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0. Introduction

As in an earlier paper [Th] we are concerned with calculating the cohomology ring
H*(G,ﬂ) of a sporadic simple group G away form the prime 2. This is easiest when the
prime £ concerned divides |G| to the first power, for H*(G,ll)( 2) is then periodic and
all one has to do is identify a maximal generator. We complete this part of our programme
is section two below. However our main purpose is at least to begin the determination of
H*(G,E)( 0) when an P,—Sylow*subgroup G ] is elementary abelian, and the £—torsion is
detected by the subgroup of H (G Q’H) left invariant by the action of the normaliser
N(G 2) of Gy in G . We do this for several of the Mathieu groups M, and for Janko’s
group J 1 postponing possible consideration of the general case to a future paper. As
elsewhere in the theory of simple groups M, provides an excellent test for the general
method, since M2 4,3 is an elementary non—abelian group of order 27, and the complete

description of the stable elements in its cohomology is not easy.

A further motive for writing this paper is the wish to understand the relation between

H*(G,K*IF ;) and the modular representations of G over the finite field F , . In most of
2

2
the cases we consider the Chern subring in ordinary cohomology localised away from 2 is

generated by the classes of one or two representations of low degree. This suggests a simple

structure for Rlet(G) as a A—ring with conjugation, particularly when t =1 and one

exploits the prime factorisation of Ko, ,(F,) = Z/ 9%_1 . However with the exception of
J, » which behaves much like a group with periodic cohomology, our results only suggest
ways of studying modular representations, since we are faced with the familiar convergence
problems of the Atiyah—Hirzebruch spectral sequence. Indeed the generic situation for
groups of composite order seems to be that there are universal cycles, which cannot be

detected by Chern classes in either the characteristic zero or the modular case. However
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cohomology does at least make plain which representations are important for the A-ring
structure: as an elementary example consider M11 , which has irreducible 2—modular re-
presentations of degrees 1, 10, 44 and 16. Using eigenvalues it is easy to see that

Pay = Az(pm)—(l) , but because of their characters when restricted to M11,11 p1g 2and
its conjugate cannot be obtained in this way. However p,¢ + pjo o Az(plo) —pP10—(3),
showing that this situation is simpler over the prime field IF2 . This is reflected in cohomo-

logy by the fact that
BY(My 2/ g5_1)(10) @ Dy » but BOM 3 B/g5 1) ;) is trivial
As a harder example the reader may like to consider M23 in the same way.
The final section of this paper is devoted to 2—torsion in the cohomology of J 1 We
include it as a supplement to the partial calculations already in the literature, see {Ch],

and also because it represents one of the last contributions to mathematics by J. Frank

Adams.



1. Mathieu groups

We recall that the five simple Mathieu groups were originally constructed as
examples of multiply transitive groups; the two quintuply transitive groups
My &> 55 and My, =37 §,, contain the other three examples as stabilising
subgroups. For a description of the various ways in which the groups Mk have been
described we refer the reader to the "Atlas" — we shall be mainly concerned with the

second series:
PSL(3,!F4) =M,, C——> M22,C2?>M23 &> M,, -

The importance of the projective special linear group M,, is that it carries much of the
*

structure of H (Mk,IZ) (3)° indeed for the first three groups M, , is an elementary abe-

lian group of rank 2. Furthermore, with N and Z as usual denoting normaliser and cen-

traliser, we have

(i) Z(Mk 3) = Mk 3 (k = 21, 22 and 23) , and
(ii) N(My 2)/Z(M, 3) ¥ Qq (quaternion group, k = 21, 22) and

¥ SD,¢ (semi—dihedral group, k = 23) .

. L8 _ 2 -1, _ 3 . .
The group SD16 has presentation {s,t:8 =t“=1, t “st =8"} . The isomorphisms

are not immediately apparent from the tables in the Atlas, but an alternative source is the
paper of Z. Janko, [J]. Since the centraliser is as small as possible the action of the
quotient group on M, 5 is faithful. When k = 21 we write G for the normaliser, it is a

split extension of the form
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a_n~b 8,t
C3 x C3 >—-»G——H‘___ _QS .

We shall pick a convenient basis for the normal subgroup as a vector space over an exten-
sion field of F, below. From now on we use the following notation:

Let K be a finite abelian group generated as a direct product by a,b,... The one—dimen-
sional representation e of K is faithful on the subgroup <a> , maps the remaining gene-
rators b,... tol,and a= cl(;) € H2(K,H) . The group M,, has a representation 7,
the Todd representation, in GL(11,F,) described in [Td], which when lifted to charac-

teristic zero has the partial character:

3
72 11 23, 23,

class 1 (3

Here 7? denotes a conjugacy class consisting of three disjoint 7—cycles with three 1—cycles
omitted from the notation, etc. We shall also denote by 7 its restriction to any of the

smaller Mathieu groups contained in M,, .

Away from the primes 2 and 3 we have

THEOREM 1 (i) H (M, Z[3]) is generated by the classes cq, ¢, ¢;o and c,; of

the 11-dimensional representation 7 (guitably restrj L ive family of
Sylow subgroups).

i) If k=11,12,22 or 23 H (M, Z[L]) has the same generator.
f il L)) has the same generators
away from the prime 11. In all four cases
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2
c1o(TIMy 11) = c5(pp IMy 43)

where p, can be identified from the table

k 11 12 22 23

deg(py) | 16 | 16 | 280 | 896

Remark. The anomalous behaviour at 11 is explained by the splitting of a single conju-

gacy class of permutations on passing from a symmetric to a Mathieu group.
For a proof see [Th].

Let Ch( )( 2) denote the Chern subring of the even—dimensional cohomology localised at
the prime £ .

THEOREM 2 The subring Ch(M,)g) of H*(Mk,zz)(3) is generated by c;(r|M, 4),
i =3,4. At least when k=22 or 23 Ch(M,)) is properly contained in H*(Mk,rz)(3).

*
Proof. We calculate the 3—primary part of H (G,Z) , where G is the normaliser of a
representative 3—Sylow subgroup in PSL(3,F 4) . The spectral sequence for the defining

Q *
8 = E2’0 . The odd

short exact sequence is trivial, 8o H*(G,R)(s) = H*(C3 x Cq,1)
dimensional contribution is an exterior algebra on a 3—dimensional generator, compare
[Le]. In even dimensions proceed as follows: Let V be a 2—dimensional vector space over
[F, and consider the induced action of Qg on the symmetric algebra S(V*) . Take
coefficients in [Fgq rather than [F3 , 80 as to diagonalise the action of an element s of
order 4in Q 8" Here we use the usual presentation of QB as

4 2_.2 -1

{s,t:8 =1,8" =1t 3t=s_1},a.nd



represent Qg in SL(2[Fg) by

i 0 0 -1
Having extended the scalars choose a basis of eigenvectors {A,B} for

* :
Fq®5(V)=F q[a,ﬂ] with sA =iA and sB = —iB . Formally one first chooses A and
[F
3
then takes B to be the image of A under the Frobenius map ¢ . As an automorphism ¢

fixes @ and S, and on the coefficients $(A) = 2% we may further suppose that over the
extension field [F q the bases {A,B} and {a,8} are related by the equations

A=ia+f8, B=a+if .

The remark in the preamble about the choice of basis is now clear — G3 is to be generated
by a and b dual to the classes a and §. Now [F q [A,B] <8> hasan [Fq-basis con-
sisting of all monomials AJB¥ with j+ 3k = 0 mod 4 , which is equivalent to

(k—=j) =0 mod 4 . Since t induces the automorphism A ~—— -B, B+~—— A, one type
of invariant polynomial is "evenly symmetric" in A and B, i.e. one considers symmetric

polynomials of the form
AJB¥ 4 Akpi- a}k . where

j and k are both even, and (k—j) = 0 mod 4 . The second type must satisfy
AdBE _ Akpi = 7 Where j and k are both odd and (k—j) = 0(4) . The first fow inva-
riant polynomials are A%B2 = —(02 + ﬁ2)2 , At + Bt = —(a4 + ﬁ4) ,
* Q
ASB — AB® = (a® + B)(a38 + o), ..... One sees immediately that S(V) 8 has two

generators of degree 4, one of degree §, ..... On the other hand by counting dimensions we
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see that all but one of the irreducible representations of G factor through the quotient
group Q 8 and the exception, obtained by induction form the trivial representation, re-
stricts to the regular representation minus a trivial summand on C3 X C3 . An easy calcu-
lation now shows that Ch(G)(s) ig generated by Cq and Cg of this restriction, and hence
is properly contained in Heven(G,ﬂ)(s) .

This argument applies immediately to the Mathieu groups M21 and M22 since the
stable elements in the cohomology of Mk'3 coincide with those invariant under the nor-
maliser, see [Sw]. Inspection of the character table again shows that Ch(M22)(3) is gene-
rated by the Chern classes of the regular representation of C3 x 03 - For M,, the argu-
ment follows the same pattern, except that one replaces Q8 by SD 16 represented over

F
q %Y

s-———*[c 0],“—-’[0 1],whex.'e (=14

0{3 1 0

is a primitive 8th—root of unity. A basis of eigenvectors is given by {A,B} , where
sA=(A, sB= C3B , and because t has order 2 rather than 4 the invariant polynomials
are AJgk + Akp] with j+ 3k = 0 mod 8 . As one would except this subalgebra is smaller
than for Mo, but A%p? still provides a generator in degree 4, which is not describable

as a Chern class.

The situation for the largest Mathieu group M2 4 is more complicated, since M2 4,3
is a non—abelian group of order 27 and exponent 3. This cohomology of this group has been
worked out by G. Lewis, see [he] , and using this multiplicative relations one can give a
surprisingly simple description of the Chern subring. However the determination of the
3—primary part of H:.‘(M2 4,12) is harder, since we can no longer apply Swan’s normaliser

theorem.



2. Other sporadic simple groups

In this section we consider the twelve sporadic simple groups omitted from our pre-
vious paper [Th]. Loosely speaking these fall into three classes — the Fischer groups, those

closely related to the Monster, and the oddments J,, Ru, O’N, Ly and J 4 Because the

3
last five groups are best described by means of faithful modular representations, our
method works particularly well for them. However we start by sumarising the information
for primes £ 2 5 dividing the order to the first power only, i.e. for which H*(G,E)( 2) is
periodic. A blank space means that the prime concerned does not divide the order; a space
containing a dash (—) means that the Sylow subgroup G ¢ is not cyclic. An asterisk (*)

against an entry means that a maximal generator in cohomology may be taken to be the

appropriate Chern class of a non—trivial irreducible representation of smallest degree.



7 |11 {13 | 17 {19 |23 |29 {31 |37 a3 | 47| 67
g 16 | 18"
Ru 12 26 28
o'N - | 22 12 30
Ly 12" | 10 12 | 36 44
3, 6| - 44" [ 56" 20 |24 | 28
HN 127 20 18
Th - 24 36" 30
B - 20" | 267 327 36| 22 30 46
He - 16
Fi, 12" 10 |12
Fi,, 127 [ 207 |12 | 32 22
Pl ~ | 20" | 267 32 22 | 28
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For the first groups we can summarise the information from our table in the following re-

sult:

THEOREM 3 Let the pair (G,q) be as shown

Ru | O'N | Ly | J

and let R be the coefficient ring Z[f] if G =J, and zz[}ﬁ] otherwige. Then
#'(G,R) is a sum of polynomial algebras, each of which is generated hern

restricted irreducible representation.

Proof. This follows the lines of the argument in [Th], and depends on an examination of

(a) the character tables and (b) the listed maximal subgroups of G in the Atlas.

Remarks on the individual groups.

Ru: Perhaps the most revealing representation is that of the related group 2.G in the
orthogonal group 028(ﬂ [i}) reduced modulo 5. So far as odd torsion in cohomology is
concerned 2.G behaves like G, and the Chern classes of this [F5—representa.tion pick up

maximal generators for 7 and 13, and the square of 2 maximal generator for 29.

Ly: This is perhaps the most interesting group among the oddments, since the period for
the prime 31 (equal to %(31—1) ) is 80 low. This is explained by Ly containing Go(Fy)
as a maximal subgroup (this group of Lie type has periodic cohomology for the primes 5, 7



—-11 — o

and 31, the period for both the latter being 12). The remaining maximal subgroups of in-
terest to us are the cyclic by cyclic extensions 67 : 22 and 37 : 18 , and the semi—direct
product 35 (2 % Mll) , which detect 67—, 37— and 11—torsion respectively. However in
order to realise a maximal generator for 31 as a Chern class one must go in the Atlas to

X3g taking the value 43 110 144 at the identity.

J4: This is usually thought of as a subgroup of GL,,,(F,) . However comparison with
other groups in this class suggests that one look for a more geometrically motivated repre-

gentation over the Galois field [F11 )

Further calculations along the lines of those carried out for the Mathieu groups in the
previous section seem possible, although not very rewarding. With the exceptions of HN,
Ly and B, the orders of which are divisible by 56 , all the groups on our list have the pro-
perty that,if £ 2 5,then £ divides the order to at most the third power. Thus, if 02 is
the highest power occuring, calculation of both Ch(G)( 0) and H*(G,Zl)( g) 3 in Theo-
rem 2 seems to be straightforward. A Sylow subgroup G ¢ 18 necessarily abelian, and the
image of the restriction map coincides with the subgroup invariant under the action of the
normaliser N(G f,) .For &3 dividing the order one is again forced to use Lewis’ calcula-
tions for the non—abelian group of order ¢% and exponent £ . The situation is straight-
forward enough in principle, although certainly numerically complicated. The groups most

accessible to this attack would seem to be Fi22 and Fi23 )

3. Janko’s first group J; (revisited)

In our previous paper [Th] we exploited the fact that away from the prime two J 1
%*
behaves like a group with periodic cohomology to calculate H (J,,Z [%] ) . With the ex-



-12 -

ception of £ = 11 the £—periods all divide 12, which points to the importance of the
IFH—-representa.tion ¢ used originally by Janko to define the group. Indeed the dimension
of ¢ equals 7 and is minimal for a positive non—trivial representation over any field. The

values of ¢ on the different conjugacy classes are given by:

:class 1 2[3] sU1 | s5t2) | 7]10t) {1004 |15 (015020  190)]
o |7]-1|1 '(1*2"/-5 '(15‘/-5 -1 kaﬁ 3—+§5 1+¢ 5|1y 3| 1+A(a))

Here A is one of 3 irreducible characters of degree 6 for the normaliser N(J, ;o) , and

a;, 8, 35 Tepresent three conjugacy classes of elements of order 19.

All elements of order two are conjugate, a 2—Sylow subgroup is elementary abelian of order
8, and any positive representation of J | must restrict to a direct sum of copies of the tri-

vial and regular representations. For example ¢|J 12 equals p___ —(1). The calculations

Teg
are completed in even dimensions by

THEOREM 4 (J.F. Adams) H®*"(3, 1)) may be presented by 5 generators
X,y,2z,u,v of dimensions 6,8,10,12,14 respectively, and two relations Iy = 0, Iy =0,
where

Ly = X°F + XV + yu + 2,

r24=x4+x2u+xyz+y3+zv+u2.

Proof. This is a more complicated version of that of Theorem 2, and we again use the
*
symmetric algebra S(V ) associated with the 3—dimensional vector space V over Fy .

Write S(V*) as a polynomial algebra [, [a,8,7] , andlet K be a subgroup of order 21
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in GL(V) 2 GL(3,F,) acting in the obvious way on S(V*) . This is an accurate model for
the cohomology of J 1 » Bince the normaliser of J 1.2 is a cyclic—by—cyclic extension of the
form 7:3.

In order to find generators for S(V’.‘)K we embed [, [a,8,7] in Fg [a,8,7] , and
let ¥ be the Frobenius automorphism as in section 1. Over IF8 we can find a new basis
{A,B,C} of S(V*) consisting of linearly independent eigenvectors corresponding to the

2 4 for an element k € K of order 7.

eigenvalues n, n° and g
Step 1 S(V’.‘)K has an [F,,—base consisting of the symmetric sums
7i5 = A'BICK + BIOIA¥ + C'AJB"

where i +2j+4k=0mod 7.

This is proved by showing that monomials of the form AiBjCk are k—invariant, and

then taking the sum in order to allow for the group extension.

Step 2 Write X =0y = ABC
y = o159 = AB? +BC? + cA®
_ _a352 3.2 3,2
2—0320—AB + BYC“ + C°A
— _ b 5 5
u-ale—AB+BC+CA
_ AT 7 7
v—a700—A+B +C' .

Step 3 Use induction on the degree of the symmetric sums 7; & to show that the five
polynomials above actually do generate the invariant elements. Direct calculation shows
that they also belong to [, [a,8,7] , rather than to the polynomial ring over [F8 . Fur-

thermore the two relations Iog and I,y A&re satisfied. (This can be proved more slickly
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using Steenrod operations.)
Step 4 The relations are exhaustive. We have to show that the ring epimorphism

* K
R= ﬂ:2 [x,y,z,u,v] /(IZO’r24) _r_" S(V )

is a monomorphism. We begin by localising so as to invert x = ABC .
LEMMA 5 Themap R — R(x 1) is mono.

Proof. One first shows by successive formation of quotients that the sequence
XY, Vilggfgy in F, [x,y,2,u,v] is regular. From this it follows that multiplication by x is
(1-1) on the quotient ring R.

Now extend the scalars in the localised ring from [F2 to [F8 , noting that we have

one generator and one relation less. Replace Toy by
’ 4 2 3 z1 4—23 2 .
Tgg =X +x"u+y +y—x——+u , and write
U=A%g, V=B%, W=C% . Then U,V,W arefixed by k and permuted by an
element h of order 3in K. Write y/z= U+V+W=g ,z/ =UV+

VW + WU = g, and x= UVW = g, . Then u/, = U2V + V2W + W2U = g, , say, and

[F2 [glsg21g3)g4]
(ry5)

R(x_l) = (x—l) , where

2 3 3 2
Iip=8st+ (8182 + 83)34 + (5153 +8t 53) :
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Given the algebraic independence of U, V and W it is now clear that f is a mono-
morphism after inversion of x and extension of scalars. Given Lemma 5 the same is true

for the original map.

COROLLARY 5 The 2—primary part of the Chern subring Ch(J,) 2) is properly con-
tained in Heven(Jl,Il)(z) :

Proof. This is a matter of evaluating the total Chern class of the regular representation of
an elementary abelian group of rank 3. It turns out that the only non—vanishing classes are
cy = oyt a2ﬁ2+ .+ afr(e+ B+ 7) ,
Cg = 0264 + ...+ aﬁ7(a3 + ﬂa + 73 + afv) and
4 2
¢, =a (ﬂ27+7ﬁ)+... .

This calculation serves as a useful check on that in Theorem 4, and the existence of the
classes x and z of degrees 6 and 10 shows that there are invariant elements other than
Chern classes. Furthermore, and the same argument applies to the Mathieu groups, com-
parison of spectral sequences shows that the class x (for example) is a universal cycle in
the Atiyah—Hirzebruch spectral sequence converging to the completed representation ring

R(J 1) . Here no localisation of coefficients is involved, and we have yet further examples

for which the Grothendieck filtration of R(G) is definitely finer than the topological.
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