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Abstract

In the present article and a subsequent paper we shall develop a pseudodifferential calculus
for boundary value problems on manifolds with finitely many conical singularities.
Outside the singular set we use Boutet de Monvel's calculus. Neax a singularity, we
identify the manifold with X x [O,oo)/X X {O}, where X is a smooth compact manifold
with boundary, and use operators of Mellin type on R+ with values in Bautet de Monvel's
algebra on X. To this end, the present part provides a parameter-dependent version
of Boutet de Monvel's calculus and a dass of weighted Sobolev spaces with discrete
asymptotics based on the Mellin transform.
Moreover, we introduce the Green operators, the residual operators in the calculus, and
the smoothing Mellin operators with asymptotics, a dass of operators which is regularizing
hut in general non-compact.
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Introduction

One large program of contemporary analysis of which the present paper is apart, has as
its goal the establishment of an index theory for elliptic operators on singular manifolds.
In analogy with the c1assical theory, this program has two phases: first and foremost, the
construction of a natural algebra of pseudodifferential operators, and second, a thorough
exploration of parametrices to elliptic elements at the symbol level.
Moreover, for any such approach to be useful in practice, it should be 'iterative'. That
is, whenever one kind of singularity has been treated successfully and the corresponding
algebra has been constructed, then it should be possible to also treat the 'cone' which
has the present singularity as its base and then the edge over this cone. The previously
constructed operator algebras should always serve as the basis for the following ones.
This is the first of two papers devoted to the former part of this program, namely the
construction of an algebra of pseudodifferential operators for manifolds with boundary
and conical singularities. Such manifolds are smooth outside a finite set of so-called
'singularities', where they locally have the structure of a cone X x [O,l)/X x {O}. The
base of the cone, X, is a compact manifold with boundary. Notice that this already gives
elements of a corner theory since we have two 'singular directions', that normal to the
boundary and that along the axis of the cone, coming together at the tip of the cone.
In the larger program of analysis on singular manifolds there always is a certain freedom in
the choice of the algebra one intends to work with. In view of a wide range of applications
in mathematical physics, where the primary interest is in differential boundary value
problems, it seemed natural for us to rely here on Boutet de Monvel's ca1culus, even
though from the analytical point of view a more general concept, avoiding the transmission
condition, might have been desirable.
Similarlyas in Boutet de Monvel's approach to the case of manifolds with smooth bound­
ary, the algebra of differential operators will be completed to an algebra of pseudodiiJer­
entialoperators; the present situation, however, requires the introduction of additional
new elements, namely the analogues of the Mellin and Green operators. These played an
important role already in the analysis on singular manifolds without boundary.
What we eventually would like to have is an algebra of operators with a symbolic struc­
ture that

(i) contains the elassical boundary value problems

(ii) gives asymptotic expansion formulae for the symbols of compositioDS and adjoints,
and

(iii) provides a nation of ellipticity in terms of (principal) symbols that allows the con­
struction of parametrices to elliptic elements within the ca1culus; furthermore these
parametrices should also be Fredholm inverses.

lt is well-known that the solutions to classical boundary value problems on manifolds
with conical singularities have particular asymptotics elose to the singular points, cf.
Kondrat'ev [14]. An additional task therefore is to provide suitable classes of spaces that
contain the typical asymptotics and also are mapped continuously into each other by the
operators.
Our method is the following: On the regular part of the manifold we use Boutet de
Monvel's calculus in its standard form. Near the singularities we work with the cylinder
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x X R+. We denote by x the coordinate in X, by t that in R+. The operators we shall
be dealing with are Mellin operators with respect to t with values in Boutet de Monvel's
algebra over X. In order to make this rigorous we need the concept of meromorphic func­
tions with values in Boutet de Monvel's algebra and additionally a parameter-dependent
version of Bautet de Monvel's calculus. It is given in Section 2 of the present paper which
is of independent interest. It provides a self-contained introduction to Boutet de Monvel's
calculus with and without parameters based on the concept of operator-valued symbols
on spaces with group actions. In our set-up, the parameter plays the role of an additional
covariable, the parameter-dependence therefore is slightly less general than that in Grubb
[9]. On the other hand, the new concept yields a very fast approach.
Section 3 starts with the definition of the Sobolev spaces 1-{s,'"(, s, I E R, the operators are
acting on. Outside the singular set, 1-{s,"'t coincides with the standard Sobolev space HI!. On
the cylinder X x R+ it is defined in terms of an intertwined action of the Mellin transform
with respect to the i-variable and order-reducing operators on X, combined with a weight
function of the form t"Y, f E R. For s = 0,1,2, ... , we may characterize '}-{s,"'t in local
coordinates as the space of all functions f such that t';-"Y(tadka~f E L2 for k + lai ::;
s. Moreover, we introduce asymptotics of the form L~o L:~o ajk(x) t-Pj lnk t w{t). Here
Pj E C, Re Pi -+ -00 as j -+ 00, mj E N, ajk E COO(X), and w is a cut-off function near
zero.
We may then introduce the Green operators, the residual operators with respect to the
calculus: essentially, they are described by the fact that they map all the above spaces
to spaces of smooth functions with asymptotics. For dimX = 0 and Taylor asymptotics
near t = 0 they coincide with Boutet de Monvel's singular Green operators of type zero.
In Section 4 we develop the theory of t-independent Mellin symbols with values in Boutet
de Monvel's algebra. We study their mapping properties and their relation to the Green
operators. We conclude this paper with the analysis of the algebra CM+c(X x R+,g)
consisting of all operators of the form A = L t j Aj +G, with smoothing Mellin operators
Aj and a Green operator G. This algebra is of particular interest since it will turn out to
be an ideal in the final operator algebra.
Differential boundary value problems for manifolds with conical singularities and espe­
cially ellipticticity, regularity, and asymptotics have been studied in great detail by Kon­
drat'ev [14]. Also the concept of Plamenevskij [20], developed originally for dosed man­
ifolds, allows generalizations to manifolds with boundary. His techniques as weH as his
objects, however, are quite different from ours.
The present article focuses on the concept of ellipticity and the construction of paramet­
rices in terms of symbols for the full pseudodijJerential algebra with a very smaH dass of
residual elements.
There are formal analogies to the construction of the pseudodifferential calculus on man­
ifolds with conical singularities without boundary, cf. Schulze [27], [30]. Our approach
continues the analysis of Boutet de Monvel [2], Vishik & Eskin [35], Eskin [7], Plamenevskij
[20], Rempel & Schulze [21], [22], and Schulze [27], [29]. In order to further pursue the
program initiated by Schulze in [29], [30] it will be necessary to also consider boundary
value problems without the transmission property and eventually their edge theorYi this,
however, will be the subject of a future paper by the authors.
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1 Manifolds with Conical Singularities

1.1 Notation

An n-dimensional manifold with boundary is a topologigal (second countable) Hausdorff
space M such that each point m E M has a neighborhood which is diffeomorphic to either
Rn or the closed half-space IG.. The former points are called the interior points of M,
the latter the boundary points. We will use the standard notation int M and 8M.

1.1.1 Definition. A manifold with boundary and conical singularities D of dimension
n is a topological (second countable) Hausdorff space with a finite subset E C D ("sin­
gularities") such that D\E is an n-dimensional manifold with boundary, and for every
v E E there is

• an open neighborhood U of v.

• a compact manifold with boundary X of dimension n - 1.

• a system :F #- 0 of mappings with the following properties

(1) For all </> E :F
</>: U -t X x [O,I)/X x {O}

is a homeomorphism with

</>(v) = X X 0/X X {O}.

(2) Given rPt, rP2 E F, the restriction

rPlrP"21 : X X (0,1) -t X x (0,1)

extends to a diffeomorphism

X X (-1,1) -t X x (-1,1).

(3) The charts rP E :F are compatible with the charts for the manifold for D\E :
The restriction </> : U\ {v} -t X X (0,1) is a diffeomorphism.

If there is no fear of confusion, we will simply speak of a manifold with conical singulari­
ties.

1.1.2 Remark. We can and will assume that for each singularity v E E, the system :F
is maximal with respect to the properties (1), (2), and (3) in Definition 1.1.1.
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1.1.3 Definition and Remark. Let D be a manifold with boundary and conical sin­
gularities. By assumption, D\L. is a manifold with boundary. Properties 1.1.1(1) and (2)
imply that any neighborhood of a point v E E contains points of the topological boundary
of D\L., namely ofaX x (0,1).
We may therefore define the interior and the boundary of D just as usual: x E D is an
inferior point 0/ n if there is an open neighborhood of x which is homeomorphic to an
open ball in Rn, and int n is the collection of all interior points; aD = D\rmint D is the
boundary of D. We always have L. c an.

1.1.4 Lemma. Let D be a manifold with boundary and conical singularities. Then the
topological boundary aD 01 D is a (boundaryless) manifold with conical singularities in
the sense oE [29], 1.1.2 Definition 10.

Proof By Definition 1.1.3, aD\E = (D\E)\int(D\E) is the boundary of a manifold with
boundary, thus a manifold.
Let v E E, and let U, X, ~ be as in 1.1.1. Then U n aD is an open neighborhood of v in
aD, and

~lunaD : U n aD ~ ßX x [0, l)/ßX x {O}

is a homeomorphism for every ~ E :F : Injectivity and continuity are trivial; it remains to
show that ~ maps indeed to the right hand side and that it is surjective.
By assumption, ~(v) = X x {O}/X x {O} =ax x {O}/ax X {O}. Since 4>lu\{u} -+

X X (0,1) is a homeomorphism, it maps boundary points to boundary points, so ~ maps
(U\ {v}) n an = (U n aD) \ {v} to ax x (0,1). The same argument now applies to 4>-1
and shows that ~lunaD is surjective.
Therefore, aD satisfies the conditions in [29] 1.1.2, Definition 10. <J

1.1.5 Remark. We even have somewhat more in 1.1.4, namely

tP1 <P21 : ax x (0, 1) -+ ax x (0, 1)

has an extension to a diffeomorphism

ax x (-1,1) -+ ax x (-1,1).

(1)

(2)

In fact [29] 1.1.2 Definition 10 should be modified in the sense that (1) and (2) are required
to hold.

1.1.6 Definition. Let D be a manifold with conical singularities. By Jl) denote the
topological space constructed by replacing for every singularity v the neighborhood U in
Definition 1.1.1 by X x (0,1) via glueing with any one of the diffeomorphisms <p.
Jl) is called the stretched object associaled with D. Note that at the same time this
procedure defines a stretched object JB associated with B = 8D.
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1.1.7 Notation and Assumptions. Throughout this article we will keep the following
notation fixed.

• D is a manifold with conical singularities of dimension n + 1 with singularity set E.

• ß) is the associated (n + 1)-dimensional stretched object defined in 1.1.6.

• B = aD is the boundary of D, cf. 1.1.3, it is of dimension n and a manifold with
conical singularities (without boundary).

• 1B is the corresponding str~tched boundary object ~efined in 1.1.6.

In a neighborhood of one of the singularities,

• X will denote the cross-section as in 1.1.1;, by definition, X is a manifold with
boundary of dimension n, in particular, X contains its boundary. For practical
purposes, this is often inconvenient. We shall therefore agree to denote by X the
open interior, and by X the manifold including the boundary.

-/\ -
• X/\ = X x R+i X = X X R+.

• Y = ax i5 the topological boundary of X; Y is a closed manifold of dimension n -1.

• Y" = Y X R+.

We will assume that

• X is endowed with a Riemannian metric, and embedded in a closed Riemannian
manifold fl.

• DJ has a Riemannian metric which coinci<:les with the canonical (cylindrical) metric
on X x (0,1) near each singularity.

1.2 Motivation: Operators of Fuchs Type

Working on manifolds with conical 5ingularities, one usually concentrates on a particular
dass of operators, the so-called totally characteristic operators or operators 0/ Fuchs type.

1.2.1 Definition. As in 1.l.71et X be a compact manifold with boundary Y, and denote
by Diffk(X) the differential operators of order k on X. A boundary value problem of Fuchs
type on the cylinder X/\ = X x R+ is a system (P, Tl,' .. ,Tv ), v E N, consisting of a
differential operator P of order J.1. that cau be written

1J.
P(x, t, Dx , Dd = t-p. E ci(t)( -tadi

. i=O

with ci E COO(R+, Diff1J.-i(X)) and boundary operators Tk of order J.1.k given by

1J./t;
Tk(x, t, Dx , D t ) = EPik t-i ;i'

;=0

7
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Here, the Pik are operators of Fuchs type of order J.lk - j on Y", Le.

I1k-j

Pik = t- l1k+i I: dikl(t)( -tßt )'
1;0

with suitable djkl E COO(R+, Diff l1k
- i - 1(y)), and /i is the evaluation operator at the

boundary. Introducing normal coordinates (y, xn) on X, where X n denotes the direction
normal to the boundary of X and y E Y", we may write '

(3)

Operators of Fuchs type are also called totally characteristic operators.

1.2.2 Remark. In practice it is very inconvenient to have different orders appearing in
oue boundary value problem. Fortunately, there are order-reducing operators for (bound­
aryless) manifolds with conical singularities, cf. [27] and [26]. We may employ them to
make all orders equal. This is why in Sections 3 and 4, we will deal with one order only for
the operators on both the manifold and the boundary. If one is interested, however, in the
asymptotics of solutions for a concrete problem, then it can be advisable to return to the
original problem, because the order reducing operators contribute additional asymptotic
data.

In order to motivate the choices in 1.2.1 it is instructive to compute the following almost
trivial example.

1.2.3 Polar Coordinates and Differential Operators. Introduce polar coordinates
in Rn, i.e. write

x
X = lxi' r;T = r S(cjJb'''' cjJn-l) = x(r, 4».

Here, S is a smooth function from an interval D c Rn-l to sn-I. For a differentiable
function f the chain rule gives

In other wards,

ß~~ X (r,~)

810 X

8cjJi (r,4»

n BI 8x
~ ßx/x(r, ~)) ßr (r,~)

n BI 8x
~ ßXj (x(r,~))ß~j (r, ~).

and

(
Bf 8f ) (8I 0x Bfox 8f ) [ 8x ]-1
BXl ' ... 'BXn = ,8r' 8cjJ1 , ... , 84>n-l 8( r, 4»

Now

8x
8(r, cP)

8
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By Cramer's rule, the inverse is of the form (Zl (<p), Z2( rP) Ir, ... , zn( <p) Ir)T , where the
zj,j = 1, ... , n are row vectors depending only on rP (and T stands for the transpose).
Correspondingly we may write

(1)

(2)

and a differential operator P(x, Dx ) = Llol:51-l ao(x)D~ transforms into an operator of the
form

- '""' 1 ß kP(rP,r,Dt/J,Dr ) = Li bß,k(rP,r)IßjDt/JDr
lßI+k:5~ r

on the cylinder D x R+. The eoeffieients bß,k(rP,r) eau be eomputed from (1) and the ao.
Notiee that they are smooth up to r = O. In partieular, we cau also write

~

p( rP, r, Dt/J' Dr ) = r-~ L Ck(<P, r, Dt/J)( -rar)k
k=l

(3)

with differential operators Ck of order :S j.t - k, depending smoothly on r up to r = 0, so
that P is an operator of Fuehs type.
In a similar way we may look at the funetioll spaees. One of the easiest examples is
L2 (Rn). Suppose the fUllction f is measurable in Rn. Consider a neighborhood of the
origin, say U = {x : [xl< cl. Then

(4)

with the sphere sn-l and the surfaee mea.sure da. -So f E L2 (U) if and only if the funetion
F = fox satisfies F(r, <p)r(n-l)/2 E L2((O,C) X sn-I).

1.2.4 Boundary Value Problems. Now suppose M is a smooth n-dimensional man­
ifold with boundary and A is the operator eorresponding to a differential boundary value
problem on M. Then we ean piek an arbitrary point in the boundary of M and make it
an artifieial conical point simply by introducing polar coordinates in a neighborhood of
this point. Instead of the variable r usually used for the Euclidean distanee, we shall in
this situation employ the variable t to denote the distanee from the singularity.
Let us see what happens to A. Since the problem is purely loeal, we mayas well assume
that the manifold is R++ I = {x E Rn+l : Xn+l > O} and that the point is the origin. The
operator A can be written in the form A = (P, Tl, ... ,Tv ) with a differential operator
P = LO<Jl GoUi)Di on R~+I and a vector (Tb' .. ,Tv ) of boundary operators on 8R+.+l =
Rn. Each of them is of the form Tj = ,oBj (x, Dx) wi th a differen tial operator B j of order
flj and the evaluation operator at the boundary (0.

Now introduce polar coordinates. According to 1.2.3, P and the B j transform to Fuchs
type operators P and Bj on the cylinder D x R+, where D ~ Il;. is relatively open.
The operators Bj have the particular form of 1.2.3(2), and the introduction of normal
coordinates on the base D - which in this case reduces to using the standard Euclidean
coordinates - willleave it invariant. Suppose that <Pn is the normal eoordinate in D. Then

9



Bj has the form

Bj(</J, t, DIjJ, Dt} - L: bj,k,l(q" t)t-IßI-ID~,D~nD:
IßI+k+l$/.Jj

= t [ L: bj,k,l(</J, t)t-IßID~ID~] t- l D~n'
1;0 IßI+k$/.Jj-1

Since 10 commutes with the differentiations along 8R~ = Rn-I, we may write Bj in the
form 1.2.1 (2).

Let us now look at a particular example.

1.2.5 Example. Let X denote a smooth compact n-dimensional manifold with bound­
ary Y. Suppose that X is embedded in a smooth c10sed manifold n, also of dimension n,
and let {h( t) : 0 ::; t ::; I} be a smooth family of Riemannian metrics on n. Consider the
cone C = X x R+ / X x {O} as the Riemannian manifold X x R+ with the degenerate
metric 9 given locally on X x {t} by the tensor

[
t2h(t) 0]

g(t) = (gij(t) )i,j;I,... ,n+I = 0 l'

In this example we are denoting the coordinates by (Xl, .. . , xn+I) , identifying X n+l and
t. Let .6. denote the Laplaee-Beltrami operator on C associated to the metric g. Write
.6.x ,t for the Laplace-Beltrami operator on X with respect to h(t). In order to eompute
.6., we note that the determinant of g(t) is t2n det h(t), and that the inverse of the matrix
(gij(t) ) is the matrix

( 9 ij ( t) ) = [ r
2
h~

1
(t) ~].

The Laplace-Beltrami operator then is given in loeal coordinates as

n+I
.6. = [detg(t)]-t L: 8xJdetg(t)]tgii (t)8xj

iJ;1
n

= t-n[det h(t)]-t L 8xj tn[det h(t)]!t-2hij (t)8xj
i,j=l

+t-n[det h(t)]-t8 t t
n [det h(t)] ~8t + t-n[det h( t)]-t ßttn[[det h( t)] t]'8 t

1
= t-2.6.x ,t +nt-Ißt + 2" [det h(t)]'/ det h(t) ßt + ß;

- t-2 (.6. x ,t + (n - 1 + f(t)](t8t)+ (tOt)2) , (1)

where we have denoted f(t) = ~t [det h(t)]'/ det h(t). Note that this is 80 smooth funetion
up to t = O. In order to obtain a good boundary value problem, we add Dirichlet boundary
canditions at Y. The evaluation operator 10 has the same form in these cordinates.
From this example we learn that if we want to establish 80 notion of ellipticity on a manifold
with 80 eonical singularity, then the natural candidates for elliptie symbols are those that
are degenerate elose to the singularity in a form similar to (1). Instead of asking that the
symbol be eIEptic in t he us ual sense, we will look for those symbols p( x, t, ~, T), W here
q(X,t,~,T) =p(x,t,~,tT) is elliptic.
Similarly, 1.2.3(4) suggests on which kind of spaces we should consider these operators.
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2 A Short Description ofBoutet de Monvel's Algebra
with and without Parameters

2.1 Symbol Spaces

It is the aim of this section to give an introduction to Boutet de Monvel's algebra with
parameters. At the same time we take the opportunity to present the standard algebra
in a new and simpler way.
In Section 4 we will consider Mellin symbols with values in Boutet de Monvel's algebra.
This requires a topology on Boutet de Monvel's algebra, and we take some time to explain
the topologies on the various spaces.
As before, X will be a compact n-dimensional manifold with smooth boundary Y. In
a collar neighborhood of the boundary we introduce normal coordinates. A point there
can be written x = (y, r) with y E Y, r ~ O. Coordinates in n' x R+ with an open subset
n' ~ R n-l will also be denoted by (x', r) or likewise (x', xn ), x' E 0 /.
For functions or distributions on Y x Riet r+ denote restriction to Y x R+; for functions
on Y x R+, e+ denotes extension (by zero) to Y x R.

2.1.1 Definition. (a) Let!1 ~ R k be open, p'E R. Then S~(!1,Rn) is the space of all
smooth functions p such that for every !( ce !1,

(1)

for all x E !(, ~ ERn, with constants CK,a,ß' The Frechet topology on StJ(O, Rn) is given
by the choice of the best constants in (1). .
(b) By StJ(Rn )const denote the subspace of functions p independent of x, topologized
correspondingly by the best constants in

(2)

(c) We will sometimes also need the uniform version of the symbol classes: Sr,o(!1, Rn) is
the space of all P E StJ(!1, Rn), where the constant CK,a,ß is independent of !(.
(d) A symbol P E StJ(!1, Rn) is said to be classical (write p E S~(n, Rn)) if it has an
asymptotic expansion into symbols which are homogeneous in ~ for lel ~ 1, i.e. there are
symbols Pi E StJ-i(fl, Rn),] = 0,1, ... such that

Pj(x, ,,\~) = ,,\IJ-ipi(x, ~),

for ,,\ ~ 1, I~I ~ 1, and P I"V L.bo Pi'

2.1.2 Remark. (a) In the same way, we can define symbol spaces where P takes values
in matrices.
(b) The topology on StJ(f!, Rn) coincides with that of COO(!1, SiL(Rn)const). In view of the
nuclearity of COO(fl) we therefore have

SiL(!1, Rn) = COO (!1)01r S iL(Rn)const.
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2.1.3 Definition. Let H+ = {(e+Ir: f E S(R+)}, Hö = {(e-Ir: I E S(R_)}, where
the hat: indicates the Fourier transform on R. H' denotes the space of all polynomials.
Then let

H = H+ EB Hö EB"H'.

Write Hd,dEN, for the subspace of all functions I E H with I(v) = O((v)d-l).

2.1.4 Lemma. Let x = (x', r) E 0 = 0' x R, 0' ~ Rn-l open, and let p I"V Lbo p;" E
S:'(O, Rn) as in 2.1.1(c). Then for each fixed (x', () E 0' xRn-l, the symbol q E S~(R, R)
defined by

q(r,p) = p(x',r,(,p)

is c1assical. In fact,

p -. ±oo.

Proof Without loss of generality assume that p is homogeneous of degree /-l for 1<1 2: 1.
Then q(r, p) = p(x', T, tT' ±l)lpltl. Now let T = lpl-t, x = (x', r) and consider p(x, pe, ±1).
By Taylor's formula,

with IrN(x,<',r)j ~ Cr ,(.IT
N +1 as r -.0+, and Ca continuous function of x and (. <J

2.1.5 Definition. Let n = n' x R, 11' ~ Rn-l open. A symbol p E Stl(11, Rn) has the
transmission property at r = 0 if for every k E N

D;p(x/,r,f, (<') p)lr=o E Sti(O~" Re,-1)01rHd,p, (1)

where d = entier(/-l) + 1. Write P E Sr,.(!1, Rn),p E S:, tr(!1, Rn), etc. We shall also say
that p has the transmission property with respeet to (r, p).
There is an easier formulation for classical symbols p. Let /-l E Z, P E S:'(O, Rn), and

with Pi homogeneous of degree J-l - j for 1<1 2: 1. Then we ask that for all k,o:

D~De'Pi(X/, 0, 0,1) = (_l)ti-i D~De'Pi(X',0, 0, -1),

cf. [21], 2.2.2.3, Proposition 1.

A third variant is the following. By 2.1.4 we know that for every fixed (x', e),

q(r, p) = p(x' , r, (, p) E S:'(R x R),

12
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and q(r,p) '" L~oaj(r,x',e)p~-ias p -+ ±oo for suitable aj.
Then we have to ask that for all k, j, x', f

D~ (aj(r,x',() - aj(r,x',()) Ir=o = 0, (3)

cf. [29], 2.1.12(2).
Now suppose that n = 0 1 X R X O2 X R with open subsets 0 1, O2 ~ Rn-1 and P E
S~(O, Rn) is a 'double' symbol. Then p is said to have the transmission property if for
all k, I E N,

(4)

where d = entier(ll) +1.

2.1.6 Symbols with paranleters. (a) A smooth function p on n x Rn X R l is called
a pammeter-dependent symbol of order Il E R, with pammeter .\ E R 1, if

Write p E S~(O, Rn j R 1).

(b) It is called classical in s~(n,Rn;RI), if it belangs to S~(O,Rn x R 1); write P E
S~(O, Rn; R 1).

(c) Let 0 = 0' X R, 0' ~ Rn-l open. Then a symbol P E S~(O' x R,., Rn-l x R p x R~) is
said to have the transmission property (with parameter), if it has the transmission property
with respect to (r, p); similarly for 'double' symbols.
(d) A symbol a E S~(O, Rn; R 1) is called parameter-elliptic of order Il, if there is a
b E S-~(O, Rn; R 1) such that ab - 1 and ba - 1 belong to 8-1(0, Rn; R 1).

2.1.7 Operator-valued symbols.
Let E, F be Banach spaces with strongly continuous group actions /\,>.., K.>.., A E R+, Le.
A~ /\,>.. E C(R+, Lu(E)), .\ ~ K.>.. E C(R+, Lu(F)), and /\,>../\,~ = /\'>..~, K.)..K,~ = K.>..w
Let 0 ~ R k and p E Coo(O x Rn, L(E, F)), J.l E R. We shall write

provided that for every 1< ~ 0 and a11 multi-indices 0:, ß, there is a constant C =
C(1<, Q, ß) with

11 K.(fJ) -1 D~D~p(y, 1J) /\,(fJ) Ik(E,F) ::; C (1J) ~-Ial, (1)

cf. [27] 3.2.1, Definition 1. The space S~(O, Rn; E, F) is Fnkhet topologized by the choice
of the best constants C.
A symbol p E 8 11 (0, Rn; E, F) is said to be classicalJ if it has an asymptotic expansion
p '" L:~o Pi with Pi E S~-i(O, Rn; E, F) satisfying the homogeneity relation

for a11 A 2: 1, 11J1 2: 1.
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For the usual or weighted Sobolev spaces on R+, we will always use the group action

!
[K >. f] (r) = A1 f (Ar) . (2)

On E = C use the trivial group action "'>. = id.
If F1 t-' F2 t-' ... is a sequence of Banach spaces with the same group action, and F is
the Frechet space given as the projective limit of the Fk , then let

(3)

Vice versa, if E is the inductive limit of the Banach spaces E1 '-Jo E 2 '-Jo .•. with the same
group action, then

(4)

Finally, a symbol p belongs to SI-l(O, Rn; E, F), E = iod - limEk , F = proj - lim Ei, if the
group actions coincide on the Ek and F1, respectively, and P E sl-l(n, Rn; Ek , FI ) for a11 k
and 1. We give it the topology induced by all the topologies of the spaces sl-l(n, Rn; Ek , Ei).

2.1.8 Remark. Note that

S(R+) = proj -limU,TEN HU,T(R+),

S'(R+) = ind -liIIlc,TEN HÖU,-T(R+),

where HlT"(R+), H~"(R+) are the weighted Sobolev spaces defined by

H~" (R+)
HU,T(R+)

{(r)-T u: u E H;(R+.r )},

= {(r)-T u: u E HlT(R+.r )}.

2.1.9 Remark. We will, in particular, deal with the spaces SI-l(O,Rn;S'(R+),S(R+)).
For the inductive and projective limit constructions in 2.1.7 (3), (4) we will then use the
description of S'(R+) and S(R+), respectively, given in 2.1.8.

2.1.10 Lemma. For p E sl-l(n, Rn; E, F) and q E S1o'(O, Rn; F, G), the symbol r defined
by r(y, "7) = q(y, "7 )p(y, "7) (point-wise composition of operators) belongs to SI-l+1o'(O, Rn; E, G),
and Da Dßp belongs to SI-l-la l(!1 Rn. E F)fj Y , , , •

Proof See [27] Section 3.2.1, Proposition 2. <l

2.1.11 Definition. Let n = fh x fh c; Rn X Rn be open and p E SI-l(O, Rn; E, F) an
operator-valued symbol. Then op p is defined as usual by

[opp(f)](y) = (27l"t n Jin, ei (.-iil'p(y,jj,7J)!(jj)djjd7J,

14

(1)



f E CO(!l2' E), y E !ll' This reduces to the usual

(2)

for 'simple' symbols. Here, j(.,,) = :FlI-,,!(TJ) = (21r)-n j 2 f e- i !f11 f(y)dy is the vector-valued
Fourier transform of f.
We mayaiso consider the case that part of the covariables serve as parameters: For
!l ~ Rn open, p E S~(!lll' R~ x R~; E, F) then defines a parameter-dependent operator

(3)

f E Ctf'(!l, E), similarly for 'double' symbols.
A subscript, say t, associated with the 'op' notation will indicate that we only let the
operator act with respect to the variable t and the corresponding covariable. We will
employ this notation particularly for operators acting with respect to the normal variable
only.

2.1.12 Definition. Let E, K.>. be as in 2.1.7, q E N, s E R. The wedge Sobolev space
W"(Rq, E) is the completion of S(Rq, E) = S(Rq)0 1r E in the norm

Ilullw'(Rq,E) = (J (,/)2, 111C1.l-1.ry-.u(,/)1I1d,/)! ,

cf. [27], Section 3.1. W"(Rq, E) is a subset of S'(Rq, E) := .c(S(Rq), E).
Suppose {Ek } is a sequence of Banach spaces, E k+1 L....t Ek , E = proj - limEk , and the
group action coincides on all spaces. Then

Vice versa, if EI. L....t E k+h E = ind - limEk , and the group action is the same for all
spaces, then

W"(Rq, E) = ind -limW"(Rq, Ek ).

We shall write u E W:omp(Rq, E), if there is a function rP E Ctf'(Rq) such that u = <pu.
Similarly, for u E S'(Rq, E), write u E Wz"oc(Rq, E), if for arbitrary rP E Ctf'(Rq), <pu E
W"(Rq, E), cf. Hirschmann [11]. It will also be useful to define the weighted wedge
Sobolev spaces

2.1.13 Elementary properties of wedge Sobolev spaces.
(a) W"(Rq, H"(R+)) = H"(R~+l), S ~ O.
(b) W"(Rq, HJ(R+)) = HJ(R~+l), S ~ O.
(c) proj - limklu1"_OOW k,I(Rq,HU,r(R+)) = S(R~+l).

(d) ind - limk,;,~,~_ooW-k,-I (Rq, Höu,-r (R+)) = S'(R~+l).
(e) W"(Rq, C) = H"(Rq), using the trivial group action K.>. = id.
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2.1.14 Theorem. Let E, F be Banach spaces as in 2.1. 7,8, J1. E R, and a E S~(R~, R~ x
R~j E, F) or a E S~(R~ x R~, R~ x R~; E, F). Then for every..\ E Rl

is bounded. Jf a is independent of y and y, tben we may omit the subscripts 'camp' and
'lac'.
The mapping op : symbol 1--+ operator is continuous in the corresponding topolo­
gles.

A proof may be fouod in [27] Section 3.2.1. <l

2.1.15 Remark. In fact, 2.1.14 is Theorem 6 in Section 3.2.1 of [27]. There, the addi­
tional assumption is made that Cgo(Rq) acts continuously on W"(Rq, E) and W"(Rq, F).
Hirschmann has mea.nwhile shown that this assumption is always fulfilled [11], Theorem
3.2.

2.1.16 Definition. Let 0 ~ R k be open. By 00'(0 x R+) denote the space of all
f E Coo(O x R+) which are restrictions of functions f E 00 (0 x R).

2.1.17 Singular Green Operators. Let 0' ~ Rn-l be open, 0 = 0' x R+, J1. E R, d, I E
N.
(3) A family {Go(..\) : ..\ E R ' } of operators

Go(..\) : C~(O' x R+) ~ V'(O)

is a parameter-dependent regularizing singular Green operator 01 type d on 0, if Go can
be written as an operator of the following form

d ()J
[Go(A)f](x) = 'fo in I/>;(x, y; A) ()y~ f(y )dy, (1)

where <Pj E S(R1, Coo(Oo x 0 0)),00 = 0' X R+. Write Go E G-oo,d(!1j R 1).

We topologize this space as the Cartesian product of d + 1 copies of S(R' , 0 00 (00 x 0 0 ))

modulo the quotient of functions inducing the same operators. It is then a Frechet space.
(b) A family {G(..\) : ..\ E R 1} of operators

G(A) : C~(O' x R+)~ V'(O)

is a parameter-dependent singular Green operator 01 order J1. and type dJ if it can be written

d

G(..\) = L op gj(..\) 0 &t:n + Go(..\),
j=O

(2)

where 9j E s~-j(O' x 0', Rn-l x R1j S'(R+), S(R+)), and Go is a parameter-dependent
regularizing singular Green operator. Write G E G~,d(O; R ' ).
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Notice that if all 9; in (2) belong to 8-00 (01 x 0 /,Rn-I X R1;SI(R+),S(R+)), then G
is parameter-dependent regularizing. This is a consequence of the mapping properties
which we will establish in Theorem 2.2.1.
We shall call the (operator-valued) symbol

d

9(X' , yl, (,.-\) = E9;(X', y', (,.-\) 0 ~n
;;::0

(3)

the singular Green symbolof G. It is well-defined as an equivalence dass of tuples (90, ... ,9d),
9; E S~-;(f2' x f2',Rn-l x R1;SI(R+),S(R+)) with the property that

d

G(·) - op E9;(-) 0 at:
n

E G-oo,d(0;R1
).

;;::0

Like in (a), the Frechet topology in Gp,d is induced by the representation (2) via the
topologies on the symbol spaces and that on G -oo,d.

In order to avoid additional notation, we have given these definitions for the scalar case.
In general, all symbols or kernel functions will take values in nI x n2-matrices, nI, n2 E N.

2.1.18 Remark. Compare this with the usual situation, cf. [21], [9]. There, the
operator-valued symbol 9 E StJ(O' x f2', Rn-I j S'(R+),S(R+)) of 2.1.17 is replaced by
a so..called "singular Green symbol kernei" 9 of order J.I. - 1 satisfying the estimates

Ilx~D~~y:n;;.'D~DeDJg(y, y,1}, X n , Yn)IlL2(R~+) (1)
< C ( )tJ-lol-k+kl-m+m'

K,k,k' ,m,m' ,o,ßt'..., 1]

for every subset !( ce 0, y, y E !(, a11 k, k', m, m l E N and a11 multi-indices Ci, ß, J' We
are using the notation Rt+ = R+ x R+.
These symbol kerneIs act as integral operators on R+i they induce operators 9(y, y, 1}, D n )

by

(2)

for f E S(R+).

The present definition has been established by Schulze in [29], vol. VIII.
At first, it is surprising that in 2.1.17(1) and (2) we have partial derivatives of orders
0, ... ,d to the right of the kerneis and symbols instead of evaluations of derivatives of
orders 0, ... ,d - 1 at the boundary like in the usual set-up. The explanation, however, is
simple: Integrating by parts we have

[0 -Y(xn,Yn)8•• /(Yn)dYn = -y(xn,O)/(O) - fa"" 8••-y(X n,Yn)J(Yn)dYn (3)

for J E S(R~+). By iteration, one obtains the 'standard' representation, cf. also 2.2.13,
below, for a detailed exposition.

The only point to darify is whether for type zero the usual definition coincides with that
given in 2.1.17. This is the contents of Theorem 2.1.19, below.

For the formulation and the proof we may omit the parameters, since they only play the
role of an additional covariable, and we can confine ourselves to symbols independent of
y.
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2.1.19 Theorem. Let fl' ~ Rn-1 be open, and suppose that for all y E ·fl',11 E
Rn-1 ,g(y, 11) E .L:(L2 (R+)). Then the following is equivalent:

(a) 9(y ,7]) = 9(y , 7], Dn) for a singular Green symbol kern el 9 satisfying the estimates
2.1.18(1).

(b) gE SP(fl',Rn-1 j S'(R+),S(R+)).

(c) 9 E SP(fl', R n-1; L2(R+), S(R+)), and the formal X n-adjoint, point-wise defined by
g.(y, "1) = g(y,7])\ with respect to the inner product in L 2(R+), also belangs to
SP(fl', Rn-1 j L2(R+), S(R+)).

Proof. (a) ~ (b). It is easy to check that "'(11)-1 D~D~g(y, T}) "'(11) is the integral operator
with the symbol kernel

The fact that [} satisfies the estimates of 2.1.18 implies that

lIx:D;~y:D~'hex.ß(y, 11, X n , Yn)IIDl(Rt+) ~ C (11)P- lex! •

So ha,ß(y, 7],',') is a function in S(R~+), and all Hs semi-norms are O((T})p-1al). This
implies (b), for a rapidly decreasing kernel yields an operator from S'(R+) to S(R+).
Moreover, for all choices of E E {Höu·-"T(R+): U,T ~ O},F E {Hu·"T(R+): a,T ~ O},

11 "'{11)-1 D~D~g(y, 11 )"'(11) 11 C(E,F) = 11 ha,ß(y, 11, Dn)IIC(E,F)

can be estimated by finitely many of the above semi-norms which are all O( (11)1J- 1a l
).

(b) => (c). If 9 E slJ(n', Rn-1 j S'(R+), S(R+)), then g(y, 11) has a rapidly decreasing inte­
gral kerneion R+ x R+, say g(y, 7],',') for every fixed choice of y, 7]. This is a consequence
of the continuity of 1'\:(11)-1 and "'(11) on S(R+) and S'(R+), respectively.
The adjoint g.(y, T}) = g(y, "1t thus is the integral operator with the adjoint kernel
h(y, 11, X n,Yn) = g(y, 7], X nl Yn), while finally I'\:(f))-lg·(y, 11 )1'\:(11) is the integral operator with
the kernel

Now pick k, k', m, m' E N, and show that

Ilx:D:~y:D:: h(y, 7], xn,Yn) IlsUPR:2 = O( (11 )IJ).
++

(1)

Since the same considerations can be applied to D~Deg(y, 11), we obtain the assertion.
So let us show (1). We have

lx~D:~y:D;;:'h(y, 11, (11)-1 Xn , (7])-1 Yn) (T})-1 I

I k m ( )-kl-m' [D kl Dm' "']( ()-1 ()-1 ) ( )-1 I= XnYn 7J X n 1/n g Y,17, 1] Yn, 7] X n 1] .

Letting tL = (7])-l xn ,V = (7])-l yn ,E = HU,"T(R+) for some choiceofa,T (large), E' =
HüU,-"T(R+) its dual space, we can rewrite this last expression as

() k-k'+m-m l -1 kDk' mDm' -( )7] U u V v 9 Y, 7], tL, V .
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We now use the fact that the integral kernel of the operator g(y, 1]) : E -+ EI can
be writ ten as -[;(Y, 1], u, v) = (g (y , 1] ) bv , bu ) E ,E' wi th the translation of Dirac's funet ion

bu : f 1-+ f( u). Correspondingly, ukvm D~'Dr:'g(y, 1], u, v) is the integral kernel of the
operator w k D~g(y, 1] )wm D;;;'. Notice the distinction between the variable, namely w, and
the points where we evaluate, namely u and Vj here w k and wm are to be understood as
multiplieation operators. Therefore,

lukv m n:'D';'g(y, 1], u, v) I

= I(wk D~g(y, 7] )wm D:;:' 6v , 6.)E,E,I

= I(g(y, 7])w
m D;:'6., Dk

' w
k6.)E,E.I

= I("'(.)-1g(y, 7] ) "'M"'(.)-1 (w
m

D;:'6.), "'(.)-.D~w
k
6.) E,E.I

< 11K(71)-lg(y, 1] )1'i:(71) IIc(E,E/) 111'i:(1j)-1 w
mD:'bvllE' 1Ix;(7])-1D~wkbullE'.

Now K(1j)-l(Wm nm 'bv ) = (1])-m+m
l

K(7])-lbv , while (K(71)-lbv )f = bv (x;(7])f) = (1])t /((1]) v)
for f E S(R.r). Therefore, (1] )k-kl+m-m/-l u kD~' v m Dr:'[;(y, 1], u, v) = O( (1] )J.J). This yields
the assertion.
(e) => (a). X;(7])-lg(y, 1] )1'i:(1j) : L 2(R+) -+ S(R+) is eontinuous. In partieular, it is a Hilbert­
Schmidt operator on L2 (R+) and thus has an integral kernel h1(y,1],',') E L2 (Rt+), and

(2)

By a direet ealculation, the operator g(y, 1]) then has the integral kernel

(3)

(4)

The mapping x~D~:1'i:(7])-1 D~ D~g(y, 1] )K(7]): L2(R+) ~ S(R+) also is continuous. There­
fore, as in (2)

IIx~D;~ D~D~h1(y, 1], X n,Yn) lIL1(R~+) = O( (1])J.J-IQI).

Using relation (4) we also have

(5)

(6)

Together, the estimates (5) and (6) show that

IIx~D:~y:D;:'D~ D~ h1 (y,1], xn, Yn) IIL1(R~+) = O( (1])J.J-1a l). (7)

For a proof see [22], 1.2.2 Proposition 10. By combining (7) with (3), we obtain (a). <J
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2.2 Mapping Properties. Boutet de Monvel's Algebra on the
Half-Space

2.2.1 Theorem. Let n' ~ Rn-1 be open, s E R, and let G be a parameter-dependent
singular Green operator of order J.l and type zero on 0 = 0' x R+. Then

(1)

is continuous for all A E R l •

Note: Since the symbol topology is stronger tban the operator topology we may es­
timate the operator norm in terms of A. In particular, if 9 E S-oo(O' x n', Rn-1 x
R l j S'(R+), S(R+)), then op 9 is an integral operator with a kernel function in S(RI , Coo (!1o
xOo)), no = n' x R+.

Proof This is an immediate consequence of the definition of the singular Green operators
and Theorem 2.1.14.
The application to symbols of order -00 follows from the fact that for all a, ß, J.l, the
operator AQD~opg(A) has property (1), uniformly in A, in connection with 2.1.13(c),(d).
<]

2.2.2 Theorem. For an open subset fl' ofRn-1 let G be a parameter-dependent singular
Green operator of order J-L and type don n' x R+. Let s E R, a = (a), a~) E R~, a1 > d-~.

Then
G( A) : w:amp(n', HO" (R+)) ---4 wto~JJ(n', S(R+))

is continuous for a11 A E R l , and we may estimate the operator norm in terms of A.

Proof. This follows from the definition of the singular Green operators, Theorem 2.1.14,
and Lemma 2.2.3(a), below. The proof of 2.2.3 is immediate from the definition of the
norms in the wedge Sobülev spaces. <]

2.2.3 Lemma. Let s E R, a = (al, (2) E R 2
•

(a)

is bounded.
(b) Multiplication by X n,

X n : W"(Rn-\ H C1 (R+)) ---4 W,,+1(Rn - 1, H C1 -(O,l)(R+))

is bounded.

2.2.4 Definition. Let 0' ~ Rn-1 be open, n = !1' x R, and let p E SJJ(!1, Rn; R l ). Für
fixed (x', f, A) E !1' x Rn-l x R 1 let

(1)
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where the action in op Xn is with respect to X n and the covariable en'
The operator in (1) is well-defined on HS(R+),.s > -~, since then extension by zero
makes sense. More generally, given an operator T on distributions over 0' X R define the
operator T+ on sufficiently smooth distributions over 0' x R+ by T+ = r+Te+.

2.2.5 Theorem. Let J.l, 11 E R, 0,0' be as in 2.2.4. Moreover, let p E S::'(O, Rn; Rl), q E

Srr(O, Rn; R ' ), and suppose tbat p(x,~,"\) or q(x,~,'\) vanishes tor Xn outside a compact
set. Tben

op ~nP On oP;n q - (op XnP On üp xnq)+

induces a parameter-dependent singular Green operator 01 order jj + 11 and type d =
max(entier(1I),0).

Für completeness the proof will be given in Appendix 2. <l

2.2.6 Lemma. Let 0,0' be as in 2.2.4, and let p E Sf,.(O, Rn; R ' ). Then for fixed
(x' , ~' , ,\) E 0' X Rn X R ' ,

"«',,\)-1 Op x.p( X', Xn,(', en, ,X )"(e','\) = Op x,( X', (e~;n,X) , (', ((', ,X) en, ,X)

Similarly, for a 'double' symbol q = q(x, y,~, ,,\), the transformed symbol has the form

q(x', (e~,n,X) , y', (e;,\) ,(', ((, ,X) en, 'x).

Proof. Let f E S(R). Then for p = (~',,\) , (Kpfr(~n) = P- ~ j(~), and

p(x', xn,e, Dn,'\)(Kpf)(xn) = (21r)-t JeXnPTJnptP(X',Xn,(,P7]n,'\)j(7]n)d7]n.

This gives the assertion. The argument also applies to 'double' symbols.

2.2.7 Lemma. Let J1. E R. Tben the symbol

induces the operator-valued symbol

for arbi trary s E R.
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Proof We have to consider

K(€',>.)-lOp :r:,.DeID~ ((, ~n, ..\)~ K(€J,>.).

Now B€i ((, ..\)Jl = Jl~j ((, A)Jl-2 , SO by induction De,,>.r~ is a linear combination of terms

of the form (ß (e, A)~-k with k - lßI ;::: 10'1. From Lemma 2.2.6 we conclude that
1'C(€',>.)-IOp x,. Dei (~/, ~n, A)Jl I'C(€,,>.) is a linear combination of terms of the form

(ßop x,. (, ((,..\) ~n, A)~-k = (ß ((, ..\)Jl-k op x,. (~n)~-k ,

since k - IßI ;::: 10'1, (ß ((, A)~-k = O((f, A)Jl-1cw l). Moreover, op Xn (~n)~-k H"(R)---+
H"-Jl(R) is bounded. This completes the proof. <]

2.2.8 Theorem. Let n' ~ Rn-l be open, n = f!' X R, p E S~(f!, Re; R~). Assurne tbat
p is independent of X n or that it vanishes for X n outside a compact set.
Tben

op X,.p(x,~,Dn , A) E S~(f!', R n
-

1 x R l , HO"(R), HO"-~(R))

far every (J' E R.

Proof Consider the symbols r ll introduced in 2.2.7. For every v, the operator rY(f, Dn ,..\)

is invertible with inverse r- lI
((, Dn , ..\).

Applying Lemma 2.1.10 it is sufficent to prove that

q(x, (, Dn, A) = r"-Jl(, Dn, A) On p(x, (, Dn, A) On r-"(, Dnl ..\) (1)

E SO(O', R n
-

1 X R1j L2(R), L2(R)).

By the standard calculus, q(x, e', Dn ,.-\) is a pseudodifferential operator with a symbol
q E SO(f!, Rn X R 1). For fixed (x', ~'), we have q(x', Xn, e', ~n,.-\) E SO(Rxn , R€,. X R~)unif

by assumption, and all symbol semi-norms depend continuously on x'. For all multi-indices
0'

(,..\)lcwIIDe,'D~:q(x',Xn,(,~n,..\)1 ~ ca(x' ).

with a continuous function Ca. By Lemma 2.2.6

K(€,,>.)-l ((,A)lal DeID~,q(x,e, Dn , .-\)K(€/,>.)

op x. ((, A)lol (D(,D~,q)(X', (~~,nA)' (, ((, AHn, A).

Lemma 2.2.9, below, shows that the norm of this family of operators is bounded by a
continuous function c(x') as (x',e','x) varies over Rn-l x Rn-l x R i •

This gives the desired result. <]

2.2.9 Lemma. cf. Coifman & Meyer [4], Chapter 11, Lemma 1. Let p E sg,o(Rn x Rn)uniI.
Tben far (J' E R, the mapping

is a constant.
Note that the boundedness of the right hand side is a consequence of Calderon and
Vaillancourt 's theorem.
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2.2.10 Lemma. Let Jl E Z and choose a function X E S(R) with suppF-1X ~ R_ and
X(O) = 1. On Rn X R l deHne the Eunction r~ by

Here, a is a real parameter with a » Ilx'llsup; X' is the first derivative of X. Moreover let

r~(~, A) = r~(~, A).

be the complex conjugate of r~. Then

(a) r~ belongs to S~(Rn, Rn; R ' ) and is parameter-elliptic.

(b) op ;nr~ E S~(Rn-t, Rn-l X R'j HO'(R+), HO'-~(R+)) for all 0' > -~;

we even have

(c) OP~nr~ E S~(Rn-l,Rn-l X RljHlT,'T(R+),HlT-~,'T(R+)) for all (J' > -!,r E R.

(cl) op ;nr~ E S~(Rn-t, Rn-l X R l ; H;,'T(R+), H~-~,'T(R+)) for all 0', T E R. Here, e+ is
regarded as a trivial action on H;''T (R+).

(e) Let lJ E Z, and assume that 0' - Jl > -~. ~hen op ~nr~ On op ;nr~ = op ~nr~+~; in
particular, oP~nr~ On oP~nr=~ = id on HO','T(R+).

Note: In (b) and (c) the operator e+ apriori requires tbe regularity 0' > -~. On tbe
other hand, the proof oI (b) will show that

for any extension operator E, whenever (7 > -!. We thereIore have the results oE (b)
and (c) for all (J, provided we replace the extension e+ by an arbitrary extension operator
HlT(R+) -+ HO'(R).

Proof (a) First note that

x(~) (f,A) - i~n

(e, A) - ien
_ 1 + (tl A) X(~) - X(O)

~ , (e', A) - ien
= 1 +r,

(1)

.where Irl ::; Ilx'llsup((e,A)a)1~~))/(e,A) ::; 11x'llsup/a « 1. In particular, Ir~(e,A)1 >
c (C.-\) for same c > Oj this implies parameter-ellipticity of both, r~ and r~.

Using (1), it is easily checked that De,>.r~(e,A) = O( (~, .-\)~-IO'I), just a.s assertecl.
(b) Together wi th (a), 2.2.8 shows that

opr~ E S~(Rn-l,Rn-l X Rl;HlT(R),HO'-~(R))

for arbitrary 0'.
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As a function of ~n, r_= r: belongs to H-, since supp :F-1X ~ R_. Also r:1 belongs to
H-, by [21], Section 2.1.1.1, Corollary 2, for it has an analytic continuation to the upper
half plane {Imz ;::: O}, ancl it has an asymptotic expansion into negative powers of ~n'

Since H- is an algebra, r~ belongs to H- for every fi E Z.
Now let u > -~ ancl E = E(u) be an extension operator from H/7(R+) to H/7(R). Given
I E H/7 (R+), EI - e+f is a distribution belonging to Ha, a = min{u, ! - f} for all f > 0;
moreover, it is zero on R+.
Therefore, r+op Xnr~ (EI - e+ I) = r+:F-1 [r~:F(EI - e+ I)] = r+ [:F-lr~ * (EI - e+ f)] = 0,
since both, :F-lr~ and (EI - e+ f) vanish on R+.
We conclude that

oP;nr~1 = r+opr~ 0 EI. (2)

Both E ancl r+ are bounded operators, and the norm of K(e',>.}-l DelDfop xnr~K(e',>.) in

.c(HU(R), H/7- Jl (R)) is O((e, A)Jl-lal-IßI) by (a) and 2.2.8 Hence we obtain the assertion.

(c) Without 1055 of generality assurne that 'T E Z. The norm of K.(e,,>.}-lDeIDfoP~nr~K(el,>.}

in .c(HU,T(R), HU-Jl.T(R)) equals the norm of (Xn)T K(el,>.)-lDeID~oPxnr~",(e'.>.) (Xn)-T in
.c(HU (R), H/7- Jl (R)). One of the multiplication operators is a polynomial in x n. Both com­
mute with the group action. Moreover, we may use the rule xnop ~nr~ = ([xn, op ~nr~])++
op tnr~ Xn = op ~n ( - Den r~) + op tn r~ Xn to move the polynomial part to the other side.
Since x~ (Xn)-T is a bounded operator for k :::; 'T, and since we know already that Denr~

has the desired mapping properties, this completes the proof.
(cl) In view of the fact that e+ is a trivial action, (a) in connection with 2.2.8 implies that
op Xne+r~ E SJl(Rn-1, Rn-I; H;,T (R+), H;-Jl,T (R+)).

All we have to show is that for v E S(R+), op Xne+r~V =°on R_. This, however, is easy:
r~ is the surn of a polynomial and a function in H+, so r~:Fe+v E H+ . {C[~n] ffi H+},
and the inverse Fourier transform vanishes on R_.
(e) Since

whenever the compositions make sense, equation (2) gives the assertion. <l

2.2.11 Theorem. Let p E S:;'(Rn, Rn; R 1), fL E Z, and assume that p is independent of
xn , or p(x,~, A) = 0 for x outside a compact set. Tben

(1)

for all u > -!' 'T E R. Moreover, iE a < 0, then

for a - Jlo ;::: 0, and

op ~nP E SJl(Rn-t, R n- 1 x R1j H;·T(R+), H;-Jl,T(R+))

whenever u - J10 ::; O.
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Proof Let us first prove (1). For -~ < f7 < ~ there is nothing to show, since then
extension by zero is continuous HU,T(R+) -+ HU,T(R). Using interpolation, we mayassume
that f7 E N, T E 2Z. Now (1) is equivalent to having

op + rU-/-l 0 (x)' op + P(x )-T 0 op + r- u E SO(Rn - 1 R n - I x R I • L'J(R ) L 2(R )).
Xn - n n Zn n n Xn - , ,+ , +

First note that (x n ) T op ~nP (x n ) -, = op ~nq for some q E Si,o,tr(Rn , Rn j R l
) which is ei ther

independent of X n or vanishes for X n outside the above compact set: The pfoof is the same
as that of 2.2.10(c).
By 2.2.10(2), oPXnr~-J.j On oP~nq = op~n(r~-J.j#nq) with the Leibniz product #n in X n ­

direction. Since f7 E N, composition of this operator with op ~n r=u produces

Here 9 is a singular Green symbol of order and type zero (cf. 2.2.5, noting that f7 ;::: 0),
modulo remainders that induce parameter-dependent regularizing singular Green opera­
tors of type zero.
The term inside the brackets is op ql with same ql E sr,O,tr' Moreover, either q is indepen­
dent of X n , then also ql is, or p vanishes for X n outside a compact set. In that case, we
may use the asymptotic expansion formula for the composition of op r~-J.j with a multi­
plication operator 4>(xn ), 4> E Cü(R) to see that the term inside the brackets is the sum
of a pseudodifferential operator with compact X n -support and a singular Green operator
of order and type zero. Now 2.2.1 yields the assertion.
The proof of (2) and (3) is similar, using r+ instead of r~. <J

2.2.12 Definition. Let!1' ~ Rn-I be open, !1 = !1' X R+, and!1o = !1' x Rr. Moreover,
let J.l E R, dEN.
(a) A parameter.dependent trace operator 0/ order fL and type d on !1 is a family {T(A) :
A E R l } of operators T(A) : C~(!1o) -+ V'(!1') of the form

d

T(A) = :L op tj(A)~n + TO(A)
j;:;O

(1)

(2)

wi th t j E 5/-'- j (0' x 0', R n-I ; 5'(R+), C) and Ta a parameter-dependent regularizing trace
operator 01 type d, which we define to be a family {TO(A) ; AE R l } of operators TO(A) :
C~(!1o) -+ V'(O') of the form

TO(A)J(X') =tL [0 Tj(X', y', Yn, A)a:.J(y', Yn)dYndy'
j=O n 0 ,

with Tj E S(RI , COO (!1' x 0 0 )),

Notice: If all t j in (1) belong to S-OO(!1' x !1',Rn-l j S'(R+),C), then T is parameter­
dependent regularizing. This follows from the mapping properties in 2. 2.15(c), below, in
connection with 2.1.13.
The topology on the space of all trace operators of order J1. and type d is defined via the
natural Frechet topologies on 'Tj E S(RI, COO(!1' x 0 0 )) and those on the symbol spaces
via the representations (1) and (2).
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The parameter-dependent and operator-valued symbol

d

L op tj(A)~n E SIl(n' x n', R n
-

1 x R t
; HU(R+), C),

j=O

(7 E R 2
,0'1 > d - ~ is called a trace symbol for T. As in the case of singular Green

symbols, it is not uniquely defined; we obtain an equivalence dass oftuples (to, . .. ,td), tj E
SIl- j (f},' x n', R n-1 X R l ; HU (R+), C), wi th the property that

is a regularizing parameter-dependent trace operator of type d.
(b) A parameter-dependent Poisson or potential operator !( 01 order I-" on !1' is a family
{]«(A) : A E R l } of operators ]«A) : C~(!1') -+ V'(!1) of the form

]«A) = op k(A) + ]<O(A) (3)

(4)

with a symbol k E SIl(!1' x !1', Rn-1 x R ' ;C, S(R+)) and a regularizing parameter­
dependent Poisson or potential operator, Le. a family {]<o(A) : A E R ' } of operators
KO(A) : C~(n') -+ V'(n) of the form

](o(A)/(x',xn ) = r Ko(x',xn,y',A)f(y')dy'iOI

with a function Ko E S(R1, Coo(no x !1')).
If the symbol k in (3) belongs to S-oo(n' x n', Rn-1 x Rl; C, S(R+)), then ]( is parameter­
dependent regularizing in view of the mapping properties in 2.2.15(cl), below.
The representations (3) and (4) together with the topologies on the symbol spaces and
the space S(RI , Coo(Oo x .0')) give a Frechet topology for the potential operators of order

1-".
CaU k in (3) a potential symbol for ](. Again, it is unique up to symbols inducing regu-
larizing potential operators.
In general all symbols will take values in matrices.

2.2.13 Remark. Like in Theorem 2.1.19 one can check that the usual definition of a
trace operator of order J.L - ~ and type d coincides with that of a trace operator of order
I-" and type d in this set-up.
In particular, the standard trace operators ,j :S(R+.) -+ S(Rn-1) defined by

for JEN are trace operators of order and type j +1 in the usual set-up; they are of order
j + ~ and type j +1 here. Similarly, a usual potential operator of order I-" + ~ corresponds
to a potential operator of order fL in the sense of 2.2.12(b).

Let us now check that we have the usual representation also for a parameter-dependent
singular Green operator of order I-" and type d:
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2.2.14 Lemma. Let [2,[2',[20 be as in 2.2.12, J.L E R,d E N. A Eamily {G()') : ). E R l }

oE operators
G()') : C~([2o) ---t 11(0)

is a parameter-dependent singular Green operator oE order J.L and type d jE and only iE it
can be written in tbe form

d-l

G()') = L !(j().)'j +CO().)
j:;;;:;O

(1)

with parameter-dependent potential operators !(j oE order J.L - j - ~ and a parameter­
dependent singular Green operator CO of type O.
Note: Already in Tbeorem 2.1.19 we saw that our definition oE singular Green operators
of type zero coincjdes with the usual one. Togetber with Remark 2.2.13 we have tberefore
checked tbat both concepts coincide.

Proof First part. Suppose an operator of the form (1) is given. For simplicity assurne
that d = 1, i.e. G()') = 1«>")'0 + CO(>..) with a parameter-dependent potential operator
]( of order fJ - ~. We can then write

J«().) = op k(>") + ](0(>..)

with a regularizing parameter-dependent operator 1(0 and a potential symbol of order
J-L - t· The operator op k can also be giyen by a symbol kernel k(x' , e' ,x n, ).) satisfying

11 kDk' Da Dß D'k( I (I \)11 - O(((/)Il-!-lal- 1-yI-k+k
l

)
X n X n e' x' ..\ X,~ ,Xn,A L2(R.t) - ~

and 1(0 has an integral kernel k = k(x, y',).) in S(RI , 0 00 ([20 x D')). We will now make
use of the simple integration by parts identity f: /g' +f: f'g = fgl~ : Choose a function
f E S(R+) with 4>(0) = 1. Then for f E Cg'(Oo)

](O(>")'of = [k(x, y', >")f(y', O)dy'
Jo'

= - [ k(x,y',A)4>(Yn)8yn f(y)dyJoo

- [ k(x,yl,).)f'(Yn)f(y)dyJoo

Therefore ](0(. )/'o is a regularizing parameter-dependent singular Green operator of type
1. Now consider op k(· )'0' We have for f E Cg'([2o)

,of(x' ) = f(x',O)

- (211")- n;-1 Jeix'e' :Fyl-e' f(e', O)d(

= -(2'llr~ Jeix'e f' q,«f, >') Yn)F.'-e 8•• f(f, Yn)dYndf

-(211")-~ Jeix'e' faoo (~/,)..)fl((e',A)Yn):FlI-e'f(e',Yn)dYnd~/.

We can therefore write op k().,)/,o! = 0P 9o(A)f+op gdA)8xn !, where op 9j, j = 0,1, are the
operators with the symbol kerneis go(x',f,xn,Yn,).,) = k(x',f,xn,A) (e,A) 4>'((f,A)Yn)
and gl(X',t,xn,Yn,)..) = k(x',e',xn,).)f((e',A) Yn)' Cauchy-Schwarz' inequality gives

1191(X',(,·,·, A)IIL2(R~+) ::; Ilk(x' ,(,·, >..)IIL2(R+)II4>(((, >..) ')IIL'J(R-t) = O((e', A)P.-~-~),
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where the 0 denotes a constant depending continuously on x' and y'. This immediately
leads to the desired estimate

11 k Dk' mDm'D O Dß D"I (' t' .. ..\)11 = O((t' ..\)JJ-1-lol- hl -k+k'-m+m').
X n xnYn Yn e' x' )..91 X ,So, "L2(R~+) ~, ,

similarly for 90 with p. - 1 replaced by J.l. In view of Theorem 2.1.19, op 90 is a parameter­
dependent singular Green operator of order p. and type 0, while op 91 is of order J.l - 1
and type O. Now the case d > 1 follows by iteration.
Second part. For simplicity suppose again that d = 1 and

where 90 is a parameter-dependent singular Green symbol of order fL and type zero, given
by a symbol kernel 9o(x', e, X n, Yn, A), 91 is a parameter-dependent of order p. - 1 and
type 0, and Go), GI are regularizing parameter-dependent singular Green operators of
type zero.
Then op 90 + Go is already of the right form, while an integration by parts yields for
JE °0(00 )

Now the inequality 1c,b(0)1 2
~ 211c,bIlL2(R..r)llc,b'IIL2(R+), valid for c,b E S(R+), together with

the symbol kernel estimates for 91, cf. 2.1.18( 1), implies that

Il x k Dk ' DO Dß D"Y9 (x' t' . 0 ..\)11 - O({t' ,)JJ-t-Iol-hl-k+k')
n Xn e' x' ).. 1 ,~'" L2(R+) - ~ ,1\

so that 91 (x' , e, X n, 0, A) induces a parameter-dependent potential operator of order p. - ~.

The symbol kernel 8yn 91 induces a parameter-dependent singular Green operator of order
p. and type O. With a similar procedure we may write Gd..\)8xn = j«()..),o +G2 ()"), where
[( is a regularizing parameter-dependent potential operator and G2 is a regularizing sin­
gular Green operator of type zero. Hence G(..\) = op k()"),o + cl()..) with a potential
operator of order p. - ~ and a singular Green operator of order p. and type O. <l

2.2.15 Theorem. For parameter-dependent trace and potential operators we have tbe
lollowing mapping properties. Let 0, .0' be as in 2.2.12, 8 E R, er E R 2, p. E R, dEN.
(a) Let T be a parameter-dependent trace operator 01 order p. and type d on .o. 110"1 >
d _! then

2'

T()..) : w:omp(.o', HO" (R+)) --+ wj'o~JJ(.o',C)

is bounded for every ..\.
In particular, 2.1.13 implies that

is bounded for all s > d - t.
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If d = 0, then

(3)

is continuous.
(b) Let /( be a parameter-dependent potential operator of order J.1.. Then

(4)

is continuous for a11 ,,\.
In particular,

(5)

is continuous.
(c) 1fT is a regularizing trace operator of type d, then ,,\CfD~T("\) has property (1) for
arbitrary p, l), ß, uniformly in "\. Jf T even is of type zero, then we have property (3) for
all choices of the parameters.
(cl) Jf /( is a regularizing potential operator then ,,\Cf Df/«("\) has property (4) for every
p, l), ß, uniformly in "\.

Proof. This is a consequence of the definition in connection with Theorem 2.1.14. For (c)
ancl (cl) use the fact that the kerneis are rapidly decreasing with respect to "\. <J

2.2.16 Theorem. Let 0, f2' be as in 2.2.12. Let C, /(, T be parameter-dependent singu­
lar Green, potential, and trace operators oE order p and denote the type of G and T by
d.
Choose a function 4> E COO(R+) with 4> =1 near zero. Then
(a) (1 - 4»/( is a regularizing potential operator.

(b) T (1 - 4J) is a regularizing trace operator of type O.
(c) G(1 - cP) 18 a regularizing singular Green operator of type O.

(d) (1 - 4»G is a regularizing singular Green operator oE type d.

Proof (a) We start with the following observation.
Let k E SIl(f2', Rn-l x R'iC,S(R+)), Le. for all U E R 2,Ul ~ 0,

(1)

For rEN consider x~ as the multiplication operator on Hq (R+). Since x~ : Hq (R+) ----40

Hq-(O,r) (R+) is bounded, and since

(2)

we have
x~k(x',e,"\) E s~-r(f2',Rn-l x R 1; C,S(R+)). (3)

This yields the assertion: Choose any rEN. Since 4> == 1 near zero, (1- 4»x;,r is bounclecl
in all derivatives, and we may write

which is a potential operator of order J-i - T.
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The proof of (b), (c), and (d) is similar. For (b) and (c) note that the type can be reduced
to zero by writing e.g. T(l - </» = Ty~[y;r(l - 4»], r > d and integration by parts as in
2.1.18(3). <J

2.2.17 Definition. Let 0' ~ Rn-l be open, 0 = 0' X R+, and 0 0 = 0' x Rr. A
parameter-dependent operator 0/ order pER and type dEN in Boutet de Monvel's
calculus on 0 is a family {A (..\) : ..\ E R 1} of operators

[
P+(;\) + G(..\) ]«(.\)]. Cgo(Oo)

A(.\) = T(..\) S(..\)· E9 -+

C~(f!')

where

(1)

P(·) = opp(') with p E st(f! x 0, Rn; R ' ), P+ = r+ Pe+,
G(·) is a parameter-dependent singular Green operator of order jJ and type d,
!((.) is a parameter-dependent potential operator of order jJ,

T(·) is a parameter-dependent trace operator of order J1. and type d,
S(·) is a parameter-dependent pseudodifferential operator of order jJ on 0'.

We sha11 write A E BJl,d(f!; R'). The topology on this space is that of a non-direct sum
of Frechet spaces induced by (1) and the topologies on the spaces of pseudodifferential,
singular Green, trace, and potential operators.
A parameter-dependent regularizing operator A 0/ type d in Boutet de Monvel's calculus on
o is one that can be written in the form (1) with all entries being regularizing operators.
Write A E B-oo,d(f!; R 1), and give this space the obvious Frechet topology.
It is a consequence of 2.2.15, 2.2.10, 2.2.1, and 2.1.14 that the operators in (1) indeed
have the desired mapping properties.

In general, all entries will be matrix-valued: given nl, n2, n3, n4 E N, P and G will be
n2 x nl matrices, J< will be n2 x n3, T of size n4 X nl, and S of size n4 X n3' For shortness
call this an (n2, n4) X (nI, n3) matrix.
We may define a family {a("\) : ,,\ E R1} of parameter-dependent operator-valued symbols
for the family {A(..\)} by letting

k(x', t' ') ] . Cg'(~ )n
1

( 't' ..\) _ [oP~nP(x,~,;\) +g(x',(,.\) ':." QJ-+
a x ,':., - t(x' , ( , ..\) s(x', ( , ..\)' C

na

where p,g, t, k, s are symbols of P, G, T, J(, and 5, respectively. We understand the symbol
a as an equivalence dass of tuples in the corresponding symbol dasses with the property
that

A - op a E B-oo,d(O; R1)j

i.e. GI ,..,.. a~ iff op al - op a2 E ß-oo,d(O; Rl).
Within this equivalence dass, we may always find a representative which is properly
supported, cf. [27], p.296.
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2.2.18 Theorem. Let 0,0' be as in 2.2.17, A E ß~,d(O; R l ) be an (n2' n4) x (nt, n3)
matrix, and B E B~/,d' (0; R' ) an (nI, n3) x (ns l n6) matrix. Suppose that for one oE tbem,
the pseudodifferential symbol vanishes for X n outside a compact set and that A or B is
properly supported.
Then the composition AB is defined; it is of size (n2, n4) x (ns, n6) and belongs to
B~II,d"(Oj R 1) with p." = p. + p.' and d" = max{J.L' + d, d'}.

Proof Choose symbols a, b such that A = op a+ Ao, B = op b+ Bo with Ao, B o regularizing
and a, b properly supported. Then the assertion is a consequence of the composition
formulas for properly supported operator-valued symbols [27] Section 3.2.2 Theorem 14,
and Theorem 2.2.5. For the composition of regularizing operators with others use the
mapping properties in 2.2.15(c), (cl) in order to show that the result also is regularizing.
<J

For convenience, the following theorem will be formulated for a (1,1) x (1,1) matrix. The
case of arbitrary matrix sizes ni causes an evident modification.

2.2.19 Theorem. Let 0,0' be aB in 2.2.17, A E B~ld(O;RI). Tben for all A E R' ,
8, a E R, a > d - ~

W:omp(O', HU(R+))
A(A) : EB ---+

wgomp(O', C)

is bounded. In particular, if s > d - ~, then

H:omp(O)
A(A) : EB ---+

H:omp(O')

Wi'~Il(O', HU-~(R+))

EB
W"-~(O' C)loc ,

is bounded.
If d = 0, then we additionally have the bounded extensions

W:omp(O', Hg(R+))
A(A) : EB ---+

W:omp(O', C)

wto~~ (0', H{o}~(R+))
EB

W"-~(O' C)loe ,

for a < O. Here, H{O}~ (R+) denotes the space H~-~(R+) for a - Jl < 0 and HU-~(R+)
for a - J.l ~ O.
In all cases, the symbol topology is stronger than the operator topology.

Proof. This is immediate from the continuity properties of the various components, cf.
2.2.15, 2.2.10, 2.2.1, and 2.1.14. <J

2.2.20 Theorem. Let 0,0' be as in 2.2.17, A E BO,O(O; R l ). Then the adjoint A·
with respect to tbe extension oE the L2 inner product to the spaces in 2.2.19 belongs to
BO,O(O; R ' ).
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Proof This follows from the corresponding result for all entries of A. For a pseudodifferen­
tial operator P of order zero, we have P+· = p.+i while for the singular Green, potential
and trace operators the assertion reHes on the fact that the adjoint of an operator-valued
symbol belongs to the calculus, cf. [27], Section 3.2.2, Theorem 15. <J

2.2.21 Definition. Let !1 be as before, p. E Z, dEN and d ~ p.+ = max{p., O}.
An operator A E ß/.J·d (!1j R' ) with a symbol a is called parameter-elliptic, if there is an
operator B E B-/.J,d', d' = (-fl )+, with symbol b such that

(1)

and
(2)

where Cl and C2 are symbols of operators of order -1 and types dl = (-p.)+, d2 = p.+.

Clearly, this defini tion is independent of the particular choice of the symbols a and b.
We shall also say that the symbol is parameter-elliptic.

2.2.22 Theorem. Let!1,!1' be as in 2.2.17, and let A E B/.J,d(!1j R ' ), d ~ Jl+, be
parameter-elliptic. Then tbere is a B E 8-/.J,d' (!1, R ' ), d' = (- p.)+ such that the op­
erators

Rl=AB-I,

and
R2 = BA - I

belang to B-oo,d1 (Oj R ' ), and ß-oo,d2 (O,j R l ), respectively, with dl = (-fL)+, and d2 = I-l+.

Proof This is immediate from the usual Neumann series argument together with the
fact that operator-valued symbols can be summed up asymptotically, [27], Section 3.2.2
Theorem 4. <l

2.2.23 Classical elements. Let!1,!1' be as in 2.2.17. An operator A = op a + Ao E
ß/.J,d(Oj R l ) with Ao regularizing is called classical, if a11 entries of a can be chosen to be
classical elements in the sense of 2.1.7.

2.3 The Manifold Case

2.3.1 Definition. (a) Let X be an n-dimensional compact Coo manifold with boundary
Y, embedded in a compact n-dimensional manifold !1 without boundary. In order to fix
the notation let {!1 j } denote a finite open covering of 0 and suppose that the coordinate
charts map Xn!1 j to Uj c R+. and Ynflj to Rn-l x {O}. We may identify a neighborhood
Y(l) of Y with Y x (-1,1) and assurne that this neighborhood is covered by open sets
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fh of the form nk = nic x (-1, 1), where the sets f2k form an open covering of Y by
coordinate neighborhoods.
Then let 1[!) denote the neighborhood of Y identified with Y x [-~,!] and choose coor­
dinate neignborhoods for the remaining part of n that do not intersect Y[tl'
For a partition of unity {ifJj : j = 1, ... ,J} and cut-off functions {'ljJj : j = 1, ... , J} with
4>j"pj = 4>j subordinate to the above covering of f2, write ~j for the multiplication operator
with the matrix

[~ ~j~Y];
correspondingly use the notation \I1 j for multiplications with "pj.

(b) The results of Theorem 2.2.16 now allow us to introduce Boutet de Monvel's ca1culus
on X:
Suppose Vl, V2 are finite-dimensional vector bundles over X and Y3, V4 are finite-dimensional
vector bundles over Y and all are trivialover the above coordinate patches.
We will write A E BIi,d(X; R 1), if

COO(X, Vl)
A(A) : EB ~

COO(Y, V3 )

COO(X, V2 )

EB
COO(Y, \14)

(1)

is an operator with the following properties: Writing

J J

A = L ~iA\lJi +L <t>jA(l - Wi),
j=1 j=1

we ask that

(i) For every j, the operator Aj induced by ~iA\I1j via the coordinate charts belongs
to BIi,d(Uj; R 1).

If the coordiante chart does not intersect the boundary, then we will assurne that ­
except for the pseudodifferential part - all entries in the matrix Ai vanish; this is
motivated by Theorem 2.2.16 and (ii), below.

(ii) The remaining sum 2:};;;;;1 <I>jA(l - Wj) is induced by an integral operator from
COO(X, Vi) EI? COO(Y, V3 ) to COO(X, V2 ) EI? COO(Y, V4) depending on the parameter
A E RI. Its kernel density is 0 00 and a rapidly decreasing function of A in all semi­
norms defining the Frechet topology of the smooth densities.

gli,d(X; R 1) is the subspace of all elements in BIi,d(X j R1) where the pseudodifferential
part can be taken to be zero.
In order to keep notation at a low level, we will not indicate the vector bundles A is
acting on, understanding that this has to be made clear in the context unless their choice
is completely arbitrary.

(c) In each coordinate patch Ui intersecting the boundary we may associate a symbol
with the operator A induced by asking that

- -
A· - <t>'opa-\I1- +A·J - J J J Jo
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with a symbol aj of order JL and type d and regulari zing Ajo' Here, we have writ ten ci> j, ~ j

for the multiplication operators cI>j, Wj in local coordinates.
In an interior chart, only the pseudodifferential part in the matrix for A is non-zero; it

has a symbol Pj. Letting aj = [~ ~], we also obtain relation (2). We shall call the

tuple (al, ... ,aJ) a symbol for A.

(d) Call A classical, if all the operators Aj are classical, i.e. if the pseudodifferential part
of A is classical, and if in all coordinate neighborhoods intersecting the boundary, the
operators Aj are classical in the sense of 2.2.23. Write A E 8~·d(X; R' ). The operator A
then has:

• a principal pseudodifferential symbol, O"~(A) = CT~(A)(x,~, A), well-defined as a
function on (T'"X x R' )\0, (where 0 denotes the zero-section in the sense that
(~, A) = 0, with values in ,C(Vl, \12), and

• a principal boundary symbol, operator-valued, CT~(A) = O"~(A)(X', e', A), defined on
(T"'YxR')\O with values in .c(tr'" Vl +EB1r'" \'3, 1r"'Y2+EB7r·V4 ). Here, 7r : (T·YxRI)\O ---+

Y is the canonical projection, VI + = ~ ly @ H+, V2+ = "2ly @ H+, cf. [21], ?ection
3.1.1.1.

2.3.2 Definition. We will say that A E 8~,d(X; R ' ), d ~ J.l+ is parameter-elliptic if there
is an operator B E 8-~,d(X; R l ), d ~ (-p)+ such that

• for eaeh interior coordinate chart, the loeal pseudodifferential eomponents Pj, qj of
the symbols A and B, respeetively, satisfy the relations

(1)

• for each boundary ehart, the corresponding boundary symbols aj, bj satisfy the
ellipticity relations

<i> .a .b.W. - ci> .J = ClJ J J J J

ci>·b·a·q,·-ci>·J = C2J J J J J

(2)
(3)

with parameter-dependent symbols Cl, C2 of order -1 and types dl = (-J.l)+, d2 =
JL+. Like in 2.3.1 (e), the tilde denotes the funetion in local coordinates, J is the
identity.

With the same argument as in 2.2.22 we may then eonstruct a parametrix B for A :

2.3.3 Theorem. Let A E ß~,d(X; R ' ) be parameter-elliptic, d ~ P+. Then there is an
operator B E 8-~,dl(X; R 1), d' = (-J.l)+ such that

R I = AB - JE 8-00
,d1 (X;R t ) and R2 = BA - J E 8-oo.d~(X; R ' ),

wbere dl = (-J.l)+, d2 = P+. In particular, in tbe notation oE 2.3.1:
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HS(X, ~)
A(.-\) : EB --+

HIJ(Y, V3 )

is a Fredholm operator for s, S - Jl > -~.

HIJ-~(X, V2 )

EB
HIJ-~(Y, V4 )

2.3.4 Remark. (a) Vice versa, the existence of a parametrix as in Theorem 2.3.4 implies
the ellipticity of the operator A.
(b) From (a) we conclude that it is sufficient to ask that the symbols Cl and C2 in
2.3.2(2),(3) are of order -1:, f > °arbitrary.

2.3.5 Theorem. Let A E B~,d(X; R 1). Then A is parameter-elliptic if and only if

(i) Tbe principal pseudodifferential symbol is invertible for all (x,~,.-\) E (T*X x RI)\O,
and

(ii) for all (x', f,.-\) E (T*Y X Rl)\O, the principal boundary symbol is an isomorpbism.

2.3.6 Lemma. A family of operators {G(.-\) : .-\ E R 1
} acting on vector bundles as in

2.3.1(1) is an element of B-OO,O(X; R 1) if and only iE for all multi-indices 0', ß and all
N E N the extension

exists and is uniformly bounded with respect to .-\.

Proof. By definition, {G(.-\) : .-\ E R 1} E B-OO,O(X; R l ) if and only if it is an integral oper­
ator with a smooth kernel density, ,(x, x,.-\) such that .-\ I-t '(',',.-\) is rapidly decreasing
with respect to all 0 00 semi-norms. In the proof of 2.1.19, on the other hand, we have
seen how tbe kernel semi-norms can be controlled in terms of tbe mapping properties. <l

2.3.7 Theorem. Let A E B-OO,O(X; R
'
). Then for all s E R,

Hlf(X, Vd
I + A(.-\) : EB

HIJ(Y, V3 )

Hlf(X, Vt)
--+ EB

Hlf(Y, V3 )

(1)

is invertible for large .-\, and (1 + A(.-\))-l = 1 + B(.-\) for some B E B-OO,O(X; R
'
).

Proof. Since IIA(.-\)lIlf = 0(.-\),1 + A(.-\) is invertible for large 1.-\1; here the index s of the
norm refers to the situation in (1). By replacing A(.\) by q,(.\)A(.\) for a smooth function°.::; <p .::; 1, vanishing in a sufficiently large ball around zero and equal to 1 near 00, we
may assume that A(.\) is invertible for all .\ and IIA(.\)IIIJ < ~.
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Now, (/ + A)-l = I - A + A(l + A)-l A. So all we have to check is that

AaD~[A(A)[/+ A(A)]-lA(A)]: H;N(X, Vl) ffi H-N(y, ltJ) -+ HN(X, Vi) EB HN(Y, VJ)

is bounded. This however, is immediatefrom thefact that II[I+A(A)]-lll" ::; Lj IIA(A)II~ <
2, the differentiation rules and the corresponding properties of A(A). <J

2.3.8 Theorem. Let G E S-oo,d(Xj R 1), and suppose that for given s E R, s > d - k,

is invertible for all A. Then there is an H E S-oo,d(X j R 1) sucb that

(1 + G)-l = 1 + H.

Proof. For simplicity consider the case where C consists only of the singular Green part,
i.e. V3 = Oj moreover, we will assume that C is scalar, i.e. Vl = C.
Wirte G = L1=0 GjOf., where Gj E S-OO,O(Xj R 1

) and 8r denotes the normal derivative,
defined in a neighborhood of the boundary. We know that the norm of C(A) on H"(X)
tends to zero as 1..\1 tends to infinity. We may thus replace G(..\) by if>(A)G(..\) where 4> is
an excision function as in the proof of 2.3.7. We now use the fact that

[I + C] -1 = 1 - G + C[I + C] -1C
d

= I - I)Gj - C[I +C]-lG j )at.
j=O

In view of 2.3.6, all we have to check is that for all Q', ß, N

is uniformly bounded. This, however, is immediate from the corresponding properties of
the Gj . <J

2.3.9 Corollary. Let A E BJJ,d(X j RI), d = P+ be parameter-elliptic. Then

H"(X, \1;)
A(..\) : EB

H!J(Y, V3 )

H'-JJ(X, Vi)
-+ EB

H!J-JJ(Y, V3 )

in invertible for large 1..\1, and A(..\)-l = C(..\) for some C E B-JJ,d' (Xj R 1), d' = (-jL)+.

Proof. By 2.3.3, there is a parametrix B E S-JJ,d' (X j R 1) such that AB - I = R1 E
B-oo,d'(XjR'),BA - I = R2 E B-oo,d(X;R' ). The operators 1+ Rj(A),j = 1,2, are in­
vertible for large 1..\1. Hy multiplying with an excision function on a large ball as in the
proof of 2.3.7 we may assume that they are invertible everywhere. By 2.3.8 the inverses
are of the same kind, and C = B(I + R1)-1 E B-~,d' (Xj R 1). <J
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2.3.10 Reduction of the Order. Let n, X, Y be as in 2.3.1, and J.L E Z. Assume V
is a smooth veetor bundle over f2, trivialover the chosen coordinate charts. Then there
exists a pseudodifIerential operator wi th the transmission property R~ (A) = op (r~ (A) )
with the fo11owing properties

(i) r~ E Si,O,tr(n, Rn; R 1
) is parameter-e11iptic.

(ii) [R~(A)]+ : H6(X, V) -+ H6- Ji (X, V) is a topological isomorphism for a11 .s E R, lAI
large; its inverse also is pseudodifferential.

Similarly, there is a parameter-dependent pseudodifferential operator with the transmis­
sion property, R~ = op r~, with

(iii) r~ E sr,O,tr(n, Rn; R 1
) is parameter-e11iptic, and

(iv) [R~(A)]+ : Hö(X, V) -+ H~-Ji(X,V) is a topological isomorphism for all.s and large

IA1·
Proof. Choose a global normal coordinate in a neighborhood of the boundary. Then pick
a function 7' E Cö(R), 0 ::; 7' ::; 1,7' =1 on [-~, ~], 7' =0 outside [-~, ~]. Let X be as in
Lemma 2.2.10. In the boundary charts define the symbols

[ (~) (tl ,\) _ ·t ] JiT(Xn) (tl ,\)Ji(l-T(Xn)) 1
X (C,'\) ~, l~n " v·

assuming that the boundary neighborhoods have the properties of 2.3.1(a).
In the interior charts, define the symbols

(e,A)Jllv .

(1)

(2)

Then form the eorresponding pseudodifferential operators. Transport them to the man­
ifold via the eoordinate charts, and patch them together with a partition of unity and
cut-off functions as in 2.3.1. Ca11 this operator R~('\); its symbol (in the sense of a tuple
of complete loeal symbols) is denoted by r~(A). It is then straightforward to check (i).
Property (i) implies that for a11 .s E R,

(3)

is a topological isomorphism provided 1,\1 is large.
In a neighborhood of the boundary, the symbol r~(x, e,'\) is an H- -funetion of ~n,

up to regularizing pseudodifferential terms. This allows to construct a left and right
parameter-dependent parametrix P('\) with the same properties. Both left-over terms,
L(P('\),R~(A))= [P('\)]+[R~('\)]+-[P('\)R~(A)]+ and L(R~()"),P('\))= [R~(),,)]+[P(A)]+

-[R~(A)P('\)l+ are then regularizing parameter-dependent singular Green operators, thus
also regularizing parameter-dependent pseudodifferential operators. This implies (ii) for
a11 s > -~.
In order to obtain statements (iii) and (iv) start with the eomplex conjugates of the sym­
bols in (1) and (2) and repeat the above process. This yields a parameter-e11iptic symbol
r~ = r~(x, e, A) which is in H+ as a function of en, up to regularizing pseudodifferential
terms.
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Now we can conclude the proof of (ii): Let X_ = fl\X; then X_ is a manifold with
boundary Y. With respect to X_ the construction in (1) defines a symbol in H+. There­
fore the operator [R~(A)]_ = r- R~("\)e- according to (iv) extends to an isomorphism
H~(X_,V) -+ H~-~(X_,V) for all s E R. On the other hand, e- and r- are trivial opera­
tions on these spaces. So, in view of (3), R~ (..\) gives an isomorphism H IJ (fl, V) / H~ (X_, V) =
HIJ(X, V) -+ HIJ-JJ(fl, V)/H~-~(X_,V) = HIJ-~(X, V). <J
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3 Weighted Sobolev Spaces with Asymptotics

3.1 Sobolev Spaces Based on the Mellin Transform

Let JD, D3 ,X, Y be a.s in Section 1, and assume that X is embedded in a compact manifold
n without boundary, V is a vector bundle over n.

3.1.1 Proposition. For J-L E R, 1 E N there is a parameter-elliptic pseudodiiIerential
operator AI1 E op SJl(O, Rn; R 1) such that

AJl(7) : H 6 (O, V) -. H'-Jl(O, V)

is an isomorphism for all 7 E R ' .

Proof Choose an arbitrary parameter-elliptic pseudodifferential operator with symbol
.,\Jl E SI1(O,Rn j R '+

1), cf. 2.1.6(a)j the parameter is (7,0) E R' X R (more about this in
Remark 3.1.2, below). Then there is an operator with symbol q-11 E S-I1(O, Rn jRH1)
with

op .,\Jlop q-Jl - I = op r

and r E S-1(O,R"j R'+l). Since tbe norm of op r(7,(7) is 0(1), a simplified version of the
argument in 2.3.9 yields a right inverse of op AJl (7, (7), provided 17, 171 ~ C. Similarly we
obtain a left inverse on the same set.
Now we simply let for 7 E R '

<J

3.1.2 Remark. In order to obtain a parameter-elliptic pseudodifferential operator a.s it
is needed in the proof of Proposition 3.1.1, one can e.g. start with symbols of the form
(~, (7,0')) 11 E SI1(Rn, Rn jRH 1

) and patch them together to an operator on the manifold
o with the help of a partition of unity {4>j} and cut-off functions {1/'j} a.s in 2.3.1(a).
Alternatively, one can choose a Hermitean connection on V and consider the operator
(C + 10-1 2 - ß)~, where 6. denotes the connection Laplacean, and C is a large positive
constant.
Then C + 10-[2 - 6. is a parameter-dependent differential operator with principal symbol
(C + 10'1 2 + 1~12) Iv.
Using a construction by Seeley we may form the powers (C + 10-1 2

- ß)~, and they are
parameter-elliptic pseudodifferential operators of order p..
In the following we will suppose we are given a fixed family {AJl : J-L ER} of pseudodif­
ferential symbols with parameter-elliptic symbols of order J-L, depending on a parameter
TE R.
For this family we will define the spaces ?-i6

,"{, 8" E R. It is easily seen that the spaces
do not depend on the particular choice of this family. However, it will often be helpful
to know that we have for the above special families an additional parameter, namely the
constant C, to influence the behavior of the family.
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3.1.3 Definition. (a) Let {i\~(i) : T E R l } be a family of pseudodifferential operators
as in 3.1.1. For s, 1 E R, the space 1i"''Y(0") was introduced in [29), Section 1.1.1, and in
[27), Section 2.1.1, as the closure of C6 (0") in the norm

1

Ilull1i"-Y(OI\) = { [ 11i\"(Imz)Mu(z)II~2(n) IdZ I}'".Jrr!±!
---,-- --y

Recall that n is the dimension of X and O. As usual, r ß = {z E C : Re z = ß}.
(b) Now let r+ denote restriction to X, and let

The space 1i"''Y(X'') carries the quotient norm:

(1)

(c) 1i~'-Y(X") is the space of all distributions in 1i"''Y(0'') with support in X" = X x R+.
Since, by definition, CQ'(!1") is dense in 1i",'Y(Ofl), 1i~''Y(X'') is the closure of Cgo(X") in
the topology of 'H",'Y (0").

3.1.4 Remark. (a) Suppose u E C6 (0"). For fixed x E 0, u(x,·) E Cgo(R+), so it has
a Mellin transform which is holomorphic in the whole plane. Moreover,

Z .-+ Mu(·, z) E A(C, Coo(O)),

the space of entire functions with values in Coo(O), and it is rapidly decreasing on allIines
rß, uniformly for ß in compact intervals. Therefore the integral in 3.1.3(1) makes sense.
It turns out that 1i"''Y(0'') is a subspace of V'(O"), cf. 3.1.7, hence 1i"''Y(X'') C V'(X").
In order to evaluate the integral in 3.1.3(1) it is in fact sufficient to know Mu only on
the line f !!fl-'Y' We can therefore extend the concrete definition of the norm in 3.1.3(a)
to a larger space of functions by replacing M by the weighted Mellin transform M'Y- i' :
t'Y-~ L1 (R+) --+ L2(f ~-'Y)' cf. 5.1.5.
(b) For s = I E N we obtain the alternative description

u E 1i1,'Y(0") iff t~-'Y(tat)aoa:l1 ... a::u(x, t) E L2(0")

for all 0'0 +0'1 +.. 'O'n ::; 1, cf. [27), Section 2.1.1, Proposition 2.

The well-known properties of the space 1i"''Y(O'') immediately imply the statements of
the lemma, below.

3.1.5 Lemma. (a) The space 1i"''Y(X'') is independent of tbe particular cboice of the
order-reducing family.
(b) 1i"'-Y(X") ~ Hl~c(X").

(c) 1i"'-Y(X") = t'Y1{tJ ,0 (X" ).
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(d) 1io,O(X") = t- n / 2 L2(X").
(e) HJ'O(X") has a natural inner product

(u, vhiO.O(XA) = ~1 (Mu(z), Mv(z))L'(X) dz.
21Tt r~

(f) Let 4> E Cg'(Rr) , and denote for the moment by M~ the operator of mu1tiplication
by t/>. Then Mt!> induces continuous operators

for &11 s, 1 E R. Moreover, 4> I--t Mtj.J induces a continuous embedding

lJ,"'I

(g) Similar1y, if 4> is the restrietion to X" of a function in C~(O x R), tben

is bounded for a11 S, f E R, and the mapping 4> I--t Mt!> is continuous in the corresponding
topology.

Notice that (a) is a simple consequence of the fact that if {All: !L E R} and {All: !L E R}
are two order.reducing families, then for each !L, the operator AllA-1l is parameter-elliptic
of order zero. This yields the corollary, below.

3.1.6 Corollary. Suppose that {Oi : j = 1, ... , J} is an open covering of 0, and {4>i} is
a subordinate partition of unity.
Moreover, let {RIl: J.L E R} be an order-reducing familyon Rn, and 11·11'H,."J(Rnxß.+) the
corresponding norm. Then

(1)

furnishes an equivalent norm on 'H","'I(O"). Here, (r/>iu). is the distribution induced on
Rn X R+ via the coordinate functions.

Proof We have

(2)

in terms of equivalent norms. Choose cut-off functions 'l/Jj supported in Oj with 4>j'l/Jj = t/>j.
Again in terms of norms, expression (2) is equivalent to

(3)

provided the parameter C in the choice of the order reduction, cf. 3.1.2, is chosen suf­
ficiently large. The reason is the following. Since 4>jAlJ(1 - 'l/Jj) is parameter-dependent
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(4)

regularizing, its norm becomes rapidly small as C tends to infinity. In particular, its norm
is small compared to those of tPjiV'(Im z)1/'j and tPjA"(Im z).
The eontinuity of the transport of functions to Euelidean space shows that (3) in turn is
equivalent to the expression

J

E lr II(tPj A"(Imz)M(1/'ju)) .. (z)1112(Rn) Idzji
j:::l r.!!fl--r

here the asterisk indicates that the eorresponding funetion is taken in loeal coordinates.
Now there is a parameter-elliptic operator A;. on Euelidean space such that

(tPjA"(Imz),pjM(u)). = tPj.Aj.. (Imz)1/Jj.Mu.(z).

We can write

tPj ..Aj.. (Imz)1/Jj .. - Aj.(Imz)tPj.. = -tPj .. Aj.. (Imz)(l-1/Jj .. ) + [Aj.. (Imz),tPi"]·

For the first operator on the fight hand side we apply the same argument we have used
above. The eommutator [1\j.(r), tPj .. ] is a parameter-dependent operator of order s -1, so

its norm is O((r,C)"-I) while the norm of Aj.. (r) is 2: const (r,C)". By making C larger,
we can make the quotient arbitrarily smalli i.e. the norm of the commutator is negligible
with respeet to that of the two operators on the left hand side. We obtain the assertion
from 3.1.5(a). <J

3.1.7 Remark. On Rn we may ehoose a particularly simple order reduction, namely
A~(r) = op (~, r). Using the transformation «Pn" defined by

n+1 (~)4>n.'"tv(r) = exp(r(-2- - ,)v(er
) = t -'"tv(t) It:::er

one can then check that

in other words,

!!.±!+;1-{""(Rn x R+) = {t- 2 u(x,lnt): u E H"(Rn x R)},

cf. [27], 2.1.6(4).
For X = R+. in n = Rn we obtain

!!±.l+
1-{",i(R~ X R+) = {t-:l '"tu(x, In t) : u E H"(R~ X R)},

1{~,'"t(R~ x R+) = {t-~+'"tu(x,ln t) : u E H~(R~ X R)}.

(1)

(2)

(3)

Moreover, it is easily checked that, in the notation of (2) and (3), we have the following
relation between the Fourier and the weighted Mellin transform:

[M~-)'f(x,.)](; 1 -, + i7") = [Fu(x, ')](7").

As the notation indicates, both transforms act with respect to the last variable only.
Therefore

M'"t-~1-{",'"t(R~ X R+) is isomorphie to f,,_tH"(R~ x R)

if we identify the lines r !!±.l-'"t and R.
:l
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3.1.8 Remark. The well-known fact that for -k < s < kwe have H&(Ri.) = H·(R'+)
together with 3.1.7 then implies that

1 1
1{!J'-Y(XA) = 1{~,r(XA), -- < s < -

2 2'

Moreover, using a partition of unity, we conclude from Remark 3.1.7 that

Mr-~1{!J,r(XA) = :FH!J(X X R),
1

(1)

(2)

where the action of both transformations is with respect to the last variable and we
identify r !!}!--r and R.
Here we define the norm in H!J(X x R) in the canonical way: for a finite partition of unity

1

{<Pi} on X subordinate to the coordinate charts we let Ilu IIH'(XXR) = (L: II<piuIIH'(R+ XR)) 2 •

H!J(X A
) is the space of restrictions of distributions in H6(X x R) to X X R+.

3.1.9 Proposition. (a) Fors E Z,i ER, 1{6(Y(XA
) is the completion oECgoCXA),X

A
=

X x R+ with respect to the norm

(1)

where {R~ : J.i E Z} is the special parameter-dependent reduction oE the order with the
transmission property oE 2.3.10.
Recall that the operators R~ are defined by patching together corresponding operators
on Euclidean space with a partition of unity and cut-off functions:

R~f = L l/Ji.oP r~.7/Ji.'

where the r~ are as in 2.2.10.
We may replace the operator e+ in th e defini tion oE [R~ (.)]+ by any other extension
operator modulo equivalent norms. ThereEore expression (1) makes sense Eor all s E Z,
not just sEN.
Similarly

1

Ilull;"'1(XA) = { f II[R~(Imz)]+Mu(z)1111(X) IdZ I }2, (2)
o Jr~_"1

with the corresponding Eamily {R~: J.L E Z} gives an equivalent norm on 1{~,'"Y(XA).

We mayaiso replace the operators [R+(·)]+ in (2) by [R:!J]:+h, consisting oE the inverses
oE the Eormal L2 adjoints oE the operators [R: tl ]+. As we have noted in Remark 3.1.4(a)
we could replace M in botb cases by the weighted Mellin transEorm M'"Y-~'

(b) The inner product in 3.1.5(e) extends [rom Cgo(XA
) x Cgo(X

A
) to a non-degenerate

sesquilinear Eorm
1{6'r (X A) X 'H~!J,-r(XA) -+ C.

This admits theidentification 'Hü"·-r(XI\) ~ (1-l!J·'"Y(X A))'. Moreover,

IIfll1-l""1(xA) = sup {I(!, v)1-l0 ,o(x A )1 : Ilvll1f;"-"1(XA) = I}

furnishes another equivalent norm on 1{!J,'"Y(XA).
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Praaf. (a) Since the symbol r~ of R~ belongs to H- as a function of ~n, we have for any
extension U of u

[R~(A)]+U =r+R~(A)U

modulo perturbations that are operators with norm = O( (A) -N), where N E N is arbi­
trarily large, cf. (2) in the proof of 2.2.10. Therefore the corresponding norms will be
equivalent, provided we choose an additional parameter sufficiently large, cf. the argument
in the proof of 3.1.6. Note that we have such a parameter by by 2.3.10.
Trivially, II[R~(Imz)]+MuIIL:l(x) ~ lIR~(Imz)e+MuIlL:l(n). On the other hand, the cal­
culus shows that, up to reflection at the boundary and regularizing terms, r- R~ (. )e+ is
a parameter-dependent singular Green operator in Boutet de Monvel's calculus of order
s and type zero, cf. [9], Theorem 2.7.6. Hence r- R~(·)e+[R:(·)]+1 is a singular Green
operator of order zero and type (-s)+, and we also get the converse inequality, up to a
constant independent of Im z.
Finally we may replace the family {R~ : p E Z} by {[R:=Il]-t. : p E Z}, because the latter
operators are also parameter-elliptic of order Jt, and, by duality, [R~]~ : H~(X, V) --+

H~-Il(X, V) also is invertible. The operator [R~]+l differs from [(R~)-l]+ only by a
regularizing parameter-dependent pseudodifferential operator, and this is also true for
the adjoints.
(b) In view of the identity M(t'Yu)(z) = (Mu)(z + '"'r) we may suppose that / = O. Now
the result follows from the last statement in (a) and the fact that

(Mu(z), MV(Z))Vl(X) - (Mu(z), [R~(Imz)]+I[R~(Imz)]+Mv(z))L:l(X)

([R~(Im Z)]:;l*Mu(z), [R~(Im z)]+Mv(z)) L:l(X)
< 11 [R~(Im Z)]+l* Mu(z )IIL'l(x)11 [R~(Im z)]+Mv(z)IIL'l(x).

<l

3.1.10 Theorem. Let s > ~" E R, u E rl"'''(O''). Then the restrietion 10U = UIYA ofu

to Y" is well-defined and belangs to rl"- t ."Y-! (Y" ); the m apping

10 : '}-{s'')'(O'') --+ '}-{s-~."Y-t(y")

is continuous. Clearly, tbe same assertion holds if we replace 0" by X".

Praaf. By Corollary 3.1.6 and Remark 3.1.7 we mayassurne that n = Rn, Y = {xn = O} ~
Rn-I. Relation 3.1.7(1) gives the assertion, if we use the standard restrietion theorem for
Sobolev spaces. The shift in I simply is due to the fact that the dimension of Y is n -1. <J

,

3.1.11 Corollary. Let s > j + ~,j E N, / E R, u E Co(O x R). By r denote the normal
coordinate in a neighborhood of Y. Then the operators /i : U Ho atuly" define continuous
mappings
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In view of the definition of the spaces and their topology, this result extends to /j :

H6,"f(X") -+ H6- j -!''"Y-t(X'').
Proo/. This follows from 3.1.9 in connection with the lemma, below. <l

3.1.12 Lemma. Choose a smootb function rP equal to 1 in a nejghborhood of Y and
supported in the neigbborbood of Y, where the normal derivative is defined. Tben the
operator f 1--+ ßr ( 4> f), defined for f E cco(!1") bas a bouDded extension to an operator

Proo/. This is a IDeal resultj it follows from 3.1.7(1) together with the fact that multipli­
cation by rP is continuous on H",,'"Y(!1"). <]

The following theorem states that the spaces 1i",,'"Y(!1") are invariant under changes of
coordinates if we restriet ourselves to the subspaces of functions with support in a compact
set !1 x {t : 0 ~ t ~ R}, and if we ask that the diffeomorphism, say ~, respects the set
{t = O}, i.e. ~ is the restrietion of a diffeomorphism of !1 x R+. In particular, we then
have <I>(x, 0) E n x {O}.
Alternatively, we might ask that there are neighborhoods U, U' of R+ in R such that the
diffeomorphism is the restriction of a diffeomorphism !1 x U -? n x U' .

3.1.13 Theorem. Let <I> be a diffeomorphism on !1 X R+, respecting {t = O}. Tben the
space

{u E 1-{"""f (n") : u = 0 on {t > R} for suitable R}

is invariant under the change of coordinates induced by ~.

Proo/. In view of Corollary 3.1.6 and Remark 3.1.7 we mayassurne that we are given a
distribution v E 1i",'"Y(Rn x R+) with support in a bounded set and that <I> is a diffeo­
morphisrn of bounded open sets in Rn X R+. Moreover, we mayassurne s 2:: 0 using the
duality in 3.1.5. By 3.1.7 we have

.!!±..!.+v(x, t) = t- 2 '"Yu(x, In t)

for some u E H"(Rn x R). Clearly,

u(x, r) = e(~-'"Y)Tv(x, er)

by letting r = In t. Now write (Z-, t) = ~(x, t) = (<I>1 (x, t), <I> 2(x, t)) so that the transformed
function .1l is given by

1L( x, t)

In order to show the invariance under coordinate transforms, it is sufficient to show two
facts. First, there is a function ci>2(X, t) E Cr(f!") (Le. all derivatives are bounded) such
that
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with
c ~ eI>2(X, t) ~ C-

1

with a constant c > 0 independent of x. Second, the function

(1)

belongs to H"(Rn+l).
Now it is well-known, cf. [15], that H"(Rn+1) is invariant under all coordinate transfor­
mations Wsatisfying

and
c ~ Idet(D\l1)1 ~ c-1

,

The change of coordinates we have to consider is

c> O.

(2)

(3)

(4)

Let us check that it does satisfy conditions (1), (2), and (3). We may restriet our attention
to bounded x and bounded t, equivalently -00 < r < Co, Co E R.
The diffeomorphism «I> respects {t = O}. Therefore

«I>2(X, t) = «I>2(X, t) - «I>2(X, 0)

= fa'al<I>2(X, rt)dr . t

= eI>z(x, t)t

with a smooth function <i>2(X, t), bounded in all derivatives, since our parameter space is
bounded. By considering the inverse we see that <i>z(x, t) also is bounded away from zero.
This gives (1).
On the bounded parameter space, <»1 is bounded in all non-zero derivatives; therefore also
(x, r) Ho «I> 1 ( x, eT) is bounded in all derivatives. Let us show that the same is true far
Wz : (x,r) Ho In~2(x,eT):

8x /I> 2(x, eT)
8x · W2(x, r) = «I> ( )'

J 2 x, eT

This is bounded, since «I>2(X, t) 2:: ci, while 8x /I>z{x, t) = 8xj <i>z(x, t)t; similarly,

is bounded.
In view of the quotient rule for differentiation, we conclude that all derivatives are
bounded.
Finally, the Jacobian is

IdetDW(x, r)1
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which is both bounded and bounded away from zero because of property (1) and the fact
that we are considering <I> on a bounded set. <l

We have not used that we have a diffeomorphism of the entire manifold {l". The result is
also true, if <I» : U1 -Jo U2 is a diffeomorphism of open subsets U1 , U2 ~ {l" and respects
{t = O} in the sense that <I> extends to a diffeomorphism of the closure of VI and U2 in
OxR.
We say that a diffeomorphism <I» of X" is boundary~preservin9 if there are open neighbor~

hoods U1 , U2 of X" in {l", and <I» extends to a diffeomorphism <I» : U1 -Jo U2 respecting
{t = O}.

This immediately leads to the following corollary.

3.1.14 Corollary. Also the subspace of 'H~·'"Y(X") consisting of the distributions that
vanish for large t is invariant under changes of coordinates induced by boundary~preserving

diffeomorphisms.

3.1.15 D efinit ion. Let :F be a subspace of V' (X") or TI (0") wi th a stronger topology.
Suppose that 4J is a smooth function on R+ and that multiplication by </> is continuous
on F. Then [4J]F denotes the closure of the space {if;u : u E F} in F.

3.1.16 Theorem. Let w E Cü(R+), w =1 near zero. Then [ar s ~ 8'" ~ "

is continuous. For 8 > 8'" > " the embedding

is compact.

ProofThis is immediate from 3.1.7(1) together wi th the embedding results for the Sobolev
spaces. <l

3.1.17 Proposition. Let {R~ : J1. E Z} be the parameter-dependent order-reducing
family in Boutet de Monvel's ca1culus in 2.3.10, "s E R. Denote by M'"Y-~ tbe weighted
Mellin trans[orm o[ 5.1.5.
Tben the Mellin operator op ;~[R~(Imz)]+ : 'H!l·'"Y(X") -Jo 'H!l-J.!.,"Y(X") given by

is an isomorpbism.
Note: More on Mellin operators in Section 4.1.
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Proof. By interpolation we can confine ourselves to the case where s E Z. We have
according to 3.1.9

the constant in the final estimate is the norm of

[K-~(Im z)]+[R~(Im z)]+[R~(Irnz)]+l

<]

3.1.18 Definition. For s, I E R, w a cut-off function on R+, let

Here, H'(X A
) is as in 3.1.8. The definition is independent of the choice of w by 3.1.5(b).

In the notation of 3.1.15,

similarly,

(2)

(3)

cf. 3.1.3(c). In fact, the left hand side clea.rly is contained in the surn of spaces on
the right hand side of (2). On the other hand, if 'U n E w'H',"'f(XA) converges to 'U in
'H',''Y(XA

), then we have wu = 'U for all cut-off functions wequal to 1 in a sufficiently large
neighborhood of {t = O}; in particular, W'U = 'U E 'H~"'Y(XA), and (1- w)u = 0 E H'(X A),
so 'U E K',"'Y(XA). Ir V n E (1 - w )H'(XA) tends to v in H'(X A), then a similar argument
shows that v E lC~,"'Y(XA). Therefore we have equality in (2).
We shall give K~'"Y(XA) the Banach topology induced by (2):

IluIIK"'Y(xA) = Ilwulh·{,,-r(XA) + 11 (1 - w) t~ uIIH'(XA).

Notice that KO'~(XA) = L 2 (XA).
This also allows us to introduce the space 'H',"'Y(DJ) : Near each singularity v, DJ is
diffeomorphic to X;, wi th suitable Xv as in 1.1.1. We define 1{' ,"'f(DJ) as the space of all
distributions belonging to 'H~I"Y(X~) near a singularity v and belonging to H'(DJ) in the
interior; for the precise construction use a cut-off function W v near each singularity v.
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3.1.19 Remark. (Non-direet sums of Freehet spaees) Let E, F be Freehet spaces and
suppose both are eontinuously embedded in the same Hausdorff veetor spaee.
Then we may form the exterior direet sum E ffi F, whieh is Freehet and has the closed
subspaee ~ = {(a, -a) : a E E n F}. The non-direct sum of E and F then is the Freehet
spaee

E + F:= E ffi FJfj,.

3.1.20 Definition. Let 8 be the interval (0,0], f) < 0, and let s, f E R.
K~"(X") is defined as the intersection n(>o K!'''-o-((X''). We endow this space with the
projeetive limit topology.
For 8 = (-00,0] define JC~"(X") as the intersection of all the above spaces for f) < O.

3.1.21 Remark. (a) Let u E K""(X"), s > ~. Then the restrietion uly belangs to

JC,-t.,,-t(YI\) : This is immediate from Corollary 3.1.11 and the definition.
(b) In view of 3.1.5(e) we obtain natural dualities

and

for all s, '( E R.
(e) Let 4> be as in 3.1.5(g). Then the multiplication operator

and

is eontinuous.
(d) Of course, all these distributions may take values in finite-dimensional vector bundles
with a Hermitean structure whieh are restrietions of smooth Hermitean bundles on nx R.

3.2 Spaces with Asymptotics

Throughout this sectioD, X and Y will denote the manifolds of Seetion 1.

3.2.1 Definition. cf. [29], 1.1.2, Definition 1.
(a) A weight datum 9 = (" 8) eonsists of a number '{ E Rand an interval 8 = (f), 0] with
-00:::; B < O.
(b) Given a weight datum 9 = (" f)),~ denotes the strip

1 1
S~ = {z E C : 2: - , + f) < Re z ~ 2: - , }.
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(c) The collection 0/ asymptotic types As(X,g) for a weight datum 9 = (" (8, 0)) with
B > -00 ("finite weight interval") is the set of all finite vectors

P = {(Pi, mi, Li) : j = 0, ... , N(P) E N}

consisting of

(i) Pi E intS~-~, where n = dimX,

(ii) mj E N, and

(iii) L j a finite-dimensional subspace of COO(X).

The elements P of As(X, g) are called asymptotic types.
If 9 is a weight datum with B = - 00, (" infinite weight interval") then A.s (X, g) is the
farnily of all vectors P = {(Pi, mi, Li) : j = 0, ... , N(P) ::::; oo} with the additional
assumption that

(iv) RePi -t -00 as J -t 00, whenever P is infinite.

By trcP denote the set {Pi: j = 0, ... , N(P)}.
Correspondingly, A.s(Y, g) is the set of all P = {(Pj, mj, Li) : JEN} with Pi E

n-1

iot S~--r,mi E N, and Li a finite-dimensional subspace of COO(Y). As before we as-
surne that RePi -t -00 as j -t 00 whenever P is infinite. Finally we let for 9 = C;" 8)

1
A.s(X, Y, g) = {P = (PI, P2 ) : PI E A.s(X,g), P2 E As(Y, (,- 2' 8))}.

(d) The space K~')'(X"), for P = {(Pi, mj, Li) : j = 0, ... , N} E As(X, g) with finite
weight interval consists of all u = u(x, t) E K:",')' (X") such that for suitable Cjk E Lj, 0 ::::;
j ::::; N,°::::; k ::::; mi, and all cut-off functions near zero, w,

N mj

U - E E cik(x)t-Pj lnk t w(t) E K~I'(X");
j=Ok=O

cf. 3.1.20 for the definition of K~I'(X"). In the case of an infinite weight interval first let
gk = (" (-k, 0)), k = 1,2, ... , and define Pk E As(X,g) by

n+l n+l
Pk = {(pj,mj,Li ) E P: -2- -,- k < RePi ::::; -2- -,}.

Then let
K~')'(X") = nK:~:(X").

k

(1)

K~'I'(X") is the intersection of all K:~I'(X"), s E R.
(e) For a fini te weightinterval 9 and P E A.s(X, g) let Ep (X") be the space of all functions

N mj

{u E COO(X") : u(x, t) = E E cikt - Pj lnk t : Cjk E Li}'
i=O k=O
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3.2.2 Remark. It is obvious from the considerations in 3.1.13 that tbe representation
of a function in tbe form

N mj

u(x, t) = L L Cjk(X) t-Pj Ink t w(t) + f(x, t)
j=Ok=o

(1 )

with f E K~"'f(X") as in 3.2.1(d) depends on the particular choice of coordinates. In order
for the definition to make sense we sball check that under a change of coordinates, tbe func-

tion L~o L;~oCjk(X) t-Pj Ink t w(t) transforms to a function L~o L~o cjk(X) t-pj Ink t wl(t)
+g(x, t) with 9 E KOO1M(X") for arbitrarily large M. As indicated by the use of NI and
pi, tbere may be more and different exponents in tbe resulting representation. We shall
see, however, that all pj are of tbe form Pk -1, for a suitable Pk and 1E N. Moreover, we
shall check that if the CJ'k vary over a finite-dimensional subspace of COO(X), then so will

the eJk'
We will use the notation of 3.1.13. The change of coordinates is (~,t) = ~(x, t) =
(~l (x, t), <I>2(x, t)), where <1>2 (x, t) = ti> 2(x, t) . t with a function <1>2 (x, t) E Cr(O x R+),
satisfying C :s; <I>2(X, t) :s; c-1 for a constant c > O. Recall that we are only interested in tbe
case t E (0, T], T < 00. Now we consider the various terms separately. Fix an arbitrary
MEN.

(i) We have i-Pj = t-Pj <1>2(X, t)-Pj. The second factor is a smooth function up to t = 0
thus bas a Taylor expansion

M-l

eI>2(X, t)-Pj = L djk(X) t j + t Mdj(x, t),
k=O

where dj E Cr(X x R+).

(ii) Similarly, Ink i = {ln t + In <I>2(X, t)]k. A Taylor expansion of In 4>2(X, t) (wbich is
smootb up to t = 0) then yields a linear combination of terms of the form ejl(x )tj InI t
with j = 0, ... , M - 1,1 = 0, ... , k and smooth e}l, plus a remainder of the form
tM ek(x, t) with ek E Cr(X x R+).

(iii) Finally, we use a Taylor expansion for Cjk(~dx, t)) at t = 0 which yields a finite surn
of terms of the form fjkl(X)t 1with 1 = 0, ... , M - 1, smooth fjkf, and a remainder
of the form tMfjk(X, t) with fjk E Cr(X x R+).

Writing out the product, we obtain the assertion. Notice that the finite-dimensional
spaces in the asymptotic type can be replaced by other finite-dimensional spaceSj tbe
corresponding changes can be read off from the above Taylor expansions.
Spaces witb asymptotics are therefore well-defined if we eitber keep coordinates fixed or
else interpret tbe subscript P associated with an asymptotic type P as an equivalence
dass of of possible asymptotic types. This is tbe sense in which all the notation involving
asymptotic types should be understood.

3.2.3 Lernma. (a) The space Ep (X") in 3.2.1 (e) (fini te weigh t interval) is fini te-dimensional,
and we have

(1)
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for every cut-off function w near zero.
(b) For a finite weight interval we may make K~'Y(X") a Frecbet space by endowing it
witb the topology of the surn of Frechet spaces in (1).
(c) For an infini te weight in terval K~'(X") becomes a Frech et space, if we give i t the
projective topology induced by (b) and 3.2.1(1)

Proof This is immediate from the definition. <]

3.2.4 Theorem. Let P = {(pj,mj,Lj)}~o E As(X, (i, (-00,0])), and let Cjk E Lj,j E
N, k = 0, ... , mj. Then there is a distribution u E Kr;"(X") with the following property.
For every 6 < 0 there is an N = N(6) such that

N

U - L Cjk(X )t-Pj lnk t w(t) E K~'(X"),
j=O

8 = (6,0]. In particular,

For the proof of Theorem 3.2.4 we shaU employ the following lemma.

3.2.5 Lemma. Fix a cut-off function, w, near zero, P E C, k E N. Consider the function

for u, t > 0.
(a) For every, with Rep +,- ! < °and every s 2: 0,

Ilf(u, t)ll'H"l(R..t) ~ ° as u -+ 00.

(b) IE cE COO(X) and Rep + ,- ntl < 0, then

Ilc(x)f(u, t)lI1f J ,"'r(X") -+ 0 as u -+ 00.

Proof (a) By interpolation we only have to consider the case s = I E N; using 3.1.4(b),
we simply have to estimate t-'Y(t8d j f(u, t) in L2(Rr) for j = 0, ... , I. This is elementary.
(b) The argument is almost t he same; we now have to consider t ~ -'Y (t8t )j f (u, t)8~c in
L2(X") for 101 + j ~ l. <]

Proof of Theorem 3.2.4. Choose an increasing sequence,j -+ 00 with Re Pr +,j - ntl < °
for all r 2: j. Using Lemma 3.2.5 we may choose Ujk > 1 such that

(1)

52



(2)

Let us check that
00 mj

E E Cjkt-PJ'ln
k

tW(Ujkt)

j:=Ok:=O

converges in }C~,"Y(X"), i.e. in each }C~"Y(X"), s E R. This means we have to show
convergence in K(070](X/\) + [w]Epe (X/\) for all () < O. Here, Po is the set

n+l n+l
{(p o m' L·) . -- - "'" + B < Rep· < -- - ""'}), )' J' 2 I J - 2 I'

Without loss of generality we may use the same W as above.
To this end choose jo so large that ,jo > , - eand jo > s. Rewrite (2) as three sums:

L ... + L ... + L ....
{i<jo:Repj> !!f--"Y+O} {j<io:Repr5 ~-"Y+O} j~jo

The finitely many terms in the first surn belong to [Pe(X/\), those in the (finite) second
summation to K(ro] (X/\). For j ~ jo, relation (1) irnplies that

mj

L 11 Cjk t -
Pj lnk

t w(Ujk t ) 11x:.,-r-e(XA) ~ 2- j
,

k:=O

noting that, on these functions, the 11. -norms and the K - norms coincide. Therefore,
the third summation converges in K (070] (X /\ ).
So, if U E K~"Y(X/\), and Uo E K~'''Y(X/\) is the function in (2), then U - Uo E K(07o)(X/\)
for every B < O. In fact, let UN = L~O L:~o Cjkt-Pj lnk t w(Ujkt). Then U - Uo = (U ­

UN) - (uo - UN). For large N, the above argument shows that Uo - UN E K(8~0](X/\), while
U - UN E K(070](X/\) in view of Definition 3.2.3(d), since the finitely many terms of the
form

Cjkt-Pj lnk
t (w(i) - W(Ujkt))

belong to }Coo,6(X/\) for all 0, We obtain the assertion. <l

3.2.6 Definition. cf. [29], 1.1.1, Definition 4. Let E be a Frechet space.
(a) For an open subset U of C let A(U, E) = A(U)01rE denote all holomorphic functions
on U with values in E.
(b) Let 9 = (,,8) be a weight datum with finite or infinite weight interval and P E
As(X,g).
Then A~"Y(X/\) is the space of all holomorphic functions 1 in the interior of S~-~\'lrCP
with values in the space H~(X) and the following properties

(i) In Pi E 'lrcP,1 has a pole of order mj + 1 and a Laurent expansion

mj

I(z) = L Cjk(z - pj)-k-l + j(z)
k:=O

with Cjk E Lj and J holomorphic near Pi'
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(ii) For f > 0 choose a function Xl E COO(C), vanishing in an f-neigbborbood of 'TfcP
and equal to 1 outside a 2f-neighborhood of 7rcP.
For ßERdefine the semi-norms

using the 'weighted' Mellin transform Mß, cf. 5.1.5.
We now ask that for every ß with I ~ ß< , - 0 and every f > 0,

lIx,flls,ß < 00,

uniformly for ß in compact intervals.

(c) Let Ap'-Y(X") = n" A~'"Y(X").

(d) For a weight datum 9 = (" G) and an 'empty' vector P = 0 let

A~'"Y(X") = A:''"Y(X'').

3.2.7 Lemma. (a) A~-Y(X") is a Frechet space with the topology induced [rom

'"Y-!!.(i) the topology of A(Se 2 \ 7rC P, H3(X))

(ii) the countable set of sem-norms induced by 3.2.6(2).

For A~''"Y(X'') use tbe projective topology.
(b) We tben have

(1)

(2)

3.2.8 Theorem. Let w be a cut-off function near zero. The weighted Mellin transform
M-y-lf : Cgo(X") -t S(f !!.}!-'"Y' COO(X)), cf. 5.1.5, extends to continuous operators

(i) M'"Y-tt: [w]1C~'"Y(X") -t A~'"Y(X"),

(ii) M'"Y-~: [w]t.;(X") -t A~''"Y(X''),

(iii) M-y-It: [w]1C~-Y(X") -4 A~'(X").

Vice versa, iEu E A~-Y(X"), then 3.2.6(b) implies that M;!~u E H",'-O(X"),B < 8 ~ O.

Proof. cf. 5.1.6. (i) is just the definition, (ii) follows from the fact that the Mellin
transform of the function

u(t) = w(t)t-Plnkt

is meromorphic in the plane with a single pole in p of order k + 1 and that Xl(z)(l +
IzI2)"Mu(z) is L 2 on the line f ß for all ß and s.
Finally, (iii) follows from (ii) by linearity. <l

3.2.9 Definition. Let PE As(X,9),9 = (,,8). Then

S~(X") = [w]Kp'-Y(X") + [1 - w]S(X").

Remember that everything depends on the choice of 8.

54



3.2.10 Lemma. Let ~ E COO(O x R), 4> = ~lxA. Then the multiplication operator

Mrj, : K''''Y(X'') ~ KtJ,..y(X")

is bounded. JE P E As(X, 9) satisfies the "shadow condition" (i.e. given a tripIe (p, m, L) E
P and JEN, tbere is an element (p - j,m(j),L(j)) E P witb m(j) ~ m,L(j) ~ L) then
also

is continuous.

Proof. The first part is immediate from 3.1.21(c). In order to obtain the 'second state­
ment, use a Taylor expansion of ifJ at t = 0. <J

3.2.11 Remark. Of course, all notions make sense for distributions with values in finite­
dimensional Hermitean vector bundles which are smooth up to the boundary.

3.3 Green Operators. The Aigebras Gc(X!\,g) and Gc(JI) ,g)

3.3.1 Definition. Let 9 = (,,0,8) with ,,5 E R,8 = (0,0],-00:::; () < Oj9 is called
a 'double' weight datum. Moreover, let P, Q be two asymptotic types, P = (PI, P2 ) E
As(X, Y, (8,8)), Q = (QI, Q2) E As(X, Y, (-,/,8)), and Vi, V2, ... smooth Hermitean vec­
tor bundles.

(a) Let

GE n.c(JC"'''f(X'', VI) EBKtJ,,-t(y", lt3),K OO,O(X", \12) EBKoo,s-t(y", \14)).
tJ

We shall write G E cg(X", 9)p,Q if the following holds: for all s 2 °
KtJ,"f(X" l!,) SS (X" ~)

[
G G

]

, 1 Pt' 2

G = G~ GK: EB ~ EB
S K"'''f-t(y'' \f.) ss-t(y" lf.), 3 PI. ,4

and

(1)

K"'-S(X", V2 ) SQ~(X", Vi)
G* : EB ~ EB (2)

K",-o-t(y", \14) S;;-b(y", V3 )

are continuous. In (2), G* is the formal adjoint of G. It is defined from the duality between
K",--r(X", Vi) EB K",--r-! (Y", V2 ) and K~tJl---r(X", VI) EB K-",---r- t (Y", \12), which comes from
an extension of the inner product

r (M11 (Z), M 12(Z))L').(x)ldzl
Jr~

+ f (M91(Z), M92(z))L').(y)l dz l
Jr~
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on 1f!J(X/\) ffi 1-{Ü'- t(Y/\). Notice that the second term on the right hand side differs
from the standard inner product on 1i" ,"1 (Y /\ ), where the integration is over r i-y, for

dirn Y = n - 1. Since (Mu)(z + ~) = M(ttu)(z), this term yields a duality between
1-{S'-Y- t(Y/\) and 1-l-.'-')'-! (Y/\). Clearly, (1) and (2) will be satisfied whenever they hold
for s = O.
As before, we will not refer to the bundles in the notation.

(b) cg(DJ, g)p,Q is the corresponding space with X/\ replaced by DJ and the spaces
1 1

S~l (X/\, V2 ), ... , 80;-2 (Y/\, \t3) by ~,8 (lD, V2 ), .. • , 1i~;-')'- 2 (18 ,V3 ). We call the ele-
ments of cg(X/\, g)p,Q and CO(ID, g)p,Q the Green operators 0/ type zero on X/\ and DJ,
respectively.

[
Ga GK](c) Let k E N. An operator G = G

T
Gs

0/ type k, if it can be written

acting as in (1) is caIled a Green operator

(3)G = t Gj [ßt 0]
j=O 0 I

with Green operators Gj of type zero. The order s in (1) then is assumed to be ~ k.
With the replacements in (b) we can use the same definition for operators acting on
functions over ID. In (3), ßr denotes the normal derivative defined in a neighborhood
of the boundary of the Riemannian manifolds X/\ and ID, respectively, multiplied by a
cut-off function, so that it makes sense everywhere.
We shall write

G E C~(X/\,g)p,Q and G E C~(lD ,g)p,Q,

respectively. Without loss of generality we assurne that the asymptotic types P and 0 in
(1) and (2) are the same for all Ch) = 0, ... ,k.

(cl) The mapping properties (1) and (2) give a natural Frechet topology for cg(X/\, 9 )p,Q
and Cg(lD ,g)p,Q. The spaces C~(X/\,g)p,Q and C~(ID,g)p,Q are topologized as non-direct
sums of Frechet spaces, cf. 3.1.18(a).
(e) We shall fefer to the entries Ga, GK, GT , Gs of G as the proper Green, potential, trace,
and boundary parts of G, respectively.

In the following, g, P, 0 will denote an arbitrary weight datum and arbitrary asymptotic
types. Y., V2, . .. are Hermitean vector bundles smooth up to the boundary.

3.3.2 Theorem.

cg(X",g)p,Q 3" [S~, (X", VI) EB s;,;-t(y", V3 )] 0~ [S~:(X",V2 ) EB S~;-!(y", V4 )]. (1)

The isomorphism is given by the mapping that associates with G its integral kernel. Here,
Q = (Ql' 02) is an asymptotic type in As(X, Y, g). Qk is constructed by replacing each
element (p, m, L) E Qk by the complex conjugate (p, m, L), k = 1,2. Similarly,
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Proof This is the Sanle as in the classical case, cL [29], Volume I, p. 44. The change in
the asymptotic type Q is, of course, due to the fact that the integral kernel of the adjoint
of the operator with kernel k(x,y) is k(y,x). <J

3.3.3 Corollary. (a) Let ifJI and ifJ2 be excision functions for the singular set of D, and
let G E cg(JD ,g). Then <PIGifJ2 is a regularizing singular Green operator in Boutet de
Monvel 's calculus for JD (we have defined these operators only for compact manifolds
with boundarYj however, since G vanishes near the singularities we cau consider it as an
operator on the manifold obtained by 'doubling' JD along the cylinders Xv x (0,1)).
(b) Let G E C~(X",g)p,Q' Then there are finite-dimensional operators G[N],N E N, with
C = li IDN-00G[N] in the topology of C~ (X" ,9)p.Q'
The same is true for G E C~(JD ,g)p,Q'

Proof. (a) The mapping properties imply that both G and C* map L2(JD) to COO(JD),
so they have a smooth integral kernel.
(b) This follows immediately from the representation 3.3.1 (3), Theorem 3.3.2, and the
properties of the 1r - tensor product. <]

3.3.4 Lemma. Let GI E cg(X" ,g)p,Q and G2 E cg(JD ,g)P.Q' Tben tbe mappings

JC6,"Y(X", VI)
GI: EB --Jo

JC6'''Y-t(y'', V3 )

JCt,S(X", V2)
EB

}Ct,s-t(y", V4 )

fit ,5 ( JD , \12)
EI:!

H t ,5-t(IB ,V4 )

and
'}-l6,"Y (BJ , V1)

Gz : ffi --Jo

H··"Y-t(IB, V3)

are compact for every choice of 8, t ~ O.

Proof. Consider GI. Its image is in fact contained in Koo.o+((X", V2 ) EI:! Koo.s-t+((X", V4 )

for small € since JCT,s+((X" V) C JCT,6(X" V) and JC r ,6-!+((y" ~) C K:T,O-t+'(y" v:), PI ' Z - , 2 p. ' 4 _ , 4

for all € with 0 ::; € < dist (1rcP, r !ct.l-s)' The assertion now follows from 3.1.16 and com-
1

pactness of [1 - w]S(X") in H6(X") and [1- w]S(Y") in H6(Y"). The consideration for
Gz is analogous. <]

3.3.5 Theorem. Let 9 = (",,0), GI E cg(X",g)p,Q, and G2 E cg(JD ,g)p,Q. Suppose
that for some gi yen So > - ~

JC 60 ,"Y (X" , V1)
I + GI : EB

JC60 ."Y-t(y", \12)

JC60·"Y(X", V;)
--Jo EI:!

JC"o'''Y-t(y'', Vz)
(1)
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and
H~O"'Y(DJ, \tl) H60 "'Y(DJ, Vd

I +G2 : ffi -+ ffi (2)
1 1

H,60,'"r-~(IB, \12) H,6o",v-TJ(IB, V2)

are invertible. Then tbere are H I E cg(X",g)p,Q and H2 E cg(DJ ,g)p,Q with

(3)

Proof Using the identity (1 - X)-l = 1 + x + x(l - X)-lx we obtain the desired result
from the fact that, for every s, G1(1 +Gd-1GI and Gi[(I +Gd-1]*Gi have the mapping
properties of 3.3.1(1),(2). The argument for G2 is the same. <J

3.3.6 Corollary. The operators I + GI and 1 + G2 in equations (1) and (2) of 3.3.5
are also invertible on K~"'V(X", Vi) EBK",')'-t(y", "'2) and H6'')'(DJ, Vi) ffiH~,')'-t(IB, V2 ) for
every choice of s.

Proof Again consider only GI' The operator HI of 3.3.5 has the mapping property (1) in
3.3.1. Therefore

(I + Gd(1 +Ht} = (1 +Ht}(I + Gd = 1 (1)

on S''A(X'', Vi) EBS~-t(y", V2 ). Since this space is dense in all the spaces K"''Y(X'', Vi) EB
Je 6 ,')'- t (y", "'2) identity (1) extends and shows that I + H1 is an inverse to 1 +GI also in
these spaces. <J

3.3.7 Lemma. A Green operator G E C~(X",g)p,Q oE type k can also be written

G = I: [](rYj 0] + Go,
j=O SrYj 0

where

• J<j are potential parts of suitable Green operators oE type zero,

• Sj are boundary parts oE suitable Green operators oI type zero,

• 'Ij : f ~ 8;'tIYA, and

• Go is a Green operator oE type zero.

Similarly for G E C~(JD, g)p,Q.

Pro0f. Consider the left upper corner. It is a sum of terms H j at ,j = 0, ... , k, where H j

are the proper Green parts of a Green operator of type zero. By 3.3.2 there are functions
hj E S~(X", Vi )®1tS~')' (X", V2 ) such that

Hja!f(x) = r hj(x, x)a!f(!i:)dx.JXA
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Integrate by parts in the normal direction. This gives terms of the form IXA 8;h j (x, x)f(x)dx
and of the form IYA kjl(x,y),mf(y)dy, where kjl(x,y) = 8~hj(x,x)lx=lIEYA and m + [ ~
j-l.
Applying 3.3.2 again, the former operators define the proper Green parts of suitable Green
operators of type zero, while the integral operators with kerneis kj1 give rise to potential
parts of Green operators of type zero, since restrietion to the boundary maps S~"Y(X")

to S~"Y-~ (Y"). <J

3.3.8 Lemma. Let 91 = (,,5,0),92 = (5,1],0) be weight data, P, Q, R asymptotic
types, let G1 E C~(XI\,9dp,Q, and G2 E C~(X",92)Q,R' Tben

G2GI E C~(XI\, 93)P,RI

with g3 = (" 1], 0) and a resulting asymptotic type R' depending on G2 and R. We will
bave R' = R tor d' = O.
We tacitly assurne that GI and G2 act on vector bundles so that the composition makes
sense.
The corresponding result also holds with X" replaced by JD.

Proof For d = d' = 0, this follows immediately from the definition. In view of 3.3.1(3),
we may assume that d = 0 and that the matrices for G1 and G2 only consist of the entry
in the upper left corner. Using 3.3.7, we even may suppose that G1 = ](,d', where /( is
the potential part of a Green operator of type zero. Now we apply 3.3.2, writing

Jk(x, y'),d' J[(y, z)f(z)dz dy'

Jk(x, V') J8d' [(y, z)llln=oj(z)dz dy'

with corresponding kerneis. A second application of 3.3.2 then yields the assertion. <J

3.3.9 Definition and Remark. In view of the preceeding result the Green operators
of arbitrary type form an algebra. In fact, cg(X", 9 )p,p is an algebra in the usual sense,
while in general, the asymptotic types will change.
For 9 = (",,0) we let Cc(X", g) denote the space of all operators that belong to any one
of the families Cd(X",g)p,Q for arbitrary d, P, Q. In view of Lemma 3.3.8, the elements of
Cc(X", g) that act on fitting vector bundles can be composed. In this more general sense,
this space also is an algebra. The proof of 3.3.8 shows that the composition is continuous
with respect to the corresponding topologies.

3.3.10 Theorem. Theorem 3.3.5 and Coro11ary 3.3.6 on invertibility extend to the case
wbere GI E C~(XI\,g)p,Q and G2 E C~(JD ,g)p,Q,O f. k E N; we bave to assume that
80,8 E N are ;::: k in order to have a11 mappings we11-defined. The corresponding operators
H1 and H2 belong to C~(X", 9)P,Q and C~( JD ,g)P,Q' respectively for suitable asymptotic

types P and Q, respectively.
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Proof. Consider GI' For simplicity assume that the bundles Vi and V2 are trivial and
scalar. Introduce the Hilbert space E = K:'oty(X") EB K>,o,..,.-t(y"). According to 3.3.7 we
cau write

] +GI == ] +Ho +Hk;

here Ho is of type zero, and Hk = I:j;;;J A j [~ ~] with Aj = [~; ~] consisting of

a potential part Rj and a boundary part Sj of a suitable Green operator of type zero.
We may rewrite Hk in the form Hk == Lj;a ](jTj; here Tj : E ~ K.90,..,.-t(YA

) is given by

Tj(fl El1 f2) = rjft and !(j : K"o,..,.-t(y") ~ E by ](jg == Rjg EB Sjg.
Lemma 3.3.4 implies that the operator I + Ho is a Fredholm operator on E of index zero.
Choose bases {rPI, ... , 4>J} of its kernel and {'l/JI, ... , 'l/JJ} of the orthogonal complement
of its image. Define the operator

J

P : f ~ ~(f, rPj)E'ljJj.
j=O

Then I + Ho + P : E ~ E is invertible. More is true. P even is a Green operator: First,
1

(I+Ho)4>j == 0 implies that rPj == -HorPj E S'A (XA)EBS;;~(YA). Moreover, we may replace
the functions 1/;j by functions (;j E C~(X") EB c~(y/\) without losing the invertibility of
I + Ho + P on Ej this is a consequence of the fact that the compactly supported smooth
functions are dense in E. In particular, Theorem 3.3.2 implies that P E cg(X", g)p,Q,

1 1

since its integral kernel belongs to [SP1 (XA
) EB S;;2(YA)] ® [S;;(XA) EB S~:-~(YA)] Let

us write P == r:..f=o LjUj ; here Uj : E -? C is defined by Ujf == (f, </>j)E' and Lj : C -? E
byLjc=~j. I

Now we shall use an analog of the method in [29], 2.1.12, Proposition 24. Let K ==
K"o,..,.-t(Y")j denote by K, L the row vectors with components 1(1, ... ,1(k-l and LI, ... , L J ,

respectively, by T, U the column vectors with entries Tl, ... ,Tk - l and UI, ... ,U).
Note that I +GI : E ~ E is an isomorphism iff

[

1+ Ho -]( L]
T I 0 :
U 0 I

(1)

is an isomorphism. In fact, this is a consequence of the matrix identity below, noting that
I +GI == I +Ho + P +L ](jTj - L LjUj :

[~ ~ -oL] [I+I!; +P -;< ~] [!T ~ ~] == [ I~GI ~ ~] (2)
o 0 I U 0] -U 0 ] 0 0 I

By construction, I + Ho + P : E ~ E is an invertible Green operator of type zero. So by
3.1.5, its inverse is of the form] +G, G E cg(X",g)p,Q' Now
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__ [ J + IJ~O + P 0
J +T(I +G)I(

U(J +G)I(
o ]-T(l + G)L

1- U(I +G)L
(3)

The 2 x 2 matrix in the lower right corner is invertible, since the whole matrix iso Consider
the operator T(I +G)I( : }Ck ~ K;k. It is a Green operator of type zero on the surface, i.e.

in cg(Y'\g)p,Q, since it has an integral kernel in S;:-~(Y")@1fSQ;-t(y,,), computable
from those of G and !( with suitable asymptotic types pi and QI.
J ust like before we may determine operators Wj : K,k ~ C and Vi : C ~ x:. k , j = 1, ... , j
such that I +T(! + G)!( + E Vi Wj is invertible. With the notation and technique of
before, cf. (2), the inverse to the matrix in the lower right corner of (3) can be computed
from the inverse to

[

J +T(J + G)J( + VW -T(I +G)L
U(I + G)I( I - U(I +G)L

W 0 ~] (4)

in L:(}(:kmCJ ffiCi). Since the upper left corner is invertible, we may apply a decomposition
as in (3) leading to an invertible matrix of the form

(5)

The lower right 2 x 2 matrix then is an invertible operator on L:(CJ+J ), and so is its
inverse. This allows us to compute, step by step, the inverses of the matrices in (5), (4),
(3), and (1). We obtain the inverse af I + GI in the desired form.
For G'J, the praof is similar. <l

61



4 Mellin Symbols with Values in Boutet de Monvel's
Algebra

4.1 The Spaces of Mellin Symbols with Asymptotics. Mapping
Properties

4.1.1 Definition. (a) A MeUin asyrnptotic type is a sequence

with Pi E C, Re Pi ~ ±oo as j ~ =foo, mi E N, and L j a finite-dimensional subspace of
finite-dimensional operators in B-oo,d(X).
We denote the collection of all these asymptotic types by As (a-OO,d(X)). Just like in

3.2.1, we let 1fcP = {Pi: j E Z}.

(b) Let P E As (a-oo,d(X)) , J.L E R, dEN. M~,d(X) denotes the space of all functions

(1)

with the foUowing properties

(i) in a neighborhood of Pi E 1fcP

mj

a(z) = L Vjk(Z - Pi)-k-l + ao(z)
k=O

with Vjk E Li, k = 0, ... ,mj, and ao holomorphic near Pj.

(2)

(ii) Let 0 < Cl < c2. For every function X E COO(C) supported in {z : dist (z, 1fcP) > Cl}

and equal to 1 outside an c2-neighborhood of 1fcP, and for every ß E R

(xa)(ß + ii) E all,d (Xi R,.),

uniformly for ß E [Cl, C2}, Cl < C2 E R.

(3)

We caU the elements of M~,d(.X) Mellin symbols of order IL, type d, with asymptotic type
P.
Gf course, we are assuming in (1) that the vector bundles a(z) is acting on, cf. 2.3.1(1),
are independent of z. .

(c) M~:~(X) is the corresponding space with BJJ,d(X) replaced by B~,d(X).

(d) If P = 0 then we shall write MÖ,d(X) and Mb:~I(X),
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4.1.2 Remark. The topology of M~,d(X) is given by three semi-norm systems

(i) that for the topology of A (C\1rC P' BJJ,d (X)) ;

(ii) that induced by a ~ Vjk E Lj ~ B-oo,d(X), where a E M~,d (X) is as in 4.1.1(2),
and the topology of B-oo,d(X);

(iii) that given by

where {rj : JEN} is a semi-norm system for the topology of BJJ,d(Xj Rr), and X is
fixed.

4.1.3 Remark. (a) M~,d (X) is a Frechet space in the above topology.
(b) Mpoo,d(X) = nJJM~,d (X) is a nuclear Frechet space.

Proof. (a) is obvious from the definition.
(h) Follows from a representation of M~,d (X) a.s a pro jective limit of Rilhert spaces wit h
nuclear embeddings. The construction is analogous to that in [27], 1.1.3, Proposition 6. <J

4.1.4 Examples. (a) Let j.L, k E N and Ak E BJJ-k,d(X), k = 0, ... , fl. Then

JJ
a(z) = E Akzk E Mb,d (X).

k=O

(b) Let v E B-oo,d(X) have finite-dimensional range. Moreover, let p E C with Re p <
~,k E N,w a cut-off function near zero. Then

whenever P is an asymptotic type that contains an entry (p, k, L) with v E L.
(c) Under the same assumptions but with Re p > ~,

c(z) = vMt_z(t-P lnk t w(l/t)) E Mpoo,d(X).

Prao/. (a) Clearly, a E A (C, B~,d (X)). Since Ak(ß + iT)k is a polynomial in ß and T of

degree k, we have a(ß + ir) E B~,d (X; Rr), uniformly for ß in compact sets.
(b) The function Mt _ z (t -p In k t w( t)) is meromorphic in C wi th a single pole of order k +1
in p, cf. 5.1.6, so the relations (1) and (2) in 4.1.1 (b) are trivially fulfilled. If X is a smooth
function on C which is zero near p and 1 near infinity, then xu is rapidly decreasing on
each line r ß, uniformly for ß in compact intervals, cf. 5.1.6. Therefore Xb satisfies the
relation (3) in 4.1.1(b) for every fl E R.
The proof of (c) is similar. <J
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4.1.5 Theorem. Let P be a Mellin asymptotic type, fL E R, dEN. Tbe function
a E A(C\1rcP, B~,d(X)) is a Mellin symbol in M~,d(X) if and only iE it can be written

(1)

(2)

with ak E MÖ-k,o(X). Here, 8r stands for the operator given by tbe normal derivative
in a neighborhood of the boundary, multiplied by a suitable cut-off function. Q is a
slightly modified asymptotic type; it contains the same Pi and mi, but tbe Li are now
finite-dimensional spaces of finite-dimensional operators in B~'O(X).

Proof Clearly a function with the representation (1) belongs to M~,d(X). So we only
have to prove the converse. We write

( ) _ [ P(z) + G(z) 1«(Z)]
a z - T(z) 8(z)

as a matrix in Boutet de Monvel's calculus depending on z.
For P(z), [«(z), S(z) there is no 'type', so we only bave to consider G(z) and T(z). The
proof is almost the same for both, so let us concentrate on G(z).
Fixing ß E R, and an excision function X for tbe poles, we have

x(ß + iT )G(ß + iT) E y~,d(X; Rr),

uniformly for ß in compact intervals (for y~,d(Xj Rr) cf. Definition 2.3.1(b)). We may
write in a unique way

d-l

G(ß + iT) = L !(j(ß + iT)'i + CO(ß + iT),
j;O

where X(ß + i· )J(j(ß + i.) is a parameter-dependent potential operator of order fL - j - !
and CO(ß + iT) E QIJ,O(X j Rr), uniformly for ß in compact intervals. On the other hand,
we may write for each fixed z

d-l

G(z) = L }(j(z),j + QO(z)
j;O

(3)

with j(j(z) a potential operator of order Jl - j - ! and CO(z) E y~,O(X). The mapping

G(z) 1-+ j(j(z) is continuous in the symbol topology. Since tbe decomposition is unique
in both (2) and (3), we have, fixing T, J(j(ß +iT) = !(j(z)lz;ß+ir' Moreover, the mapping
z 1-+ Kj(z) is a holomorphic function of z on C\1rcP : Since G(z) E A(C\1rcP,yiJ,d(X)) =
A(C\1rcP)01ryiJ,d(X) we have

00

G(z) = L A1hl(z)H,
';0

(4)

with {A,} E i\ and {ht} C A(C\1rcP) and {Ht} C g~,d(X) null sequences. Again we
may write in a unique way Hl = 'Lj:6 !(I)'/j + H?- Interchanging the summation in (4)
we see that

d-l 00 00

G(z) = L(L A1hl(z)!(lj),j +L A1h,(z)H?
j;O 1;0 1;0
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By uniqueness,

L A1hl(z)Kjl = j(j(Z) and
I

L: A1hl(z)H,o = QO(z)
I

for each fixed z. Since the left hand side is holomorphic in z we see that j(j and CO are
holomorphic functions of z outside 'lrcP. Multiplying by powers of z - Pj we see that all
singulari ties are poles of order m j, j ust as before.
Now we mayaiso fix a way to convert an expression of the (unique) form L1:~ LrYj + LO

with potential operators Lj of order J.L - j - ~ and a type zero singular Green operator LO
of order Jlo to the (non-unique) form 'L1=0 Hjat with singular Green operators B j of order
Jlo - j and type zero, with or without parameters, cf. 2.2.14. Using (2) we may therefore
write

d

G(ß +ii) = L Gj(ß + iT)at,
j;;;;O

with
x(ß + ii)Gj(ß + iT) E g~-j,O(X; Rr),

uniformy for ß in compact intervals, and, applying (3),

d

G(z) = E Gj(z)fJ!.
j;;;;O

with Gj(ß + iT) = Gj(z)lz;;;;ß+iT' In view of the considerations above, Gj is a holomorphic
function of z on C\'TrCP, all singularities are poles, namely of orders /-Lj.
It remains to check that, near Pj E 'TrcP, we have

mj

G1(z) = L Vjkl(Z - pj)-k-l + hj1(z)
k;;;;O

with suitable Vjkl E ß-oo,O(X) of finite-dimensional range. By definition, the coefficients
of (z - pj)-k-l, k = 0, ... , mj in the power series of G(z) are finite rank operators in
ß-oo,d(X). The uniqueness of the representation (3) together with Lemma 4.1.6, below,
then implies that the corresponding coefficients for all Kj (z) are regularizing potential
operators of finite rank. The pointwise conversion according to 2.2.14 preserves this
property. This concludes the proof. <J

In the proof we have used the following lemma.

4.1.6 Lemma. Let 3 E R, dEN, v E ß-oo,d(X), and suppose that for some 3 > d - 3,
v : H~(X) -+ B8(X) has finite rank. Then in tbe representation

d-l

V = ~ ](jlj + Vo
j=O

with regularizing potential operators !(j and Vo E B-OO,O(X) the operators va, !(o, ... , ](d-l

all have finite-dimensional range.
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Proof The operator Vo has an integral kernel in COO(X X X), hence extends to L2(X).
Since Cgo(X) is dense in L2(X) we have

with the first space dense in the third. If the second were infinite-dimensional, so were
the first. But this is not the case, for on Cö(X), v and vo coincide.
In the following we may therefore Msume that vo = O. Choose a smooth function p
supported in a small neighborhood of the boundary and vanishing to first order on Y.
Clearly, ](j(COO(Y)) is dense in the range of ](j. For 4> E COO(Y), however,

d-l

v(pd-l <p) = E ](rYj(pd-l4» = !{d_d,d_lpd-l . 4>].
j=O

As 4> runs over Coo (Y), 1d-l pd-l . 4> runs over Coo (Y), for 1d-l pd-l is a nowhere vanishing
smooth function. By assumption, v has finite-dimensional range, therefore also the range
of ]{d-l is finite-dimensional. Iteration completes the argument. <J

4.1.7 Proposition. Let p.., fl' E Z, d, d' E N, and let P = {(pj,mj,Lj)}, P' =
d ' d'{(pj, mj, Li)} be two Mellin asymptotic types. For a E M~' (X) and b E M~,' (X)

tbe function

" d
fl

belangs to M~I/' (X), where

• fl" = J.L + fl';

c(z) = a(z) b(z) (1)

• d" = max {p..' + d, d'};

• P" is a suitable Mellin asymptotic type tbat can be determined from a and b; in
particular, 1rcP" ~ 1rcP U 1rcP'.

We are tacitly assuming that the composition in (1) makes sense, i.e. a(z) and b(z) are
acting on appropriately chosen bundles.

Proof By 2.3.1 and 2.2.18, a(z)b(z) E A(C\(1rcP U 1rcP'),BJl",dl/(X)). Also, if X is an
excision function for 1rcP U 1rcP' as in 4.1.1(b.ii), then we can find excision functions
Xa and Xb for 1rcP and 1rcP', respectively, with X = XXaXb· Then X(z) a(z) b(z) =
X(z) Xa(z) a(z) Xb(Z) b(z), and we obtain 4.1.1(b.ii). Finally, let p E 1rcP U 1rcP'. Near p
write, according to 4.1.1 (b.i),

m m'+l

a(z) = L Vk(Z - p)-k-l + L: v~(z - p)k + (z - p)m'+2ah (z) (2)
k=O k=O
m' m+l

b(z) = E fll(Z - p)-l-l + L flHz - p)l + (z - p)m+2bh (z) (3)
[=0 1=0
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Here, the Vk are finite-dimensional operators in S-oo,d(X), tbe Pt are finite-dimensional
operators in B-oo,d' (X), v~ and Pt are operators in B~,d (X) and BJl',d' (X), respectivelYj
ah and bh are holomorphic near p.
In view of the composition rules in Boutet de Monvel's calculus, the finitely many opera­
tors V"'J-lt, V~J-lz, VA:J-ll' v~p~ are all fini te-dimensional operators in B-oo,d" (X), they generate
a finite-dimensional subspace. <l

4.1.8 Theorem.

Proo! The proof is similar to that of 3.2.4. Let P = {(Pi, mj, L j )} and ViA: E L j for j E Z,
k = 0,1, ... , mj, and let a E M~,d (X) have the form of 4.1.1(2).
Choose a line rß ~ C that does not intersect 1fcP. Without loss of generality assume
that the line is r ~ and that the enumeration in P is such that Re Pj < ! for j '2: 0 ,

Re Pi > ~ for j < O.
Now fix a cut-off function w near 0 and let

00 mj -1 mj

u(t) = L L:: Vik t-Pi InA: t W(Cjt) + L L VjA: t-Pi In'" t w ((Ci t )-l) .
i:=O k:=O i==-oo k:=D

Set b = M u, the Mellin transform of u. For Cj -t 00 sufficiently fast, the summation
will converge in the semi-norms of Mpoo,d(X)j the complete argument is given below.
Moreover, b has poles of order mi+l in Pi, tbe coefficients of (z - Pi )-k-1 are Vik, just as
for a. Thus a - b E MÖ,d (X).
Now for the missing part of the argument. Apriori the sum converges to a bolomorphic
function in tbe strip

{z : Jl.lax Re Pi < Re z < qlin Re Pi }
J~O J<O

with values in 8-oo ,d(X). In fact, if the Ci tend to infinity sufficiently fast, then the first
summation will converge for Re z > maxi~o Re Pi, while the second will converge for
Re z < mini <0 Re Pi as a consequence of Lemma 5.1.6.
Let us check that it converges indeed to a functian in A(C\1fcP, B~/,d(X)) for every
p' ER:
Let Q < ß ERbe given. For N E N consider

Just a.s befare, the summation for bN will converge ta a holomorphic function in the strip
{Q < Re z < ß} provided N is sufficiently large. The difference b - bN on the other hand
is a finite surn and rnerornorphic in the strip, again by 5.1.6.
In order to see that the convergence even is in Mpoo,d(X), cf. 4.1.2, we now chaose a
smooth function X on C, vanishing near 1fcP and equal to 1 near infinity. By 5.1.6(c),
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is rapidly decreasing on each line f ß , uniformly for ß in compact intervals. Moreover, for
Re Pi < ! it tends to zero on {Re z > Re Pi} as Cj tends to infinity. Applying the corre­
sponding argument for Re pj > ~, the summation for (X bN )(ß + ii) will converge in the
topology of ß/-I',d(X; R,.), uniformly for ß in compact intervals and arbitrary p.' E R, pro­
vided the Cj tend to infinity sufficiently fast. Since there is nothing to check with respect

to 4.1.2( ii), this shows t he convergence in M~' ,d(X) for arbi trary pi, thus in Mpoo,d(X).
<l

4.1.9 Definition. Let i E R, E, F Hilbert spaces.
(a) If f is a function on U ~ C, then let (T'"Y f)(z) = f(z + ,) whenever z + i E U.

(b) For a polynomially bounded function 9 on ft with values in J:,(E, F) let

be defined by
(OPMg)(U) = M-1g Mu

with the vector-valued Mellin transform M : L 2(R+, E) -4 L2(f t, E).

(c) For 9 defined on f !---r' , E R, let

with the weighted Mellin transform M'"Y' cf. 5.1.5.

4.1.10 Lemma. Let a E M~,d (X), J-L E Z, dEN, d ::; Jl+ = max{p, O}" E R, P a
Mellin asymptotic type with '1rcP n r t---r = 0. Suppose that for fixed z, a(z) E 8/-1,d (X)
acts on vector bundles as in 2.3.1. Then

Gf:(X/\, VI)
op1-a : ffi

Gf:(Y/\, V3 )

is a continuous operator.

COO(X/\, V2 )

--+ ffi
COO(Y/\, V4 )

(1)

Proof Without loss of generality assume V3 = V4 = 0, while V;, V2 are trivial 1­
dimensional bundles, so we need not mention them.
If fE Cr(X/\), then so is t---rJ. Therefore, Mt_z(t-"Y!) is rapidly decreasing on ft. Since

'1rcP n ft-"Y = 0, T-'"Y a is holomorphic in a neighborhood of r~, and

Consequently, given any semi-norm r for B/-I,d (X),
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Hence (T-"t a) A1t_ z (t-"t f)( z) decays rapidlyon r 1. j it has values in coo (X). Therefore
:;z

op1a(f) E COO(X") by 5.1.2. Continuity follows from the continuity of the isomorphism
M : L 2 (R+) -+ L2(rt) and the closed graph theorem. <J

4.1.11 Theorem. Under the assumptions of 4.1.10, oPM a has a bounded extension

'H","t+~(X",Y;)
op1 a : EB

'H","t+!!jl- (yA, V3 )

for a11 s E R, s > d - !.

'H"-Jl,"t+~(XA, V2 )

~ EB
'H"-IJ,"t+ ";1 (Y A, V4)

K"-IJ,"t+~(XA, lI..!)
~ EB

K"-Jl,"t+";l (YA , ~)

Ir

4.1.12 Corollary. Let w,w' E Cr(R+). Under the assumptions of 4.1.10

K:","t+~(XA, "l)
w op1(a ) w' : EB

K:"'''t+ ";1 (Y", V3 )

is bounded for all s E R, S > d - !.
Proof of 4.1.11. We make the same simplification eoncerning the veetor bundles as in the
proof of 4.1.10. On the line rt-"t' a(z) is a parameter-dependent operator in Boutet de
Monvel's calculus. We ean write

where the aj are loeal terms, given by symbols of order fl - j and type zero, and the
seeond surn defines aglobai contribution: eaeh rj(r) acts as an integral operator, and the
associated kernel is a rapidly decreasing function of r taking values in COO(X x X).
From 3.1.7 and 3.1.8 one concludes that the normal derivative 8r maps 'H","t(XA) to
'H"-l,"t(XA

) for s > ~. Moreover, the integral operators induced by the rj are continuous
on 'H","t(XA).
So we eau foeus on the first sumo In view of its loeality and the above considerations
on the normal derivative we may assume that we are dealing with a single parameter­
dependent operator a = a(r) of order fl and type zero in Boutet de Monvel's algebra on
R+., supported by a compact set, uniformly in r. Now use the observation made in 3.1.8
that M"t-~'H","t(R+ x R+) = Fn+1H"(R+ x R). The index n + 1 for F indicates that the
action is with respect to the last variable. Applying additionally the Fourier transform
with respeet to the first n - 1 variables, F', the space Fn+1H"(R+ x R) is mapped to
W"(Rn-l x R, H"(R+)). From all this we conclude that

"t-g. M-1 F,-1 F'M '1.J","t(Rn R) '1.J"-IJ,"t(Rn R)opM a = "t- ~ op x" a "t- ~ : I L + X + -+, L + X +

is continuous if and only if
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is bounded. The latter fact, however, was proven in 2.2.19. Notice that we can omit the
subscripts comp and loc, for a(r) is compactly supported. <l

For completeness we note the lemma, below.

4.1.13 Lemma. Use the notation of 4.1.10 and assume additionally that d = 0, s 2:: o.
Then the operator A = op1-a has a formal adjoint A'" with respect to the dualities

'H''''Y+~(X", VI) ffi 'H"'I'+ T-! (Y", V3 ), 'H~",-"(-!f(X", Vi) ffi 'H-"-I'- ~-t (Y", V3 )

and

'H"-~'''(+~(X'',V2 ) ffi 'H'-/l,"(+~-t (Y", "'4), 'Hi";t/l,-"(-;. (X", lt2) ffi 1{-'+/l'-"(-3--i(y", V4 ).

Here, the index {o} means that we use the 'Ho-spaces for s - J1. > 0 and the usual
'H-spaces otherwise, cf. 3.3.1. We have

A'" -"(-n (.) ·th= OPM a WI (1)

tbe last asterisk indicates the matrix adjoint. The fact that a E M~'o(X) implies that
a("') E MQ'O(X) for a resulting asymptotic type Q.

Proof Since the type is zero, this is easily deduced from the usual result, cf. [29] 1.1.4,
Proposition 16. For completeness, the detailed proof is given in 5.1.10 <l

4.1.14 Theorem. Let a E M~,d (X), with jl, d, P as in 4.1.10. Moreover, let w, w' E
C~(R+) and 9 = (, + ~,e), e = (0,0] be a weight datum.
Tben for every asymptotic type Q = (Ql,Q2) E As(X, Y,g) there is an asymptotic type
R = (R1 ,R2 ) E As(X, Y,g) such that

is continuous for all s 2:: d.

Proof For simplicity we may assume that Vi and V2 are one-dimensional and scalar, while
V3 = V4 = 0 and that , = O. In view of the definition of the spaces K~I'(X"), cf. 3.1.18,
we mayaiso assume that e = (0,0] is a finite weight interval. Supposing that QI has the

form {(qj,nj,Nj )} , write u E K:~:(X") in the form

J nj

u(x, t) =L L cjJ.(x )t-qj Ink t Wl (t) +uo(x, t) = Ul(X, t) +uo(x, t)
j;;Ok;;O

with Cjk E Nj , a cut-off function Wb and Uo E K:~~(X").
Writing P = {(Pj, mj, Lj )} and supposing that 7rcP n {~ +°< Re z ~ ~} = {Pjp ... ,Ph}
we decompose

a(z) = adz) + ao(z),
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where ao(z) E M~·d (X) is holomorphic in the strip {t + 0 < Rez S; t}, and

h
a}(z) = L VjkMt_z (t-Pj Inktw2(t))

j=jl

with an arbitrary cut-off function W2 near zero and suitable Vjk, cf. 4.1.4.

Now we consider the terms separately. By 4.1.12, wop~(a)w' : K:~~(X") --+ K~-Il·~(X")
is continuous. So we only have to consider the action of wop~(a)w' on Ul' By linearity,
it is sufficient to assurne that

Ul = ct-plnktwl(t)

al = v Mt_z(t- q In' t W2(t))

for fixed p, q E C, k,l E N, v E B-oo.d(X), C E COO(X). By 5.1.6

dk

Mt-z(t-P Ink t Wl (t)) = -1k (z-l<I>(z ))(z - p),
(Z

(1)
(2)

(3)

(4)

II

where cI> is the Mellin transform of a C<f(R+) function. Applying the same argument to
a1) al(Mud = v(c)lj1(z), where lj1 is a meromorphic function on C with poles at p and q,
possibly p = q.
From Theorem 5.1.7 we know that 'ljJ is rapidly decreasing outside the poles on all lines
r ß. SO we may choose coefficients dj, ej, j = 1, ... , N such that

N

'l/;(z) - L Mt_z(djt- P lnj t w] (t) + ejt-q Inj t w] (t))
j=O

is entire and therefore satisfies the estimates 5.1.7(2). Hence it is the Mellin transform

of a Cgo(R+) function, and al (Mud E K:~~Il'~ (X") provided the asymptotic type takes
care of the singularities arising from (3).
The argument for W op ~aoW'UI is similar: Let X E COO(C) vanish near p and equal 1
outside a neighborhood of p. From the estimates in 4.1.1(3) for ao in connection with
those for Mt_zu] we conclude that

v(z):= ao(z)cx(z)Mt_z(t-Plnktwl(t)) = O((z)m)

for arbitrary m, uniformlyon all lines fß, t + 0 < ß ~ t, and with respect to all semi­
norms for the topology of COO(X). Therefore M-1v E 'H"-J-'.rt-6(X"), () < 8 ~ O. Near
z = p, ao(z)c is a holomorphic function with values in COO(X); so we can find coeffcients
d1 E COO(X), I = 0, ... , k such that

k

ao(z)cMt_z(t-P Ink t w] (t)) - L d,Mt_z(t-P In' t w] (t))
1=0

is holomorphic near z = p. We know the behavior of the terms under the summa.tion from
5.1.6, and conclude that

provided the asymptotic type R contains entries corresponding to the singularities arising
in (4). <l
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4.2 Mellin Operators and Green Operators

The following lemma is elementary but useful.

4.2.1 Lemma. Let f be meromorphic in an open set U ~ C; let PI, ... ,PJ be the poles
of f with respective multiplicities mj +1. Choose a contour C in U around the poles with
winding number 1 for a11 poles. Define a holomorphic functional (f carried by {PI, ... ,PJ}
by letting

Then, for t > 0,

((/, h) = -2
1

. f f(z)h(z) dz,
7ft Je h E A(C).

J m"

((j, t- z ) = L t Cj~ t-Pi lnk t.
j;Ok;O k.

Here, the Cjk, k = 0, ... ,mi are the coefficients of (z - Pi )-k-l in the principal part of tbe
Laurent expansion of f near Pi.

4.2.2 Proposition. Let G be a regularizing singular Green operator of type zero with
fini te-dimensional range, , E R, k E N, W, Wl cu t-off fun ctions near °E R.r. Let C be a

smooth contour in the half pIane {Re z > ~ - ,}, and suppose C has winding number 1
with respect to tbe point P E C.
Then the operator A defined by

Au(t) = 2
1

. w(t) f t-zG(z - p)-k-l M(WI u)(z) dz
7ft Je

for u E C~(X") maps any space }CS,"'Y+!" (X"), s 2:: 0, to tbe finite-dimensional space of all
functions of the form

k

v(x,t) = LCj(x)t-Vlnitw(t),
j;O

cjEimG.

Proof. Since u E }CS1"'Y+~ (X"), M(WI u) is holomorphic in {Re z > ~ - ,} with values in
HS(X). In particular, near p,

k

M(WI u)(z) = L dl(x )(z - p)l +r(z)
l;O

with dl E HS(X) and r a holomorphic function with a zero of order at least k + 1 in p.
By Lemma 4.2.1,

k

Au(x, t) = w(t) L G(dl)(x)t-V lnk
-
l t.

l;O

This proves the assertion.
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4.2.3 Theorem. Let a E M~,d(X), f-l E Z, dEN, P a Mellin asymptotic type. Moreover,
let 1 E R, ß ~ 0, W, Wl E Cü(R+), and suppose that

Then
wtßop1-(a)wl-wop1(Tßa)tßWl E C~(X",g)Q,R (1)

for suitable asymptotic types Q,R E As(X, Y,g),g = (, + ~,/ +~, (-00,0]), depending
on P. The operator in (1) has finite-dimensional range. It is given a.s in 4.2.2 bya contour
integral around the finitely many singularities oE a in the strip between rt-"Y and rt-I'+ß'
Recall that (Tßa)(z) = a(z + ß).
For ß < 0, the same is true witb tbe weigbt datum 9 = (, + ~ - ß" + ~ +ß, (-00,0]).

Proof. (cf. (29], 1.1.4, Theorems 20, 21) Let us first consider the case ß ~ o. We may
assum~ that the vector bundles a is acting on, cf. 4.1.10(1), are trivial one-dimensional
over X and 0 over Y. Applying 4.1.5 and 4.1.8, we Dlay write

d

a = ao + al = ao +L bla~n
1::0

witb ao E M/),d(X) , al E Mpoo,d(X), and b1 E MpOO,o(X). Denote by A the operator on

the left hand side of (1). Then A = Ao+Al = Ao+ 'E1::o Bla~n wbere Aj, Bi are tbe
corresponding operators with a replaced by aj,) = 0,1 and bl, I = 0, ... ,d, respectively.
Choose ti E Cü(X"), and let v = (27ri)-1 M(WI u). By 5.1.9

Aju(t) = wtßl t-Zaj(z)v(z) dz - w l t-Zaj(z + ß)v(z + ß) dz
r~_~ ri-~

= wtß (1 t-Zaj(z)v(z) dz - 1 t-Zaj(z)v(z) dZ) .
i-~ i-~+ß

Since v decreases rapidly, Cauchy's integral formula implies that

(2)

where C is a smooth curve around the finitely many poles Po, .. . ,PJ of aj in the strip
{~-, < Rez < ~ - / +ß}. Applying Lemma 4.2.1, Aoti = 0, hence Ao = O.
Now let us show that Al is a Green operator of type d. Recall that al = L1::0 b,a~n' Write

J mj

b1(z) = L L Gjk1(Z - pj)-k-l +h(z),
j:Ok:O

where h is holomorphic in the strip, and G jk1 are regularizing singular Green operators of
type zero.

Given s ~ 0, Proposition 4.2.2 shows that BI maps K"'I'+~(X") to SQ+~(X"), continu­
ously, whenever Q is an asymptotic type containing the above singularity data.
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The operator OP'kb, has a formal adjoint oPM'"f-nb}*) by 4.1.13. Now b}*)(z) = b,(n + 1 ­
z)* E Mp,oo,o with an asymptotic type p, induced by the operation in 4.1.13(1). Moreover,

Bt = Wl [op1bd*tßW- Wl tß[op'kTßbl ]* W

= Wl oPM'"Y-n(bt"»)tßW- Wl tßoPM'"Y-n(T-ßb}*») W

= Wl tßop-;.}-n(ez) W- Wl oPM"Y-n(Tßez) W

where ez = -T-ßb}*). Using 4.2.2 we conclude as above that Bi maps K:"'-'"f-~(X") to

S~"Y-9' (X") for a suitable asymptotic type R.
Now assume that ß < O. Write b = Tßa. Then by (1)

wtßopIr(a)wl = wtßopltT-ß(b)Wl = wop1(b)Wl tß+Gtß = wop1(Tßa)Wl tß+Gtß.

<J

4.2.4 Remark. In particular, the proof of 4.2.3 shows that the difference

WtßoP'k(a)wl - Wop1(Tßa) tßWl

is zero if a has no singularities in the strip {! - I ~ Re z ~ ! - I + ß}.

4.2.5 Theorem. Let h E Mpoo,d(X), I E R, '7rc Pnr t-'"f = 0. Moreover, let w, Wb W2, W3, W4
be arbitrary cut-off functions near 0 E R, and cp E Cgo(R+). Tben

(a) wopl(h)cp E cg(X",g)Q,O.

(b) cp opl(h) W E C~(X", g)O,R.

(c) Wlop1(h)W2 -W3 0 p1(h)W4 E C8(X",g)Q,R.

In (a), (b) and (c), Q and Rare suitable asymptotic types in As(X, Y, g) that can be
computed from Pj 0 is the 'zero' asymptotic type, and 9 is the weight datum 9 = (, +
~" + ~,( -00,0]).

Proof (a) We may write h = L1=:o hiB;n with hi E MpOO,o(X). Then

d

W op1h r.p = L. W op1hi cp ß;n'
i=O

(1)

so we may assume without 10ss of generality that d = o. Multiplication by cp maps any

space 1C",'"f+~(X")continuously into K~'"f+~(X"); this in turn is mapped to [w] K;:'''Y+~(X'')

C-....+ S;+~(X") by wopIrh. The adjoint of wop1hcp is cpop-;.?-nh(*)w with h(*) as in

4.1.13. Since h(*) E MÖOO,o(X), the adjoint maps K"'-'"f-~(X") to [<plK~'-'"Y-~(X") C-....+

S~"Y-!f (X"). This proves (a). Note that the type of the resulting operator is zero, since
Gcp is of type zero, if G is a Green operator of type d.
(b) is proven in the same way. Now, the type will remain d.
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(c) follows from (a) and (b) writing

wlop1(h)W2 - WJop1(h)W4 = (Wl - WJ)op1(h)W2 + w30 p1(h)(W2 - W4)

and noting that both (Wl - W3) and (W2 - W4) belong to Cgo(R+).

-"4.2.6 Remark. (a) In the notation of 4.2.3, we have for f E Co(X ) and ß E R

tß W oP1iß (a) W1 f = tß w lr t-<a(() M(WI f)(()d(
r!-'Y+ß

W j t-Za(z + ß)M(w1f)(z + ß)dz
!-'Y

= wop1(Tßa)W1 tßf·

<]

(1)

By 4.2.3, the last operator equals wtßop1(a)wl! modulo a Green operator, say G. Here
we have assumed that r !_.... n trcP = 0 = r !_')'+ß n 1rcP. For every j ~ ß we therefore

2 ' 2
have

wti op1(a)wl - wti op1[ß(a)wl = ti -
ßC,

which also is a Green operator, namely with respect to (, + ~" + ~,(-oo,O]), even
(1 + ~, , + ~ + j - ß, (- 00, 0]) for ß ~ 0 and with respec to (, + ~ - ß, ,+ ~ + j, (- 00, 0])
for ß < O.
(b) In view of 4.2.4 and the discreteness of the singularity set we note the following
consequence: If j > 0, f!-1' n 1rcP = 0, and € > 0 is sufficiently smalI, then on Cgo(X")

(2)

Part (a) of this remark is the basis for the proposition below.

4.2.7 Proposition. Let 1 E R, j > 0, and 0 ::; pk, Pk :::; j, k = 1, ... , r. Moreover, let
Pk, Pk be Mellin asymptotic types with 1TCPk nr t-')'+p.lr: = 0 = trCPk nr t--y+p~, and finally

let ak E M~,d(X), ak E Mp~;d(X). For w, W1 E Cg'(R+) denne
.Ir: .Ir:

r

A = wtiL:opl{P.Ir:(ak)wl' and
k=l

r I

A' = wtiL:op;P.Ir:(a~)wl'
k=l

Then A - A' E C~(X/\, g)Q,R, whenever Lk=1 ak(z) = Lk=l ak(z) for all z.
Here, 9 = (, + ~" + ~,( -00, O])j Q and R are resulting asymptotic types.

Proo/. Choose any ß with 0 ::; ß :::; j such that 1rC Pk n r t-')'+ß = 0 = trcP~ n r !--y+ß'

Consider the operators A = wti Lk;;l oPAiß (ak)w1 and A' = wti Lk=l opllß(ak)wl. Ac­
cording to 4.2.6(a) we have
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with suitable asymptotic types and weight data. Moreover, Ä and A' both define bounded
maps from K"'l'+~ (XA

) to K"-jJ.,I'+ ~ (X") for s > d- i, since K",l'+g. (X") f.....+ K",I'+i-ß(X")j
the latter spa.ce is mapped continuously to K",Y+i-ß+;(X") t......+ K"'I'+~(X") by wt;op1{ß(a,.)wl
in view of 4.1.12. By 4.2.3 the Green operators GI and G2 are given as contour integrals
around finitely many of the singularities of the ak and a~ in the strip between f!_1' and

f~_...,+j' Writing Gj = I:%=o Gjk 8; the same is true for the Gjk • The continuity of A - A
and A' - A' on K"'''''+~ then implies that the weight data Cl and G2 can indeed be chosen
to be (r + i, I + i, (-00,0)). Noting that by assumption Ä - Ä' = 0 we obtain the
assertion. <l

4.3 The Algebras CM+c(X", g) and CM+c(ß] , g).

4.3.1 Definition. Let IL, vER, p - v E N, dEN, and let 9 = (I' 1 -Il, 8) be a (double)
weight datum, r E R. We suppose that 8 = (-k, 0], for some k E N\{O}.
For dEN we let C';..{~c(X",g) denote the space of all operators A = AM + Ac, where

(i) AM is a Mellin operator of the form AM = t- LI L}~~ Wj t j op1{-(h j )wj with

(i.l) suitable cut-off functions Wj, Wj near zero,

(i.2) 1 - (1l - v) - j - ~ '5: fi '5: f - ~,

(i.3) hj E Mp,oo,d(X), and
)

(iA) Mellin asymptotic types P j with 'TrcPj n ft-'Yj = 0.

(ii) AG is a Green operator in C~(X", g)p,Q for suitable asymptotic types P, Q E

As(X, Y,g).

Clearly, C~~c(X",g) ~ Cfj~G(X",g), since

k-l k-l

t- LI
" w· t j op'Yj (h .) w' - t-jJ. " w· t j +JJ -

v op'Yj (h·) w·L.-i J M J J- L.-i J M J J
;=0 j=O

and Ji - v E N. C;':'~G(ß) I g) is the corresponding space where in (ii) we replace X" by
DJ, and in (i) we additionally make the support of Wj,Wj so small that the operators are
well-defined on the cylindrical parts of DJ elose to the singularities. In view of 4.2.5 we
might also ask that the cut-off functions Wj and Wj are independent of j.

In the following we will assurne that r, 1l, vER, dEN, and the weight datum 9 =

(" 1 - J.l, 8) are fixed wit h the properties in 4.3.1 unless specified otherwise. In order to
also fix the notation suppose that A acts on vector bundles VI, ... ,V4 in the following
way:

Cü(X", Vt}
A: EB -Jo

Cü (Y",1t3)
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4.3.2 Remark. Using Theorem 4.1.5 and the definition of the Green operators, an
operator A E C';J~G(X", 9) can be written

4.3.3 Theorem. For operators A E C~~G(X",9) and B E C~d+G(DJ ,9) the mappings

K~,'Y(XA,Vl) KOO,'1-~(X", V2 )

A: EB -40 EB
K~,..Y-t(YA, V3 ) Koo,"Y-~- t (y", V4)

and
1-{.!·'1(ID, Vd 1-{oo,"Y-~(DJ, V2 )

B: EB -40 EB
1-{.!."Y-t(IB, V3 ) 1-{oo'''Y-~-~(JB , \14)

are continuous for a11 s > d - !.
JE P = (Pt, P2 ) E As(X, Y, (" S)) is an asymptotic type, tben there is a resulting asymp­
totic type P' = (P{, P;) E As(X, Y, (, - Jl, S)) such that

JC~·'1(XA lI,) JCC;·'1-~(X", \12)PI ,1
1

A: EB -40 EB
JC~'''Y-~(Y'' ~) JC;'''Y-~-~ (Y", ~)

P'2 ' 3 '2

and
1(..!,"Y (ID \!,) rt;,,'1-~ (ID , V2 )PI ,1

1

B: EB -+ EB
1-{~''1-t (JB V) 1-{C;'''Y-~-t(JB , V4)P'J , 3

'J

are continuous for a11 s > d - !.
Note: Since e = (-k, 0] is a finite weight interval, 1I"cPl and '1rCP2 are finite sets in
the strip {nil - I - k < Re z :0:; nil - I}; '1rCP{ and '1rCP2 are finite sets in the strip
{nil +Jl-I- k < Rez ~ ntl + Jl- ,}, cf. 3.2.1.

Praa! This is immediate from the definition of the Green operators, see 3.3.1, and,
moreover, the mapping properties for Mellin operators: In view of the fact that ,j ~

, - n/2, we have JC~·"Y(XA) e:........t JC.!'''Yj+~(X''); the latter space is mapped continuously to
JCoo,"Yj+~+j-y(X")e:........t JCoo,"Y-~(X") by wt-y+jop~(hj)Wl in view of 4.1.12. <J

4.3.4 Lemma. Let A E C~~G(X",9) be as above. Given o:,ß ~ 0 witb 0: + ß ~ k we
will have

tO A tß E C~(X",9)pl,QI

with resulting asymptotic types P' and Q'. In particular, Cn-~G(X",9) c C~(X" ,9) for
Jl - v ~ k.
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Proof For simplicity let us assume that we are dealing with a scalar bundle over X" only.
If G is a Green operator, then so is to: G tß, and the type will not increase.
On the other hand suppose that hj , Pj, Wj, Wj are as in 4.3.1. By Theorem 4.2.3 we then
have

t- lI+O: Wj t j op~(hj) Wjtß == Wj t-lI+o:+ß+jop7!r(T-ßhj) Wj (1)

modulo C~(X",9), provided that f!-'"Yj-ß n 1rCPj = 0. Let us show that the operator on

the right hand side of (1) also is a Green operator. Applying 4.1.5 and. writing T-ßhj =
'L%=o bjka:

n
with bjk E Mp.oo,o(X) we see that it is no restrietion to assume d = O. For

) .

any s 2:: 0, the right hand side then maps K"''"Y(X'') to Wj Koo,'"Y- lI+o:+ß(X") ~ S3-~(X").

Here we employ the assumption that Q' + ß 2:: k. Taking into aeeount the Green operator
omitted in (1) we will, however, in general have a non-trivial asymptotic type. The adjoint
of the operator on the right hand side of (1) is, aceording to 4.1.13,

Wj op~'"Yj-n(T-ß hj )(*) to:+ß+j - lIWj = wi to:+ßoP"M'"Yj (To:+j hi )(*) t- lI+j Wj +Gt- lI+j

with cg(X'\ h), and h = (-, + ~,-, + ~,8), provided we again avoid the singularities.
So its Mellin part maps K",jl-'"Y(X") to Wj Koo,-')'+o:+ß(X") t-+ Sö'"Y(X"). Here we are using
the estimate -, + (J1. - v) +j ~ -'i - ~ ~ -, oI 4.3.1 aod Q' +ß ~ k. Again, the Green
part might generate non-trivial asymptotics.
In case we would hit the singularity set with either one of the above constructions we
make the following consideration. Since the singularity set is discrete, we may commute
any slightly smaller power to the left without problems. We then obtain (1) with an
exponent -v + Q' + ß+ j - f for t on the right hand sidej the Green operator by which
it differs from the operator on the left hand side is given (as in the proof of 4.2.3) by
an integration around the finitely many singularities of hi in the strip between r!-')'j-ß+~

and r !._...... For sufficiently small f its range will be independent oI € aod will be spanned
2 I)

by functions oI the form c(x)t -p-~ Ink t w( t) with c E Coo (X), W a cut-off function near
o E R+, and p a singularity in the strip. The range of the operator on the right hand
side of (1) will be contained in S3-jl-, (X" ). Since this is true for all € > 0 the range is a
subset of S3-'(X"), cf. Definition 3.2.9. Adding the above Green operator we will have
a finite asymptotic type. An analogous argument applies to the adjoint. <J

4.3.5 Definition. Let A = AM + AG E C~l~G(X", g) be as in Definition 4.3.1. Define

O"~j(A) = hj,j = 0, ... , k - (J1- - v) - 1,

and eall a~J(A) tbe conormal symbol of order v - j of A.
. T

Note tbat for j 2 k - (J1- - v), the operators Wj t- lI+J OPM(ai) Wj are necessarily Green
operators.

4.3.6 Remark. We know from Proposition 4.2.7 that two operators in C'/J~G(X",g)
which have the same conormal symbols of all order differ only by a. Green operator,
provided the weights ,j are suitably chosen.
Vice versa, the conormal symbols a~j(A), j = 0, ... ,k - (I-' - v) -I, are also well-defined.
This follows from the proposition, below, which is of independent interest.
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4.3.7 Proposition. The operator A in 4.3.3 is a Green operator, if and only ifa';iJ (A) =
0, j = 0, ... , k - (p - v) - 1.

Proof. In view of 4.2.7, we only have to show that the conormal symbols vanish for Green
operators. In order to see this, we can essentially use the argument given in [27], Section
1.3.1, Theorem 4. For simplicity let us assume that we are dealing with a trivial scalar
bundle aver X A only. Chaose a cut-off function w near zero and a function 1> E Cgo(X).
For p E C with Re p < ~ let up(t) = t-Pw(t)· tP(x). By 5.1.6(b) we have Mt_zup = v(z - p),
where

c
v(z) = [Mt_zw] (z) . tP = (- + j(z)) . 1>

z
with an entire function fand some c =J O. Choose an operator

(1)

k-l
A = t- IJ L Wj t

j opA}(hj ) Wj + G
j=O

with the notation of 4.3.1. We will show that we can recover the functions hj by consid­
ering Mt_zAup.
We may choose w with support very elose to zero. Therefore it is no lass of generality to
ask that Wj W = w; in other words, the functions Wj cau be ignored in our consideration
of Aup •

Let us now analyze the effects of the various operators starting with G. We have G =
'L.1=o GjBt with Gj of type zero. The normal derivatives do not affect the form of (1),
so assume that G = Go. For each fixed p, Gup belongs to K-';,'"'!-IJ(XA

) for a certain finite
asymptotic type Rindependent of p. Suppose p varies over a bounded open set !(. Since
up depends holomorphically on p, Mt_zGu p will be a holomorphic function of both, z and
p, as p varies over ]( and z varies over a set of the kind

Ra ,ß = {z E C : 0' < Re z < ß, Im z > ko}, (2)

where ko is a constant depending on ](, 0', and ß,o: < ß arbitrary.
Now consider Wjt l opJ!Jhjup. We first assume that 7rCPjnr!. = 0. Then we have Wjt j opI}hjup =

2

Wjti op~hjup +tj+')'jGlup according to 4.2.6(a), with a Green operator Gl . We may apply
the above argument and see that Mt_ztj+'"'!jG1Up is a holomorphic function of z and p

whenever p runs over a bounded set and Z over some Ra,ß' The functions u p all belong
to L2 (X"), hence also oP~hiup. By 5.1.8 the Mellin transform of (1 - Wj )ti op~hjup is
holomorphic in {Re z < ~ + j}. Finally

Mt_z[tjop~(hj)up](z) = Mt_z[op~(hj) up](z + j) = hj(z + j)v(z + j - p).

Now we fix jo and chaose !( a small neighborhood of O. The we pick a zo with imaginary
part so large such that all functions hj(z + j) and all functions Mt_zGup are holomorphic
near z = zo for all p E !(. We then integrate Mt_zAup over a small contour C around
Zo + jo. By Cauchy's formula, the holomorphic contributions vanish, and (1) implies that

2
1 . f Mt_zAupdp = c hio(zo + jo)tP.
7rl Je

Since we may vary zo slightly and since we know that the hi are meromorphic functions,
we conclude that hjo and consequently all hj are uniquely determined by Aup •
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In particular, if A is a Green operator then all hj are zero.
Should 7f'CPj n. r!_j be non-empty, then 7f'C P j n r t-j-, = 0 and '1rC P j n rt-')'j_' = 0 for
some € > O. Wtth 4.2.3

tjopf!th j - t-'(t jt'op1}h j )

= t-'(t jop1}hj(. + f)t' +G2 ). (3)

Now apply the preceding argument to t' A. This operator acts with respect to the weight
datum g, = (", - JL + f, 8), it is a Green operator if and only Ais. Thus we also obtain
the assertion for A. <l

4.3.8 Theorem. Let A E C'/..1°+G(X",g),g = (", - p,8). Then the formal adjoint A­
of A belongs to C~~G(X", h), h = (-, + p, -,,8).

Proof Let A be as in 4.3.1. Consider the formal adjoint A* = AM +AG' By assumption,
AG is of type zero, so it is immediate from 3.3.1(1), (2) that AG E cg(X",g)Q,P'
By 4.1.13

[Wj t j - v opI}(hj)wjr = t-VtV Wj OPM')'j-n h;*)t j - vWj

= t-V Wj oPM"Yj-n+v[Tvh;-)] t j Wj

= t-V Wj t j opM"Yj-n+v-j [Tv-j h;*)] Wj

(1)

according to 4.2.6(a). Since

( ) ( )
" n . n . n

JL -, - JL - v - J - 2" = -, + v - J - 2" ::; -,j - n + v - J ::; -, + Ji - 2"

we obtain the assertion. <l

(1)

(2)

4.3.9 Theorem. Let A E C;:'~G(X", g), H E C& (X", h)Q,R' I< E C& (X", k)s,r, where
h = (, - p,8,8), k = (0",8), and Q,R,S,T are corresponding asymptotic types. Then

HA E C~(X", hdQ,R

AI< E C& (X", kdQ,R

with h] = (,,0,8), k] = (8" - JL, 8) and resuIting asymptotic types Q, R.
Proof As usual, it suffices to prove the case where the operators act on a trivial one­
dimensional vector bundle over X" only. Using 4.3.2 and the definition of Green operators
write A = "L1=0 Ajat, H = "L1~0 H,ß;, where Aj and H, are of type zero. Now

d d'

HA = E(EH1ß;Aj)8t.
j=O 1=0

Let us show that each of the terms H1ß;Aj is a Green operator of type zero. In order to
see this notice first that A 'j := 8;Aj E Cit~G(X" ,g) as a result of the composition rules
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in Boutet de Monvel's calculus (for the Mellio part of A j ) and of the representation of the
Green operators of type zero as integral operators, cf. 3.3.2 (for the Green part of Aj ).

Now the assertion is immediate: Ajl maps K6,...,(XA) to }Coo,"Y-Jl(XA) which is in turn
mapped to S~(XA) by H1, cf. 4.3.3 and 3.3.1. The operator Ajl has an adjoint in

C~~G(XA,9·),9· = (-, + Jl,-,,8), for it is of type zero.
Vice versa, for any s ~ 0, [H,Ajd* = Ai1J1t; Ht maps }(6,6(XA

) to S~-"Y(XA). Applying

Ail' this space is mapped ioto SÄ"Y (XA
) with a resulting asymptotic type according to

4.3.3.
The pfoof of the statement for Al( is similar. <l

4.3.10 Theorem. Let A E C~~G(XA, g) and B E C~~~(XA, h) with h = (, + J-l'", 8)

( v+v' d'and 9 = ','-j1., 8). Then AB E CM +G (X A
, k) with k = (7+J-l I ,,-J-l, 8). The conormal

symbols satisfy the relations

cr}jv'-r(AB) = E [r vl - qcrMP(A)] crv,;-q(B).
p+q=r

Proof We already have dealt in 4.3.9 with products of elements in C~~G(XA,9) with
Green operators from the left and the right. It is therefore sufficient to treat a product
of the form

t-v+iWop1}(a) Wl t-v'+lopn(b)W2'

Applying equality 4.2.6(1), (1) equals

t -V-v'+i+1 "Yl+V'-I(TV'-I) 1'2 (b)wOPM a WloPM W2.

(1)

(2)

In general, we can now push the weights 71 + VI -/ and ,2 to the common possible weight,3 = , + v' - / - ~. Moreover, we may omit the factor Wl in the middle, producing an
error term which is a Green operator. If we believe both statements for the moment, the
fact that OPA1(TVI-la)op~b= op~[(TV'-/a) b] gives the assertion.
The above choice of the weight is not possible in case either a or b has a singularity on
r .!!.:}!-"Y- v+/. In view of 4.3.1(i) this cao ooly happen if we have additional freedom in the
choice of either ,I or ,2' Then we may move the weight to a line slightly to the left or
the fight avoiding a11 singularities and still have the composition (2) well-defined as an
operator from }("+Jl' (X A) to }("Y-Jl(XA)j the conclusion is as before.
In order to see the statement on the factor in the middle, first assurne for simplicity that
the types of a and b are zero. Given u E K:","Y+Jl'(XA),op1}(b)W2U E 1-{oo""'+~'(XA). There­
fore v = (I-Wl) opD(b) W2 u E 1ioo ,N (XA

) for arbitrary N > 0, so that wop1}(Tv'-la) v E

[wdKOO,N (XA) Co..-.J. S3+Jl' (XA). This mapping also is continuous a.s a consequenee of the
closed graph theorem and the fact that Wop11(Tv'-l a) (1 - Wl ) op11bW2 is eontinuous on
}C',"Y+Jl' (XA

). Since we had assumed the types to be zero, we may now apply the same
argument to the adjoints. The general ease presents no additional diffieulties. <J

For eompleteness we note the following result.
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4.3.11 Lemma. Let A be as in 4.3.1 and assume additionally that fL = 0, °=1= -v E N.
Tben

is compact for every s > -~.

Proof This is immediate from the continuity properties in 4.3.3 and the fact that the
image of the Mellin part of A is in fact contained in Koo."Y+V(X") which is compact in
K6·"Y(X"). <J

4.3.12 Definition. Let A E C~~G(X",g)" E R,d E N,g = (",,8),8 = (-k,O]. We
shall say that the operator I + A is elliptic, if

is invertible for all s > d - ~ and all zEr ~_...,..

As apreparation for the proof of Theorem 4.3.15, below, we need the following teo lem­
mata.

4.3.13 Lemma. Let P be a Mellin asymptotic type, dEN, and h E Mpoo,d(X). Tben
1 + h(z) E B-oo,d(X) is an invertible operator on H6(X, VI) ED H6(Y, va), s > d - ~, for
a11 hut countably many z E C. Moreover, there is a Mellin asymptotic type Q and an
f E MQoo,d(X) such that

[1 + h(Z)]-1 = 1 + j(z).

Proof For each z E C\1rcP, h(z) is a regularizing operator of type d in Boutet de Monvel's
calculus. Therefore {1+h(z) : z E C\trcP} is a holomorphic family of Fredholm operators
on H6(X, VI) ED H~(Y, V3 ). For each ß E R we know that h(ß + ir) E B-oo,d(X; R,.); the
corresponding estimates are uniform for ß in compact intervals. Consequently,

Ilh(ß + ir)ll = O((r)-I)

on each such strip so that I + h (z) will be invertible for large imaginary parts (here the
norm is taken in J:.(H&(X, Vi) EB H&(Y, V3 )), and the estimate is in fact much better).
Therefore, a we11-known theorem from operator theory, cf. [27], Section 2.2.5, asserts that
[1 +h(Z)]-1 exists on C\1rcP except for a discrete set which can have accumulation points
only in the singularity set of P. Moreover, the above theorem states that a11 singularities
of [1 + h(Z)]-l are poles and that the coefficients in the Laurent expansion in these poles
are finite rank operators.
Let us show that the singularities of [1 + h(Z)]-1 have no accumulation point. For each
pole, say Zo, of h, we can write 1 + h(z) = I + ho(z) +L~1 Fj(z - zo)-j with suitable

M E N, ho E Mpoo,d(X) holomorphic near Zo, and finite rank operators Fj • Note that
ho ~ -I. Writing h&(z) = L~1 Fj{z - zo)-j we have

1 + h(z) = (I + ho(z)) {1 + (1 + ho(z))-1 h& ( Z ) ) •
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Since ho is holomorphic near Zo, and 1 + ho(z) is Fredholm and invertible for large imagi­
nary parts, the above-mentioned theorem asserts that the inverse to the first factor on the
right hand side exists in a small neighborhood of Zo except possibly in zoo For the second
we notice that (1 + hO(Z))-lh,,(z) can be written in the form H(z) +Lf=l Ak(z - zo)-k
with suitable H, holomorphic near Zo, and finite rank operators Al, ... , AN. Moreover,
the operator (1 + hO(Z))-Ih,,(z) will vanish on the intersection No of the kerneis of the op­
erators Fj,j = 1, ... , M, which is finite-codimensianal. Denoting by NI the intersection
of the kerneis of the operators AI, ... , AN, we have H (z )u = 0 for all u in the fini te­
codimensional space No n NI. Lemma 4.3.14, below, therefore implies that the second
factor also is invertible near Zo although possibly not far z = Zoo

Let us now have a doser look at the inverse to 1+h(z). From Theorem 2.3.8 we know that,
for fixed z, [I + h(Z)]-l = I + j(z) with f(z) E ß-oo,d(X). By the above considerations,
the singularities of f are all poles, they have no accumulation points in finite strips
{Cl ::; Re (z) ::; C:l}, and the coefficients in the Laurent expansion are regularizing finite
rank operators in Boutet de Monvel's calculus.
It remains to check the condition on the decay of j outside the poles. Write I1 . I1 for an
arbitrary semi-norm in ß -oo,d(X). Fix a strip {Cl ::; Re (z) ~ C2}' Instead of multiplying
by an excision function of the poles we simply consider f outside the compact set ]( =
{z : Cl ~ Re z ::; C2, -R ~ Im z ::; R}, where R > 0 is so large that J( not only contains
all poles of f in the strip, but also Ilh(z)11 < ~ outside ](. Then [1 + h(Z)]-l = 0(1)
outside ](. We condude from the identity (1 - X)-1 = 1 + x(l - X)-l and the estimates
on h that for arbitrary N > 0 we have llf(z)lI = O( (Im z) -N). Hence j is a Mellin symbol
with asymptatics. <]

In the praof we have used the following lemma.

4.3.14 Lemma. Let U c C be an open neighborhood ofO, E a Banach space, N E N,
and Al, .. . , AN E .c(E) operators of finite rank. Let H be a holomorphic function on U
with values in .c(E) such tbat H( z)u = 0 for all u in a finite-codimensional subspace 1(0

of E. Then there is a 6 > 0 such that tbe meromorphic l.(E)-valued function

N

F(z) = I + H(z) + E Akz-k
k=l

is invertible for a.11 0 < lzl < 6.

Proof The intersection J(1 of the kerneis of Ab"" AN is a closed subspace of E with
finite codimension, and so is J( = J(o n ](1' Hence we may choose a finite-dimensional
subspace C of E such that E = J( EB C is topologically direct. With respect to this
decomposition, F has the matrix

F(z) = [~ :]

far, if u E K, then F(z)u = u. In particular, F(z) : .c(E) -+ .c(E) is invertible if and only
if PeF(z) : C -+ C is invertiblej here Pe is the projection onto C along ](. Now

PeF(z) = 1e + PeH(z)Pe +EPeAN-kPez-k
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JC8"'Y(X", Vi)
-+ EB

JC8./-t(y", V3 )

can be regarded as a meromorphic matrix-valued function. Applying Cramer's rule, it is
invertible in a neighborhood of z = 0, except possibly the point °itself. <]

4.3.15 Theorem. Let A E cX1~G(X", g) be as in 4.3.12, and suppose I + A is elliptic.
Then

JC8·-r(X", Vi)
!+A: EB

JC8.-r-t (Y", VJ)

is a Fredbolm operator for all s ~ d.

Proo! Write h = ut-(A); denote by P the Mellin asymptotic type of h. By Lemma 4.3.13
[l+h(z)J-1 exists outside a discrete set in C and equals 1+h1(z) for some h1 E MQoo,d (X)
and a suitable Me11in asymptotic type Q. By assumption 1 + h(z) is invertible for a11
zEr.!!.±l.--r' so h1 has no singularity along this line.

1

We construct a Fredholm inverse 1 + B to 1 + A by letting B = op'Xt(h1). Clearly,
1 + B E cXf~G(X",g). By Theorem 4.3.10, the identity (l + h(z))(l + h1(z)) = 1 implies
that ut-((! + A)(! +B) -l) = °= a~((l +BH! +A) - I). Therefore (l + A)(! +B) - I
and (l + BHl + A) -l belong to CM~~(X",g), thus are compact operators by 4.3.11. <]

Theorem 4.3.1 7, below, gives a slightly weaker converse of Theorem 4.3.15. The following
lemma shows that the weights 1 can be shifted to arbitrary values by 'weight conjugation'.

4.3.16 Lemma. Weight Conjugation. Let 9 = (1" - p, 8) and k = k(t) E COO(R+)
be a. strict1y positive function equal to t for sma11 t and equal to 1 for la.rge t. Then for
arbitrary pER

[k; ~p] C~~G(XA,g) [k~P k~P] = C~~a<X",gp)

with gp = (, + p" + p - p, 8).

Proo! In view of the fact that for arbitrary 8", P

kP: JC 8·/(X") -+ lC.!,/+P(X")

and kP: JC.!'/(Y") -+ lC.!,/+P(Y")

is an isomorphism, the assertion is obvious for Green operators.
. ..,.

For an operator of the farnl w(t) t- v+J op~hj w(t) we may assume that the support of w
and wis so small that, there, kP and tP coincide. Then we obtain the assertion from the
identity tPop'l:thjt- P = op 'l:t+P(TPhj ). <]

4.3.17 Theorem. Let A E cX1~G(X",g), and suppose that

1 +A : lCo'/(X", Vi) EB JCo,/-!(y", V3 ) -+ JCo,1'(X", Vi) EB JCo,/-t(y", V3 )

is a Fredholm operator. Then I + A is elliptic.
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Proof. In view of Lemma 4.3.14 we may assume that f = ~. Then K.°'-'(X", VI) Ef)

KO'-'-~(Y", "VJ) = L2(X, ~) ED L2(y, V3 ). In fact the proof, below, shows that the case of
vector bundles and the presence of Y only causes notational difficulties. Let us therefore
prove the statement for the case of a trivial one-dimensional vector bundle over X only.
The Fredholm property implies an apriori estimate: There is a compact operator K and
a C > 0 sueh that

Il ulIL2(X II ) :::; c 11(1 +A)uI1L2(x II ) +III{ullL2(x II ).

We will now assume that there is a Zo E r !!f!--, = r~ such that

is not invertible and show that this leads to a contradiction to the above apriori estimate
by constructing a sequence of funetions {<Pm} in K.°'~(X") with norm equal to 1, <Pm
converging weakly to zero, and (I + A)~m -+- o.
To this end identify first HO(X) and L2(X), write a = O"~(A), h = I + a. If h(zo) is not
invertible, then there is a sequence {um} ~ Cgo(X) with h(zo)um -+- 0 in L2(X) while
lIumI1L2(X) = 1, m = 1,2, ....
Now let 0 # f E Cgo(R+), ß, ßo, 8 E R, c E R+. Let gc(t) = t(c-l)6-ißo f(t C

). Then
t6gc(t) = tc6- ißo f( tC

), henee

M(gc)(8 + iß) - M(t6gc)(iß) = M([t c]6-ißo/cf(tC ))(iß)

= c-lM(tS-ißo/c/)(iß/c) = c-1(Mf)(8 + i ß - ßo).
c

Let Zo = ~ + ißo, and replace 8 by ~. Then the above identitie5 yield

hence

lJ; IM9c(ZW Idzl = Ja IM9c(~ + ißWdß

= c-
2 Ja IMf(~ +i ß~ßoW dß = c-1 Ja IMf(~ + iuW du.

In other words: For all c> 0 and all m E N, the norm of ctgcum in KO,~(X") = L 2 (X")
is constant. Moreover, as c-+-O the functions c~9cUm weakly tend to zero. In order to
see this, choose arbitrary functions 4> E Cgo(R+), v E CCO(X). Then

I(c~gcum, ~v) ,Cl,~ (XII) I

_ f (ctMgc(z)u m ,M4>v)L2(x)ldzl
Jr!

< Ja Ic-tMf(~ +i ß~ ßOlMtP(~ + iß)ldß lIumllL2(XlllvllL2(x),

< eonst c! f IM f( ~ + is)M~(~ + i(sc +ßo))l ds lIum IIL2(x)IIVllD~(x),JR 2 2

< const ct Ja IM f( ~ + is lids 11 M tPlI.up II U mIlL'(XlllvIlL'(xl -+ 0
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as c -4 0, since Mf E LI(R+).
Finally let UB show that (I +A)(c~gc(t)Um(X)) tends to zero in 1CO'~(X") as m -4 00 and
c -4 O.

Ilop~h(ct gcUm)II~'9"(XA)

= r Ilh(z)c~Mgc(z)Umllr1(X) IdzlJr t
r 1 . 1 1 . ß - ßo 2

= JRllh(2+tß)c-2Mf(2+z c )um (x)IIL:2(x)dß

fa IIh(~ + ißo + ics) Mf(~ + is) um(x)lli.(x) ds.

The last expression tends to zero as c ---+ 0 and m ---+ 00 by Lebesgue's theorem on
dominated convergence, since
(i) the integrand can be estimated by

sup llh( -2
1

- 1 + ißo + ics )um lli:2(x)
O<c:S;l

mEN •• ER

noting that the first factor is an L1-function of s, and since
(ii) for each .9

IIh(i + ißo + ics)umlli.(x) --+ 0 as m --+ 00 and c --+ O. (1)

Therefore, the sequence rPm(x ,t) = m-t gl/m(t) Um(X), m = 1, 2, ... , will lead to a contra­
diction to the apriori estimate and thus prove our assertion. <]

4.3.18 Theorem. Let A E cX1~G(X", g) be as in 4.3.12 and let I +A be elliptic. Suppose
that for some s > d - ~

K.$,'Y(X" l Vi)
I+A: E9

K",'- t(y", V3 )

K.$,,(X", Vt}
-4 ffi

K.",,-t(y", \13)

is invertible. Then there is an A' E C~~G(X",g) such that

(I +A)-l = I +A'.

Proof. Write Je = KlJ,,(X", Vi) EI) K""-!(Y", V3 ). Since I + A is elliptie, the construction
in Theorem 4.3.15 immediately gives an operator BI such that (1 + Bt}(I + A) = I - C
on K with C E CM~~(X",g). Hence for B = (I + r,j:: Ci)(I + BI) - 1

k-l

(I + 2: Ci)(1 +Bd(1 +A) = 1 +G,
j=l
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where, by 4.3.4, C E CM~~(X", g) is in fact a Green operator in C~(X", g)O,R with
suitable asymptotic types Q and R; in particular, it is compact on K.
By a classical result in operator theory, cf. [32], there is an rEN such that

N = N((1 +GY) = N((1 +cy+1
)

'R - 'R((1 +GY) = 'R ({I + CY+1
)

K = N(f)'R (1)

I+C 'R-+'R is bijective. (2)

The kernel N of (1 +G) r is a fini te-dimensional subspace of So (X" ). Let {f/J1, ... ,4>m}
be an orthonormal basis. Define the operator P on JC by P f = Li=1 (I, cPj)f/Jj. Then P is
the orthogonal projection onto N. Moreover, it is a Green operator of type zero since it
has an integral kernel in SQ(X") @ SQ'(X"); here Q is the conjugate asymptotic type, cf.
3.3.2.
Let Ij = (1 + A)4>j,j = 1, ... , m. Since the 1>i are linearly independent and since 1 +
A is invertible, the fj will be linearly independent functions in SQ(X") for a suitable

asymptotic type Q. Now define the operator F : K ~ JC by

Then F is a Green operator of type zero, since it has an integral kernel in SQ(X") 0
Sa(X" ), and it is easily checked that it is a relative inverse to (I +A)P :

(i) F(I+A)PF = F, since both sides map each fj to 4>i and functions in the complement
of their span to zero, and

(ii) (1 + A)PF(I + A)P = (1 + A)P, for all1>j are mapped to fj, while the functions
orthogonal to span{4>1, ... ,4>m} are mapped to zero.

Using F we construct an inverse to 1+ A. Let L = ([(I +B)(I +A)]r-l(1 +B) +F) (I +
A). Then L is of the form I + C' with a Green operator of type d. In particular, it is a
Fredholm operator of index zero. Let us show that it is invertible by showing that its kernel
is trivial: Let hE K with Lh = O. Then 0 = Lh = [(I+B)(I+A)Yh+F(I+A)h. Sincethe
first summand belangs to n while the second belongs to N, (1) implies that both are zero.
Now write h = h}/ + hn with hN E N, hn E n. Then 0 = [(I + B)(I + A)Y(hN + hn ) =
[(I +B)(I +A)]rhn., by definition of N. On the other hand (2) now implies that hn. = O.
Using (ii), we conclude that

o= F(1 + A)h}/ = PF(I + A)Ph}/ = (I + A)-l(I + A)PF(1 + A)Ph}/ = PhN = hN.

Thus h = 0, and L is invertible. Finally we can apply 3.3.10 and obtain an inverse to L
of the form 1+ C", thus an inverse to 1 + A in C~~G(X",g). <]

4.3.19 Corollary. Let 9 = C"" 8), A E C~~G(X", g)}, and suppose that I + A is
invertible on K:,o,"Y(X, VI) EI;) K:,o'''Y-t(y, va). By combining 4.3.17 and 4.3.18 we see that
there is an inverse of the form I + B, B E ct~G(X",g).
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5 Appendix

5.1 The Mellin Transforrn

For the sake of completeness we shall collect in this section a few simple facts about the
Mellin transform. The proofs will be omittecl. Most statements are elementary, for details
cf. [27).

5.1.1 Definition. The Mellin transform is definecl for f E Cü(R+) by

(M j)(z) = f e-1J(t)dt,
JR+

z E C.

In order to indicate that the argument of f is t while that of Mf is z, we will occasionally
write Mt_z(f(t))(z).

5.1.2 Lemma. We have the following elementary properties. Let f E Cü(R+).

(a) Jf g(t) = tß f(t), ß E ethen M(g)(z) = (M f)(z + ß).

(b) Jfg(t) = (-t8t )f(t), then M(g)(z) = z(Mf)(z).

(c) Ifg(t) = lntf(t), tben M(g)(z) = :z(MjHz).

(cl) Jfg(t) = f(tP),p E C, then (Mg)(z) = p-l(Mf)(p-1 z).

(e) Ifg(t) = j(ct),c > 0, then (Mg)(z) = c-Z(Mf)(z).

5.1.3 Lemma. For f E Cü(R+), M f is a holomorphic function on C. Moreover, it is
rapidly decreasing on each oE the lines

r ß = {z E C : Re z = ß}.

Moreover, M j satisfies the corresponding estimates uniformly for ß in compact intervals.

5.1.4 Theorem. The Mellin transform extends to an isomorphism

in fact we have "Parseval's identity"

100 - 1 1j (t )9 (t) dt = -2' M f (z )Mg (z ) dz.
o 1ft r ~
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5.1.5 Definition. The weighted Mellin transform

(1)

Ir

is defined by
(Mßf)(z) = M(t-ß f)(z + ß)·

By 5.1.2(a), Mßf = M flrl. for f E Cr(R+)j by 5.1.4, (1) is an isomorphism.
'1- fJ

The following lemma is easily deduced from Lemma 5.1.2.

5.1.6 Lemma. Let w be a cut-off function near zero, p E C, Re p < ~, and k E N. Then

(a) Mw(z) = z-l M( -t8tw)(z).

Note: Since -t8tw E Cg'(R+), its Mellin transform is rapidly decreasing on each line f ß ,

uniformly for ß in compact intervaJs.
In particular, if X is a smooth function on C wbich vanishes near zero and is equaJ to 1
near infinity, then XMw is rapidly decreasing on each line f ß , uniformly for ß in compact
intervals.

(b)

dk

= dz k (Mw)(z - p)

dk

= dzk(-Z-l~(Z))(Z - p) =: 'ljJ(z)

where ~ = M(t8tw). In particular, 'ljJ is a meromorpbic function in C with a single pole
of order k + 1 in p. If X is a smooth function on C wbich vanishes near p and is equal to
1 near infinity, then x'lj.; is rapidly decreasing on each line rß, uniformly for ß in compact
intervals.

(c) Let wu(t) = w(at), a > O. By 5.1.2(e)

Mwu(z) = a-Z(Mw)(z).

In particular, MWu(z) -+ 0 as a -+ 00 on {Re z > O} and uq ( z) = Mt-z(t-P lnk t Wu(t)) -+

oas (J -+ 00 on {Rez > Rep}.
IfX is as in (b), then XU q tends to 0 on {Rez > Rep} as a tends to 00, uniformlyon all
lines rß, for ß in compact subintervals of R.

(cl) Jf instead of Re p < t we have Re p > t and if we define

v(z) = Mt_z(t-P hl tw(t- 1
)),

then v also is meromorphic on C witl} a single pole of order k + 1 in p. Jf X i8 as in (b),
then xv i8 rapidly decreasing on each line rß, uniformly for ß in compact intervals.

The following Paley-Wiener type results can be found in Jeanquartier's paper [13].

89



5.1.7 Theorem. Let F be an entire function.
(a) F is the Mellin transform oE a distribution supported in the interval [a-t, a], a ;::: 1, iE
and only if it satisfies tbe inequality

IF(z)1 $ C (z)m aIRe(z)l, z E C (1)

for some m E N and G > O.
(b) F is the Mellin transform of a Goo function supported in [a- 1

, al, a ;::: 1, if and only if
for every m E N there is a Gm > 0 such that

z E C. (2)

5.1.8 Lemma. Let w E G~(R+),w == 1 near zero, f E L~(R+). Tben Mt_ z [(1 - w)fJ E
A(Re z < !) and Mt _ z [(1 - w)fJlr~ E L2(fß) for a1l ß ::; ~, uniformly for ß in compact
intervals.

One also has an inversion theorem.

5.1.9 Theorem. Let ß E R. Tbe inverse of the weighted Mellin transform in 5.1.5(1)

is given by

We finally give a detailed proof for the statement on the adjoint of Mellin operators in
4.1.13:

5.1.10 Lemma. Let a E M~'o(X), Jl E Z" E R, let P be a Mellin asymptotic type with
'Trc P n r t -1' = 0, and let V, W be vector bundles over X. Then the operator

A = op1-a : 1-{s'')'+~(XI\, V) -Jo 'H.!-~'')'+~(Xl\,W)

has a formal adjoint A* with respect to the sesquilinear pairings between

'H.!'')'+~(XI\,V) and 1i~61-')'-1j(X",V)

on one hand and

H.!-IJ'')'+~(XI\,W) and H{;tl!'-')'-~(Xl\,W)

on the other band. Here, the index {O} means that we use the 1io-spaces for S - Jl ;::: 0
and the usual H-spaces otherwise, cf. 3.3.1. We have

A* = OPMI'-n a(*) with a(*) = a(n + 1 - z)*j

the last asterisk indicates the formal L 2-adjoint of the operator a(z) Goo(X, V) -Jo

GOO(X, W).
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· -/\-/\
Proof. Hy definition opI,a = t"Y M-1T-"YaT"YMt-"Y. So let u E C~(X ,V), v E C~(X ,W).
In the following computation, we shall freely use Parseval's identity for Mellin transforms,
cf. 5.1.4, and employ the notat,ion p = n + ,.

(opI,(a )u, v)1i'-JJ,.,t 9"(X",W},1iZo·}t~'-"'-9" (X",W)

= ( (Mt_ zop1-(a) u, Mt_zV)Vl(X,W) dz
Jr~

= t (M(t~opIr(a) u), M(t?V))L2(X,W) dz
~

1000

(t~+'YM-1r-'Y a 'Y'M(C'Yu ), t~vlL2(X,W) dt

= {oo (M-1T-"Ya rrM(t-"Y u ), tn +""V)L2(X W) dtJa '
= t (T-"" M-1T-""a T"Y M(t-""u), M(tn+""V))L2(X,W) dz

~

= t (a(z) jYM(t-"Y u ), T-""M(tn+-rV))L2(X,W} dz
~-.,

= t (T"Y M(t-"Y u), a*(z) T-"Y M(tn+"YV))L2(X,V) dz
~-.,

= t (M(t-""u), T"Ya*T-"" M(tn+"YV))L2(X,V} dz
~

_ {oo (t-"Y u, M-1T"Ya*T-"Y M(tn+-rV))L2(X V) dz
Ja '

= 1000

(u, t-"Y M-1rra*T-"Y M(tn+-r V ))L2(X,V) dt

= 1000

(u, tn- pM-1rp- na"r-p+n M(tPv) )L2(X,v) dt

1000

(t~u, t~-PM-1rpa(") r-pM(tPv))L'(x,v) dt

= { (Mt_zU, Mt_zoPÄ!(a(*}) V)L2(X,V) dz
Jr~

= (u op-P(a(*)) v) LI.
'M 1i',1+9"(X",V},11;"-"-2 (X",V)

This was our assertion. In the third identity from the bottom we used that TP-na*T-p+n =
TPa*(· - n)T-P and that, on f b, we have z - n = 1 - n - z. Notice that for the above
consideration we did not need tEe holomorphy of a. Whenever it holds it will allow further
conclusions on the adjoint. For the computation we only need that a be defined on rt-"Y
and that all integrals make sense. <J

5.2 The Left-Over Term in the Composition of Pseudodifferen­
tial Operators

In this section we shall give the proof of the statement in Theorem 2.2.5. The presence
of the parameter ,\ does not require major deviations from the classical route. We will,
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however, emphasize the new representation on the singular Green operators. Recall the
notation op ~nP = [op rnPl+ = r+op rnP e+.

5.2.1 Proposition. Let!1' ~ Rn-l be open, .0 = .0' x R. Moreover, let Jl, v E Z,p E
Si,O,tr(n, Rn j R' ), q E Sr,o,tr(n, Rn j R' ). Suppose that either p(x, e, A) or q(x,~, A) vanishes
for X n outside a compact set. Then

(1)

induces a parameter-dependent singular Green operator of order fl+v and typemax{v, O}.

In order to save notation hut also to be slightly more general, let us assume that .0 = Rn
and consider symbols in the uniform symbol elasses. For convenience, the proof is broken
up into aseries of steps called lemmata. We will, however, keep assumptions and notation
fixed in this subsection.

5.2.2 Lemma. We may assume that p(x', X n , e) and q(x', xn,~) vanish for Ixnl > f,

where f > 0 is arbitrary.

Proof. Apriori, the condition that one of the symbols vanishes for large X n ensures that
the second term at the right hand side of 5.2.1(1) is well-defined. If q vanishes for X n

elose to zero, then L(p, q) = O. On the other hand, let p vanish for X n near zero, and let
<P E Cr(R) be supported in a sufficiently small neighborhood of zero. Then

op p = (op p) 4> + (op p) (1 - 4» = op r + (op p) (1 - <p)

with a regularizing symbol r - simply compute the asymptotic expansion. Therefore

op ~nP On op ~nq = [ap xnp{1 - 4» On op xnq]+ + op ~n r'

with regularizing r'. Since op ~nr' also induces a regularizing singular Green operator, we
have the desired result. <]

We will therefore assume that p and q vanish for Ixnl > 1.

5.2.3 Lemma. We may write p = Pd + Po, q = qd + qo, where Pd, qd are polynomials in
(e, A), and where for all k E N

a:nPo( x', 0, (, ((, A) ~n, A) E S~01fHo

a;nqo(x',O,(,(e',A)~n,A) E sv01fHo.

Proof. We have a decomposition induced by the transmission property and the fact that
Hd , dEN is the direct surn of Ho and the space of all polynomials of degree less than
d, cf. 2.1.3,2.1.5. Differentiating the decomposition with respect to the variables (~', A)
shows that the part which is a polynomial in en also is a polynomial with respect to e'
and A. <]

Let us first study the behavior of the polynomial parts of p and q.

92



5.2.4 Lenlma. In the notation oE 5.2.3,

L(pd' q) = O. (1)

Ifwe write qd = L:j=oSj(X',e',A)~~ with polynomials si E Sv-i(Rn-l, Rn-l X R' ), then

1/-1

L(p, qd) = L krYj,
j=O

where, a.s usual, fj(f) = limt_ot 8~nf(x', t) and

(2)

j,I

kj(x', f, Dn , A) = -i L r+p(x, f, Dn , .\)Sm(x', e', .\)D;:'-I-i (U 00). (3)
m=j+1

Tbe k j are parameter-dependent potential symbols of order Jl +v - j - 3; the Ij are trace
symbols oE order j + ~ and type j + 1.

Proof. Identities (1), (2), and (3) are straightforward. They follow from tbe iden­
tity 8rn e+ f = e+8xn f + 10/ 0, valid for f E C 1(R), with Dirae's delta function at
tbe origin, cf. [9], (2.6.18, 19, 20). By 2.2.13 we also bave the statement eoneern­
ing tbe fj. Moreover, it is clear that Sm E Sr,öm (Rn-1, Rn-1 X R 1; C, C) and that
p(X,~,A)~:-j-1 E Sr,t.~-j-1(Rn,Rn X R'). In order to prove tbe result it is therefore
suffieient to show the following: If a = a(x, C.\) belongs to S~(Rn,Rn X R ' ), then the
operator-valued symbol k(x', e, Dn ,.\) defined by

(4)

belongs to SJl+! (Rn-1 , R n-1 ; C, S (R+ )). Ta this end we wi 11 estimate tbe norm of

11 K <(',).)-1 De,D~,k(x',(, Dn , A)II.C{C,H.. ,t(ß.+))

for arbitrary s, t ~ O. For fixed x', e, A, this is a multiplication operator witb a rapidly
decreasing function tPo.ß (x' , ~' , X n, A). So let us show that for all k, m E N,

(5)

The function tPa,ß is given by

).. (' t ' ') t (tl ,)-t J i(e',,\)-lXnenDO D ß ( I (tl ,)-1 t ' ') dt%,ß X ,'" ,Xn , A = eons "', A e (' x,a x, '" ,A X n , '" ,A ",.

We mayassume that a = ß = 0, for D({tD~,a is of order p. - laI, and ignore tbe constant.
So consider

x:D~ (f,A)t t/>o,o(x/,e',Xn,A)

= L Gm. m2 Jei(e',).)-lXnenx: ((, A) -m e:1[D:
n
2 a](x' , ((, A) -1 xn,~,A)den

ml+m2=m

= L Gm1m2 Jei(e',>.)-lxnen (f,A)'t-m ~:1[D;n2(-Den)ka](x',(f,A)-l xn,e,A)d{ß)
ml+m2=m
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after integration by parts. Now ~:1 D;n2
(- De.-Jka also has the transmission property and

is of order::; fl +m - k. In view of the factor (e, A)k-m it is no restriction to assume
k = m = O. A Taylor expansion gives

M-1 k

a(x,~, A) = t;, :'! (a;. a)(x', O,~, A) + x~aM(x,~, A).

Notice that aM belongs to Si,O,tr(Rn, Rn; R1). Plugging this into (6), we obtain two types
of expressions, the first ones corresponding to the terms in the summation, the second
ones to the remainder. For the first ones note that

(7)

Since a satisfies the transmission condition, [8;n (-Den)ka](x', 0, ~', (e, A) 'Un ,.\) E Si,~k~1rH.

Correspondingly, expression (7) is O( ((, A)J.I+l). In view of the factor (~', A)! in (6), this
is exactly what we want.
For the analysis of the terms associated with the remainder, we perform the correspond­
ing transformations. We choose M so large that J.l - M < -1, then the expression
corresponding to (7) is

((, .\)M+1 Jeixnun (( - Den)MaM )(x', {(, A) -1 X n,(, ((, A) U n, A)dun,

which also is O({f, .\)J.I+1). <J

5.2.5 Definition. Let J be the reflection operator on functions in Rn : Ju(x', xn ) =
u(x', -xn ).

5.2.6 Lemma. We may write

(1)

with

g+(p)(X',(,Dn,A) = r+p(x',(, Dn,.\)e- J: S(R+) -+ S(R+); (2)
g-(q)(x', (, Dn, A) = Jr- q(x', e', Dn, .\)e+ : S(R+) -+ S(R+). (3)

Moreover, for 0 =J. wER let

ß(X,(,W,A) = (27r)-~ JeiWenp(x,e,.\)den,

q(X,e',W,A) = (27r)-! JeiWenq(x,e,.\)den
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denote the inverse Fourier trans{orms oE p and q, respectively, with respect to ~n. Inte­
gration by parts shows that hotb integrals make sense as oscillatory integrals. In tbis
notation, g+ (p)( x' , ~/, Dn , ,\) and g- (q)( x', e, Dn , ,\) are the integral operators on S(R+)
with the distributional kernels

g+(p)(x',(,xn,Yn, ,\)

g-(q)(x', (, xn,Yn,'\)

(6)

(7)

Proof Identity (1) is immediate since, on S(R+),

[ + +][ + +] + + - + ( + + 1) +r op xnP e r op Xn q e - r op XnP On op Xn qe - r op XnP e r - op Xn q e ,

and since e+r+ -1 = e-r-, ignoring the value in zero. Identities (6) and (7) are immediate
from the usual formula for the integral kernel of a pseudodifferential operator in connection
with (2) and (3). <J

We shall need the foIlowing lemma.

5.2.7 Lemma. Let r E sr,o,tr(Rn, Rn; R 1) and let (x', e,'\) E Rn-l x Rn-1 x R 1 be nxed.
(a) For Xn, Yn > Odefine

(1)

Then the operator-valued symbol g(x', e, Dn ,,\) defined by

for f E S(R+) belangs to S~(Rn-t,Rn-1 x R 1; S'(R+), S(R+)), i.e. defines a singular
Green symbol of order JL and type zero.
(b) Similarly, letting

(2)

we obtain an operator-valued symbol h in S~(Rn-l, Rn-l x R 1; S'(R+), S(R+)).
Note: Since r satisnes the transmission condition we know that r(x' , 0, e, (e,'\) ~n,'\) E
Sro01f H . Since 9 is defined [rom the values of tbe inverse Fourier transform on R+, it
only depends on tbe part oE r( x', 0, e, (e, ,\) ~n, ,\) in H+, while h only depends on the
part in Hö.

Proof. (a) We have to show that for all s, t E N and aIl multi-indices (x, ß, I

It is obviously sufficient to prove the case lai = lßI = 11'1 = 0, otherwise we might consider
De,D~,DJ..r. A calculation shows that K.(e'.A)-lg(X', ~', Dn , '\)K(e',A) is the integral operator

with the kernel (e,'\) -1 g( x', ~/, ((, ,\) -1 xn, (e, ,\) -1 Yn, ,\).
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The space H~~,-t(R+) is the closure of Cö(R+) in the norm of H-~,-t(R). We may show
(3) by verifying that for all k ~ t, k' ~ t', 1~ 8, l' ~ s' the norm of the operator

on L2 (R+) is 0 ((e , A) ~). The operator in (4) has the integral kerne}

( , \)-1 kD' k'( D )" ~( , '(t' \)-1 (t' )-1 \)~ ,/\ X n Xn Yn - lIn 9 X , ~, s., /\ Xn, ~,.\ Yn, /\ .

(4)

(5)

We can estimate its operator norm by estimating the L;n'lIn (R~+)-norm of its kernel
function. Now

Ilx:D~nY~' D~n9( x', (, ((, .\) -1 X n, ((, .\) -1 Yn, .\) I1 L~(R~+)

< Il(Xn + Yn)k+k' D~~" (F-1r)(x' ,0, (, ((,.\) -} (Xn + Yn), .\)IIL~(R~+)'

For an integrable function f we have fooo fooo f(x n + Yn)dxndYn = f~ wf(w)dw. The last
expression above therefore equals

This we estimate by Cauchy-Schwarz' inequality

< 11 k+k'+ID I+I' ( -r-} )(' °t' (t' A)-l A)ll tw w ~en-wr x, ,~, ~, w, L~(R.t)

1

. Ilwk+k' D~+l' (Fe~~wr)(x', 0, (, ((,.-\) -1 W, .-\)1l12(R+)

= ((, .-\)k+kl+~-l-ll IIFe~~w(Dena)(x', 0, (, (e', A) -} W, .\)1l1~(R+)
1

. 11Fe~~w(Dena)(x',0,(, ((, A)-1 W, .-\)11I2(I4),

where a = D;~k' (~~+ll r). We note the behavior of the inverse Fourier transform under
dilations with posi ti ve constants F-1f (w / c) = c[F-1f (c· )](w ), and continue the above
estimate with

= (e, .\)k+k'+l-l'+~. Il:Fi.~w[(Dena)(x', 0, (e,.\) <n, A)](W)lIt2(I4)
1

. II.re~~w[a(x', 0, ((,.-\) ~n, .\)](w)III2(R+)' (6)

The symbol a is of order J-l' = J-l- k - k' +1+1'. It also satisfies the transmission condition.
So a(x',O,e,(~',.\)~n,.-\) E Si,'o(Rn-t,Rn-l x R 1)01r H, and Fe~~wa(x',O,e,«',A)~n,.\)

E Sr.~(Rn-}, Rn-1 x RI)®1fS(R+). Therefore, the last expression is O( (e, .-\)1-'+1), which

is exactly the estimate we need in view of the factor (e, A) -} in (5).
The proof of (b) is essentially the same. <1
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5.2.8 Lemma. The operators g+ (p)( x', ~', Dn , ") all d g+ (p) (x', e, Dn , ") are parameter­
dependent singular Green operator of orders JL and v, respective1y, and type zero. They
have asymptotic expansions

00 i
g+(p)(x',(,Dn,A) rv (27r)-~ L ~7 gt(p)(x',~',Dn,A)

i=D J.
1 00 xi

g-(q)(x',(,Dn,A) rv (27r)-2" L-:T9j(q)(x',(,Dn,A),
i=D J.

(1)

(2)

wbere 91 (p) is the singular Green symbol obtained from a~nP by the procedure in 5.2.7(a);
gj(q) tbe corresponding symbol obtained from a~nq by tbe process in 5.2.7(b).
Note that in view of the identity

K,{e l ,>.)-lXnK{e',>')!(x',xn) = ((,,,)-1 xnf(x',xn)

the multiplication operator with X n belongs to 8-1(Rn-I, Rn-1 XR1; H~,t (R+), Hs,t-l (R+))
for a1l weighted Sobolev spaces lIs,t(R+), so that (1) and (2) indeed furnish asymptotic
expansions for singular Green operators.

Proof Let us first consider g+. Plugging the Taylor expansion with remainder

(3)

into 5.2.6(6) we obtain

M-1 i
= (27r)-t L ~7~np(x',O,(,w''')lw:=xn+Yn

i:=D J.

+ (27r)-! x~PM(X, (, w, ") Iw:=xn+un'

Again the tilde denotes the inverse Fourier transform with respect to en. This gives the
beginning of the predicted asymptotic expansion. In order to justify the expansion, we
will show that, given an N E N, the remainder induces an operator with a symbol in
S-N(Rn-l,Rn-l x Rl;H~N,-N(R+),HN.N(R+)), provided M is large.
In order to see this we first multiply both sides of (3) by a function 0 ~ 4> = 4>(xn ) E

er: (R+) equal to 1 on (-1, 1]. The left hand side will remain the same, on the right hand
side, multiplication by 4> preserves the asymptotic expansion, while the additional factor
4>(xn ) with the remainder will be convenient, below.
The remainder 4>(Xn)X~PM induces an operator-valued symbol hM(x', e, Dn, A) by

Proceeding as in the proof of 5.2.7 consider the norm of K(e ,>.)-1 DeiD~,D~ hM (x', e, Dn, ") K{e' ,>.)

in 'c(HöN,-N(R+),HN,N(R+)). Again we mayassurne that laI = IßI = 1,1 = 0 and esti­
mate instead the norm supx 11· Ilv~ of the integral kernel of

n Sln
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on .c(L~(R+)). We have, with the obvious notation for L2(R+)-spaces with respect to
the corresponding variables,

s~y 4>(xn)lIx:+MD~nY~' D~nPM(X', ((,~) -1 Xn, (, ((, A) -1 (X n + Yn), A)IlL~n

< SUp 4>(Xn) 11 (X n +Yn)k+k'+M D~~f'p( x', ((, A) -1 x n, e', ((, A) -1 (X n +Yn), A) 11L~n
Xn

< SUp 4>(xn )llwk+k'+M D~I' (.re:~wPM )(x', ((, A) -1 X n , (, ((, A) -1 w, A)IIL?,
Xn

= SUp 4>(xn )lI ((, A) .r~~~w[(Di:k'+M ~~+ll PM )(x', ((, A) -1 X n , (, ((, A) ~n, ,x))(w)IIL?u,
X n

which is O( (e', A)~'), with J.l' = p - k - k' + [+ [' +1- M. This gives the desired result. <J

5.3 The Symbol of the Order Reduction is Classical

5.3.1 Lemma. Let X E S(R). Then

As apreparation for the proof we will need the following lemmata.

5.3.2 Lemma. Let 4> E Cü(R) be a zero excision function and X E S(R). Then for
k E Z, Q' a multi-index,

Proof Clearly, the function is well-defined and homogeneous of degree k+ 10'1 for large lei.
In order to see that it belangs to Sk+lcrl we only have to check that it is Coo. Obviously,
every derivative is a linear combination of functions of the same kind - except for the fact
that a derivative of 4> 00 longer is an excision functionj it is zero near infinity, which is
even better for our purposes.
So we only have to show continuity. 8ince 4> vanishes near zero, the only points of interest
are those of the form e = 0, ~n =I 0. Ir (t[j] , ~W]) is a sequence with °::j:. ~'[j) -t 0, ~W] -t

C =I 0, then X( 'fe7r) IfIk -t 0, si nce X( t }tN
-t °for arbi trary N as t -t 00. <J

5.3.3 Lemma. Let k E Z, 4> a zero excision function, and X E S(R). Then
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Proof For smalll~l there is nothing to show. So we mayassume 1 ::; I~I and tP(~) = 1. If
I"1is small, say I~'I ::; t, then necessarily I~n I 2: ~, and l~nI 2: ~ I~ I 2: ~ (~) . For arbitrary
!( E N, and suitable constants c, c', ... ,

and similarly

x( I~:I )lel k ~ c Wk
-

K
.

So we are left with the case where I~I 2: 1, 1"1 2: ~; in particular 1~'1 rv (e). We shall
employ the identity

k-l
ak

- bk = (a - b) L: ai bk
-

1
- i

i=O

for k 2: 0 with a = (f) ,b = 1~'I. It shows that

k-l
(()k _ 1(lk = ((() + 1(1}-1 L (()i 1(lk- 1-i = O( (()k-2).

j=O

For k < 0 we take a = (f) -1 ,b = lfl-I and obtain the same result, noting that

1 1 1

Tff - (t) = (e) lel( (e) + 1~'lr

Now we conclude that the difference under consideration is

with the obvious notation. Expression EI can be estimated by

(1)

(2)

Here, I(~) denotes the interval between f0 and -fe7ri the supremum over this interval is

0((f0) -N) ,N arbitrary. .

The second factor in (2) is I~n 11e'1-1 (e') -1 ((e') + le'1)-1. The fact that (f0) (e') = (~)

then shows that EI = O( (e')k-2).

For E2 we also use that X( feTi) = 0 (<f0) -N) in connection wi th (1) to obtain the estimate

E2 = O( (()k-2). <I

We can now prove Lemma 5.3.1. By Lemma 5.3.2, <p(I~l)x(~)lfl E s~,(Rn), moreover,
we see that

T,(O = x((~:}) (0 - q)(IWX(I~:I)lel E So,

so we have the first term of the asymptotic expansion (even the first two terms).
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Now write for I~I 2:: 1, I~'I f. 0

rl(~) = (x( (~~)) - x( I~~I)) (0 + x( I~~I)( (0 -Iell
= EI + E2

and note that by Taylor's formula

so that

x«~~)) = t:!x(j)(I~~I)(I~~I)j (n-j «n + I(lt
j

+X(N+l)(0)( I~~I t+l (0 -N-l «0 + I(Il-N
-

1
,

with () between f0 and ~.

Similarly, we have a Tayro~ expansion

N

(1 + t 2)t = 1 +L Cjt
j +CN(t)tN+1

.

j=1

Hence the identity (e) = lei ( 1;'1) implies that

N

(() -1(1 = L cjl(ll-j +cN(I(r 1 )1(1- 1
-

N
•

j=1

Here, cN(lfl-1
) is - up to constants - a derivative of (1 +t2 )t, and these are all bounded

for N ~ l.
Finallya last expansion: I:(t) = L:~o djt j + dN(t)tN+1

. Therefore

((e') + le' I)-1 = Ie'1-1 (1 + (1(1-1) )-1
N

= L djle'l-l-j + dN (Ie'I- 1)l(l-N-l.
j=O

Here, dN is bounded on R.
Using Lemma 5.3.2 this clearly yields an asymptotic expansion for EI and E 2•

Now for the estimates. Let us first concentrate on the estimates of the remainders with
no derivatives present. With the same reasoning as in the proof of 5.3.3, we mayassume
that ~ ~ le'I rv (e') . We have to deal with two types of terms: those of the form

(j)(.h)(~)jl(I-KR (t)
X I~'I lei N ~

and those of the form
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with uniformly bounded functions RN, RN, !( ~ 0, and ein the interval between ffy and

~. Like in the praof of Lemma 5.3.3, these expressions are 0 ((~) - K ).

Finally, we may employ the same arguments for the derivatives, because we then have to
deal with expressions of essentially the same kind, cf. the considerations in the praof of
Lemma 5.3.2.

101



References

[1] Agranovich, M.S., and Vishik, M.I.: Elliptic problems with a parameter and parabolic
problems of general type, Usp. Mat. Nauk, 19, 53-161, (1963) = Russ. Math. Surveys,
19, 53 - 159

[2] Boutet de Monvel, L.: Boundary problems for pseudo-differential operators, Acta Math.
126, 11 - 51 (1971)

[3] Calderon, A., and Vaillancourt, R.: A dass of bounded pseudodifferential operators,
Proc. National Acad. Sciences USA, 1185 - 1187 (1972)

[4] Coifman, R., and Meyer, Y.: Au deUt des operateurs pseudodifferentiels, Asterisques 57,
1978

[5] Cordes, H.O.: Elliptic Pseudo-Differential Operators - An Abstract Theory, Springer LN
Math. 756, Berlin, Heidelberg, New York: Springer 1979

[6] Dorschfeldt, C., and Schulze, H.-W.: Pseudo-Differential Operators with Operator­
Valued Symbols in the Mellin-Edge-Approach, preprint, SFB 288, Berlin 1993, to appear
in Annals 0/ Global Analysis and Geometry

[7] Eskin, G.I.: Boundary Value Problems for Elliptic Pseudodifferential Equations, Moscow
1973 = Amer. Math. 80c. Translations of Math. Monographs 52, Providence, R.1. 1981

[8] Gramsch, B.: Relative Inversion in der Störungstheorie von Operatoren und 'l1-Algebren,
Math. Annalen 269, 27 - 71 (1984)

[9] Grubb, G.: Functional Calculus 0/ Pseudo-Differential Boundary Problems, Progress in
Mathematics 65, Boston, Basel: Birkhäuscr 1986

[10] Grubb, G., and Seeley, R.T.: Weakly parametric pseudodifferential operators and
Atiyah-Patodi-Singer boundary problems, preprint, Copenhagen 1993

[11] Hirschmann, T.: Functional analysis in cone and edge Sobolev spaces, Annals 0/ Global
Analysis and Geometry, 8, 167 - 192 (1990)

[12] Hörmander ,L.: The Analysis 0/ Linear Partial Differential Operators, vols. I - IV, Berlin,
New York, Tokyo: Springer 1983 - 1985

[13] Jeanquartier, P.: Transformation de Mellin et developpements asymptotiques, Enseigne­
ment Mathematiques 25, 285 - 308 (1979)

[14] Kondrat'ev, V.A.: Boundary value problems in domains with conical or angular points,
Transactions Moscow Math. Soc. 16, 227-313 (1967)

[15] Kumano-go, H.: Pseudo-Differential Operators, Cambridge, MA, and London: The MIT
Press 1981

[16] Lewis, J.E., and Parenti, C.: Pseudodifferential operators of Mellin type, Comm. in
Partial Diff. Eq. 8,477 - 544 (1983)

[17] Lopatinski, Ya.: On a method of reducing boundary problems for a system of differential
equations of elliptic type to regular integral equations (in Russian), Ukrain. Math. Zh.
5, 123 - 151 (1953)

[18] Melrose, R.: Transformation of Boundary Problems, Acta Math. 147,149 - 236 (1981)

[19] Melrose, R.: The Atiyah-Patodi-Singer Index Theorem, Wellesley, MA: A K Peters 1993

102



{20] Plamenevskij, B. A.: Algebras oJ Pseudodifferential Operators, Moscow: Nauka 1986 (in
Russian)

[21] Rempel, S., and Schulze, B.-W.: Index Theory of Elliptic Boundary Problems, Berlin:
Akademie-Verlag 1982

{22] Rempel, S., and Schulze, B.-W.: Asymptotics for Elliptic Mixed Boundary Problems,
Mathematical Research, vol. 50, Berlin: Akademie-Verlag 1989

[23] Schrohe, E.: A Pseudodifferential Calculus for Weighted Symbols and a Fredholm Crite­
rion for Boundary Value Problems on Noncompact ManiJolds, Habilitationsschrift, FB
Mathematik, Universität Mainz 1991

[24] Schrohe, E.: A characterization of the singular Green operators in Boutet de Monvel's
calculus via wedge Sobolev spaces, preprint MPI / 93-52, MPI für Mathematik, Bonn
1993, to appear in Comm. in Partial Differential Equations

[25] Schrohe, E.: A characterization of the uniform transmission property for pseudodiffer­
ential operators, preprint MPI / 93-51, MPI für Mathematik, Bonn 1993, to appear in
Advances in Partial Differential Equations, Berlin: Akademie Verlag 1994

[26] Schulze, B.-W.: Corner Mellin operators and reduction of orders with parameters, Ann.
Sc. Norm. Sup Pisa, 16, 1 - 81 (1989)

[27] Schulze, B.-W.: Pseudo.Differential Operators on ManiJolds with Singularities, Amster­
dam: North-Holland 1991

[28] Schulze, B.-W.: The variable discrete asymptotics of solutions of singular boundary value
problems, in: Operator Theory: Advances and Applications 57, Proceedings Lambrecht
Dec. 1991, 271 - 289, Boston, Basel: Birkhäuser 1992

[29] Schulze, B.-W.: Pseudo.Differential Operators and Asymptotics on Manifolds with Cor­
ners,_parts I-IV, VI-IX: Reports of the Kar1-Weierstraß-Insti tute, Berlin 1989 - 91, parts
XII, XIII: preprints no. 214 and 220, SFB 256, Univ. Bonn 1992

{3D] Schulze, B.-W.:Pseudo.Differential Boundary Value Problems, Conical Singularities and
Asymptotics, Berlin: Akademie Verlag, to appear

{31] Shubin, M.A.: Pseudodifferential operators in Rn, Sou. Math. Dokl. 12, sero NI, 147 ­
151 (1971)

[32] Taylor, A.E.: Introduction to Functional Analysis, New York: Wiley and Sons 1967

[33] Treves, F.: Topological Vector Spaces, Distributions and Kernels, San Diego, New York,
Landon: Academic Press 1967

{34] Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators, Amsterdam,
New York, Oxford: North-Holland 1978

{35] Vishik, M.I., and Eskin, G.I.: Normally solvable problems for elliptic systems in equa­
tions of convolution, Math. USSR Sb. 14, (116), 326 - 356 (1967)

103


