
KOTTWITZ-RAPOPORT STRATA IN THE SIEGEL MODULI SPACES

CHIA-FU YU

This is a write-up note of the talk where I gave in the conference on “Géométrie arithmétique,
représentations galoisiennes et formes modulaire”, held on June 6 – 8, 2007, at Université
Paris-Nord, Villetaneuse, Paris. The goals are

• Describe results on the Kottwitz-Rapoport (KR) stratification and provide examples;
those are due to Kottwitz-Rapoport, de Jong, Ngô-Genestier, Haines, Görtz, Tilouine,
and C.-F. Yu.
• Report some results in the case g = 3 (joint work with Ulrich Görtz).

1. Moduli spaces

Let g ≥ 1 be an integer, p a rational prime, N ≥ 3 an integer with (p,N) = 1. Choose ζN ∈
Q ⊂ C a primitive Nth root of unity and fix an embedding Q ↪→ Qp. Put I := {0, 1, . . . , g}.

Let AI be the moduli space over Fp parametrizing equivalence classes of objects

(A0
α
→ A1

α
→ · · ·

α
→ Ag, λ0, λg, η),

where

• Ai is a g-dimensional abelian variety,
• α is an isogeny of degree p,
• λ0 and λg are principal polarizations on A0 and Ag, respectively.
• η is a symplectic level-N structure on A0 w.r.t. ζN .

Put η0 := η, ηi := α∗ηi−1 for i = 1, . . . , g, and λi−1 := α∗λi for i = g, . . . , 2. Let Ai :=
(Ai, λi, ηi). Then AI parametrizes equivalence classes of objects

(A0
α
→ A1

α
→ · · ·

α
→ Ag),

where A0 ∈ Ag,1,N , and for i 6= 0,

Ai ∈ A
′
g,pg−i,N := {A ∈ Ag,pg−i,N | kerλ ⊂ A[p] }.

For a non-empty subset J = {i0, . . . , ir} ⊂ J , letAJ be the moduli space over Fp parametrizing
equivalence classes of objects

(Ai0
α
→ Ai1

α
→ · · ·

α
→ Air),

where Ai0 ∈ Ag,1,N if i0 = 0, and Aij ∈ A
′
g,p

g−ij ,N
for others.

For J1 ⊂ J2, let πJ1,J2
: AJ2

→ AJ1
be the natural projection. The map πJ1,J2

is proper and
dominant. We have

(i) Aord
J ⊂ AJ is dense (Ngô-Genestier [11], C.-F. Yu [14]).

(ii) AJ is equi-dimensional of dimension g(g + 1)/2 (Görtz [6], also follows from (i)).
(iii) AJ is irreducible if |J | = 1 (de Jong [3]), and for |J | ≥ 2, AJ has (k1 + 1) . . . (kr + 1)

irreducible components, where kj := ij − ij−1 (C.-F. Yu [14]).
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When g = 2, we have the diagram

AI

zzuuuuuuuuu

$$
IIIIIIIII

��

A{0,1}

$$
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H
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A{0,2}
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vv
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v

$$
HH

HH
HH

HH
H

A{1,2}

zzvv
vv

vv
vv

v

��

A{0} A{1} A{2}

Note that we have an involution θA : AI → AI which sends

(A0 → A1 → · · · → Ag, λ0, λg, η) 7→ (At
g → · · · → At0, λ

−1
g , λ−1

0 , λg∗ηg).

Therefore, one may ignore A{1,2} and A{2}. We know that A{1} = A2,p,N is a 3-dimensional,
irreducible variety with isolated singularities. Let

Λ∗
2,p,N := {A ∈ A2,p,N ; ker λ = αp × αp },

be the set of “indecomposable” polarized superspecial points. Using the crystalline theory, we
show that

(1) Asing
{1} = Λ∗

2,p,N .

(2) When p > 2, if x ∈ Λ∗
2,p,N , then A∧

{1},x ' k[[X1, X2, X3, X4]]/(X2X3 −X1X4).

Note that the set Λ∗
2,p,N is used by Katsura-Oort [9] to construct the supersingular locus S{0}

of A2,1,N . For each ξ ∈ Λ∗
2,p,N , let Sξ parametrize the isogenies (ϕ : A1 → A2) of degree p with

A1 = ξ. One has Sξ ' P1 and has a projection map pr2 : Sξ → S{0} via (ϕ : A1 → A2) 7→ A2.
One shows that

• The map
∐

x∈Λ∗

2,p,N
Sξ → S{0} is surjective, and there are p+1 branches passing through

each superspecial point.

• It induces an isomorphism
∐

x∈Λ∗

2,p,N
Sξ ' S̃{0}, where S̃{0} is the normalization of S{0}.

In fact, if one considers the supersingular locus S{0,1} of A{0,1}, then the picture is clearer. We
has

S{0,1} =
∐

ξ∈Λ∗

2,p,N

S ′
ξ

∐

γ∈Λ2,1,N

S ′
γ ,

where

S ′
ξ = {ϕ : A0 → A1;A1 = ξ } ' P1,

S ′
γ = {ϕ : A0 → A1;A0 = γ } ' P1.

If one has an isogeny ϕ : A0 → A1 of supersingular abelian surfaces, then either A0 ∈ Λ2,1,N

or A1 ∈ Λ∗
2,p,N . We have natural projections

S{0}
pr0←−−− S{0,1}

pr1−−−→ S{1}.

Using another projection pr1, we describe the supersingular locus S{1}.
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2. Local model diagram and KR stratification

Let V = Q2g
p , L0 = Z2g

p , ψ the standard alternating pairing, and e1, . . . , e2g the standard
basis. One has

ψ =

(
0 Ĩg
−Ĩg 0

)
, Ĩg = anti-diag(1, . . . , 1).

Put Λ−i = Z2g
p . Let ψ0 := ψ on Λ0 = L0. Define, for each 1 ≤ i ≤ 2g, a map α : Λ−2g+i−1 →

Λ−2g+i by α(ei) = pei and α(ej) = ej if j 6= i. Let ψg be 1
p
· the pull-back of ψ0 on Λ−g; it is a

perfect pairing. We get a lattice chain

ΛI : Λ−g
α

−−−→ . . .
α

−−−→ Λ−1
α

−−−→ Λ0.

Denote by Mloc
I the local model associated to the lattice chain ΛI . It is a projective scheme

over Zp which parametrizes the objects (F−i), where

• each F−i ⊂ Λ−i⊗OS is a local free OS-submodule of rank g, locally a direct summand.
• F0 and F−g are isotropic w.r.t. the pairings ψ0 and ψ−g, respectively.
• α(F−i) ⊂ F−i+1.

We have the local model diagram [12]:

ÃI
ϕ

����
��

��
�� ψ

!!
DD

DD
DD

DD

AI Mloc
I,Fp

,

where

• ÃI is the moduli space over Fp parametrizing equivalence classes of objects (A•, ξ),
where A• ∈ AI and ξ : H1

DR(A•/S) ' ΛI ⊗ OS is an isomorphism of chains which is
compatible with α and preserves the polarizations up to scalars.
• Let GI be the group scheme over Zp representing the functor S 7→ Aut(ΛI⊗OS , [ψ0], [ψ−g]).

This group acts on ÃI and Mloc
I from the left.

• The morphism ψ sends (A•, ξ) 7→ ξ(ω•), where ω• ⊂ H1
DR(A•) is the Hodge filtration.

The map ψ is GI -equivalent, surjective and smooth.

• ÃI → AI is a GI -torsor.

We can also define the local model Mloc
I for each non-empty subset J ⊂ I, and have the local

model diagram between AJ , ÃJ and Mloc
J,Fp

.

Consider the decomposition into GI-orbits:

Mloc
I,Fp

=
∐

x

Mloc
I,x, ÃI =

∐

x

ÃI,x.

Since ϕ is a GI-torsor, the stratification on ÃI descends to a stratification,

AI =
∐

x∈AdmI(µ)

AI,x.

This is called the Kottwitz-Rapoport (KR) stratification. The index set AdmI(µ) is a finite

subset of W̃ , the extended Weyl group for GSp2g, and µ = (1, . . . , 1, 0, . . . , 0) (with |µ| = g).
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One has

W̃ = X∗(T ) oW ⊂ A(R2g),

where T ⊂ GSp2g is the diagonal subgroup, W = W (GSp2g) the linear Weyl group, and
A(R2g) is the group of affine transformations on R2g. Let θ = (1, 2g)(2, 2g − 1) . . . (g, g + 1).
Then

W ' {σ ∈ S2g = W (GL2g) ; θσ = σθ }.

By definition,

AdmI(µ) = {x ∈ W̃ ; x ≤ tw(µ) for some w ∈ W }.

PermI(µ) = {x ∈ W̃ ⊂ A(R2g) ; 0 ≤ x(w′
i)− w

′
i ≤ 1, ∀ 1 ≤ i ≤ 2g },

where w′
i = (0, . . . , 0, 1, . . . , 1) with |w′

i| = i. Kottwitz and Rapoport [10] have shown that
AdmI(µ) = PermI(µ).

In fact, AdmI(µ) ⊂ Waτ .

• τ is the element that is less than µ and fixes the base alcove

a = {u ∈ R2g; u1 + u2g = . . . ug + ug+1, 1 + u1 > u2g > · · · > ug+1 > ug }.

• Wa is the affine Weyl group, which is < s0, s1, . . . , sg >.

We have

si = (i, i + 1)(2g + 1− i, 2g − i), i = 1, . . . , g − 1,

sg = (g, g + 1), s0 = (−1, 0, . . . , 0, 1), (1, 2g),

τ = (0, . . . , 0, 1, . . . , 1), (1, g + 1)(2, g + 2) . . . (g, 2g).

We also have the following results

• Each stratum AI,x is smooth of pure dimension `(x).
• (Ngô-Genestier [11]) The p-rank function is constant on each KR stratum. Further-

more, one has

p−rank(x) =
1

2
#Fix(w),

where we write w = (ν, w) and Fix(w) := {i;w(i) = i}.

Number of µ-admissible elements.

We find the following formula in Haines [7, p.1272]:

Ng := #AdmI(µ, g) =

g∑

d=0

Ng−d
g ,

where N g−d
g is the number of x with p-rank=g − d:

Ng−d
g =

(
g
d

)
2g−d

d∑

k=0

(
d
k

)
2kak.

Here a0 = 1 and for n ≥ 1, an := #{σ ∈ Sn ; σ(i) 6= i ∀ i }. One also has the formula

1 +
∑n

k=1

(
n
k

)
ak = n!. From these, we get
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n 0 1 2 3 4
an 1 0 1 2 9

g = 2
p-rank 0 1 2 total

# 5 4 4 13

g = 3
p-rank 0 1 2 3 total

# 29 30 12 8 79

g = 4
p-rank 0 1 2 3 4 total

# 233 232 120 32 16 633

3. Example: g = 2

The following are KR-types

τ

s0τ

s1τ

s2τ

s0s1τ

s1s0τ

s0s2τ

s1s2τ

s2s1τ

s0s1s0τ

s0s2s1τ

s1s0s2τ

s2s1s2τ .

Put Admi(µ) := {x ∈ Adm(µ); p-rank(x) = i }. We have

Adm2(µ) = {s0s1s0τ, s1s0s2τ, s2s1s2τ, s0s2s1τ},

Adm1(µ) = {s0s1τ, , s1s2τ, s2s1τ, s1s0τ},

Adm0(µ) = {τ, s1τ, s0τ, s2τ, s0s2τ}.

(3.1)

We conclude [16]

• A1
I ⊂ A

≤1
I is not dense. This implies that p-rank strata do not form a stratification on

AI.
• The supersingular locus SI ⊂ AI consists of one-dimensional components and two-

dimensional components. This rules out the possibility of equi-dimensionality of p-rank
strata.
• The morphism SI → S{0} is not finite. This limits the method of p-adic monodromy

to conclude an irreducibility result for p-rank strata in AI ; see [16].

Geometric characterization for KR strata.

Let a = (A0 → A1 → A2) ∈ AI(k). One wants to determine KR(a) in Adm(µ). Let
(M 2 → M 1 → M0) be the chain of de Rham cohomology groups, and let ωi ⊂ M i be the
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Hodge filtration. Put

G0 := ker(A0 → A1), G1 := ker(A1 → A2).

From Dieudonné theory, we have

ωi/α(ωi−1) = LieGi
∗, M i/ωi + α(M i−1) = Lie(GD

i ).

Define
σi(a) := dimωi/α(ωi−1), σ′

i(a) := dimM i/ωi + α(M i−1).

Clearly, the invariant (σi, σ
′
i) characterizes the KR-types in Adm1(µ) ∪ Adm2(µ), as (G0, G1)

is either (αp, µp), (αp,Z/p), their switch, or (∗, ∗) with ∗ = Z/p or µp.
Here is the correspondence:

p-rank(a) 2 2 2 2 1 1 1 1
(σ0(a), σ

′
0(a)) (0, 1) (0, 1) (1, 0) (1, 0) (0, 1) (1, 0) (1, 1) (1, 1)

(σ1(a), σ
′
1(a)) (0, 1) (1, 0) (0, 1) (1, 0) (1, 1) (1, 1) (1, 0) (0, 1)

KR(a) s0s1s0τ s0s2s1τ s1s0s2τ s2s1s2τ s0s1τ s1s2τ s2s1τ s1s0τ

Note that (σi(a), σ
′
i(a)) = (1, 1) for a supersingular. Introduce a new invariant:

σ02(a) := ω0/α
2(ω2), σ′

02(a) := dimM 0/ω0 + α2(M 2),

where α2 : M 2 →M0 is the composition. We get

p-rank(a) 0 0 0 0
(σ0(a), σ

′
0(a)) (1, 1) (1, 1) (1, 1) (1, 1)

(σ1(a), σ
′
1(a)) (1, 1) (1, 1) (1, 1) (1, 1)

(σ02(a), σ
′
02(a)) (1, 1) (1, 2) (2, 1) (2, 2)

KR(a) s0s2τ s0τ s2τ s1τ , τ

• The invariant (σ02, σ
′
02) does not determine the isomorphism class of finite subgroups

ker(A0 → A1); the latter has finer information than KR-types.
• It remains to distinguish s1τ and τ . For this, we study the supersingular locus SI ofAI .

Suppose that a = (A0 → A1 → A2) ∈ As1τ , that is, (σ02(a), σ
′
02(a)) = (2, 2). Then from the

description of SI , one has
a ∈ Aτ ⇐⇒ A1 ∈ Λ∗

2,p,N .

Let A0 be any superspecial point, A0 → A1 an isogeny of degree p, and M1 ⊂ M1 their
Dieudonné modules. Then we have

A1 ∈ Λ∗
2,p,N ⇐⇒ In M 0 = M0/pM0, 〈M 1, V M 1〉 = 0.

Translating this property we have

• Let a = (A•) ∈ As1τ and M • the chain of de Rham cohomologies. Then KR(a) =
τ ⇐⇒ 〈α(M 1), α(ω1)〉0 = 0.

This completes the geometric characterization of KR strata.

KR strata under the transition maps∗.

∗part of this subsection is incooperated with U. Görtz
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Recall that we have

AI =
∐

x∈AdmI (µ)

AI,x, AdmI(µ) ⊂ Waτ, Wa =< s0, . . . , sg >,

AJ =
∐

x∈AdmJ(µ)

AJ,x, AdmJ(µ) ⊂ WJ\W̃/WJ ,

where AdmJ(µ) is the image of AdmI(µ) in WJ\Waτ/WJ ⊂ WJ\W̃/WJ and WJ =< si | i 6∈
J >, a finite group. For g = 2, we consider J = I, {0, 1}, {0, 2}, {1}, {0}. For x ∈ AdmI(µ),
let

[x]J = {y ∈ AdmI(µ) | [y] = [x] in WJ\Waτ/WJ }.

LetA[x]J be the corresponding KR stratum in AJ , regarding [x]J as an element in WJ\W̃/WJ .

(1) J = {0, 1} and WJ =< s2 >. Using τs2 = s0τ , we compute

[τ ]J = {τ, s2τ, s0τ, s02τ }, dim=1,
[s1τ ]J = {s1τ, s10τ, s21τ }, dim=2,
[s12τ ]J = {s12τ, s120τ, s212τ }, dim=3,
[s01τ ]J = {s01τ, s010τ, s201τ }, dim=3.

We have

(i) There are 2 ordinary irreducible components; they are (properly) contained in A[s01τ ]J

and A[s12τ ]J respectively.
(ii) There are 3 p-rank one irreducible components; they are (properly) contained inA[s1τ ]J ,
A[s01τ ]J and A[s12τ ]J respectively.

(iii) The closure A[s1τ ]J is a smooth surface, which is the intersection of A[s01τ ]J and A[s12τ ]J .
(iv) A[τ ]J consists of “horizontal” components of the supersingular locus SJ .
(v) SJ ∩ A[s1τ ]J consists of open “vertical” components of SJ .
(vi) A[s01τ ]J ∪ A[s12τ ]J is the smooth locus of AJ .

Question: Is π{0},J : A[s1τ ]J → A
non−ord
{0} the blow-up of Anon−ord

{0} at the singular (superspe-

cial) points? We expect the answer to be YES.

(2) J = {0, 2} and WJ =< s1 >. Using τs1 = s1τ , we compute

[τ ]J = {τ, s1τ }, dim=0, H2 = αp × αp,
[s2τ ]J = {s2τ, s12τ, s21τ }, dim=2, H2(η) = µp × αp,
[s0τ ]J = {s0τ, s10τ, s01τ }, dim=2, H2(η) = Z/p× αp,
[s02τ ]J = {s02τ, s201τ, s120τ }, dim=3, H2(η) = Z/p× µp,
[s212τ ]J = {s212τ }, dim=3, H2 = µp × µp,
[s010τ ]J = {s010 }, dim=3, H2 = Z/p× Z/p.

Here H2(η) means ker(A0,η → A2,η) for a generic point η of this KR stratum. We have

(i) There are 3 ordinary irreducible components. Two are A[s212τ ]J and A[s010τ ]J , and the
other is contained in the stratum A[s02τ ]J .

(ii) There are 2 p-rank one irreducible components. They are contained in A[s0τ ]J and
A[s2τ ]J , respectively.

(iii) The supersingular locus SJ has pure dimension 2. It is contained in A[s02τ ]J .
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(iv) The zero dimensional stratum A[τ ]J consists of points (A0
F
→ A

(p)
0 ), where A0 is super-

special.
(v) The union A[s212τ ]J ∪ A[s010τ ]J ∪ A[s02τ ]J is the smooth locus.

In fact, in the module space AI with Iwahori level structure, we have

SI = As021τ ∩ As102τ .

(3) J = {1} and WJ =< s0, s2 >. Using τs0 = s2τ and τs2 = s0τ , we compute

[τ ]J = {τ, s0τ, s2τ, s02τ }, dim=0,
[s1τ ]J = { the rest }, dim=3.

We have

(i) There is 1 ordinary irreducible component.
(ii) There is 1 p-rank one irreducible component.
(iii) The supersingular locus has pure dimension 1. Each component is isomorphic to P1.

The intersection SJ ∩ A[s1τ ]J is the smooth locus of SJ .
(iv) The zero dimensional stratum A[τ ]J is the singular locus of AJ , also the singular locus

of SJ , which is equal to the set Λ∗
2,p,N .

(v) The stratum A[s1τ ]J is the smooth locus.

(4) J = {0} and WJ =< s1, s2 >. We compute that [τ ]J is everything. The moduli space
A{0} is itself a KR stratum.

4. Some aspects for higher dimensional cases (joint with Ulrich Görtz)

For simplicity, we will restrict ourselves to the Iwahori level case. The results in this section
can be extended to any parahoric level.

Numerical characterization.

Let a = (A0 → · · · → Ag) ∈ AI(k). Let

M• : M−g →M−g+1 → · · · →M0, V M• : VM−g → VM−g+1 → · · · → VM0.

be the associated chain of Dieudonné modules. Then we have

KR(a) = inv(M•, V M•) ∈ Iw\GSp2g(L)/Iw ' W̃ ,

where L = FracW (k), Iw the standard Iwahori compact subgroup (≡ B4 mod p), W̃ the
extended Weyl group of GSp2g.

Another way to think about KR types is as follows. Let

M • : M−g →M−g+1 → · · · →M 0

be the chain of de Rham cohomologies, together with Hodge filtrations. Forget the F and V
structure, just look at isomorphism classes of chains of vector spaces over k, together with
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Hodge filtration as subspaces. Then the isomorphism classes give rise to the KR types.

Just as flag varieties, on one hand, we have a group-theoretic description for the cell decom-
position (coming from the Bruhat decomposition). On the other hand, we use the incidence

relation to construct these Schubert cells. The latter description is useful in the intersection
theory.

Definition. Let a = (A0 → · · · → Ag) ∈ AI(k) and let M−g →M−g+1 → · · · →M 0 be the
chain of de Rham cohomologies with Hodge filtration ω−i ⊂ M−i. Let αi,j : M−j → M−i be
the composition for 0 ≤ i < j ≤ g. Define

σij(a) := dimω−i/αij(ω−j), σ′
ij(a) := dimM−i/ω−i + αij(M−j).

For 0 ≤ i, j ≤ g, define

dij(a) := dimα0i(ω−i) + α0j(M−j)
⊥.

Clearly, the function

σ : a 7→ (σij(a), σ
′
ij(a), dij(a))

is constant on each KR stratum. This particularly implies that the function

p− rank(a) =

g−1∑

i=0

2− σi,i+1(a)− s
′
i,i+1(a)

is constant on each KR stratum. Conversely, we prove

Theorem 4.1. KR strata are distinguished by the invariant σ. That is, if x 6= x′ ∈ Adm(µ),
then σ(AI,x) 6= σ(AI,x′).

Shuffle construction.

The goal is to reduce geometric problems on KR strata Ax to those on p-rank zero KR
strata and KR strata of the moduli spaces of lower genus g.

Observation: an Iwahori level structure on (A, λ) is a flag of finite group schemes

H• : 0 ⊂ H1 ⊂ · · · ⊂ Hg ⊂ A[p]

satisfying certain conditions. This structure is defined through the p-torsion subgroup (A[p], λ)
with polarization.

Let BT1
h,I be the set of isomorphism classes of (G, λ,H•) over k, where

• (G, λ) is a principally polarized BT1 of height 2h,
• H• : H1 ⊂ · · · ⊂ Hh ⊂ G a flag of finite flat group schemes such that < λ(Hh), Hh >=

0 (Note that λ : G→ GD).

We may formulate BT1
h,I as a category of groupoids with objects as above. But let us regard

it simply as a set for simplicity. Clearly, we have a surjective map

BT1
h,I

KR
−→ AdmI(µ).
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For s ≥ 1, t ≥ 1 with s+ t = g, denote by Sh(s, t) the set of maps

ϕ : {0, 1, . . . , g} → {0, 1, . . . , s}

such that

ϕ(0) = 0, ϕ(g) = s, and ϕ(i) ≤ ϕ(i+ 1) ≤ ϕ(i) + 1, ∀ i = 0, . . . , g − 1.

It is called the set of shuffle maps of s letters and t letters.
For example, let ϕ ∈ Sh(4, 3), we use ϕ to shuffle 123 into 1234 as follows. Suppose

ϕ : 0 1 1 2 3 3 4 4.

We underline the repeated numbers, remove them, and replace by 123:

ϕ : 0 1 1 2 2 3 4 3.

For ϕ ∈ sh(s, t), define ϕ′ : {0, 1, . . . , g} → {0, 1, . . . , t}, called the complement of ϕ, as
follows.

ϕ′(0) = 0, ϕ′(i+ 1) + ϕ(i+ 1) = ϕ′(i) + ϕ(i) + 1, ∀ i = 0, . . . , g − 1.

With information above, we construct a map

shϕ : BT1
s,I × BT1

t,I → BT1
g,I

by (
(G, λ,H•), (G

′λ′,H
′
•)
)
7→ (G×G′, λ× λ′, ϕ(H•, H

′
•)),

where

ϕ(H•, H
′
•) : K1 ⊂ K2 ⊂ · · · ⊂ Kg ⊂ G×G′, Ki = Hϕ(i) ×Hϕ′(i).

The shuffle map shϕ descends to the set AdmI(µ):

BT1
s,I × BT1

t,I

shϕ

−−−→ BT1
g,Iy(KR,KR)

yKR

AdmI(µ, s)× AdmI(µ, t)
shϕ

−−−→ AdmI(µ, g).

In general, the map shϕ is not injective. But we have

• The restriction shϕ : Adm0
I(µ, g − f)× Admf

I (µ, f)→ Admf
I (µ, g) is injective.

•

Admf
I (µ, g) =

∐

ϕ∈Sh(g−f,f)

shϕ(Adm0
I(µ, g − f)× Admf

I (µ, f)).

These follow easily from the canonical decomposition G = Get,m ⊕Gloc,loc.
For any x1 ∈ AdmI(µ, t), x2 ∈ AdmI(µ, t) and ϕ ∈ Sh(s, t), we get a shuffle morphism

shϕ : As,x1
×At,x2

→ Ag,x,

where x = shϕ(x1, x2). This produces various subvarieties in a KR stratum Ag,x which may
give enough information about what we want to know on Ag,x. For example, let x be any

element say in Admf
I (µ, g). Then there exist a unique x1 ∈ Adm0

I(µ, g− f), x2 ∈ Admf
I (µ, f),

and ϕ ∈ Sh(g − f, f) such that x = shϕ(x1, x2). So we have a morphism

shϕ : Ag−f,x1
×Af,x2

→ Ag,x.
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Geometric information on Ag,x, for example possible Newton polygons, can be read from those
on Ag−f,x.

Admissible elements: g=3 and p-rank zero

We list all 29 µ-admissible elements with p-rank zero in the extended Weyl group W̃ =
X∗(T ) oW (GSp6). Below

τ = (0, 0, 0, 1, 1, 1), (14)(25)(34), s0 = (−1, 0, 0, 0, 0, 1), (16),

s1 = (12)(56), s1 = (23)(45) and s3 = (34).

Write si1i2...ir for the element si1si2 · · · sir in the affine Weyl group Wa.

KR (ν, w) ∈ X∗(T ) oW KR (ν, w) ∈ X∗(T ) oW
(1) τ (0,0,0,1,1,1), (14)(25)(34) (16) s310τ (0,0,1,0,1,1), (132645)

(2) s0τ (0,0,0,1,1,1), (1463)(25) (17) s120τ (0,0,0,1,1,1), (16)(2453)
(3) s1τ (0,0,0,1,1,1), (142635) (18) s320τ (0,0,1,0,1,1), (154623)
(4) s2τ (0,0,0,1,1,1), (153624) (19) s230τ (0,1,0,1,0,1), (124653)
(5) s3τ (0,0,1,0,1,1), (1364)(25) (20) s201τ (0,0,0,1,1,1), (1562)(34)
(6) s10τ (0,0,0,1,1,1), (145)(263) (21) s301τ (0,0,1,0,1,1), (135)(642)
(7) s20τ (0,0,0,1,1,1), (153)(246) (22) s121τ (0,1,0,1,0,1), (16)(25)(34)
(8) s30τ (0,0,1,0,1,1), (13)(25)(46) (23) s231τ (0,,1,0,1,0,1), (1265)(34)
(9) s01τ (0,0,0,1,1,1), (142)(356) (24) s312τ (0,0,1,0,1,1), (16)(2354)
(10) s21τ (0,0,0,1,1,1), (15)(26)(34) (25) s323τ (0,1,1,0,0,1), (123654)
(11) s31τ (0,0,1,0,1,1), (135)(264) (26) s3010τ (0,0,1,0,1,1), (132)(456)
(12) s12τ (0,0,0,1,1,1), (16)(24)(35) (27) s3120τ (0,0,1,0,1,1), (16)(23)(45)
(13) s32τ (0,0,1,0,1,1), (154)(236) (28) s3230τ (0,1,1,0,0,1), (123)(465)
(14) s23τ (0,1,0,1,0,1), (124)(356) (29) s2301τ (0,1,0,1,0,1), (12)(34)(56)
(15) s010τ (0,0,0,1,1,1), (145632)

The partial (Bruhat) order on this finite set is expressed as follows. Two element x, y has
relation x < y in the Bruhat order if and only if there is a chain with x = x0 → x1 → · · · →
xn = y.
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(1) τ → s0τ , s1τ , s2τ , s3τ (16) s310τ → s3010τ , s3120τ
(2) s0τ → s10τ , s20τ , s30τ , s01τ (17) s120τ → s3120τ
(3) s1τ → s10τ , s01τ , s21τ , s31τ , s12τ (18) s320τ → s3120τ , s3230τ
(4) s2τ → s20τ , s21τ , s12τ , s32τ , s23τ (19) s230τ → s3230τ , s2301τ
(5) s3τ → s30τ , s31τ , s32τ , s23τ (20) s201τ → s2301τ
(6) s10τ → s010τ , s310τ , s120τ (21) s301τ → s3010τ , s2301τ
(7) s20τ → s120τ , s320τ , s230τ , s201τ (22) s121τ (max.)
(8) s30τ → s310τ , s320τ , s230τ , s301τ (23) s231τ → s2301τ
(9) s01τ → s010τ , s201τ , s301τ (24) s312τ → s3120τ
(10) s21τ → s201τ , s121τ , s231τ (25) s323τ → s3230τ
(11) s31τ → s310τ , s301τ , s231τ , s312τ (26) s3010τ (max.)
(12) s12τ → s120τ , s121τ , s312τ (27) s3120τ (max.)
(13) s32τ → s320τ , s312τ , s323τ (28) s3230τ (max.)
(14) s23τ → s230τ , s231τ , s323τ (29) s2301τ (max.)
(15) s010τ → s3010τ

The following table indicates the possible Newton polygons occurring in each KR stratum.
The symbol A represents the supersingular Newton polygon; the symbol B represents the
Newton polygon with slopes 1

3
and 2

3
. Let NP denote the set of the Newton polygons of

points in the KR stratum.

KR NP KR NP KR NP
(1) τ A (11) s31τ B (21) s301τ A,B

(2) s0τ A (12) s12τ A (22) s121τ A
(3) s1τ A (13) s32τ B (23) s231τ A,B
(4) s2τ A (14) s23τ B (24) s312τ A,B
(5) s3τ A (15) s010τ A,B (25) s323τ A,B
(6) s10τ B (16) s310τ A,B (26) s3010τ A,B
(7) s20τ B (17) s120τ A,B (27) s3120τ A,B
(8) s30τ A (18) s320τ A,B (28) s3230τ A,B
(9) s01τ B (19) s230τ A,B (29) s2301τ A,B
(10) s21τ A (20) s201τ A,B

Numerical invariants for g = 3.

The following is the result of computation of the invariants (σij, σ
′
ij) and dij. Recall these

invariants. Let s = (A0 → · · · → Ag) be a point in AI(k). Let (M−g
α
→ M−g+1 . . . ,

α
→ M 0)

be the associated chain of de Rham cohomologies. For 0 ≤ i < j ≤ g, write αij : M−j →M−i

for the composition. Define

σij(s) := dimω−i/αij(ω−j), σ′
ij(s) := dimM−i/(ω−i + αij(M−j)).

For 1 ≤ i, j ≤ g − 1, define

dij(s) = dimα0i(ω−i) + α0j(M−j)
⊥.
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Given an element x ∈ Adm(µ), we use the expression x = (ν, w) to compute the lattice
(L′

•) with tΛ′
−i ⊂ L−i ⊂ Λ′

−i. Then we use this lattice to compute the invariants (σij, σ
′
ij)

and dij. We first compute the invariants (σij, σ
′
ij) for each (p-rank zero µ-admissible) element x.

KR (σ02, σ
′
02) (σ13, σ

′
13) (σ03, σ

′
03) KR (σ02, σ

′
02) (σ13, σ

′
13) (σ03, σ

′
03)

(1) τ (2,2) (2,2) (3,3) (16) s310τ (2,2) (1,2) (2,2)
(2) s0τ (2,2) (2,2) (2,3) (17) s120τ (2,2) (1,2) (2,3)
(3) s1τ (2,2) (2,2) (3,3) (18) s320τ (2,2) (2,1) (2,2)
(4) s2τ (2,2) (2,2) (3,3) (19) s230τ (2,1) (2,2) (2,2)
(5) s3τ (2,2) (2,2) (3,2) (20) s201τ (1,2) (2,2) (2,3)
(6) s10τ (2,2) (1,2) (2,3) (21) s301τ (1,2) (2,2) (2,2)
(7) s20τ (2,2) (2,2) (2,3) (22) s121τ (2,2) (2,2) (3,3)
(8) s30τ (2,2) (2,2) (2,2) (23) s231τ (2,1) (2,2) (3,2)
(9) s01τ (1,2) (2,2) (2,3) (24) s312τ (2,2) (2,1) (3,2)
(10) s21τ (2,2) (2,2) (3,3) (25) s323τ (2,1) (2,1) (3,1)
(11) s31τ (2,2) (2,2) (3,2) (26) s3010τ (1,2) (1,2) (1,2)
(12) s12τ (2,2) (2,2) (3,3) (27) s3120τ (2,2) (1,1) (2,2)
(13) s32τ (2,2) (2,1) (3,2) (28) s3230τ (2,1) (2,1) (2,1)
(14) s23τ (2,1) (2,2) (3,2) (29) s2301τ (1,1) (2,2) (2,2)
(15) s010τ (1,2) (1,2) (1,3)

In the following two tables some KR strata are already distinguished by the invariants
(σij, σ

′
ij).

(σ03, σ
′
03) (1,2) (2,1) (2,2) (2,2) (1,3) (3,1)

(σ02, σ
′
02) (1,2) (2,1) (2,2) (1,1) (1,2) (2,1)

(σ13, σ
′
13) (1,2) (2,1) (1,1) (2,2) (1,2) (2,1)

KR (26) s3010τ (28) s3230τ (27) s3120τ (29) s2301τ (15) s010τ (25) s323τ

(σ03, σ
′
03) (2,2) (2,2) (2,2) (2,2) (2,2)

(σ02, σ
′
02) (1,2) (2,1) (2,2) (2,2) (2,2)

(σ13, σ
′
13) (2,2) (2,2) (2,1) (1,2) (2,2)

KR (21) s301τ (19) s230τ (18) s320τ (16) s310τ (8) s30τ

The following two tables are given by the invariants (σ03, σ
′
03) = (2, 3) and (σ03, σ

′
03) = (3, 2),

respectively. There are two classes in the each set of classes with invariants (σij, σ
′
ij) constant.

They are distinguished by the invariant d12 in the first table (resp. by the invariant d21 in the
second table). Notice that each pair of classes has the inclusion relation. In the first table,
every smaller element is obtained by dropping s2 from the bigger element. In the second table,
every smaller element is obtained by dropping s1 from the bigger element.
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(σ03, σ
′
03) (2,3) (2,3) (2,3) (2,3) (2,3) (2,3)

(σ02, σ
′
02) (1,2) (1,2) (2,2) (2,2) (2,2) (2,2)

(σ13, σ
′
13) (2,2) (2,2) (1,2) (1,2) (2,2) (2,2)

d12 2 3 2 3 2 3
KR (9)s01τ (20) s201τ (6) s10τ (17) s120τ (2) s0τ (7) s20τ

(σ03, σ
′
03) (3,2) (3,2) (3,2) (3,2) (3,2) (3,2)

(σ02, σ
′
02) (2,1) (2,1) (2,2) (2,2) (2,2) (2,2)

(σ13, σ
′
13) (2,2) (2,2) (2,1) (2,1) (2,2) (2,2)

d21 1 2 1 2 1 2
KR (14) s23τ (23) s231τ (13) s32τ (24) s312τ (5) s3τ (11) s31τ

The following is the table for superspecial KR strata. Note that (σ03, σ
′
03) = (3, 3) implies

(σ02, σ
′
02) = (2, 2) and (σ13, σ

′
13) = (2, 2).

(σ03, σ
′
03) (3,3) (3,3) (3,3) (3,3) (3,3) (3,3)

d12 2 2 3 3 3 3
d21 1 2 1 2 2 2
d11 2 3 3
d22 3 2 3
KR (1) τ (3) s1τ (4) s2τ (10) s21τ (12) s12τ (22) s121τ

Supersingular KR strata.

Call a KR stratum Ax supersingular if it is contained in the supersingular locus SI . The
following are supersingular KR-types:

{τ, s1τ, s2τ, s12τ, s21τ, s121τ, s0τ, s3τ, s03τ } = W{0,3}τ ∪W{1,2}τ.

Note that their union is properly contained in the supersingular locus SI .

Theorem 4.2.
(a) (Case: x ∈ W{0,3}τ) Let Λ3,1,N be the set of superspecial principally polarized abelian

3-folds with a level-N structure over Fp. Then

(1) The closure As121τ has |Λ3,1,N | irreducible components, and each irreducible component

is isomorphic to

GL3 /B4 = {(a, b) ∈ P2 ×P2 | a · b = 0 } =: X ⊂ P2 ×P2.

(2) The closure As21τ has |Λ3,1,N | irreducible components, and each irreducible component

is isomorphic to { (a, b) ∈ X | b · b(p) = 0 }.
(3) The closure As12τ has |Λ3,1,N | irreducible components, and each irreducible component

is isomorphic to { (a, b) ∈ X | a · a(p) = 0 }.
(4) The closure As1τ has |Λ3,1,N | irreducible components, and each irreducible component

is isomorphic to

FP2 ∩X = { (a, a(p)) | a · a(p) = 0 }.
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(5) The closure As2τ has |Λ3,1,N | irreducible components, and each irreducible component

is isomorphic to

VP2 ∩X = { (b(p), b) | b · b(p) = 0 }.

(6) |Aτ | = |Λ3,1,N | · |U(3)(Fp)/B0(Fp)|, where B0 is a Borel subgroup over Fp.

(b) (Case: x ∈ W{1,2}τ) Let J = {1, 2}, and ΛJ := πJ,I(Aτ), where πJ,I : AI → AJ is the

natural projection.

(1) The closure As30τ has |ΛJ | irreducible components, and each irreducible component is

isomorphic to P1 ×P1.

(2) The closure As3τ has |ΛJ | irreducible components, and each irreducible component is

isomorphic to P1.

(3) The closure As0τ has |ΛJ | irreducible components, and each irreducible component is

isomorphic to P1.

(4) |Aτ | = |ΛJ | · (p
2 + 1).
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