On the bottom of the spectrum of regular graphs

Michel Coornaert Athanase Papadopoulos

Institut de Recherche Mathématique Avancée Université Louis Pasteur et CNRS 7, rue René Descartes 67084 Strasbourg Cedex

France

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 53225 Bonn

Germany

MPI / 94-64

.

.

.

.

.

On the bottom of the spectrum of regular graphs

by

Michel Coornaert and Athanase Papadopoulos * Institut de Recherche Mathématique Avancée Université Louis Pasteur et CNRS 7, rue René Descartes, 67084 Strasbourg Cedex France

Abstract. We establish a formula for the smallest value λ_0 of the spectrum of the Laplacian on a regular graph in terms of the critical exponent of the action of the fundamental group of the graph on its universal cover. This formula is a discrete analog of a formula due to Sullivan for the Laplacian on manifolds with constant negative curvature. We also obtain a characterization of λ_0 -recurrent regular graphs.

§1.—Introduction and statement of the results

Let $k \ge 3$ be an integer. Consider a k-regular graph G, that is, a connected simplicial complex of dimension 1 where every vertex belongs to exactly k edges, and let S denote the set of vertices of G. Let $\ell^2(S)$ be the Hilbert space of square-summable functions on Sand P the linear self-adjoint operator on $\ell^2(S)$ which associates to each element f in that space the element Pf defined by:

$$Pf(x) = \frac{1}{k} \sum_{y} f(y),$$

where the sum is taken over all the vertices y which are connected to x by an edge. The Laplacian of the graph G is the operator Δ defined by $\Delta f = f - Pf$.

It is well-known that the norm of P is equal to its spectral radius r(P), that the spectrum of P is a compact subset of the segment [-r(P), r(P)] and that r(P) belongs to the spectrum of P. It follows that $\lambda_0(G) = 1 - r(P)$ is the smallest element of the spectrum of the Laplacian Δ . We call $\lambda_O(G)$ the bottom of the spectrum of G. It is clear

^{*} The second author is also supported by the Institute for Advanced Study (Princeton) and the Max-Plank-Institut für Mathematik (Bonn).

that we have $0 \leq \lambda_0(G) \leq 1$. (For general properties on the Laplacian on graphs, the reader can consult for example [DK] and [MW].)

There is a canonical length metric on G for which the length of each edge is equal to 1. The universal covering space X of G is a k-homogeneous tree. It has an induced length metric, and the fundamentral group Γ of G acts property and isometrically on X. Let x and y be two arbitrary points of X. Then the *critical exponent* $\delta(G)$ of Γ is defined by the formula

$$\delta(G) = \limsup_{R \to \infty} \frac{1}{R} \log(\operatorname{card}\{\gamma \in \Gamma | \operatorname{dist}(x, \gamma y) \le R\}).$$

The Poincaré series associated to G

$$\eta_s(x,y) = \sum_{\gamma \in \Gamma} \exp\left(-s \operatorname{dist}(x,\gamma y)\right)$$

is therefore divergent for $s < \delta(G)$ and convergent for $s > \delta(G)$. It can easily be shown that $\delta(G)$ does not depend on the chosen points x and y, and that we always have $0 \le \delta(G) \le \log(k-1)$.

We prove the following theorem, which is an analog, in the setting of graphs, of Sullivan's generalization of a formula of Elstrodt-Patterson for manifolds of constant negative curvature (see [Sul], Theorem 2.17):

Theorem 1.— The bottom of the spectrum $\lambda_0(G)$ of a k-regular graph G is given by the following formula:

$$\lambda_0(G) = \begin{cases} 1 - 2\frac{\sqrt{k-1}}{k} & \text{if } \delta(G) \le \frac{1}{2}\log(k-1) \\ \frac{1}{k}(1 - e^{-\delta(G)})(k-1 - e^{\delta(G)}) & \text{if } \delta(G) \ge \frac{1}{2}\log(k-1), \end{cases}$$

where $\delta(G)$ denotes the critical exponent of the action of the group $\Gamma = \pi_1(G)$ on the universal cover of G.

The proof of Theorem 1 is given in §3 below.

Example.—Let G' be any compact graph which is k'-regular, with $k' \leq k$, and define the graph G by adding at each vertex of G' a connected piece of a homogeneous tree of degre k so that the resulting graph is k-regular. Then $\delta(G) = \delta(G') = \log(k'-1)$. Applying Theorem 1, we obtain

$$\lambda_0(G) = \begin{cases} 1 - 2\frac{\sqrt{k-1}}{k} & if \quad (k'-1)^2 \le k-1\\ \frac{(k-k')(k'-2)}{k(k'-1)} & if \quad (k'-1)^2 \ge k-1. \end{cases}$$

In Figure 1, we give an example of this construction with k' = 3 and k = 4, and therefore $\lambda_0(G) = \frac{1}{8}$. In this figure, G' is the 1-skeleton of a tetrahedron (in bold lines) and G is the full graph drawn.

Figure 1

The graph G is called λ_0 -recurrent if its λ -Green kernel $N^G_{\lambda}(x, y)$ is divergent at $\lambda = \lambda_0(G)$ for some (or equivalently for every) $x, y \in S$. (Note that in [MW], p. 215, λ_0 -recurrent graphs are called r(P)-recurrent graphs). We shall also prove the following

Theorem 2.— The k-regular graph G is λ_0 -recurrent if and only if the following two conditions hold: $\delta(G) \geq \frac{1}{2}\log(k-1)$ and the Poincaré series η_s of G is divergent at $s = \delta(G)$.

§2.— Green kernels

Let λ be a real number < 1. Recall that the λ -Green kernel of the graph G is the map $N_{\lambda}^{G}: S \times S \to [0, \infty]$ defined by

$$N_{\lambda}^{G}(x,y) = \sum_{n=0}^{\infty} (1-\lambda)^{-n-1} p^{(n)}(x,y)$$

where $(p^{(n)}(x,y))$ is the *n*-th power of the matrix (p(x,y)), $(x,y) \in S \times S$, defined by $p(x,y) = \frac{1}{k}$ if x and y are connected by an edge and p(x,y) = 0 otherwise. In probabilistic terms, $p^{(n)}(x,y)$ is the probability, starting at x, to reach the point y in n steps by means of the symmetric random walk on S, that is, the random walk for which the probability for going from one vertex to a neighboring vertex is $\frac{1}{k}$.

We have the following characterization of λ_0 (see for example [MW], Theorem 4.4):

Proposition 1.—Let x and y be two arbitrary vertices of G. For every $\lambda < \lambda_0(G)$, we have $N_{\lambda}^G(x,y) < \infty$. For every λ such that $\lambda_0(G) < \lambda < 1$, we have $N_{\lambda}^G(x,y) = \infty$.

Finally, let us recall that there is an explicit formula for the λ -Green kernel of a homogeneous tree, which is due to Kesten (see for example [MW] or [CP] §5):

Proposition 2.—Let X be a k-homogeneous tree, and let x and y be arbitrary vertices of X. Then

(i) if
$$1 - 2\frac{\sqrt{k-1}}{k} < \lambda < 1$$
, then $N_{\lambda}^{X}(x, y) = \infty$;

(ii) if $\lambda \leq 1 - 2\frac{\sqrt{k-1}}{k}$, then $N_{\lambda}^{X}(x,y) = C \exp(-D \operatorname{dist}(x,y))$, where $C = C(k,\lambda) > 0$ is a constant and where $D = D(k,\lambda)$ is the largest of the two solutions of the following equation:

$$\lambda = \frac{1}{k}(1 - e^{-D})(k - 1 - e^{D}).$$

$\S3$.—Proof of Theorems 1 and 2

Proof of Theorem 1: Let x and y be two vertices of the graph G, and let u and v be two vertices of the universal covering X which project respectively to x and y. To simplify the notations, we let

$$\lambda_m = 1 - 2\frac{\sqrt{k-1}}{k}.$$

We have, for every $\lambda < 1$,

$$N^G_{\lambda}(x,y) = \sum_{\gamma \in \Gamma} N^X_{\lambda}(u,\gamma v).$$

Therefore, by Proposition 2, $N_{\lambda}^{G}(x, y) = \infty$ for $\lambda_{m} < \lambda < 1$. Using Proposition 1, we deduce

(1)
$$\lambda_0(G) \le \lambda_m$$

For $\lambda < \lambda_m$, using the notations of Proposition 2, we obtain

$$egin{aligned} N^G_\lambda(x,y) &= C\sum_{\gamma\in\Gamma}\expig(-D\operatorname{dist}(u,\gamma v)ig)\ &= C\eta_D(u,v). \end{aligned}$$

Therefore, for $\lambda < \lambda_m$, we have

(2)
$$N_{\lambda}^{G}(x,y) = \infty \text{ if } D < \delta(G)$$

(3)
$$N_{\lambda}^{G}(x,y) < \infty \text{ if } D > \delta(G).$$

Now the function $D = D(\lambda)$ is decreasing for $\lambda < \lambda_m$ and we have

$$D(\lambda_m) = \frac{1}{2}\log(k-1).$$

Using (1), (2) and (3), Theorem 1 follows from Proposition 1.

Proof of Theorem 2: We keep the same notations as in the proof of Theorem 1. We have

$$N_{\lambda_0(G)}^G(x,y) = C\eta_{D_O}(u,v)$$

where $D_0 = D(\lambda_0(G))$ is again the largest root of the equation given in Proposition 2 (*ii*) for $\lambda = \lambda_0(G)$.

We have $D_0 \geq \frac{1}{2}\log(k-1)$. Therefore, if $\delta(G) < \frac{1}{2}\log(k-1)$, then the graph is not λ_0 -recurrent. If $\delta(G) \geq \frac{1}{2}\log(k-1)$, then $\delta(G) = D_0$ by Theorem 1. The proof of Theorem 2 follows.

We conclude with a few remarks:

1.— We have $\lambda_0(G) = 0$ if and only if the graph G is amenable (cf. [MW], Corollary 5.6). Therefore, Theorem 1 shows in particular that the amenability of G is equivalent to the condition $\delta(G) = \log(k-1)$. In the particular case where the graph G is the Cayley graph of a finitely generatoed group, with respect to one of its finite generating systems, we recover the cogrowth theorem of Grigorchuck-Cohen (see [Gri], [Coh], [Szw] and [Nor]). We are grateful to A. Valette who, after a preprint version of this note was circulated, has pointed to us the paper [Nor] where the amenability of a regular graph G is shown to be equivalent to the fact that $\delta(G) = \log(k-1)$, using considerations which are in the same spirit as the ones of the present paper.

2.— To use a celebrated formula of M. Kac's, Theorem 1 shows that we can "hear" the critical exponent $\delta(G)$ of a regular graph G in the case where $\delta(G) \ge \frac{1}{2} \log(k-1)$.

3.— Let ∂X be the boundary at infinity of the tree X, and let $\Lambda \subset \partial X$ be the limit set of $\Gamma = \pi_1(G)$, that is, the set of accumulation points in ∂X of the Γ -orbit of an arbitrary point of X. Let dim(Λ) denote the Hausdorff dimension of Λ . This dimension is taken relatively to the visual metrics on ∂X . (Let us recall that the visual metric on ∂X , seen from the point $x \in X$, is the metric d_x defined by $d_x(\xi,\xi') = \exp(-L)$, where L is the length of the common path of the two geodesic rays starting at x and converging respectively to the points ξ and ξ' of ∂X .). If the graph G has compact core, then $\delta(G) = \dim(\Lambda)$ (see [Coo]). (Recall that the graph G is said to have compact core if the group Γ is convex cocompact, or equivalently if G contains a compact subgraph G_0 such that each component of $G \setminus G_0$ is simply connected.) Therefore, by Theorem 1, we can hear dim(Λ) if G has compact core and dim(Λ) $\geq \frac{1}{2} \log(k-1)$. Note also that graphs with compact core have a divergent Poincaré series at $s = \lambda_0(G)$ (cf. [Coo]). Therefore, Theorem 2 shows that the k-regular graph with compact core is λ_0 -recurrent if and only if dim(Λ) $\geq \frac{1}{2} \log(k-1)$. Note finally that all the graphs in the family of examples described in §1 above have compact core. In particular, the graph of Figure 1 is λ_0 -recurrent.

References

[Coo] M. Coornaert, Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolique au sens de Gromov, Pacific Journal of Mathematics 159, No. 2 (1993), 241-270.

[Coh] J. M. Cohen, Cogrowth and amenability of discrete groups, J. Functional Analysis 48, (1982) 301-309.

[CP] M. Coornaert and A. Papadopoulos, Récurrence des marches aléatoires et ergodicité du flot géodésique sur les graphes réguliers, prprint no. 1994/005, University of Strasbourg (1994).

[DK] J. Dodziuk and L. Karp, Spectral and function theory for combinatorial Laplacians, Contemp. Math. **73** (1988), 25-40.

[Gri] R. I. Grigorchuck, Symmetrical random walks on discrete groups, Advanced in Probability and Related Topics 6, 285-325, Marcel Dekker, 1980.

[MW] B. Mohar and W. Woess, A survey on spectra of infinite graphs, Bull. London Math. Soc. 21 (1989), 209-234.

[Nor] S. Northshield, Cogrowth of regular graphs, Proc. Amer. Math.Soc. 116 (1992), 203-205.

[Sul] D. Sullivan, Related aspects of positivity in Riemannian manifolds, J. Diff. Geom. 25 (1993), 327-351.

[Szw] R. Szwarc, A short proof of the Grigorchuck-Cohen cogrowth theorem, Proc. Amer. Math.Soc. 106 (1989), 663-665.