuously to
1C°°"’J+3'+’ Y(XM) o Kor=#(X") by wt™*Hop;(h;)w: in view of 4.1.12. <

4.3.4 Lemma. Let A € Cfj\5(X",g) be as above. Given o, 8 > 0 with a + 8 > k we
will have
¢ Atﬁ S Cg(XA’g)P,'Q,

with resulting asymptotic types P’ and Q)'. In particular, CM+G( A g) C C&(X™,g) for
pw—v >k
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Proof. For simplicity let us assume that we are dealing with a scalar bundle over X* only.
If G is a Green operator, then so is t* Gt?, and the type will not increase.
On the other hand suppose that k;, P;,w;,&; are as in 4.3.1. By Theorem 4.2.3 we then
have

£+ w; 7 opgy(hy) at” = w; t™ P op(T0h;) & (1)

modulo C&(X*,g), provided that F%_,ﬁ_ﬁ NrcP; = 0. Let us show that the operator on

the right hand side of (1) also is a Green operator. Applying 4.1.5 and. writing 7~%h; =
Yoo b5 with by € M;J_°°‘0(X) we see that it is no restriction to assume d = 0. For
any s > 0, the right hand side then maps K*7(X*?) to w; Koov—v+a+b(XA) s ST™H( X 1),
Here we employ the assumption that o+ § > k. Taking into account the Green operator
omitted in (1) we will, however, in general have a non-trivial asymptotic type. The adjoint
of the operator on the right hand side of (1) is, according to 4.1.13,

@;0ppy T PR tetPri=vg = G o HPop (T H )Mt~ i, 4 GtV H

with C&(X”", k), and h = (—y+ 2, -~ + £,0), provided we again avoid the singularities.
So its Mellin part maps K*#~7(X*) to &; Ko~ 7He+B( XAy s S57(X ). Here we are using
the estimate —y+ (u —v) +j > —y; — 3 2 —y of 4.3.1 and a + § > k. Again, the Green
part might generate non-trivial asymptotics.

In case we would hit the singularity set with either one of the above constructions we
make the following consideration. Since the singularity set is discrete, we may commute
any slightly smaller power to the left without problems. We then obtain (1) with an
exponent —v + « + B + 7 — € for t on the right hand side; the Green operator by which
it differs from the operator on the left hand side is given (as in the proof of 4.2.3) by
an integration around the finitely many singularities of k; in the strip between I'y_,._g,
and F;__,yj. For sufficiently small ¢ its range will be independent of € and will be spanned
by functions of the form ¢(z)t™* In* tw(t) with ¢ € C®(X), w a cut-off function near
0 € R,, and p a singularity in the strip. The range of the operator on the right hand
side of (1) will be contained in SF7™*7°(X"). Since this is true for all ¢ > 0 the range is a
subset of SZ°(X"), cf. Definition 3.2.9. Adding the above Green operator we will have
a finite asymptotic type. An analogous argument applies to the adjoint. <

4.3.5 Definition. Let A = Ay + Ag € CK;‘:_G(X"‘,g) be as in Definition 4.3.1. Define
N A =k i =0, k—(p—v)—1,

and call a,‘(]j(A) the conormal symbol of order v — j of A.
Note that for j > k — (u — v), the operators w; t™* op};(a;)@; are necessarily Green
operators.

4.3.6 Remark. We know from Proposition 4.2.7 that two operators in Cﬂ:_c(X’\,g)
which have the same conormal symbols of all order differ only by a Green operator,
provided the weights ; are suitably chosen.

Vice versa, the conormal symbols ay;?(A),j7 =0,...,k—(p—v)—1, are also well-defined.
This follows from the proposition, below, which is of independent interest.
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4.3.7 Proposition. The operator A in 4.3.3 is a Green operator, if and only ifo;';j(A)
0,7 =0,....k—(p—v)—1.

Proof. In view of 4.2.7, we only have to show that the conormal symbols vanish for Green
operators. In order to see this, we can essentially use the argument given in [27], Section
1.3.1, Theorem 4. For simplicity let us assume that we are dealing with a trivial scalar
bundle over X* only. Choose a cut-off function w near zero and a function ¢ € C§*(X).
For p € C with Rep < 1 let u,(t) = t~Pw(t)- ¢(z). By 5.1.6(b) we have M., u, = v(z—p),
where

¢
o(2) = M] (2) - 6= (S 4 £(2)) - 6 1)
with an entire function f and some ¢ # 0. Choose an operator
-1
A=t> witopyy(hj)@; + G
=0

with the notation of 4.3.1. We will show that we can recover the functions h; by consid-

ering M,_,,Au,.

We may choose w with support very close to zero. Therefore it is no loss of generality to

ask that @; w = w; in other words, the functions &; can be ignored in our consideration

of Au,.

Let us now analyze the effects of the various operators starting with G. We have G =
;’=0 G;8? with G, of type zero. The normal derivatives do not affect the form of (1),

so assume that G = G. For each fixed p, Gu, belongs to Kg""™#(X") for a certain finite

asymptotic type R independent of p. Suppose p varies over a bounded open set K. Since

u, depends holomorphically on p, M,_.,Gu, will be a holomorphic function of both, z and

p, as p varies over K and z varies over a set of the kind
R.,pg={2z€C:a<Rez< f,Imz > ko}, (2)

where kg is a constant depending on K, @, and ,a < § arbitrary.

Now consider w;t’ opp7h;u,. We first assume that mc NIy = 0. Then we havew;t’ opyrhju, =
w;t? opSyhju, + 1717 Gyu, according to 4.2.6(a), with a Green operator GG;. We may apply
the above argument and see that M,_,t"*%Gu, is a holomorphic function of z and p
whenever p runs over a bounded set and z over some R, . The functions u, all belong

to L*(X"), hence also op,h;u,. By 5.1.8 the Mellin transform of (1 — w;)t? op}shju, is
holomorphic in {Rez < } + j}. Finally

Mia[toply (h;) upl(2) = Mies[ophy (hs) wpl(z + §) = hj(z + G)o(z + 7 — p)-

Now we fix jo and choose K a small neighborhood of 0. The we pick a zp with imaginary
part so large such that all functions h;(z+ ) and all functions M;_,,Gu, are holomorphic
near z = zp for all p € K. We then integrate M,_,, Au, over a small contour C' around
20 + jo. By Cauchy’s formula, the holomorphic contributions vanish, and (1) implies that

1 .
%L Mt_.zAup dp = hjo(zo -+ jo)q’)

Since we may vary zp slightly and since we know that the k; are meromorphic functions,
we conclude that h;, and consequently all A; are uniquely determined by Au,.
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In particular, if A is a Green operator then all h; are zero.

Should 7cP; N I‘% . be non-empty, then 7cP; N FL_J ¢ =0 and mcP; N Tyrjme = @ for
some € > (. Wlth423
thopyh; = t7(t’topiih;)
= t™(topaihi(- + €)t° + Gy). (3)

Now apply the preceding argument to t°A. This operator acts with respect to the weight
datum g, = (v,y— ¢ +¢,0), it is a Green operator if and only A is. Thus we also obtain
the assertion for A. <

4.3.8 Theorem. Let A € Cyfyq(X*,9),9 = (7,7 — #,0). Then the formal adjoint A*
of A belongs to Cypp(X™ k), h = (=7 + p,—7,0).

Proof. Let A be as in 4.3.1. Consider the formal adjoint A™ = A3}, + Ag. By assumption,
Ag is of type zero, so it is immediate from 3.3.1(1), (2) that A% € CZ(X*,g)q.p.
By 4.1.13

[w; 77 opli(hs)ds]" = 17 &;opp TR
= 7V, op""“*"[T"hg Nt @

= 17 opy I A @

according to 4.2.6(a). Since

n , n .
(k=M -(-v)-j-g=—1+v-j-5gS—y-—ntv-j<-r+p-3

we obtain the assertion. <

4.3.9 Theorem. Let A € Cyfho(X",9), H € CE(X h)q.r, K € CE(XA, k)sr, where
h=(y—4,600),k=(6+0), and Q,R,S,T are corresponding asymptotic types. Then

HA € C&X " hi)g (1)
AK € CE(X" ki)g r (2)
with hy = (v,6,0), ky = (6,7 — 1, 0) and resulting asymptotic types Q, R.

Proof. As usual, it suffices to prove the case where the operators act on a trivial one-
dimensional vector bundle over X* only. Using 4.3.2 and the definition of Green operators
write A = Zf:o A;0I, H = Y4, H0!, where A; and Hj are of type zero. Now

d d
HA =Y (3 Hi0.4;)0
7=0 =0

Let us show that each of the terms H;0’ A; is a Green operator of type zero. In order to
see this notice first that A;; := 9! A; € CK,‘&_G(X",g) as a result of the composition rules
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in Boutet de Monvel’s calculus (for the Mellin part of A;) and of the representation of the
Green operators of type zero as integral operators, cf. 3.3.2 (for the Green part of A;).
Now the assertion is immediate: Aj; maps K*7(X") to K7 #(X”) which is in turn
mapped to Sg(X") by H;, cf. 4.3.3 and 3.3.1. The operator A; has an adjoint in
Crtrc(X2,6%),9" = (=7 + 1, —7,0), for it is of type zero.

Vice versa, for any s > 0,{H|Aj]* = A} H;; H maps K**(X") to Sg7"(X"). Applying
A;g,,sthis space is mapped into §37(X") with a resulting asymptotic type according to
4.3.3.

The proof of the statement for AK is similar., <

4.3.10 Theorem. Let A € CM+G(X",g) and B € CM_,_G(X",h) with h = (y+ ¢',v,0)
and g = (v,7y—u,0). Then AB € Cﬁ:ad (XM k) withk = (y+4',y—u,0). The conormal
symbols satisfy the relations

u+u —r(AB Z [Tu -q u—P ] M—Q(B)

ptq=r

Proof. We already have dealt in 4.3.9 with products of elements in CM_,_G(X",g) with
Green operators from the left and the right. It is therefore sufficient to treat a product

of the form ‘
t="Hwopli(a) wit™ HopRi(b)w,. (1)

Applying equality 4.2.6(1), (1) equals

==Y G op T T ) wyopT (b) we. (2)
In general, we can now push the weights «; + ' — [ and +, to the common possible weight
v3 = v+ v' — I — 5. Moreover, we may omit the factor w; in the middle, producing an
error term which is a Green opera.tor. If we believe both statements for the moment, the
fact that op}3 (T ~'a)oprsd = op[(T*~'a) b] gives the assertion.

The above choice of the weight is not possible in case either a or b has a singularity on
Popr_y_pyy In view of 4.3.1(1) this can only happen if we have additional freedom in the
choice of either 4; or ;. Then we may move the weight to a line slightly to the left or
the right avoiding all singularities and still have the composition (2) well-defined as an
operator from K**#'(X*) to K*7#(X"); the conclusion is as before.

In order to see the statement on the factor in the middle, first assume for simplicity that
the types of a and b are zero. Given u € K*7H#' (X)), 0pl3 () wou € H®¥+#'(X*). There-
fore v = (1 —w;) opR3(b) wy u € HN(XA) for arbitrary N > 0, so that woply(T*'~a)v €
[wi]KoN(XA) — S (X7). This mapping also is continuous as a consequence of the
closed graph theorem and the fact that wop}3(7*"~'a) (1 — w;)op}ibw, is continuous on
K+ (X)), Since we had assumed the types to be zero, we may now apply the same
argument to the adjoints. The general case presents no additional difficulties. <

For completeness we note the following result.
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4.3.11 Lemma. Let A be as in 4.3.1 and assume additionally that p = 0,0 # —v € N.
Then
A KX MN) = KP(XM)

is compact for every s > —1,

Proof. This is immediate from the continuity properties in 4.3.3 and the fact that the
image of the Mellin part of A is in fact contained in K*®7+¥(X”) which is compact in
Ko1(X1). <

4.3.12 Definition. Let A € Cyf.o(X",9),7 € R,d € N,g = (7,7,0),0 = (—k,0]. We
shall say that the operator I + A is elliptic, if

I+ 03 (A)(2): H(X, V) @ H*(Y, V5) » H (X, V1) @ H'(Y, V)

is invertible for all s > d — % and all z € F%i—-v'

As a preparation for the proof of Theorem 4.3.15, below, we need the following teo lem-
mata.

4.3.13 Lemma. Let P be a Mellin asymptotic type, d € N, and h € M;w‘d(X). Then
I + h(z) € B~*¥(X) is an invertible operator on H*(X,V;) ® H*(Y,V3),s > d — %, for
all but countably many z € C. Moreover, there is a Mellin asymptotic type @} and an
f € M3=*(X) such that

I+ h(2)]7" =T+ f(2).

Proof. For each z € C\nc P, h(z) is a regularizing operator of type d in Boutet de Monvel’s
calculus. Therefore {I+h4(z) : z € C\mc P} is a holomorphic family of Fredholm operators
on H*(X,Vi) @ H*(Y,Vs). For each 8 € R we know that A(f +i7) € B~4(X;R,); the
corresponding estimates are uniform for # in compact intervals. Consequently,

1R(8 + ir)ll = O(({r)™")

on each such strip so that I + h(z) will be invertible for large imaginary parts (here the
norm is taken in L(H*(X, V1) ® H’(Y,V3)), and the estimate is in fact much better).
Therefore, a well-known theorem from operator theory, cf. [27], Section 2.2.5, asserts that
[T+ h(2)]7! exists on C\rc P except for a discrete set which can have accumulation points
only in the singularity set of P. Moreover, the above theorem states that all singularities
of [I + h(z)]™! are poles and that the coefficients in the Laurent expansion in these poles
are finite rank operators.

Let us show that the singularities of [/ + h(2)]~! have no accumulation point. For each
pole, say zq, of h, we can write I + h(2) = I + ho(2) + Eﬁl F;(z — 20)™7 with suitable
M € N,hy € Mp™?(X) holomorphic near zg, and finite rank operators Fj. Note that
ho #£ —1. Writing h,(z) = Z_ﬁl Fj(z — 20)™7 we have

I+ h(z) = (I + ho(2)) (I + (I + ho2)) "k (2)).

82



Since hg is holomorphic near zg, and I + ho(z) is Fredholm and invertible for large imagi-
nary parts, the above-mentioned theorem asserts that the inverse to the first factor on the
right hand side exists in a small neighborhood of zy except possibly in 2zy. For the second
we notice that (7 + Ao(z))~*h,(z) can be written in the form H(z) + N, Ax(z — z0)~*
with suitable H, holomorphic near 2o, and finite rank operators A,,..., Ay. Moreover,
the operator (I + ho(z)) ' h,(z) will vanish on the intersection A of the kernels of the op-
erators Fj,j = 1,..., M, which is finite-codimensional. Denoting by A; the intersection
of the kernels of the operators A;,..., An, we have H(z)u = 0 for all u in the finite-
codimensional space Ay N A,. Lemma 4.3.14, below, therefore implies that the second
factor also is invertible near zp although possibly not for z = 2.

Let us now have a closer look at the inverse to J+h(z). From Theorem 2.3.8 we know that,
for fixed z,{I + h(2)]™! = I + f(z) with f(z) € B~>¢(X). By the above considerations,
the singularities of f are all poles, they have no accumulation points in finite strips
{a1 € Re(z) £ ¢3}, and the coefficients in the Laurent expansion are regularizing finite
rank operators in Boutet de Monvel’s calculus.

It remains to check the condition on the decay of f outside the poles. Write || - || for an
arbitrary semi-norm in B=*¢(X). Fix a strip {c; < Re(2) < ¢;}. Instead of multiplying
by an excision function of the poles we simply consider f outside the compact set K =
{z:c1 <Rez< e, —R <Imz < R}, where R > 0 is so large that K not only contains
all poles of f in the strip, but also ||h(2)|| < ; outside K. Then [/ + h(z)]™' = O(1)
outside K. We conclude from the identity (1 — z)™! =1+ z(1 — z)~" and the estimates
on h that for arbitrary N > 0 we have || f(z)|| = O({Im z)~"). Hence f is a Mellin symbol
with asymptotics. <

In the proof we have used the following lemma.

4.3.14 Lemma. Let U C C be an open neighborhood of 0, E a Banach space, N € N,
and Ay,...,An € L(E) operators of finite rank. Let H be a holomorphic function on U
with values in L(E) such that H(z)u = 0 for all u in a finite-codimensional subspace Kj
of E. Then there is a § > 0 such that the meromorphic L(E)—valued function

F(z)=T+H(z)+ i Apz*

is invertible for all 0 < |z < 6.

Proof. The intersection K of the kernels of A;,..., Ax is a closed subspace of E with
finite codimension, and so is K = Ky N K. Hence we may choose a finite-dimensional
subspace C of E such that £ = K @ C is topologically direct. With respect to this
decomposition, F' has the matrix
I *
F(z) = [ 0 = l

for, if u € K, then F(z)u = u. In particular, F(z) : L(E) — L(FE) is invertible if and only
if PcF(z):C — C is invertible; here P¢ is the projection onto C along K. Now

PcF(Z) =Ilc+ Pcﬂ(z)Pc + ZPcAN_chz-k
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can be regarded as a meromorphic matrix-valued function. Applying Cramer’s rule, it is
invertible in a neighborhood of z = 0, except possibly the point 0 itself. <

4.3.15 Theorem. Let A € CM+G( A g) be as in 4.3.12, and suppose I + A is elliptic.

Then
K= (X", W) K1 (XM W)

I+ A: @ — 7]
Ko Ya ) Km(Y V)
is a Fredholm operator for all s > d.

Proof. Write h = o3,(A); denote by P the Mellin asymptotic type of . By Lemma 4.3.13
[T+ h(z)]~" exists outside a discrete set in C and equals ]+ hy(2) for some hy € Maw'd(X)
and a suitable Mellin asymptotic type Q. By assumption I + h(z) is invertible for all
z € I‘_L , 50 hy has no singularity along this line.

We construct a Fredholm inverse I + B to I + A by letting B = opj,(h1). Clearly,
I+ B e Cyt (X", g). By Theorem 4.3.10, the identity (I + h(2))(I + hi(2)) = I implies
that o (/+ A)I+B)-I)=0= 024((1—4- B)(I+ A) —I). Therefore (I+ A)(I+B)—1
and (I + B)(I+ A)— I belong to Cry% (X", g), thus are compact operators by 4.3.11. <«

Theorem 4.3.17, below, gives a slightly weaker converse of Theorem 4.3.15. The following
lemma shows that the weights 4 can be shifted to arbitrary values by 'weight conjugation’.

4.3.16 Lemma. Weight Conjugation. Let g = (v,7~ p,0) and k = k(t) € C®(Ry)
be a strictly positive function equal to t for small t and equal to 1 for large t. Then for
arbitrary p € R

k0 A k=2 0
[ 0 k*° ] C’M+G'( 19) [ 0 L—e l C,JM+G( agp)

withg, = (v+p,7v+p—1,0).
Proof. In view of the fact that for arbitrary s,+v,p

kP KXY = K (XM)
and k7 :K°7(Y"N) — K*7TP(YY)

is an isomorphism, the assertion is obvious for Green operators.

For an operator of the form w(t)t=**7 opy;h; &(t) we may assume that the support of w
and @ is so small that, there, k” and t* c01nc1de Then we obtain the assertion from the
identity tPopprh;t=" = :{fp(T"hJ-). <

4.3.17 Theorem. Let A € Cg'&G(X",g), and suppose that
T+ AKX V) @ Ko7 HY ™, Vs) — KO(XA, V) @ K74 (YA, V)

is a Fredholm operator. Then I 4+ A is elliptic.
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Proof In view of Lemma 4.3.14 we may assume that ¥ = 2. Then K*(X", V) @
Ko7=2(Y™ Va) = L¥(X,V;) @ L*(Y, V3). In fact the proof, below, shows that the case of
vector bundles and the presence of Y only causes notational difficulties. Let us therefore
prove the statement for the case of a trivial one-dimensional vector bundle over X only.

The Fredholm property implies an a priort estimate: There is a compact operator K and
a C > 0 such that

lellzzxny < CHI+ Auflzagxny + [ Kullzaxn).

We will now assume that there is a 2o € ng-jr_l_,y = I‘% such that
I +0%(A)(20) : HY(X) — HY(X)

is not invertible and show that this leads to a contradiction to the above a priori estimate
by constructing a sequence of functions {¢n} in K%%(X?) with norm equal to 1, ¢,
converging weakly to zero, and ({ + A)¢, — 0.

To this end identify first H°(X) and L*(X), write a = 03,(A),h = I + a. If h(2o) is not
invertible, then there is a sequence {u,} C C(X) with A(zp)un, — 0 in L} (X) while
"‘um“Lz(X) = l,m = 1,2, e

Now let 0 # f € CP(R4),B,80,6 € R,c € Ry. Let g.(t) = tlc=1¥=% f(3¢). Then
tg.(t) = 1~ f(¢¢), hence

M(g.)(5+iB) = M(£.)(iB) = M([tF~/* £(1°))(iB)
= UML) (iB)o) = UM F)(S + i

8=t

Let zo = 1 + i3, and replace § by % Then the above identities yield
— Bo

c

(Mgo)(5 +i8) = < (Mf) (5 )

hence

20,1 — 1o
/F% |Mgo(2)[* 2] = [ |Mg.( +iB) dB
- 1 =5 - 1 .
_ -2 L 239 _ -1 L 2 gu.
2 [ IMf(5+iEERPag =t [ MGG + i)l du
In other words: For all ¢ > 0 and all m € N, the norm of ¢¥ goup, in K&%(X*) = L} (X?)

is constant. Moreover, as ¢ — 0 the functions ci'g‘:um weakly tend to zero. In order to
see this, choose arbitrary functions ¢ € C*(R,),v € C*®(X). Then

1
|(ngcum7 ¢v)(°'9(x.m)|
= / (c%Mgc(z)um, Mev)2(x)ldz|

LBy (1+iﬁ)|dﬁ 2z o s,

< / M (5 +
< const ot [ le( Fis)M(5 +ilsc+ fo)lds e lvllzacn,

< const e [ |MF(2 +is)lds | Ml lumlzzxllolzzey — 0
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as ¢ — 0, since M f € L'(R}).
Finally let us show that (7 + A)(c}g.(t)um(z)) tends to zero in K%%(X") as m — oo and
c— 0.

Hopglh(c%gcuﬂl)”;o-?(xn)
jr% 1h(z)ck Mae(2)umllEay ldz]
1 ... _1 1 . f-
JIAG +68) MG + 6 2P (@), 48

. . |
[ NBG + i + ics) MF( + i) u(2) g, s

I

The last expression tends to zero as ¢ — 0 and m — co by Lebesgue’s theorem on
dominated convergence, since
(i) the integrand can be estimated by

| 1 . .

IMf(5 +is)l* sup |[R(5 ~ v +iBo + ics)um|liax

2 ocest 2 %)
mENJER

noting that the first factor is an L'—function of s, and since

(ii) for each s

1 . :
]|h(§+zﬁo+zcs)um||iz(x) —0 as m—oo and c— 0. (1)
Therefore, the sequence ¢,(z,t) = m=3 Ggim(t)um(z),m =1,2,..., will lead to a contra-
diction to the a priori estimate and thus prove our assertion. <

4.3.18 Theorem. Let A € Cg,}iG(X",g) be as in4.3.12 and let I+ A be elliptic. Suppose
that for some s > d — -;—

K*(XN V) KX, Vi)
I+ A: &) — @
K:a,’y—%- (YA, Va) K;a,’y—%(yl\’ %)

is invertible. Then there is an A’ € C%ﬂG(X",g) such that

(I+A) =144,

Proof. Write K = K*(X*,V;) ® K*"~¥(Y*, Vs). Since I + A is elliptic, the construction
in Theorem 4.3.15 immediately gives an operator B; such that (/ + By)(I+ A)=1-C
on K with C € Cyi%(X",g). Hence for B = (I + S521 CH)(I + By) — 1

3=1

k-1

I+ CHI+B)I+A)=1+G,

i=1
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where, by 4.3.4, G € Cifi%(X",9) is in fact a Green operator in C4(X*,g)q.r with
suitable asymptotic types ) and R; in particular, it is compact on K.
By a classical result in operator theory, cf. [32], there is an r € N such that

N = N(I+G))=N(T+6)*)

R = R((I+G))=R(I+G)*")
K = NoR (1)
I+G : R —> R is bijective. (2)

The kernel N of (I + G)" is a finite-dimensional subspace of Sg(X*). Let {¢1,..., dm}
be an orthonormal basis. Define the operator P on K by Pf = Z;—’;l(f, $;)¢;. Then P is
the orthogonal projection onto A. Moreover, it is a Green operator of type zero since it
has an integral kernel in So(X") ® Sz(X"); here @ is the conjugate asymptotic type, cf.
3.3.2.

Let f; = (I + A)¢;,7 = 1,...,m. Since the ¢; are linearly independent and since I +
A is invertible, the f; will be linearly independent functions in Sz(X") for a suitable

asymptotic type Q. Now define the operator F : K — K by

F(fJ):()bJ on Sp&ﬂ{f],...,fm}, =0 on Span{fl!""fm}-l--

Then F is a Green operator of type zero, since it has an integral kernel in Sg(X*) ®

SE(XA)’ and it is easily checked that it is a relative inverse to (I + A)P :

(i) F(I+A)PF = F,since both sides map each f; to ¢; and functions in the complement
of their span to zero, and

(i) (I + A)PF(I + A)P = (I + A)P, for all ¢; are mapped to f;, while the functions
orthogonal to span{¢;,...,¢n} are mapped to zero.

Using F we construct an inverse to I+ A. Let L = ([((/ + B)({ + A)]""'(I+ B)+ F)(I+
A). Then L is of the form I + G’ with a Green operator of type d. In particular, it is a
Fredholm operator of index zero. Let us show that it is invertible by showing that its kernel
is trivial: Let h € K with Lh = 0. Then 0 = Lh = [(I+ B)(I+ A)]"h+ F(I+ A)h. Since the
first summand belongs to R while the second belongs to A/, (1) implies that both are zero.
Now write h = hy + hg with hyy € N, hg € R. Then 0 = [(I + B)(I + A)]"(hx + hr) =
[(I+ B)(I+ A)] hg, by definition of /. On the other hand (2) now implies that hx = 0.
Using (ii), we conclude that

0= F(I+ A)hy = PF(I+ A)Phy = (I + A)™\(I + A)PF(I + A)Phy = Phy = hy.

Thus A = 0, and L is invertible. Finally we can apply 3.3.10 and obtain an inverse to L
of the form I 4 G”, thus an inverse to I + A in Chryc(X?, ). <

4.3.19 Corollary. Let g = (v,7,0),A € C%iG(XA,g)}, and suppose that 7 + A is

invertible on K%7(X,V;) @ K®~3(Y, Vs). By combining 4.3.17 and 4.3.18 we see that
there is an inverse of the form I + B, B € Cypa(X™, 9)-
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5 Appendix

5.1 The Mellin Transform

For the sake of completeness we shall collect in this section a few simple facts about the
Mellin transform. The proofs will be omitted. Most statements are elementary, for details

cf. [27].

5.1.1 Definition. The Mellin transform is defined for f € C§°(R4) by
- z=1
(Mf)(z) = fR+t f(t)dt, zeC.

In order to indicate that the argument of f is ¢ while that of M f is 2z, we will occasionally

write Me_,(f(1))(2).

5.1.2 Lemma. We have the following elementary properties. Let f € C§(R,).

(a) I g(t) = t° f(£), B € C then M(g)(z) = (Mf)(z + B).
(b) I g(t) = (~t3)f(1), then M(g)(z) = z(M])(z2).
(c) If g(t) = Int£(t), then M(g)(z) = £(M)(2).

(d) I g(t) = f(t*), p € C, then (Mg)(z) = p~*(Mf)(p™').
() If g(t) = f(ct),c > 0, then (Mg)(2) = (M )(z).

I1

5.1.3 Lemma. For f € C°(R4), M f is a holomorphic function on C. Moreover, it is
rapidly decreasing on each of the lines

s ={z€ C:Rez=p}

Moreover, M f satisfies the corresponding estimates uniformly for § in compact intervals.

5.1.4 Theorem. The Mellin transform extends to an isomorphism
M : LX(Ry) - LX(T);

in fact we have ”Parseval’s identity”

7 s = o jp} M(z)Mg(z) dz
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5.1.5 Definition. The weighted Mellin transform
Mp: L (Ry) — L*(Ty_p) (1)
is defined by

(Mpf)(2) = M7 f)(z + B).
By 5.1.2(a), Mpf = Mf|r§_p for f € CP(R4); by 5.1.4, (1) is an isomorphism.

The following lemma is easily deduced from Lemma 5.1.2.

5.1.6 Lemma. Let w be a cut-off function near zero, p € C,Rep < %, and k € N. Then
(a) Mw(z) = 27! M(~tdw)(2).

Note: Since —tdw € C{°(R,), its Mellin transform is rapidly decreasing on each line I'g,
uniformly for 8 in compact intervals.

In particular, if x is a smooth function on C which vanishes near zero and is equal to 1
near infinity, then xMw Is rapidly decreasing on each line I'g, uniformly for 8 in compact
intervals.

(b)

Mt 0t t(t)() = S(Mw)(z -~ p)

where ¢ = M(t0w). In particular, ¥ is a meromorphic function in C with a single pole
of order k + 1 in p. If x is a smooth function on C which vanishes near p and is equal to
1 near infinity, then x is rapidly decreasing on each line I'g, uniformly for 8 in compact
intervals.

(c) Let w,(t) = w(ot),oc > 0. By 5.1.2(e)
Muw,(z) = 0 7*(Mw)(z).

In particular, Mw,(z) — 0 as ¢ — 0o on {Rez > 0} and u,(z) = M;_.,(t P In* tw,(t)) —
0 as 0 — oo on {Rez > Rep}.

If x is as in (b), then xu, tends to 0 on {Rez > Rep} as o tends to oo, uniformly on all
lines Ty, for § in compact subintervals of R.

(d) If instead of Rep < 1 we have Rep > 1 and if we define
v(z) = My, (t P InfF tw(t™)),

then v also is meromorphic on C with a single pole of order k + 1 in p. If x is as in (b),
then xv is rapidly decreasing on each line I'g, uniformly for # in compact intervals.

The following Paley-Wiener type results can be found in Jeanquartier’s paper [13].
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5.1.7 Theorem. Let F' be an entire function.
(a) F is the Mellin transform of a distribution supported in the interval [a™',a],a > 1, if
and only if it satisfies the inequality

IF(2)| < C(2)™ o™, zeC (1)

for somem € N and C > 0.
(b) F is the Mellin transform of a C* function supported in [a~',a),a > 1, if and only if
for every m € N there is a Cy, > 0 such that

|F(2)] € Cp (2)™™ a!Re] z € C. (2)

5.1.8 Lemma. Let w € CZ°(R,),w = 1 near zero, f € L*(R,). Then M,_,[(1 —w)f] €
A(Re z < 3) and M,_.;[(1 — w)flIr, € L*(Tp) for all B < 3, uniformly for f in compact
intervals.

One also has an inversion theorem.

5.1.9 Theorem. Let § € R. The inverse of the weighted Mellin transform in 5.1.5(1)
Mg : t'BL2(R+) — LZ(Fé_ﬂ)
is given by

1
-1 t_z .
Mg = 7 s h(z)dz

We finally give a detailed proof for the statement on the adjoint of Mellin operators in
4.1.13:

5.1.10 Lemma. Leta € MP‘O(X),,u € Z,v € R, let P be a Mellin asymptotic type with
TcP N F§-7 =0, and let V,W be vector bundles over X. Then the operator

A=opla: H¥FE(XN V) o HTHITE (XM W)
has a formal adjoint A* with respect to the sesquilinear pairings between
H (XN V) and Hy"TEXN V)
on one hand and
HRHE (XN W) and Mgy TTEH(XA W)

on the other hand. Here, the index {0} means that we use the H,—spaces for s — u > 0
and the usual M —spaces otherwise, cf. 3.3.1. We have

A* =opyy "a®™ with o™ =a(n+1-3)"
the last asterisk indicates the formal L*-adjoint of the operator a(z) : C®(X,V) —
Ce(X,W).
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Proof. By definition op}ya = t"M'T="aTYMt=".So let u € C(X",V),v € C(X", W).
In the following computation, we shall freely use Parseval’s identity for Mellin transforms,
cf. 5.1.4, and employ the notation p =n + 4.

(0P3r (@), V), 1 g e H T xaw)

/ (M,..opps(@) u, My_.;v) 12(x,w) d2
Fopt

- /F *(M(tg'op}{l(a)u),M(i’?v))Lz(X'w)dz

I

o n
= / M T a T Mt "), L3 0) o xw) dt
0

(o=}

= /0 (M_IT_’Y(I T‘"M(t"’u), tn+7U)L2(X.w) dt

(TOM T e T Mt u), M) 2 (xw) dz

A
= /r (a(z) T"M (@ "u), TIM ("7 0)) 2(x w) dz
jr (TYM(t), 0" (2) T M(E 1)) gy de
= /F (M{E~u), T T M(£*0)) 12 (x.v) d2

(e, M7 TG T M 70)) g vy dz

(u, t-"'M_lTﬂa'T_"M(thv))Lz(X‘v) di

/w(u, CTPMTIT TN T M(HP0)) pagx, vy di

0

= /m(tgu, t27P M T2a™) TP M (t°0)) 13 (x vy dt
0

./1:,:;_1_ (Memiu, Mi.c0pif (6™ v) 2x v) d2

= (u,0ppf(a")v)

nt R xa vy T )

This was our assertion. In the third identity from the bottom we used that 77~ "a*T~**" =
T?a*(- — n)T~* and that, on I';, we have z — n = 1 — n — Z. Notice that for the above
consideration we did not need the holomorphy of a. Whenever it holds it will allow further
conclusions on the adjoint. For the computation we only need that a be defined on I‘%_,y
and that all integrals make sense. <

5.2 The Left-Over Term in the Composition of Pseudodifferen-
tial Operators

In this section we shall give the proof of the statement in Theorem 2.2.5. The presence
of the parameter A does not require major deviations from the classical route. We will,

91



however, emphasize the new representation on the singular Green operators. Recall the
notation op} p = [op z.pl+ = rtop,,p et.

5.2.1 Proposition. Let ' C R™! be open, I = ' x R. Moreover, let p,v € Z,p €
Stowr (R R, q € 574, (2 R™ R'). Suppose that either p(z, £, A) or g(z, €, A) vanishes
for x,, outside a compact set. Then

L(p,q) = op3,p0n 0P 7 q — (0P 2,P On OP 2,}+ (1)
induces a parameter-dependent singular Green operator of order u+v and type max{v,0}.

In order to save notation but also to be slightly more general, let us assume that & = R”
and consider symbols in the uniform symbol classes. For convenience, the proof is broken
up into a series of steps called lemmata. We will, however, keep assumptions and notation
fixed in this subsection.

5.2.2 Lemma. We may assume that p(z',z,,€) and q(2',z,,£) vanish for |z,| > ¢,
where € > 0 is arbitrary.

Proof. A priort, the condition that one of the symbols vanishes for large z, ensures that
the second term at the right hand side of 5.2.1(1) is well-defined. If ¢ vanishes for z,
close to zero, then L(p,¢) = 0. On the other hand, let p vanish for z, near zero, and let
¢ € C°(R) be supported in a sufficiently small neighborhood of zero. Then

opp = (opp)$ + (opp)(1 — ¢) = opr + {op p)(1 — ¢)
with a regularizing symbol r — simply compute the asymptotic expansion. Therefore
P P0n0p} g =[0pz,p(l = ¢)0n0pa,gls +opl 1

with regularizing r’. Since op § r’ also induces a regularizing singular Green operator, we
have the desired result. <

We will therefore assume that p and ¢ vanish for |z,| > 1.

5.2.3 Lemma. We may write p = pg + po,q = ¢4 + go, where py, g4 are polynomials in
(€,A), and where for all k € N

3§npo(:c', 07 ga (Era A) Ena )‘) € S‘J@ﬂHO

9;,90(z", 0,8, (€', \) n, ) € S*@rHo.
Proof. We have a decomposition induced by the transmission property and the fact that
Hy,d € N is the direct sum of Hy and the space of all polynomials of degree less than
d, cf. 2.1.3,2.1.5. Differentiating the decomposition with respect to the variables (¢’, A)

shows that the part which is a polynomial in £, also is a polynomial with respect to ¢
and A. <

Let us first study the behavior of the polynomial parts of p and g¢.
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5.2.4 Lemma. In the notation of 5.2.3,

L(ps,q) = 0. (1)

If we write qa = 3] s;(z', &, M¢& with polynomials s; € S*=3(R™!,R""! x R'), then
v=1
L(p,aa) = 3_ ki, (2)
e
where, as usual, 7;(f) = lim,o+ 8?_f(z',t) and
ki(z', €', D, A) = —1 Z r¥p(z, €, Dy Nsm (2, €, ) D™ (u @ 6). (3)

m=j+1

The k; are parameter-dependent potential symbols of order p+ v — j — 1; the v; are trace
symbols of order j + 1 and type j + 1.

Proof. dentities (1), (2), and (3) are straightforward. They follow from the iden-
tity Oz etf = e*t0.,.f + 7f 6, valid for f € C'(R), with Dirac’s delta function at
the origin, cf. [9], (2.6.18, 19, 20). By 2.2.13 we also have the statement concern-
ing the 7;. Moreover, it is clear that s, € Syg™(R*!,R*! x R, C,C) and that
plz, &, P31 ¢ S{‘,g;:_j—l(R",R“ x R!). In order to prove the result it is therefore
sufficient to show the following: If a = a(z,£,)) belongs to S#¥(R",R™ x R!), then the
operator-valued symbol k(z’, €', D,., A) defined by

k(' &, Dn, Nu =a(x,€, Dy, \)(u®$), u € S(R™), (4)
belongs to $#*2(R™1,R*1; C, S(R,)). To this end we will estimate the norm of

15 s ay=2 Dg D2 k(" €', Doy Ml et sty

for arbitrary s,¢ > 0. For fixed 2/, ¢, A, this is a multiplication operator with a rapidly
decreasing function ¢, g(z’,¢’', 2,4, A). So let us show that for all k,m € N,

TE D™ B0 55, €, Tny A) = O((E', A1), (5)

n Tn

The function ¢, is given by
bao(z', €, Tn, ) = const (£, A) 72 ] €N entn D2 DB a(a! (6, A) 7 T, €, A) dE.

We may assume that a = g =0, for Dg'.Df_f,
So consider

:B;':.D:; (E’a ’\)%— ¢0.0($Ia E,a Ty, /\)
S e [Nk (€0 € (DI a)(2, (€, 0) 7 2, V)

my+mae=m

= % omm [ OO (@ N e D12 (D, ral(@, (€, 0) 7 2, 6, 1)d4)

m+ma=m

a is of order p — |a|, and ignore the constant.
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after integration by parts. Now 7 D™2(— D, )*a also has the transmission property and

is of order < g+ m — k. In view of the factor (¢, ,\)k_m it is no restriction to assume
k = m = 0. A Taylor expansion gives

k
a(x,€,)) Ek—"a" a)(@',0,6, 1) + eMap(z,€, A).

Notice that ap belongs to St (R", R™; R). Plugging this into (6), we obtain two types
of expressions, the first ones corresponding to the terms in the summation, the second
ones to the remainder. For the first ones note that

i(f'..\)":nfnﬂ ak ’ AV,
[e (0k,0)(e',0, 6, \)dé,

1 k
= (£ ;‘j\) /ei(E'.A)—lann[a:n(_Dtn)ka](mf’015, )\)dfn
1 k41 )
- & kg) / e [0 (= Dg,)*a)(z',0,¢', (¢, A) tn, A)dtin. (1)

Since a satisfies the transmission condition, [8% (—Dg,)*al(z’,0, &', (€, \) un, A) € Sio ®H

Correspondingly, expression (7) is O({¢’, A\)*™"). In view of the factor {¢’, A )% (6), this
is exactly what we want.

For the analysis of the terms associated with the remainder, we perform the correspond-
ing transformations. We choose M so large that 4 — M < —1, then the expression
corresponding to (7) is

(€ NMF [ e (= De )M am) @', (€, 0) 7" 20, (€1, 2) tny Ndin,

which also is Q((¢, \)**1). <

5.2.5 Definition. Let J be the reflection operator on functions in R™ : Ju(z',z,) =
u(z'y —z,).

5.2.6 Lemma. We may write

L(p,q) = g* (p)9™(q), (1)
with
gt (), €, Da,X) = o¥p(a' €, Da, N)e™J 1 S(Ry) — S(Ry); (2)
97 ()", €, Dn,X) = Jrq(a,€, Da, Net : S(Ry) — S(Ry). (3)
Moreover, for 0 # w € R let
Bz, & w, X)) = (2r)°} / wtnp(z, €, A)dEn, (4)
i€ w, ) = @) [eg(e,6,0)de (5)
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denote the inverse Fourier transforms of p and q, respectively, with respect to &,. Inte-
gration by parts shows that both integrals make sense as oscillatory integrals. In this
notation, g*(p)(z’,€', Da, A) and g~ (q)(z',€', D,,, A) are the integral operators on S(R..)
with the distributional kernels

GO E Ty ) = (21)77 52,0, Nluzzntins (6)
é_(Q)(:E’, {'? xﬂ! yﬂ9 ’\) = (27‘-)_7 q((B, é,) wa A)[w:—r.-.—y.-.* (7)

Proof. 1dentity (1) is immediate since, on S(Ry),
[f*ops,pet]tFops,ge’] — rfopz,pon opa,ge = rtop.,p ettt —1)op.,.qeT,

and since e*rt —1 = e7r~, ignoring the value in zero. Identities (6) and (7) are immediate
from the usual formula for the integral kernel of a pseudodifferential operator in connection

with (2) and (3). <
We shall need the following lemma.

5.2.7 Lemma. Letr € S, (R*,R* R) and let (z/, ¢, X) € R* x R*~! xR/ be fixed.
(a) For z,,ys > 0 define

g(a:lw{’)xn’ Yn,s )‘) = (ff_n]--wr) (:l:', 0, 511 w, /\)lw=xn+yn' (1)

Then the operator-valued symbol g(z',¢', Dy, A) defined by
9(z', €', Dn, A) f(zn) =/0 §(' €', Tn, Yn, A)f (yn ) dyn

for f € S(R4) belongs to S*(R* 1, R"! x R, 8'(R4),S(R4)), i-e. defines a singular
Green symbol of order p and type zero.
(b) Similarly, letting

iz(m',{', TnyYn, /\) = (‘7'-5_,,1-'1;;’") (:E', 01 E,$w1 A)IW=—In-yn (2)

we obtain an operator-valued symbol k in S*(R*!,R*! x R} 8'(R4), S(R4)).

Note: Since r satisfies the transmission condition we know that v(z’,0,&', (€', A} &n, A) €
S{“0®,H. Since g is defined from the values of the inverse Fourier transform on Ry, it
only depends on the part of r(z’,0,¢',(€',A) €., A) in H*, while h only depends on the
part in HJ .

Proof. (a) We have to show that for all s,# € N and all multi-indices «, 3,7
%@ 1y DE DEDIg(2', €, Doy Nt cqaignmsupysinsqaeyy = OUEL N M) (3)

It is obviously sufficient to prove the case |a| = |8| = |y| = 0, otherwise we might consider
D?,Df,D}r. A calculation shows that & -19(2,{’, D, A)k(er ) is the integral operator

with the kernel (¢, /\)'1 gz’ €&, (¢, /\>-1 Tn, (€, /\)_1 Yny A).
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The space Hy > ‘(R4 ) is the closure of C$°(R.) in the norm of H=*~*(R). We may show
(3) by verifying that for all ¥ <,k <t',1 < s,l'’ < ¢ the norm of the operator

kDL Ky y-19(z', €'y Dy MR g2k DL (4)
on L?(R,) is O((¢’, \}*). The operator in {4) has the integral kernel
(EIv ’\)_l mf;Dlxnyv’:l("Dun )llf’(:‘:’: 'gla (£'a ’\)_1 T, (EJa )‘)_1 Yns ’\)' (5)

We can estimate its operator norm by estimating the L
function. Now

2

2 (R, )—norm of its kernel

”I,’:Diny::'D:;ng(m’,fl, (fli A)_l Tn, (Ers )‘)"1 Yn; A)!'L’(Ri+)
< Nl + ) D (F)( 0,646, 0) 7 (@0 + 1) Mlaqaa, ).

For an integrable function f we have [3° [5° f(zn + ¥n)dzndy, = [5° wf(w)dw. The last
expression above therefore equals

([ w4 D (Fe L)@, 0,8, (€0 ™ 0,2)

] w”"""D{;"" (fg‘Lwr)(m', 0,¢', (¢, ’\)—l w, ) dw)

1
2

This we estimate by Cauchy-Schwarz’ inequality

< [t DR (ol )@, 0,648, 0 ™ w0, M g,
-t D (FL L ) 0,6,(8 0 T w, Ml gy

= (N L (Do), 0.8, €N T 0, Ml s
’ ' ] — %‘
: ”ff_nl—-w(DCna)(x ¢07{ > (E ’)‘) 1w1 "‘)“L’(Iq)a
where a = Dé‘:k'(ﬂ;"“r). We note the behavior of the inverse Fourier transform under

dilations with positive constants F~!f(w/c) = ¢[F~!f(¢-)](w), and continue the above
estimate with

WS L) ’
= (@0 L (De )0, (€)M 6 NI IExqn
, 1
N FgLulala, 0,4€', X) €n, M) 22(ry)- (6)
The symbol a is of order p' = p—k— &'+ 1+’ 1t also satisfies the transmission condition.
So a(z’,0,&, (€, A) &n, A) € Sto(R*, R x RY)®.H, and F. L, ja(z’,0,¢, (€, A) &, A)
€ S{"IO(R"'I,R"" x RY®,S(R.). Therefore, the last expression is O({¢, A)**"), which

is exactly the estimate we need in view of the factor (¢, A\)™" in (5).
The proof of (b) is essentially the same. <
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5.2.8 Lemma. The operators g*(p)(z', €', Dy, ) and g* (p)(2', €', Dy, A) are parameter-
dependent singular Green operator of orders y and v, respectively, and type zero. They
have asymptotic expansions

FEEE DY) ~ 0 Y g€ D) o
97 (@)= &, D, A) ~ (27r)"éj—f{g-(Q)(w’,ﬁ’,DmA), (2)

where g} (p) is the singular Green symbol obtained from d:_p by the procedure in 5.2.7(a);
g5 (q) the corresponding symbol obtained from d?_q by the process in 5.2.7(b).
Note that in view of the identity

K({;'A)-lan(Ea,A)f(Il,:cn) = (¢, /\)“1 T, f(z',z,)

the multiplication operator with z,, belongs to S~ (R™', R* ' xR/; H**(R,), H**"'(Ry))
for all weighted Sobolev spaces H**(R.,), so that (1) and (2) indeed furnish asymptotic
expansions for singular Green operators.

Proof. Let us first consider g*. Plugging the Taylor expansion with remainder

M- ]

p(z,60) = X J"aj p(z',0,€,2) + 23 pm(z, €, A) (3)
j=0 J'
into 5.2.6(6) we obtain
QM= g
§+(p)($’1£’!mﬂ)yﬂ,A = 27[- E -—% :E 0 f w A)|w—1’n‘|'!lﬂ

o|.-

+ (277) InMpM(-T'){ swa’\)lw=zn+yn-

Again the tilde denotes the inverse Fourier transform with respect to £,. This gives the
beginning of the predicted asymptotic expansion. In order to justify the expansion, we
will show that, given an N € N, the remainder induces an operator with a symbol in
S-N(R™1, R x RS Hy Y N(R,), HVN(R,,)), provided M is large.

In order to see this we first multiply both sides of (3) by a function 0 < ¢ = ¢(z,) €
C&°(R4) equal to 1 on [—1,1]. The left hand side will remain the same, on the right hand
side, multiplication by ¢ preserves the asymptotic expansion, while the additional factor
@(z,) with the remainder will be convenient, below.

The remainder ¢(z,)z¥ pas induces an operator-valued symbol hpr(z’, €', Dn, A) by

hM(z’a £, Dn, A) f(zn) = d:'(z':n)"':'!‘ldr ./0 ﬁM(:D’) Tny €'y 20 + Yn, A) f(Yn) Y-
Proceeding as in the proof of 5.2.7 consider the norm of x, -1 D?;Df.D}hM(a:', £, Dy M) Kk(er )

in L(Hy M"Y (R,), HVV(R,)). Again we may assume that |a] = |8] = |y| = 0 and esti-
mate instead the norm sup,,_ || - [|zz2  of the integral kernel of

I D fﬁ(f; )—ng,D .D’YhM(:I: 6 DH,A)K(f.‘ )SB D
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on L(L*(R,)). We have, with the obvious notation for L?(R.)—spaces with respect to
the corresponding variables,

sup §(z) 27+ D,y N0, (N 2, €N (0 + ), M,
< sup¢(zn)||(wn+yn)"+’°‘+MD‘+"( AEN T 20 € (N (En F Ya) Mlis,

n

< sup G(za) | M D (FeLupm) (@, (€07 20, €48, 07 w0, M) lng,
= sup §(za)]| (€', A) Fitul (D HME pan) (@', (€, )T 20y €, (€, 2) &, D) 22,

which is O({¢/, /\)“'), with ¢/ = p—k—k'+1+1+1— M. This gives the desired result. <

5.3 The Symbol of the Order Reduction is Classical

5.3.1 Lemma. Let x € S(R). Then

En

x(w

As a preparation for the proof we will need the following lemmata.

5.3.2 Lemma. Let ¢ € C§°(R) be a zero excision function and x € S(R). Then for
k € Z,a a multi-index,

S(IED X(22) |/ € € SEHPI(R)

€'l

Proof. Clearly, the function is well-defined and homogeneous of degree k+ || for large |¢].
In order to see that it belongs to S**1*l we only have to check that it is C*°. Obviously,
every derivative is a linear combination of functions of the same kind - except for the fact
that a derivative of ¢ no longer is an excision function; it is zero near infinity, which is
even better for our purposes.

So we only have to show continuity. Since ¢ vanishes near zero, the only points of interest
are those of the form & = 0,£, # 0. If (61, ¢0)) is a sequence with 0 # ¢4 — 0,601 —
c # 0, then X(ﬁ)|§ |¥ — 0, since x(¢)t¥ — 0 for arbitrary N as t — oo. <

5.3.3 Lemma. Let k € Z, ¢ a zero excision function, and x € S(R). Then

§n

e NE8(6) = O((&)* ™).

x( ))(f) (

€]
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Proof. For small |£]| there is nothing to show. So we may assume 1 < |£| and ¢(£) = 1. If
|€'] is small, say [¢'] < 1, then necessarily |€,] > 3, and [€,] > 3[€] > § (€) . For arbitrary
K € N, and suitable constants ¢, ¢, ...,

__{11__ nk _én_ - nk ! ~K sk " k—-K
(gD se (&) @ s et <o
and similarly
k< k—-K
(If’I)M I"<e{§).
So we are left with the case where [(] > 1,|¢’| > 3; in particular [¢'] ~ (£). We shall

employ the identity .

o —tF =(a—b)Y b1
j=0
for k > 0 with a = (¢'),b=|¢'|. It shows that
€ =gk = (&) +1en Z Y €117 = 0((€) ). (1)

For k < 0 we take a = (£')™',b = |¢'|~! and obtain the same result, noting that

111

[T €y ~ @y eney +en

Now we conclude that the difference under consideration is

Sny i bn f“ NE_ 1k = Ey + E
with the obvious notation. Expression E; can be estimated by
b b
su . 2
”X “ pI(¢) (E’) |E,| (f) ( )

Here, I(€) denotes the interval between f-)— and f—[ the supremum over this interval is

(<(¢)> ) N arbitrary.

The second factor in (2) is |&.][€']71 (€)™ ({€") + |€'])~". The fact that (1%"?) (&Y = (&)
then shows that E; = O({£")*"?).

For E; we also use that x(fe%i) = O((éﬁ)“N) in connection with (1) to obtain the estimate
E; = 0((6)). <

We can now prove Lemma 5.3.1. By Lemma 5.3.2, ¢(|£|)x(| Sl € SL(R™), moreover,
we see that &

so we have the first term of the asymptotic expansion (even the first two terms).

)IéIeS0
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Now write for [£] > 1,]¢'| #0
- é_ﬂ _ E_n ' €n N gt
n© = (X -x(E) )+ x(EE - e
= E+E,

and note that by Taylor’s formula

N
=3 L0 o)(t — 1o + bux VO = 1),

so that
5_"_Nl(i)§_" E_"j"j / \=J
O () () + )

with 0 between é—'}y and e
Similarly, we have a Taylor expansion

(1+t)F =1+ Z cit? + cN(t)tN'H
=1
Hence the identity (¢') = €| <|%,|> implies that
N .
(€)= 1€ =2 cle'I" + en(lETTNIE T
j=1

Here, cn(|€'| 1) is — up to constants — a derivative of (1 + t2)}, and these are all bounded
for N > 1.
Finally a last expansion: —+—(t$ ): o dit? + dn(£)tV+1, Therefore

€171+ (1€ ))
N .
= Sl dn(E TN

3=0

(€Y +1en

Here, dy is bounded on R.
Using Lemma 5.3.2 this clearly yields an asymptotic expansion for E; and E,.

Now for the estimates. Let us first concentrate on the estimates of the remainders with
no derivatives present. With the same reasoning as in the proof of 5.3.3, we may assume
that 2 < [€'| ~ (¢). We have to deal with two types of terms: those of the form

() {n I\R
X (If’l)(lf’l) 167" Riv(€)
and those of the form
Xm(e)(lﬁ’l) €175 R (€)
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with uniformly bounded functions Ry, RN, K > 0, and @ in the interval between Z%Y and
]%',1[. Like in the proof of Lemma 5.3.3, these expressions are O({£)™%).

Finally, we may employ the same arguments for the derivatives, because we then have to
deal with expressions of essentially the same kind, cf. the considerations in the proof of
Lemma 5.3.2. ‘
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