On the bottom of the spectrum of regular graphs

Michel Coornaert Athanase Papadopoulos

Institut de Recherche Mathématique
Max-Planck-Institut für Mathematik
Avancée
Université Louis Pasteur et CNRS
Gottfried-Claren-Straße 26
7, rue René Descartes
67084 Strasbourg Cedex
Germany
France

On the bottom of the spectrum of regular graphs
 by
 Michel Coornaert and Athanase Papadopoulos*
 Institut de Recherche Mathématique Avancée
 Université Louis Pasteur et CNRS
 7, rue René Descartes, 67084 Strasbourg Cedex France

Abstract

We establish a formula for the smallest value λ_{0} of the spectrum of the Laplacian on a regular graph in terms of the critical exponent of the action of the fundamental group of the graph on its universal cover. This formula is a discrete analog of a formula due to Sullivan for the Laplacian on manifolds with constant negative curvature. We also obtain a characterization of λ_{0}-recurrent regular graphs.

§1.-Introduction and statement of the results

Let $k \geq 3$ be an integer. Consider a k-regular graph G, that is, a connected simplicial complex of dimension 1 where every vertex belongs to exactly k edges, and let S denote the set of vertices of G. Let $\ell^{2}(S)$ be the Hilbert space of square-summable functions on S and P the linear self-adjoint operator on $\ell^{2}(S)$ which associates to each element f in that space the element Pf defined by:

$$
P f(x)=\frac{1}{k} \sum_{y} f(y)
$$

where the sum is taken over all the vertices y which are connected to x by an edge. The Laplacian of the graph G is the operator Δ defined by $\Delta f=f-P f$.

It is well-known that the norm of P is equal to its spectral radius $r(P)$, that the spectrum of P is a compact subset of the segment $[-r(P), r(P)]$ and that $r(P)$ belongs to the spectrum of P. It follows that $\lambda_{0}(G)=1-r(P)$ is the smallest element of the spectrum of the Laplacian Δ. We call $\lambda_{O}(G)$ the bottom of the spectrum of G. It is clear

[^0]that we have $0 \leq \lambda_{0}(G) \leq 1$. (For general properties on the Laplacian on graphs, the reader can consult for example [DK] and [MW].)

There is a canonical length metric on G for which the length of each edge is equal to 1 . The universal covering space X of G is a k-homogeneous tree. It has an induced length metric, and the fundamentral group Γ of G acts propertly and isometrically on X. Let x and y be two arbitrary points of X. Then the critical exponent $\delta(G)$ of Γ is defined by the formula

$$
\delta(G)=\limsup _{R \rightarrow \infty} \frac{1}{R} \log (\operatorname{card}\{\gamma \in \Gamma \mid \operatorname{dist}(x, \gamma y) \leq R\})
$$

The Poincaré series associated to G

$$
\eta_{s}(x, y)=\sum_{\gamma \in \Gamma} \exp (-s \operatorname{dist}(x, \gamma y))
$$

is therefore divergent for $s<\delta(G)$ and convergent for $s>\delta(G)$. It can easily be shown that $\delta(G)$ does not depend on the chosen points x and y, and that we always have $0 \leq$ $\delta(G) \leq \log (k-1)$.

We prove the following theorem, which is an analog, in the setting of graphs, of Sullivan's generalization of a formula of Elstrodt-Patterson for manifolds of constant negative curvature (see [Sul], Theorem 2.17):

Theorem 1.- The bottom of the spectrum $\lambda_{0}(G)$ of a k-regular graph G is given by the following formula:

$$
\lambda_{0}(G)= \begin{cases}1-2 \frac{\sqrt{k-1}}{k} & \text { if } \quad \delta(G) \leq \frac{1}{2} \log (k-1) \\ \frac{1}{k}\left(1-e^{-\delta(G)}\right)\left(k-1-e^{\delta(G)}\right) & \text { if } \quad \delta(G) \geq \frac{1}{2} \log (k-1)\end{cases}
$$

where $\delta(G)$ denotes the critical exponent of the action of the group $\Gamma=\pi_{1}(G)$ on the universal cover of G.

The proof of Theorem 1 is given in $\S 3$ below.
Example.-Let G^{\prime} be any compact graph which is k^{\prime}-regular, with $k^{\prime} \leq k$, and define the graph G by adding at each vertex of G^{\prime} a connected piece of a homogeneous tree of degre k so that the resulting graph is k-regular. Then $\delta(G)=\delta\left(G^{\prime}\right)=\log \left(k^{\prime}-1\right)$. Applying Theorem 1, we obtain

$$
\lambda_{0}(G)=\left\{\begin{array}{l}
1-2 \frac{\sqrt{k-1}}{k} \quad \text { if } \quad\left(k^{\prime}-1\right)^{2} \leq k-1 \\
\frac{\left(k-k^{\prime}\right)\left(k^{\prime}-2\right)}{k\left(k^{\prime}-1\right)} \quad \text { if } \quad\left(k^{\prime}-1\right)^{2} \geq k-1
\end{array}\right.
$$

In Figure 1, we give an example of this construction with $k^{\prime}=3$ and $k=4$, and therefore $\lambda_{0}(G)=\frac{1}{8}$. In this figure, G^{\prime} is the 1 -skeleton of a tetrahedron (in bold lines) and G is the full graph drawn.

Figure 1
The graph G is called λ_{0}-recurrent if its λ-Green kernel $N_{\lambda}^{G}(x, y)$ is divergent at $\lambda=\lambda_{0}(G)$ for some (or equivalently for every) $x, y \in S$. (Note that in [MW], p. 215, λ_{0}-recurrent graphs are called $r(P)$-recurrent graphs). We shall also prove the following

Theorem 2.- The k-regular graph G is λ_{0}-recurrent if and only if the following two conditions hold: $\delta(G) \geq \frac{1}{2} \log (k-1)$ and the Poincaré series η_{s} of G is divergent at $s=\delta(G)$.

§2.- Green kernels

Let λ be a real number <1. Recall that the λ-Green kernel of the graph G is the $\operatorname{map} N_{\lambda}^{G}: S \times S \rightarrow[0, \infty]$ defined by

$$
N_{\lambda}^{G}(x, y)=\sum_{n=0}^{\infty}(1-\lambda)^{-n-1} p^{(n)}(x, y)
$$

where $\left(p^{(n)}(x, y)\right)$ is the n-th power of the matrix $(p(x, y)),(x, y) \in S \times S$, defined by $p(x, y)=\frac{1}{k}$ if x and y are connected by an edge and $p(x, y)=0$ otherwise. In probabilistic terms, $p^{(n)}(x, y)$ is the probability, starting at x, to reach the point y in n steps by means of the symmetric random walk on S, that is, the random walk for which the probability for going from one vertex to a neighboring vertex is $\frac{1}{k}$.

We have the following characterization of λ_{0} (see for example [MW], Theorem 4.4):
Proposition 1.-Let x and y be two arbitrary vertices of G. For every $\lambda<\lambda_{0}(G)$, we have $N_{\lambda}^{G}(x, y)<\infty$. For every λ such that $\lambda_{0}(G)<\lambda<1$, we have $N_{\lambda}^{G}(x, y)=\infty$.

Finally, let us recall that there is an explicit formula for the λ-Green kernel of a homogeneous tree, which is due to Kesten (see for example [MW] or [CP] §5):

Proposition 2.- Let X be a k-homogeneous tree, and let x and y be arbitrary vertices of X. Then
(i) if $1-2 \frac{\sqrt{k-1}}{k}<\lambda<1$, then $N_{\lambda}^{X}(x, y)=\infty$;
(ii) if $\lambda \leq 1-2 \frac{\sqrt{k-1}}{k}$, then $N_{\lambda}^{X}(x, y)=C \exp (-D \operatorname{dist}(x, y))$, where $C=C(k, \lambda)>0$ is a constant and where $D=D(k, \lambda)$ is the largest of the two solutions of the following equation:

$$
\lambda=\frac{1}{k}\left(1-e^{-D}\right)\left(k-1-e^{D}\right) .
$$

§3.-Proof of Theorems 1 and 2

Proof of Theorem. 1: Let x and y be two vertices of the graph G, and let u and v be two vertices of the universal covering X which project respectively to x and y. To simplify the notations, we let

$$
\lambda_{m}=1-2 \frac{\sqrt{k-1}}{k}
$$

We have, for every $\lambda<1$,

$$
N_{\lambda}^{G}(x, y)=\sum_{\gamma \in \Gamma} N_{\lambda}^{X}(u, \gamma v)
$$

Therefore, by Proposition $2, N_{\lambda}^{G}(x, y)=\infty$ for $\lambda_{m}<\lambda<1$. Using Proposition 1, we deduce

$$
\begin{equation*}
\lambda_{0}(G) \leq \lambda_{m} \tag{1}
\end{equation*}
$$

For $\lambda<\lambda_{m}$, using the notations of Proposition 2, we obtain

$$
\begin{aligned}
N_{\lambda}^{G}(x, y)=C & \sum_{\gamma \in \Gamma} \exp (-D \operatorname{dist}(u, \gamma v)) \\
& =C \eta_{D}(u, v)
\end{aligned}
$$

Therefore, for $\lambda<\lambda_{m}$, we have

$$
\begin{equation*}
N_{\lambda}^{G}(x, y)=\infty \text { if } D<\delta(G) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
N_{\lambda}^{G}(x, y)<\infty \text { if } D>\delta(G) \tag{3}
\end{equation*}
$$

Now the function $D=D(\lambda)$ is decreasing for $\lambda<\lambda_{m}$ and we have

$$
D\left(\lambda_{m}\right)=\frac{1}{2} \log (k-1)
$$

Using (1), (2) and (3), Theorem 1 follows from Proposition 1.
Proof of Theorem 2: We keep the same notations as in the proof of Theorem 1. We have

$$
N_{\lambda_{0}(G)}^{G}(x, y)=C \eta_{D_{o}}(u, v)
$$

where $D_{0}=D\left(\lambda_{0}(G)\right)$ is again the largest root of the equation given in Proposition 2 (ii) for $\lambda=\lambda_{0}(G)$.

We have $D_{0} \geq \frac{1}{2} \log (k-1)$. Therefore, if $\delta(G)<\frac{1}{2} \log (k-1)$, then the graph is not λ_{0}-recurrent. If $\delta(G) \geq \frac{1}{2} \log (k-1)$, then $\delta(G)=D_{0}$ by Theorem 1. The proof of Theorem 2 follows.

We conclude with a few remarks:
1.- We have $\lambda_{0}(G)=0$ if and only if the graph G is amenable (cf. [MW], Corollary 5.6). Therefore, Theorem 1 shows in particular that the amenability of G is equivalent to the condition $\delta(G)=\log (k-1)$. In the particular case where the graph G is the Cayley graph of a finitely generatoed group, with respect to one of its finite generating systems, we recover the cogrowth theorem of Grigorchuck-Cohen (see [Gri], [Coh], [Szw] and [Nor]). We are grateful to A. Valette who, after a preprint version of this note was circulated, has pointed to us the paper [Nor] where the amenability of a regular graph G is shown to be equivalent to the fact that $\delta(G)=\log (k-1)$, using considerations which are in the same spirit as the ones of the present paper.
2.-To use a celebrated formula of M. Kac's, Theorem 1 shows that we can "hear" the critical exponent $\delta(G)$ of a regular graph G in the case where $\delta(G) \geq \frac{1}{2} \log (k-1)$.
3.- Let ∂X be the boundary at infinity of the tree X, and let $\Lambda \subset \partial X$ be the limit set of $\Gamma=\pi_{1}(G)$, that is, the set of accumulation points in ∂X of the Γ-orbit of an arbitrary point of X. Let $\operatorname{dim}(\Lambda)$ denote the Hausdorff dimension of Λ. This dimension is taken relatively to the visual metrics on ∂X. (Let us recall that the visual metric on ∂X, seen from the point $x \in X$, is the metric d_{x} defined by $d_{x}\left(\xi, \xi^{\prime}\right)=\exp (-L)$, where L is the length of the common path of the two geodesic rays starting at x and converging respectively to the points ξ and ξ^{\prime} of ∂X.). If the graph G has compact core, then $\delta(G)=\operatorname{dim}(\Lambda)$ (see [Coo]). (Recall that the graph G is said to have compact core if the group Γ is convex cocompact, or equivalently if G contains a compact subgraph G_{0} such that each component of $G \backslash G_{0}$ is simply connected.) Therefore, by Theorem 1 , we can hear $\operatorname{dim}(\Lambda)$ if G has compact core and $\operatorname{dim}(\Lambda) \geq \frac{1}{2} \log (k-1)$. Note also that graphs with compact core have a divergent Poincaré series at $s=\lambda_{0}(G)$ (cf. [Coo]). Therefore, Theorem 2 shows that the $k-$ regular graph with compact core is λ_{0}-recurrent if and only if $\operatorname{dim}(\Lambda) \geq \frac{1}{2} \log (k-1)$. Note finally that all the graphs in the family of examples described in $\S 1$ above have compact core. In particular, the graph of Figure 1 is λ_{0}-recurrent.

References

[Coo] M. Coornaert, Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolique au sens de Gromov, Pacific Journal of Mathematics 159, No. 2 (1993), 241-270 .
[Coh] J. M. Cohen, Cogrowth and amenability of discrete groups, J. Functional Analysis 48, (1982) 301-309.
[CP] M. Coornaert and A. Papadopoulos, Récurrence des marches aléatoires et ergodicité du flot géodésique sur les graphes réguliers, prprint no. 1994/005, University of Strasbourg (1994).
[DK] J. Dodziuk and L. Karp, Spectral and function theory for combinatorial Laplacians, Contemp. Math. 73 (1988), 25-40.
[Gri] R. I. Grigorchuck, Symmetrical random walks on discrete groups, Advanced in Probability and Related Topics 6, 285-325, Marcel Dekker, 1980.
[MW] B. Mohar and W. Woess, A survey on spectra of infinite graphs, Bull. London Math. Soc. 21 (1989), 209-234.
[Nor] S. Northshield, Cogrowth of regular graphs, Proc. Amer. Math.Soc. 116 (1992), 203-205.
[Sul] D. Sullivan, Related aspects of positivity in Riemannian manifolds, J. Diff. Geom. 25 (1993), 327-351.
[Szw] R. Szwarc, A short proof of the Grigorchuck-Cohen cogrowth theorem, Proc. Amer. Math.Soc. 106 (1989), 663-665.

[^0]: * The second author is also supported by the Institute for Advanced Study (Princeton) and the Max-Plank-Institut für Mathematik (Bonn).

