A remark on the connection between

affine Lie algebras and soliton equatiocons

Max-Planck-Institut
fir Mathematik

by Etsuro Date

Gottfried-Claren-Strafe 26

D-5300 Bonn 3

West Germany

MPI/87-57

Department of Mathematics
College of General Education
Kyoto University

Kyoto 606

Japan



Abstract

The Lax equations of Drinfeld-Sokolov are derived in the
framework of the Fock representation of the Clifford algebras.
The derivation is based on the bilinear identities for

t-functions.

1. In a series of papers [1-8], the Fock representations of the
Clifford algebras and the so-called boson-fermion correspondence
(= the realization of the Fock representations) are employed to
study soli;onw equations. Infinite dimensional Lie algebras and
corresponding groups in the Clifford algebras are identified with
the transformations of solutions of soliton equations. Represen-

tation theoretic aspects of these studies are summarized and

——

P

“developéd” further in”ﬁ?j. Key notions are the t-functions’ and
the biiihééf identities for theﬁ. They afford us a unification
of two major methods in studying soliton equations: the
linearization and the bilinearization.

On the other hand, Drinfeld and Sokolov [10] present a
method to generate'soliton equations. They construct the Lax
equations starting from the realizations of the affine Lie algebras
as Lie algebras over Laurent polynomials. They focus mainly on
the hamiltonian structures of these soliton equations. Subsequently
Wilson [11] and Imbens [12] consider the t-functions for such

equations.



.In this note we show that the Lax equations of Drinfeld-
Sokolov for the generalized modified KdV equations and also for

the generalized KdV equations naturally arise in the framework

Al a2 ,2)

of [9]. In other words, for affine Lie algebras n on ! Bopeq v

C(T), D(1) and D(z)

n n n+t * ve can derive the Lax eguations of [10] on

the basis of the-Fock representation of the Clifford algebras.
In section 2, we summarize some of the results in [9]. In

section 3, the bilinear identities are rewritten in terms of

pseudo differential operators as in [6,8]. In section 4, we

extract the Lax equations of [10] from the identities in section 2.

2. We recall here some of the results of [9] relevant to

this note. For details and notations, readers are.referred to [9].

In [9], the infinite dimensional Lie algebras A_, B_, B} ,
C,» D, and D! are realized as appropriate totalities of
quadratic expressions of the free fermions (= linear combinations

of generators of the Clifford algebras). The algebras B_, C .and

@

D, are realized as subalgebras of A  consisting of fixed points

of suitable involutions of the Clifford algebra of charged free

. . (1) (2) (2) (1) (1)
fermions. The affine Lie algebras An ' Azn ’ Azn_1, Cn ' Dn
and Déi% are obtained as subalgebras of these algebras by

imposing certain periodicity conditions on the coefficients‘of
linear combinations of generators of A_ ,
B, C, and D; (the reduction) . |

The Fock representations of the Clifford algebras induce
highest weight representations of these Lie algebras. Through

the so-called boscon-fermion correspondence these representations

are realized on the polynomial algebras. of infinitely many



variables. Elements of the group orbits of highest weight-
vectors in these realizations are called the t-functions.

We are interested in the equations satisfied by the
t-functions. Below we quote them from [9].

For the A_ case, we have a sequence of t-functions

P

{rn(x)}nez, X = (x1,x2,...) . Each Tn(x) corresponds to the
fundamental weight A, of A_

They satisfy the identity of the following form

1
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for any x, x', n 2 n' , where the integration is taken over a

© go that ¢ 5%%; = 1 . Here

-1 1 1 1 C
E(x,k) = ) X, k- and €(k ') = (g, —5, —3s...).. This is one
321 3 2k* 3k’
way of writing the Plicker relations for the infinite dimensicnal

small circuit around k

Grassmann manifold. We refer to identities of this type as the
bilinear identities.

For B_ (resp. C_ ) t-functions are those for A subject
to extra condition

Tq.n (X} = T, (X), X = (Xqr=XyXq,..0), 0 € X

(resp. T__{(x)} = 1 (X) ).

This condition is a reflection of the involution which singles

out B_ (resp. C_ ) as a subalgebra of A_ .
(x(1),x(2))}

For D_ we have rt-functions {Tn1,n2,n Ny, ,nex ’

x(i) = (x%i),xéi),...), i =1,2 . They satisfy the following

bilinear identity
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for any n, - n& 2 n' - n 2 né = Ny, x(i),x(i)', i=1,2, and the
symmetries
) (n,+n,)
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The algebras B! and D; are realized in terms of neutral free
fermions and are suitable for spin representations of these
algebraé. As for the bilinear identities we refer to {9,51.

As a consequence of the reduction, t-functions of the éffine
Lie aigebras are subject to further constraints. The table of
them together with the one for the corresponding highest weight

are found in Tables 2,3 of (9].

3. In this section we rewrite bilinear identities in terms
of pseudo differential operators of order 0. They are introduced
through wave functions as follows.

Recall the definition of the wave functions for A

(x E(k
- E(x k)T
wn(x,k) - T, x)
=& (x,Xk) Tn (XEK R
WX (x,k) = X

Tn(x)



We define pseudo differential operators P ,Q by

p_(x,0)e" XK 5 = a/ax

wn(x,k)

(3)

_ -£{x,k)
Qn(x. de A .

wg(x,k)

Namely P, and Q  are defined through the expansions of W

= . -a - = E(ka) -
P (x,9) -agopna(x)a W (x,k) = e (agcpna(x)k )

= —ny "o . ~&(x,k) =a
Q, (%,3) -agoqna(x)( 3) ", wr(x,k) = e (agoqna(%)k ).

'Similarly we set

: (1. (2)
T (x 6 C(k ) 6 E(k ))
(i) (1) _(2) o, _ E(x'Y) k) Bympm
W (x ,X ,k) - e ’
n,,n,,n T (x(1)lx(2))
n1Ln2,n
.‘ . (1)
- pli) (xL1)’x(2)’3(1)}eE(x k)
n1 ,n2,n
1) T onn® (1’+5 kT xP s E(k M)
(1) * (1) (2) g x 1) k) By .
wn1,n2,n(x X k) = e ( (1) (2)) !
: Tn1,n2,n x 1 X
_ (i) .
R PV S D

First let us examine the consequences of the bilinear
identities for A . Hereafter for a pseudo differential operator

P(x,3) = z pj(x)aJ , we denote its formal adjoint by
J .

P(x,3)* = 2 (-a)Jpj(x) and by P_ 1its negative part:
3



P(x,3)_ = 1} pj(x)aj . Then as in [4,8] we have
<0

Proposition 1. The bilinear identity (1) implies

n-n' .
(Pn(x,a)a in (x,B)*)_ =0,
- ! .
i.e. pn(x,a)a“ n Qn.(x,a)* is a differential operator of order
n -n'

Similarly, we have

Proposition 2. As a consequence of the bilinear identity (2),

the following relations are valid

(1) MR (1)
(Pn1’n2'n(x,3)3 Qn;,né,n'(x'a)*)_
n.+nl+1
STy 03152

n1f1,n2-1,n-1;a na-1,né+1.n'+1;8

a+B8=n,-ns-1

_ A1) _ (1) _(2) (1) _ (i) -a
where 3 = 3 , X = (x , X )’Pn1,n2,n(x'a) -azopn1’n2,n:a(x)3 '
Tn. . n,.n

(1) (1) -a ~(2) 1772 (2)
Q (x,9)= ) g () T, p L p .
n1ln2ln azo 1’11:1'12:1'1,0‘. ’ nT'nz’n'a Tn1_1’n2+1 'n+1 n1 Ir?zlnla

- Tn,,n

~(2) 3 172 (2)

T,,0,,050 I Ny, ,nGa :

n1+1,n2-1,n-1

Under extra condition on t~functions we have

Proposition 3. The constraint’

Tm(;) = 1, (x)

(x)

’



implies the relations

W;(;"k) = Wn(xik) ]

P_(X,0) = Q_(x,3) = Pn(x,a)*_1 i

4. In this section we consider exclusively wave functions
corresponding to affine Lie algebras. We derive linear differential
equations for them 'and see that they are of the same type as those
introduced by Drinfeld and Sokolov [10].

Aé?) case. The t-functions satisfy the relations

=T.,<a~cj/ax =0, v=1,2,00. .

Ti+n+1 j (n+1) v

The t-function Tj corresponds to the highest weight Aj of

Aé1)f 0 £ J sn . By Propositions 1,3, we have
Pj+1(xf3)3 = (8+vj(x))Pj(x,3) ,
where

vj(x) = (3 log)(rj(x)/Tj+1(x)) .

Recalling the relation (3) between wave functions and pseudo

differential operators, we get

(3+vj(x))wj(x,k) = k wj+1(x,k) . (4)



This system of linear differential equations of the first order

is exactly of the same type as those in [10] used to describe the

(1)

generalized modified KAV equations for the case of A,

Adjoint wave functions wj(x,k) satisfy the adjoint equations.

For a fixed Jj , the wave function wj(x,k) satisfies

n+

_ 1
(a+vn j(x))...(8+vj(x))w (x,k) =k wj(x,k)

+

3

Expanding the operator in the right hand side and noting the

relation vn+j+1 = vj , we get an operator of the form
n-1
™ L Y u, (x)e®
a=0 ¢

The operator of this type appears in [10] to define scalar Lax

(1)

equations for An

5(2)

el cage. In this case we have 2(n+1) different t-functions.

Among them the relations

Tj(x) = T1_j(X) = Tj+2(n+1)(X)' aTj/sz(n+1)v =0, v=1,2,...

hold. As in the Aé1) case, we have (4) representing the linear

differential equations for the modified equation.
By proposition 3 wave functions and adjoint wave functions
are related by

w*_jtﬁ,-k) = w,(x,k) .

1 Y5



(2)

These correspond to the highest weight Aj—1 of Dn+1

2 3 <n
Taking this fact into account, we decompose the differential
equation for wj(x,k) into a pair of differential equations for
wj(x,k) and w§(§h~k) .

L1(x,8)wj(x,k) = (3+v (x))...(8+vj(x))wj(x,k)

2n+2-7

k2 (n-3) *3w§ (X,-k) ,

Lz(x,a)wg(x,-k)= (a+vj_1(x))...(3+v1_j(x))w§(x,-k)

k2j_1wj(x,k) )

The differential operators L,,L, are "skew symmetric" in the

sense

L, (x,3)* = -Litﬁ,a), i=1,2

Thus setting X = x , we-obtain the péirs of scalar differential

operators as in [10) for 2 £ j § n . Similar calculation using the

bilinear identity for B! and extra bilinear identities in (6]

gives us the scalar Lax equations of [10] corresponding to extreme

vertices of the Dynkin diagram of Déf%

The cases Aéi) and Céj) are treated analogously.

D£1} case. The t~functions satisfy the constraints

Tj1+2(n-1)rj2+2,j(x)=(“) r1_j1’1_j2’_j(x)-rj1,j2,j(x),x—(x x0Ty,

Py (1) |
3 . 9% . . + 3T, . .
Tj1r:’2'j/ xz(n-“)‘\) Tj1rjzrj

(5)

- Nt o =3 T =" = N
TR ST A,



- 10 -

. (1) (1)
In this case the wave functions wj'1'0(x,k), wn_1+j’2'0(x,k) ,

. I e PR D
153 8n-1, aj(x,k) =k -?BzﬁTgT Wanty 3,1 XKD

{(x) (1)

3] wn_2’2’1(x,k) satisfy a system of

-1 'n-2,2,1
Th=1,1,0

linear differential equations of the first order. By Proposition 2,

an(x,k) = k

we have

(1) _
K Wiio1) (n=1)+9+1,1,0 %K) =

(1)
(B+v (i 1) (n=1) +3,4 MW (io1y (n=1)+3,1,0% %) | 1 = 1,2, 1 £ 3 ¢ n-1,

(1) -
k w1’1'0(x,k) =
(

T (x) T x)
00,0 (1) 20=-1
(3+31log ?:%;TET)WZn-Z,Z,O(x'k} + ;?%;7;7— aO(x'k) '

T (x) -
- =11 (1)
aao (X.rk) = W wzn_z,z’o(x,k) ’

(x) T . (x)
(1) Tn-1,1,0 (1) n+1,1,-1
k w {x,k) = (3+3log Lt Yw_ (x,k) + L a_(x,k)
n,2,0 'Tn,2,0(x) n-1,1,0 Tn,2,O(X) n ’
T (x) .
-2,2,1 (1)
da_(x,k) = == ‘ w'! (x,k) .

Here we have used the relations like

009 , 201 4-1 T-100 (1)

(1)
P 3 = (9+3log 1 —
1,1,0 1130 1130 TOQO 0,0,0
T T
P£1)1 18 L TOOQ 3 1 T-111 Pé1é 5
T =11 00,0 res

The above system is shown to be of the same type as that of [10]

for the modified equation when restricted to X = x .

Further we have

(1) NI
Yan-1-5,2,0 XKD = Wy o (X, =K)

4
¥



- 11 =

by (5). These corfespond to the highest weight Aj " of

Dé1), 2 53§ s n-2
)

. As in the case of D

(2)

n+l we can derive

(1) *

equations among w!1 {(x,k) and w, (X,-k) . They take the
jl’TIO . ],1'0
following forms
(1) _ 2(n=3)=-1 (1)* ~
L1(x,8)wj'1’0(x,k) = k wj,T,O(x’ k) ,
(1y* ~ _ _ j=1_(1)
Lz(x'a)wj’1’0(x, k) - k Wj'1’0(x,k) r
L1(x,8? {a+?2n-2—j,2) (B+vn’2) 8
T T T -
(3+3log 2telel . Brlelo=l 571 22,200 ey ) L., (3+vy )
n,2,0 n,2,0 n-1,1,0 n ’ ’

and a similar expression for L, . These pseudo differential

operators satisfy

L; (x,3)* = -Li(§,a), i=1,2

The operators corresponding to extreme vertices are derived by

using D} .

(2)

The case - A1

is similar.
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