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CURVED KOSZUL DUALITY THEORY

JOSEPH HIRSH AND JOAN MILLES

ABSTRACT. We extend the bar-cobar adjunction to operads and properads, not necessarily aug-
mented. Due to the default of augmentation, the objects of the dual category are endowed with
a curvature. As usual, the bar-cobar construction gives a cofibrant resolution for any properad.
Applied to the properad encoding unital and counital Frobenius algebras, notion which appears
in 2d-TQFT, it defines the associated notion up to homotopy. We further define a curved Koszul
duality theory for operads or properads presented with quadratic, linear and constant relations.
This provides smaller resolutions. We apply this new theory to study the homotopy theory and
the cohomology theory of unital associative algebras.

MSC: 18D50, 18G10

INTRODUCTION

In [Hoc45], Hochschild introduced a (co)homology theory for associative algebras and in [Sta63],
Stasheff introduced the homotopy theory for associative algebras. Nowadays, we know how to de-
scribe these theories in operadic terms, but this approach does not encode the units in unital
associative algebras. In order to define a homotopy theory and a cohomology theory for unital
associative algebras, we refine the operadic theory and more precisely its Koszul duality theory.

In representation theory, an algebra A is “represented” as an algebra of operations with one in-
put and one output on a vector space V' via a representation p € Homaig (4, End(V)). To encode
operations with several inputs and one output, one uses the notion of an operad [May72, BVT73].
More generally, one uses the notion of properads to encode operations with several inputs and
several outputs [Val07]. An associative algebra is a special kind of operad and an operad is a
special kind of properad, and theories about properads generalize those of operads and associa-
tive algebras. For example a bar-cobar adjunction defined in a properadic setting generalizes one
defined for operads and algebras. In [Val07], the bar construction B assigned a coaugmented dg
coproperad to an augmented dg properad and the cobar construction €) assigns an augmented dg
properad to a coaugmented dg coproperad, and the two constructions are adjoint. An important
property of the adjunction is that the bar-cobar composition (2BP defines a cofibrant resolution
of an augmented dg properad P.

In this paper, we extend the bar-cobar adjunction (€2, B) to non-augmented properads. The lack
of augmentation appears on the new bar construction as a curvature. We therefore define curved
coproperad, whose our bar construction is an example. We then extend the cobar construction to
coaugmented curved coproperads, resulting in a dg properad. The composition bar-cobar provides
a cofibrant resolution QBP of a properad P. For example, we obtain a cofibrant resolution for the
properad encoding unital and/or counital Frobenius algebras. Since the datum of a 2-dimensional
topological quantum field theory, 2d-TQFT for short, is equivalent to a unital and counital Frobe-
nius algebra structure [Abr96, Koc04], this provides homotopy tools to study 2d-TQFT. With
our model, the methods of [Wil07] apply to show that the differential forms Qgzr(M) on a closed,
oriented manifold M bear a unital and counital Frobenius algebra structure up to homotopy.

The first author was supported by a National Science Foundation Graduate Research Fellowship.
The second is supported by the ANR grant JCJC06 OBTH.
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2 JOSEPH HIRSH AND JOAN MILLES

The bar-cobar resolution 2BP is large and it is often desirable to have a smaller resolution.
To this end, we develop a curved Koszul duality theory for properads generalizing the Koszul
duality theory for properads [Val07], operads [GJ94, GK94], and associative algebras [Pri70]. One
of the main object is the Koszul dual coproperad P!, which has, here, a curvature. It applies to
properads with a quadratic, linear and constant presentation. The properads for which this theory
apply are called Koszul properads. In this case, the cobar construction QP! is a resolution of P.
This theory extends to coloured operads to recover, as an example, the resolution of the coloured
operad Zso given by Markl in [Mar01]. We summarize the different generalizations of the Koszul
duality theory in the following table:

Monoids Relations Homogeneous quadratic | Quadratic and linear gﬁ;iii:;;ﬁnear
Associative algebras [Pri70] [Pos93, PPO5]
Operads [GJ94, GK94] Section 4 of this
Properads [Val07] (GCTVO9) paper

The operad uAs encoding unital associative algebras is an example of an operad with qua-
dratic, linear and constant relations. It is a Koszul operad in the previous sense and we get a
“small” cofibrant resolution uA., := Qu.Asi = uAs. This particularly simple resolution allows
us to define the notion of homotopy unital associative algebras. We recover actually the notion
of homotopy unit for A-algebra which appears in [FOOO09]. After we achieved this work, we
were told about the existence of the incoming paper of Lyubashenko [Lyul0]. In this paper, the
author extracts, from the definition of [FOOO09], an operad, which corresponds to the one given
by the present Koszul duality theory, and proves that it is a cofibrant resolution of the operad u.A4s.
Algebras over a cofibrant operad carries good homotopy properties. With our approach in terms
of Koszul duality theory, we prove several of these homotopy properties (rectification, transfer,
“strict” minimal model). We also obtain functorial resolutions on the level of unital associative
algebras. We use these other resolutions to study the cohomology theory of unital associative
algebras.

We begin the paper with a survey of the results on homotopy unital associative algebras ex-
pressed in an internal language, explained without, for example, the words “operad” or “properad”.
This section corresponds to the results obtained in the last section of this paper. In Section 2, we
recall definitions of associative algebras, operads and properads. In Section 3, we extend the bar
and the cobar construction to the non-augmented framework and we define the notion of curved
twisting morphims. In Section 4, we extend the Koszul duality theory for homogeneous quadratic
properads to properads with quadratic, linear and constant relations. Section 5 is devoted to
resolution of non-augmented properads as bimodules over themselves and to functorial resolutions
of P-algebras. Section 6 studies the operad encoding unital associative algebras. We describe the
homotopy theory and the cohomology theory for this category of algebras.

In this paper, we work over a field K of characteristic 0.
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1. RESULTS ON UNITAL ASSOCIATIVE ALGEBRAS

In this section, we develop the homotopy and cohomology theories of unital associative algebras.
The definitions, proofs, techniques, and pictorial descriptions of the results are based on operad
theory and can be found in Section 6. However, this section does not contain the word “operad”
and can be read independently from the rest of the paper. The comparison with the work of
[FOOO009] is described in Section 6.

1.1. Unital associative algebra. A unital associative differential graded algebra, or unital dga,
is a quadruple (A, p, e, da), where (A, d4) is a dg module, 4 : A® A — A, and e : K — A are
dg module maps, such that the map p is associative and such that the element e(1k) is a left and
right unit for the associative product pu.

The version of this structure “up to homotopy” is what we call a uA.-algebra, for homotopy
unital associative algebra. Let f : V. — W be a homogeneous K-linear map of degree |f|. We
denote its derivative by 9(f) := dw o f — (=1)//If o dy .

1.2. Homotopy unital associative algebra. A homotopy unital associative algebra or uAs-
algebra structure on a dg module (A, d4) is given by a collection of maps {uS : AZ(=15D) — A}

of degree n — 2 + |S|, where the set S runs over the set of subsets of {1, ..., n} for any integer
n > 2 and where S = {1} when n = 1. The p? are given pictorially by planar corollas with n
entries labelled by 1, - -+, n on which we put “corks” when the label is in S. For example, we

have ugl} = K( The maps pS satisfy the following identities:

. /,Lél} and uf} are homotopies for the unit

() - Y
o) = b

where the empty space between the corollas and the corks is the composition of operations
and where | is the identity of A

e for (n, S) # (2, {1}) and (n, S) # (2, {2}),

S S Sa||S] 1,8 : : Sa :
() = § : (_1)q(r+| 11)+182151 [+p+ psto (id, ..., id, p22, id, ..., id).

ptq+r=n ’ ”

p+l+r=m p_lsl‘ 7‘_‘Sll

Or, pictorially:

() re e

(1) Every unital dga (A, u, e,d) naturally equips the dg module (A, d4) with the structure
of a uA ,-algebra by

p ifn=2and S=10
ps =< e ifn=1and S = {1}
0 otherwise

(2) A strictly unital Aoo-algebra, or suAs-algebra is an As-algebra (A, da, {in}n>2) with
e € A so that e is a left and right unit for ps, and e annihilates u, for n > 3 [KS06]. Every
sud.-algebra is naturally a uA.,-algebra by

n ifn>2.98=10
pd=<¢ e ifn=1and S = {1}
0 otherwise

REMARK. Every uA..-algebra contains an A.,-algebra if we take p,, := ,u?l for all n > 1. The ad-
ditional algebraic structure given by a uA..-algebra provides homotopies for the “unital relations”
along with the homotopies already present for the “associative relations.”
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1.3. Infinity-morphism. We define the notion of infinity-morphism between two uA,,-algebras
A and B by a collection of maps £ : A2("~15)) — B of degree n — 1+ |S|, represented graphically
by planar trees with “corks” as the uA,.-algebra structures but with a triangle <7 as vertex. For

example, we have f?fl} = ﬁ/ . The f2 satisfy the relations:

Rl —i\V/\/ \
a&\y//—ziyb/ N

where the planar trees with “corks” and no triangle represent the uA,,-algebra structure of A
on the top and the uA ,-algebra structure of B on the bottom. With this definition of infinity-
morphism, we prove a rectification theorem.

1.3.1. Theorem (Rectification Theorem, Theorem 6.3.2). Let A be a uA-algebra. We can rectify
A: there is a unital associative algebra A’ such that A is uA.-equivalent to A’.

Moreover, we have a transfer theorem.

1.3.2. Theorem (Homotopy Transfer Theorem, Theorem 6.4.5). Let A be a homotopy unital
associative algebra and let V' be a chain complex. Given a strong deformation retract

= aOn

i.e., p and i are chain maps, where poi = idy and dah + hdy = id4 —i o p, there is a natural
uAso-algebra structure on 'V, and a natural extension of i to an infinity-morphism.

1.4. Comparison with the literature. In the literature, there are several definitions of “weakly
unital” or “homotopy unital” A..-algebras [KS06, Lyu02, Fuk02, FOOO09]. The definitions
of [KS06] and [Lyu02], describe properties of A..-algebras, while the definition presented in
[FOOO009] describes a structure on an As.-algebra. In [LMO06] these are compared and shown to
be, in some sense, equivalent. Our notion of homotopy unital associative algebra, or uA,,-algebra,
is an A..-algebra with additional structure, and in fact coincides with the structure described in
[FOO009].

In [FOOO09], the authors prove (Theorem 5.4.2°) that there is a (gapped, filtered) sud.
minimal model for every (gapped, filtered) uAy-algebra. We prove the following analogue.

1.4.1. Theorem (Corollary 6.5.3). Let A be a uAs-algebra. There is an suls-algebra structure
on the homology of A which is equivalent to A.

We extend this theorem to a broad class of algebraic structures, including Batalin-Vilkovisky
algebras and commutative algebras.

1.5. André-Quillen cohomology theory for unital associative algebra. Following the ideas
of Quillen, we define a cohomology theory associated to any unital associative dga A with coef-
ficients in a A-bimodule M, denoted Hf 4 (A, M). We prove that this cohomology theory is an
Ext-functor and that it is equal to the Hochschild cohomology theory of the associative algebra
A.

1.5.1. Theorem (Theorem 6.6.7). Let A be a unital associative dga. We have
’:LAS(A7 M) = HH.+1(Aa M)

2. OPERADS AND PROPERADS

In this section, we recall the notion of algebra, operad and properad as successive generaliza-
tions. We refer to the book of Loday and Vallette [LV] for a complete and modern exposition
about algebras and operads in dg mod, to the book of [MSS02] for another presentation and to
the thesis of Vallette [Val07] for properads.
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2.1. Algebras. Let K-mod denote the monoidal category (K-mod, ®, K) of K-modules. A unital
associative algebra is a monoid (A, u, e) in this monoidal category. The product p: A®g A — A
is associative and e : K — A is a unit for the product.

As in representation theory, the elements of A are seen as operations with one input and one
output. Then we represent the product a;---a, by a vertical bivalent tree whose vertices are
indexed by the a;, see Figure 1.

FIGURE 1. Representation of the product ay---a,

2.2. Operads. An S-module P = {P(n)},>0 is a collection of K-modules P(n) endowed with
right action of the symmetric group S,,. One defines from [May72] the monoidal product o on the
category of S-modules by

(PoQ)(n):= @ (P(k) sy, ( EB (Qi1) ® -+ - ® Qix)) ®s;, x--xs4,, K[Sn])) )

k>0 i1+ tip=n
where the notation ®g, stands for the space of coinvariants under the (diagonal) action of the
symmetric group Si:
POU® RGRO) V=P VR Q@  RGy®F 0

for any p € P(k), ¢; € Q(ij), 0 €S,, and v € Si, with 7 € S,, the induced block-wise permutation.
This monoidal product encodes the composition of multilinear operations and we represent it by
2-levels trees as shown in Figure 2.

FIGURE 2. An element in (P o Q)(8)

The unit for the monoidal product is I := (0, K, 0, ...) where the K is in arity 1 and represent
the identity element modeled by the tree |. It forms a monoidal category denoted by S-Mod.

An operad is a monoid (P, v, e) in the monoidal category of S-modules S-Mod. The associative
product PoP — P is called the composition product and e : I — P is the unit for the composition
product.

EXAMPLE. A unital associative algebra induces an operad by this injective map

Unital associative algebras — Operads, A+ (0, 4,0, ...)
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2.3. Properads. Algebras encode operations with one input and one output. Operads encode
operations with several inputs and one output. To encode operations with multiple inputs and
outputs, one uses the notion of properad.

An S-bimodule P is a collection {P(m, n)}m n>0 of S-Sy -bimodules. One recalls from [Val07]
a monoidal product using 2-levels graphs as in Figure 3.

FIGURE 3. An element in (P X Q)(3, 5)

Let a and b the number of vertices on the first level and on the second level respectively. Let
N be the number of internal edges between the two levels. We associate to an a-tuple of integers
1= (i1, ..., 9q) the sum [7] := i1 + -+ +4,. To any pair of a-tuples 7 and 7 we denote by P(7, 7)
the tensor product P(j1, i1) ® - -+ ® P(Ja, 1a) and by S; the image of S;; x --- x §;, in Spy.

Let k = (ki, ..., ky) be a b-tuple and let 7= (ji, ..., jo) be an a-tuple such that |k| = 7] = N.
A (k, 7)-connected permutation is a permutation o in Sy such that the graph of a geometric
representation of o is connected when one connects the inputs labelled by j1 +---+4;,+1, ..., j1+
o+ 4 ji41 for 0 < i < a —1 and the outputs labelled by k; +---+k; + 1, ..., k1 + -+ + k;41 for
0 <i<b—1. We denote by SQJ the set of (k, 7)-connected permutations.

We define the monoidal product X, denoted X, in [Val07], on the category of S-bimodules by

(PRQ)(m, n) = P | @ KiSm] @s; P, k) @s; KIS ] ®s, Q(J; 7) ®s, K[Sy] 7
NeN \I,k,7,% SpP xSq

where the second direct sum runs over the b-tuples I, k and the a-tuples 7, 7 such that |I| = m,
|k| = |71 = N, |i] = n and we consider the module of coinvariants with respect to the S;* x S,-
action:

PEP1®- - - BPpRIDGD: - DGa®w ~ P17 BPr(1)®- - BPr(b) OTf 0 V30 —1(1) D B Gyy—1(a) OV; -,

for p € Sy, w € Sy, 0 € §7 _ and for 7 € S, with 73 the associated block-wise permutation,
v € S, with v; the associated block-wise permutation. We write an element in P X Q like this

O(p1, .-, pv)o(q1, - -, ga)w. The unit I for the monoidal product is given by
I(1,1) := K and
I(m,n) := 0 otherwise.

The category of S — bimodules with the operation X forms a monoidal category with unit 7. We
denote this monoidal category by S-biMod.

A properad is a monoid (P, v, ) in the monoidal category S-biMod of S-bimodules. The
associative product v : PX P — P is called the composition product and e : I — P is the unit for
the composition product.

EXAMPLE. An operad induces a properad as follows

P(1,n) = P(n) and

Operads — Properads, P — P, where { P(m,n) = 0 for m # 1.
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Finally, we have the following inclusions:

Monoidal category: (K-Mod, ®x) —  (S-Mod, o) — (S-biMod, K)
Monoid: Associative algebras —  Operads —  Properads.

The results about properads in this paper apply to algebras and operads as well by the above
inclusions of categories.

One defines dually the notions of coalgebra, cooperad, coproperad. For example, a coproperad
is a comonoid (C, A, n) in the monoidal category of S-bimodules S-biMod. The coproduct A : C —
CKC is coassociative and admits a counit i : C — I. All these definitions extend to the differential
graded setting, or dg setting for short. The differentials are compatible with the properad structure,
resp. coproperad structure, in the sense that they are derivations, resp. coderivations (see [LV] or
[Val07] for precise definitions). We will often refer to a dg “object” just as “object,” for example
we call dg properads “properads.”

3. CURVED TWISTING MORPHISMS

In this section, we recall the notion of twisting morphisms for augmented properads and co-
properads from [Val08] and [MV09] and the associated bar-cobar adjunction. To extend these
notions to the case where the properad is not augmented, we introduce the new notion of curved
coproperad and of curved twisting morphism between a curved coproperad and a not necessarily
augmented properad. We also extend the bar and the cobar constructions to this framework.
This provides a functorial cofibrant replacement for properads. We emphasize the fact that the
properad is not assumed to be augmented.

3.1. Twisting morphisms. We recall the theory of twisting morphisms between augmented
coproperads and augmented properads from [MV09].

Let M and N be two S-bimodules. By abuse of notation, we will denote by M ® N the
infinitesimal composite product of one element of M with one element of N grafted above, that
is the space of linear combinations of connected graphs with two vertices, the first one labelled by
an element of M and the one above labelled by an element of N. This is not quite the same as
QXy,1) P of [MV09], in which they define the product of augmented properads, and only take
elements from the augmentation ideal. However, we write sometimes M X, 1) NV instead of M@ N.
To an operad P, we associate the infinitesimal composition product v, 1y : P X, 1) P — P with
the help of e and ~. Associated to a coproperad C, we define the infinitesimal decomposition map
A1,1) : C — CH(y,1)C by the projection of A (with the help of ) on CX 1) C, or with the above
notation, on C ® C.

We recall the convolution product x on Hom(C, P) :=[],, ,,>o Homxk (C(m, n), P(m, n)) from
[MV09]. Let f, g € Hom(C, P). We denote by f x g the composite

A X
€20, CRG € pry P I, P

We define the derivative 9 of degree —1 on Hom(C, P) by

Af):=dpof— (-1 fode.

The convolution product * on Hom(C, P) is a Lie-admissible product (see [MV09] for more
details). Tt is stable on the space of equivariant maps from C to P denoted by Homg(C, P). Then
the bracket [f, g] := fxg — (=1)//ll9lg % f is a Lie bracket on Homg(C, P).

A morphism of S-bimodules « : (C, d¢) — (P, dp) of degree —1 in the Lie algebra Homg(C, P)
is called a twisting morphism if it is a solution to the Maurer-Cartan equation

1
da)+axa=0(a)+ i[a, a] =0.
We denote by Tw(C, P) the set of twisting morphisms in Homg(C, P).

We say that an operad P is augmented when there is a morphism P — [ of dg properads
such that I 5 P — I is the identity. It is equivalent to P = I & P as dg properads where
P := ker(P — I). Dually, we say that a coproperad C is coaugmented when there is a morphism
I — C of dg coproperads such that I — C 2, T is the identity. It is equivalent to C =~ I @ C as dg
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coproperads where C := coker(] — C). When P is augmented and C is coaugmented, we require
the twisting morphisms « to satisfy the compositions C - P — I and I—¢ 2, P being equal
to 0. A Coiugmented coproperag is Callgd cogilpotentf when for all z € C, there exists an n > 0
such that A?Ll)(x) = 0, where A(; 1) : C — C Xy 1) C is the primitive part of A 1) and where
Z?1,1) =(Aan® id?(nil)) o Z?f’ll) (see [LV] for more details in cooperad case).

When P is augmented and C is conilpotent, we recall from [Val07] that the bifunctor Tw(—, —)
is representable on the left by the cobar construction and on the right by the bar construction,
that is we have the following adjunction

Q) : conilpotent dg coprop. = augmented dg prop. : B
and there are natural correspondences

Homaug. dg prop.(QC, P) = TW(C, 7)) = Homeonil, dg coprop. (Ca BP)

3.2. Curved twisting morphism. We refine the previous section to the case where P is not
necessarily augmented. A curvature has to be introduced on the level of dg coproperads to encode
the default of augmentation. The associated notion is called a curved coproperad. We define the
notion of curved twisting morphism between a curved coproperad and a dg properad as a solution
of the curved Maurer-Cartan equation.

3.2.1. Curved coproperad. A curved coproperad is a triple (C, d¢, 6), where C is a graded (but
not dg) coproperad, the predifferential dc is a coderivation of C of degree —1 and the curvature
0 :C — I is a map of degree —2 such that:
a) d% = (9 & ch - ch & 9) o A(171)7
b) 0o dc =0.
A morphism between curved coproperads (C, dc,8) — (C', de/,6") is a morphism of coproperads
f:C — (' such that des o f = fode and 0’ o f = #. We denote this category by curved coprop..
We prove the following technical lemma that will be useful later.

3.2.2. Lemma. Let C be a coproperad. The cobracket (0 ® ide — ide ® 0) o A 1) with a linear
form 6 : C — I is a coderivation.

PRrROOF. The coassociativity of A, 1) gives
[((9 ®ide —ide ® 0) o A(l, 1)) R tde 4+ tde ® ((9 ®ide —ide ® 0) o A(l,l))] o A(l, 1)

= [((9 & ch) ] A(L 1)) & ’de - ch & ((ch ® 9) o A(l,l))] o A(l, 1)
= (9 ® A(L 1) — A(L 1) (9 0) o A(L 1) = A(L 1) o ((9 & ch — ch ® 9) o A(l,l)) .

O
3.2.3. The convolution curved Lie algebra. We define the new notion of curved Lie algebra
generalizing the notion of dg Lie algebra. A curved Lie algebra is a quadruple (g, [—, —], dg, ),
where (g, [—, —]) is a Lie algebra, the predifferential dg is a derivation of g of degree —1 and the
curvature 6 is an element of g (or equivalently a map K — g) of degree —2 such that:
a) dj = [, 0];
b) dg(8) =0.

Let (C, d¢,6) be a curved coproperad and let (P, dp) be a dg properad. We fix the element
O:=cof:CLISP
of degree —2 in Hom(C, P).

3.2.4. Proposition. When C is a curved coproperad and P is a dg properad, we have on Homg(C, P)
Hm,nzo Homg(C(m, n)? P(mv TL))

0? = [-,0] = (-x0)—(Ox-)
a®e) = 0.
Then (Homg(C, P), [—, —], 9, ©) is a curved Lie algebra, called the convolution curved Lie alge-

bra.
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ProoOF. We do the computations:

P(f) =dpod(f)— (=1)PDIa(f) o dc
=dpo f—(~=1)fldpo fode+ (=) (dp o fode — (—1)//If o dc?)
=—fode®’=~fo(0®ide —ide®0) oAy 1) =f+xO—Oxf

and 9(Q) =dpoeof —(—1)°leochode =0 since dpoe=0and §ode =0. O

An element « : (C, d¢, ) — (P, dp) of degree —1 in the curved Lie algebra Homg(C, P) is
called a curved twisting morphism if it is a solution of the curved Maurer-Cartan equation

da)+axa=06.
We denote by Tw(C, P) the set of curved twisting morphisms in Homg(C, P).

REMARK. The words “curved” and “curvature” refer to the geometric context. In that setting,
the Maurer-Cartan equation applied to a connection provides the curvature form. The flat case
corresponds to the curvature equal to zero, that is to the classical case.

3.3. Bar and cobar constructions. In this section, we extend the bar construction of aug-
mented dg properads to a curved bar construction from dg properads with target in curved copr-
operads. In the other way round, we extend the cobar construction of coaugmented coproperads
to coaugmented curved coproperads. In the algebra case, the cobar construction generalizes the
bar construction of curved algebras given in [PP05] and in [Pos93] to properads, though it is not
immediate that our constructions are the same, as [PP05, Pos93] do not make use of coalgebras.

3.3.1. Semi-augmented dg properads. A semi-augmented dg properad, or sdg properad for
short, (P, dp, ¢) is a dg properad P whose underlying S-bimodule is endowed with an augmenta-
tion of S-bimodules ¢ : P — I, not necessarily dg or of properads, called semi-augmentation. In
other words, ¢ is a retraction of S-bimodules of the unit e : I — P and we have an isomorphism
e+inc: I®P = P of S-bimodules, where P := ker e and inc is the inclusion P — P. We denote

p:=(e+ inc)*llp : P — P. In the following, we do not write the inclusion inc in the formulae.
The map 7 := povy : PXKP — P is not necessarily associative, even though the composition
product v : P XP — P is associative.

REMARK. The assumption for P to have a semi-augmentation ¢ is not restrictive since we are
working over a field K and since we just need to fix a section of P(1, 1). When P(1, 1) = I, we
choose the identity map. This is often the case, as it is for the operad encoding unital associative
algebras (see Section 6).

We define on P the map dz := podp, which is a differential since dp is a differential and since
the differential on I is 0. The differentials satisfy p o dp = d o p. However, we have d # dp in
general.

A morphism between two sdg properads (P, dp, €) ER (P’, dp, €') is a morphism of dg proper-
ads f: (P, dp) — (P', dp:) such that &’ o f = . We define f := p' o f : P — P’ and we remark
that dz7 o f=1fo d. We denote by sdg prop. the category of semi-augmented dg properads.

3.3.2. Coaugmented and conilpotent curved coproperads. When C is coaugmented, that
is, C has a coaugmentation I — C so that C =2 I & C as coproperads, we require that any twisting
morphism «a satisfies the compositions I — C < P and C = P = I to be zero. We denote
by coaug. curved coprop. the category of coaugmented curved coproperads and by conil. curved
coprop. the category of conilpotent curved coproperads (see Section 3.1).

We construct a pair of functors
B : sdg prop. = coaug. curved coprop. : Q.

Let M be an S-bimodule. The notation F(M), resp. F¢(M), stands for the free properad on M,
resp. the cofree coproperad on M. A derivation on F(M), resp. a coderivation on F¢(M), is
characterized by its restriction on M, resp. by its image on M. The notation sM, resp. s~ 1M,
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stands for the homological suspension, resp. the homological desuspension, of the S-bimodule M.
We refer to [Val07] for more details.

3.3.3. Curved bar construction of a sdg properad. The bar construction of the sdg properad
(P, dp, €) is given by the conilpotent curved coproperad

BP = (fc(sf)v dpar, 0bar)~

The predifferential is defined by dpq. := di + do, where ds is the unique coderivation of degree —1
which extends the map

Fo(sP) — F(sP)?D = 2P Ry 1) P) — L 5P

where ¥ := po~y: P 1,1 P — P and d; is the unique coderivation of degree —1 which extends
the map

_ — ids®ds  —
Fo(sP) —» 5P 22, 5P,
The curvature 0y, is the map of degree —2

sildp-i-s*z'y
B

F(sP) — sP @ F(sP)? = sP @ s* (P Xy, 1) P) PEI

3.3.4. Lemma. The predifferential and the curvature satisfy

a) dbar2 = (abar ®id—id® ebar) o A(17 1)
b) abar ° dpar = 0.

PrOOF. First we can restrict the proof of the equality a) and b) to f”(sﬁ)(g) since dpgr> =
%[dbar, dpar] and (Opa, ® id —id @ Opa,) 0 Ay, 1) are coderivations (see Lemma 3.2.2) and since Oyq,
is non zero only on F¢(sP)2).

The composite

barl T P ED (040, @id—id@0par)0 A1, 11O T ETE

— o d _
Fe(sP)(=D Fe(sP) =V
— i d GT‘5576 ar)t SPHsP -~
(IsPasPol) = ) e POl p oy
equals to (dbar2 - (ebar ®id—1d® obar) o A(17 1) — Opar © dbar)ll®sp and to (d'y—&-clp)QlleBs5 where

dy+tdp s the unique coderivation of degree —1 on F°(sP) which extends the map

ids@dp+sT 1y
—= " -

Fe(sP) — Fe(sP) =D =2 sP @ s*P Ky, 1) P sP.

Moreover, since =y is associative and dp is a compatible differential, we have d7+d7,2 = 0. Thus
dbar2 - (ebar (24 id —id & ebar) o A(1, 1) — ebar o dbar = Oa
that is, due to the degree

dbaT2 - (ebar & id —1id ® ebar) o A(1, 1)
Opar © dpar = 0.

3.3.5. Lemma. The bar construction is a functor B : sdg prop. — conil. curved coprop..

PROOF. Let f: (P, dp, €) — (P’, dps, €’) be a morphism of sdg properads. It induces a morphism

of dg S-bimodules f : P — P’ The map F¢(f) : Fe(sP) — F¢(sP’) is a map of coproperads

by construction. The morphism f commutes with 75 and Jp/,, thus F°(f) commutes with the

predifferentials. For a similar reason 60}, o F°(f) = Opqr. O
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3.3.6. Cobar construction of a coaugmented curved coproperad. The cobar construction
of the coaugmented curved coproperad (C, dc,0) is given by the sdg properad

OC := (F(s7'C), d:=do + dy — do, ).
The term dy is the unique derivation of degree —1 which extends the map
s T F(sC).
The term d; is the unique derivation of degree —1 which extends the map

ids_l ®d€
B —

s~IC s71C — F(s7'0).

The term ds is the unique derivation of degree —1 which extends the infinitesimal decomposition
map of C, up to desuspension:

s7Ig SR, sT2F(C)? = F(s710)P — F(s71C).

The semi-augmentation ¢ is the natural projection F(s71C) = I ® s7'1C® -+ — I. It is an
augmentation of properads but it is not an augmentation of dg properads in general.

3.3.7. Lemma. The derivation d on F(s~1C) satisfies d*> = 0.

PROOF. First of all, if we define the weight on C by CO =711 =CandC™ =0 whenn#0, 1
and extend it to F(s7!C), we get that the map dy is of weight —1, the map d; is of weight 0 and
the map dy is of weight 1. Thus, the term d? split in the following way
A? = do® +dodi +didg+di® — dods — dodg — (dida + dodr) +  do?
—~ ——

weight=—2 weight=—1 weight=0 weight=1 weight=2

So, we have to show that each group of terms is equal to zero. The term d3 is zero because
im(dg) C I, and any derivation annihilates I. The sum dod; + d1dy is zero since 6 o de = 0 and d¢
is zero on I and by the Koszul sign rule. The equality d2 = (0 ® idc — ide ® ) o A(1,1) and the
Koszul sign rule give d12 — dods — dady = 0. The equality dids + dod; = 0 is due to the fact that
de is a coderivation. Finally dp? = 0 by “coassociativity” of Z(Ll) and by the Koszul sign rule.

O

3.3.8. Lemma. The cobar construction is a functor ) : coaug. curved coprop. — sdg prop..

ProoOF. Let f : (C,dc, 0) — (C', dc/, ') be a morphism between coaugmented curved copr-
operads. The map F(f) : F(s~'C) — F(s~1C’) is a map of properads by construction and
dy o F(f) = F(f) ods since f is a morphism of coproperads. The equality d¢ o f = f o de implies
dy o F(f) = F(f) odi, the equality 6’ o f = 6 implies dj o F(f) = F(f) o dp and then F(f)
commutes with the differential. (]

3.4. Bar-cobar adjunction. The cobar construction on conilpotent curved coproperads and the
bar construction on dg properads represent the bifunctor of curved twisting morphisms and form
a pair of adjoint functors. The counit of adjunction provides a cofibrant replacement functor for
dg properads.

3.4.1. Theorem. For any conilpotent curved coproperad C and for any sdg properad P, there is
are natural correspondences

Homsdg prop.(Qcy P) = TW(C7 P) = Homcoaug. curved coprop. (Ca BP)

PROOF. We make the first bijection explicit. A morphism of sdg properads f, : F(s7'C) — P
is uniquely determined by a map sa : s 'C — P of degree 0 such that s~ 'C =% P 5 I is 0, or
equivalently, by a map « : C — P of degree —1 satisfying I — C - P and C = P 5 I are zero
(condition for twisting morphisms when C is coaugmented, see 3.3.2).
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Moreover, f, commutes with the differentials if and only if the following diagram commutes

s dp

s—1iC P P
do+d1—d2i TW
—1 f
Fla10) e F(P),

where 7 is induced by . We have

dp o (sa) = s(dp o)

Yo F(sa)ody =eo (s0) =s(eob)

Fo F(sa)ody = sao (idg-1 @de) = —s(aode)

JoF(sa)ody =7yo(saly 1ysa)os Ay 1) =s(yo(aly 1) a)oAq ).

Thus the commutativity of the previous diagram is equivalent to the equality
eofl —aod—yo(aly )ya)oAy ) =dpoa,

that is (o) + axa = 6.

We now make the second bijection explicit. A morphism of coaugmented coproperads g, : C —
F¢(sP) is uniquely determined by a map sa : C — sP which sends I to 0, that is by a map
a:C — P of degree —1 satisfying I — C = P and C = P = I are zero.

Moreover, g, commutes with the predifferential and with the curvature if and only if the
following diagrams commute

sa+(sa®sa)oA(1y 1) — _ _ g
P & P Ry, 1) 5P % pp

C
1.

C = sP

Since axa = —(s7!

inc)odyo (sa®sa)o A, 1)+ €0 by © ga, the commutativity of the diagrams
gives 0(a) + ax a = ©. Moreover, the projections of the curved Maurer-Cartan equation on P

and on I give the two commutative diagrams. This concludes the proof. O

EXAMPLES.
e To the identity morphism idgp : BP — BP of coaugmented curved coproperads corre-
sponds the curved twisting morphism 7 : BP — P defined by F¢(sP) — sP = P » P.
e To the identity morphism idgc : QQC — QC of properads corresponds the curved twisting
morphism ¢ : C — QC defined by C — C = s71C — F(sC).

3.4.2. Lemma. For any conilpotent curved coproperad C and for any sdg properad P, every curved
twisting morphism « : C — P factors through the universal curved twisting morphisms © and v:

Qc

N
L N
N

N

where fo is a morphism of sdg properads and g, is a morphism of conilpotent curved coproperads.

PRrROOF. The dashed arrows are just the images of a by the two bijections of Proposition 3.4.1.
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3.4.3. Weight filtration. We say that a dg S-bimodule M is weight filtered differential graded,
or wfdg for short, when it is endowed with a filtration of dg S-bimodules F,,M, w € N. When M
is a (co)properad, we assume that the (co)product preserves the filtration. In the weight filtered
setting, we only consider those twisting morphisms that preserve the filtration. A wfdg properad
P is called connected when FoP = I (= Im(e)).

We endow any free properad F (V) with a weight grading given by the number of generators.
This induces a weight filtration on any properad F(V)/(R) defined by generators and relations.
Sub-coproperads of F¢(V') are also weight filtered by the number of generators. When P is a widg
properad, BP comes equipped with a weight filtration. An element in BP is a connected graph
whose vertices are labelled by elements p; of P. It is in the component of weight w of BP if there
exist w; such that any p; is in the component of weight w; of P and Y w; < w. Similarly, we
endow QC with a weight filtering when C is weight filtered.

The curved twisting morphism 7 preserves the weight filtration.

3.4.4. Theorem. Let (P, dp, €) be a connected wfdg semi-augmented properad. The counit of
the bar-cobar adjunction is a quasi-isomorphism of wfdg semi-augmented properads, that is the
bar-cobar construction QBP is a resolution of P

OBP = P.

When P is concentrated in non-negative degree, the bar-cobar construction is a cofibrant properad
for the model category defined in Appendiz A of [MVOT].

Proor. We work in the model category defined in Appendix A of [MV07]. Since QBP is quasi-
free, the remark after Corollary 40 of [MV07] gives that QBP is cofibrant when we assume that
‘P is non-negatively homologically graded.

As explained in the previous section, OBP = (F(s71F(sP)), d = do +d1 —ds) is weight filtered
by F}, when P is weight filtered. We have

do: F, — Fp,_1 and dy : F, — F}, and da : F}, — F),

where dg is induced by 6y, di is induced by dpq, and ds is induced by the coproduct on F c(sﬁ).
So F), is a filtration of chain complexes, it is exhaustive and bounded below and we can apply the
classical theorem of convergence of spectral sequences (cf. Theorem 5.5.1 of [Wei94]) to obtain

Ep = Hy(OBP).

We endow P with a filtration Fz/> induced by the weight. This is a filtration of chain complexes
since dp preserves the weight filtration. The filtration F} is exhaustive and bounded below so we
can apply the classical theorem of convergence of spectral sequences (cf. Theorem 5.5.1 of [Wei94])
to obtain

E'; = Hppg(P).

The counit of the bar-cobar adjunction preserves the filtration and induces a map of spectral
sequences Ep ~— E’;A’q. Moreover, E(,)’. = OB(grP). The graded properad grP associated to
the filtration F, on P is always augmented and connected (in the sense of [Val07], that is grP
is weight graded and grP(®) = I). However, it is not reduced, that is P(0, n) and P(m, 0) can
be non zero. Theorem 5.8 of [Val07] applies to reduced properads for which the author provides
a canonical writing of an element in P X P in order to define a contracting homotopy. Such a
canonical writing is not possible for non reduced properads. However, it is possible to define a
contracting homotopy by means of a sum over all the possibilities. This works for non reduced
properads (over a field of characteristic 0) and Theorem 5.8 of [Val07] extends to non reduced
properads. So we get that E} , = gr® (H,,(grP)). Thus the counit of the bar-cobar adjunction
induces an isomorphism of spectral sequences Ep , — E’;yq when e > 1. Since E,;,q = H,4(P),

the same is true for EJ , and the morphism QBP = P is a quasi-isomorphism. O

REMARKS.
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(1) In [Pos09], Positselski defined a bar construction and a cobar construction between curved
dg algebras and curved dg coalgebras. The curvatures on both sides encode the default of
augmentation or of coaugmentation. In this paper, we are interested only in the default of
augmentation and the picture becomes asymmetric. When we reduce our bar construction
and our cobar construction to semi-augmented algebras and curved coalgebras, we recover
the particular case of [Pos09] where the curved coalgebras are coaugmented.

(2) In [Nic08], Nicolas proved a similar bar-cobar adjunction on the level of algebras and
coalgebras. But the picture is dual. The bar construction goes from curved associative
algebras to conilpotent graded-augmented coalgebras (see [Nic08] for the precise definitions)
and the cobar construction goes the other way around. In his case, the curvature does
not control the default of augmentation with respect to the composition product and with
respect to the dg setting, but only with respect to the dg setting. In the spirit of [Nic08],
we should say the dual statement: the default of augmentation with respect to the dg
setting measures the curvature.

3.4.5. Homotopy Frobenius algebras. A unital and counital Frobenius algebra is a quintuple
(A, u, A, e, n) where A is a vector space, p: AQ A — A is a commutative and associative product,
A:A— A® Ais a cocommutative and coassociative coproduct, e : K — A is a unit for the
product and n : A — K is a counit for the coproduct such that the product g = Y and the
coproduct A = A satisfy the Frobenius relation

In operadic terms, we get that A is an algebra over the properad ucFrob :=

FL LY N/ =N A= 0 Y = =1 S =LA =LA =X
This properad is not augmented but Theorem 3.4.4 applies and we get as a corollary:

3.4.6. Theorem. The bar-cobar resolution on ucFrob is a cofibrant resolution of the properad
ucFrob, that is

OB ucFrob = ucFrob.

We define a ucFrob-algebra up to homotopy as an algebra over this resolution. As proved in
[Abr96, Koc04], the datum of a 2-dimensional topological quantum field theory, 2d-TQFT for short
is equivalent to a unital and counital Frobenius algebra structure. Therefore, we should be able
to use this to study 2d-TQFT with homotopy methods.

There is an interesting application in differential geometry. With the present resolution of
ucFrob and with the methods of [Wil07], one endows the differential forms Qg (M) on a closed,
oriented manifold M with a structure of ucFrob-algebra up to homotopy, which induces the
ucFrob-algebra structure on the cohomology H®(M).

4. CURVED KOSZUL DUALITY THEORY

We extend the Koszul duality theory for homogeneous quadratic properads [Val07] and quadratic-
linear properads [GCTV09] to inhomogeneous quadratic properads with a quadratic, linear and
constant presentation. When the properad is inhomogeneous quadratic, it is not necessarily aug-
mented. Therefore we introduce a Koszul dual coproperad endowed with a curvature, which
measures this failure. As explained in Section 2, an associative algebra is a particular kind of
properad. Hence this section applies to associative algebras as well to recover the construction
given by [Pos93] and [PP05]. However, the presentation given here is slightly different and more
general: it works without any finiteness assumption. We end the section with a Poincaré-Birkhoff-
Witt theorem for properads.
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4.1. Inhomogeneous quadratic properad. An inhomogeneous quadratic properad is a prop-
erad P which admits a presentation of the form P = F(V)/(R), where V is a degree graded
S-bimodule and (R) is the ideal generated by a degree graded S-bimodule R c I ® V @ F(V)?).
The superscript (2) indicates the weight degree. We require that R is a direct sum of (homological)
degree homogeneous subspaces. Thus the properad P is degree graded and has a weight filtration
induced by the S-bimodule of generators V. We assume further that the following conditions hold:

(I) The space of generators is minimal, that is RN {I & V} = {0}.
(IT) The space of relations is maximal, that is (R)N{I &V @ F(V)?} = R.
Let q: F(V) — F(V)® be the canonical projection and let R C F(V)® be the image under
q of R. We consider the quadratic properad qP := F(V)/(qR). Since RN {I & V} = {0}, there
exists a map ¢ : qR — I @V such that R is the graph of ¢:
= {X —@i(X) +vo(X), X € qR, 1(X) €V, o(X) € K}.

The weight grading on the free properad F (V') induces the following filtration on P
Fy =7 (Bug,F(V)@),

where 7 stands for the canonical projection F(V) — P. We denote the associated graded properad
by gr(P). The relations qR hold in gr(P). Therefore, there exists an epimorphism of graded
properads

p:qP — gr(P).
We assume throughout that every inhomogeneous quadratic properad is semi-augmented in the
sense of Section 3.3.1. We recall that sV stands for the homological suspension of V', and that the

Koszul dual coproperad of the homogeneous quadratic properad qP is the coproperad cogenerated
by sV with corelations in s2qR (see Section 2.2 of [Val08]) denoted:

qP:=C(sV, s°qR) = T ® sV @ s>°qR D - - - .

It is a subcoproperad of the cofree coproperad F¢(sV) on sV. In the cofree coproperad F¢(V),
the weight of an element corresponds to the number of generating elements from V' used to write
it. There exists a unique coderivation d : P! — F¢(sV) of degree —1 (see Section 3.2 in [MV09])
which extends the map
s~ 1 1

qPt — s2qR =25 sV

Moreover, we denote by 0 : qP! — I the map of degree —2
—2

qP! — s2qR =% 1.
4.1.1. Lemma. Let P = F(V)/(R) be an inhomogeneous quadratic properad. Condition (II)
implies that:

e The coderivation d on Fe(sV) restricts to a coderivation dp; of degree —1 on the subco-
properad qPI = C(sV, s*qR);
e The coderivation dp: satisfies dpi® = (0 @ idgpi — idqpi @ 0) 0 A(1,1);
o The coderivation dp: satisfies 6 o dp; = 0.
PRrROOF. We define the map

Y: QROVAV@qR — F(V)(=3)
rev+v@r = (r4ei(r) —eo(r) @v 4+ @ (1 +e1(r) — @o(r)).

Since any kind of tree in F(V)®) has one of the forms
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an element in qP‘(?’) has two decompositions by Z(l, 1) in 2qR® sV @ sV @s2qR = s> (R V @
V ® qR). Moreover, the two decompositions give the same image with an opposite sign (Koszul
sign rule) under 9. Therefore 1o (s A, 1))(q77‘(3)) C{ReVaVeRIN{IaV e Ve
Condition (II) implies in particular
{(ROV+VRIN{I®V & V®} CR.

Projecting on each direct summand, we can rewrite this inclusion as the system of equations

(1) (s7Yp ®idsy +idsy @ s Lp1) 0 A(l,l)(qPi(?’)) C qP‘(2) (projection on V®2);

(2) (571g01 o (s oy @idgy +idsy @5 Lo1) — (57200 ®idsy —idsy @ s*2gpo)) OA(111)|q731(3) =0

(projection on V);

(3) s72pg o (st ®idsy +idsy @ s 1) 0 A(1,1)|q7>x(3> = 0 (projection on T).
By the universal property which defines qPi = C(sV, s?qR), it is enough to check that J(qPi(B)) C
q”Pi@) to restrict d to a coderivation of degree —1 on qPi, this is exactly the meaning of equation
(1). The equation (2) corresponds to the second point of the lemma restricted to qP1®). The

equality extends to qP1 since dpi® = 1dpi, dpi] and (0@idypi —idgpi ®0)0 Ay 1y are coderivations
(see Lemma 3.2.2). The equation (3) corresponds to the third point of the lemma since 6 is zero
outside of qPi(Q). O

4.2. Koszul dual coproperad. Let P be an inhomogeneous quadratic properad with a quadratic,
linear and constant presentation P = F(V)/(R) (such that Conditions (I) and (II) hold). The
Koszul dual coproperad of P is the weight graded curved coproperad

Pii= (qP', dp, 0).

4.3. Koszul properad. A properad is called a Koszul properad if it admits an inhomogeneous
quadratic presentation P = F(V)/(R) such that Conditions (I) and (IT) hold and such that its
associated quadratic properad qP := F(V)/(qR) is Koszul in the classical sense.

Since the underlying S-bimodule of Piis I & sV @ s2qR@ - - -, we define the map of coproperads
gi : Pi— F¢(sV) »— BP. This map commutes with the predifferentials and with the curvatures,
hence it is a morphism of curved coproperads. So by Lemma 3.4.2, there is a curved twisting

morphism & : Pi — BP 5 P. It is explicitly equal to Pi — sV LN V — P. By Theorem 3.4.1,
we also obtain a map of dg properads QP — QBP — P.

4.3.1. Theorem. Let P be a Koszul properad. The cobar construction on the Koszul dual curved
coproperad P! is a cofibrant resolution of P:

QP = P.

Proor. We work in the model category defined in the Appendix A of [MV07]. Since we are
working in the non-negatively graded case and QP! is quasi-free, the remark after Corollary 40
gives that QP is cofibrant.

Let C := s~ 'qPi be the desuspension of the augmentation coideal of the coproperad qPi. So,
the underlying S-bimodule of QP! is F(C). Let us consider the new “homological” degree induced
by the weight of elements of qPi, given by the weight in F¢(V'), minus 1. As in the proof of the
Appendix A of [GCTV09], Theorem 30, we call this grading the syzygy degree. Therefore, the
syzygy degree of an element in F(C) is given by the sum of the weight of the elements which label
its vertices minus the numbers of vertices. Since the weight of an element in C is greater than 1,
the syzygy degree on F(C) is non-negative.

The term dy, induced by 6, the term d;, induced by dp: and the term ds, induced by the infin-
itesimal decomposition map on C, lower the syzygy degree by 1. Hence, we get a well-defined
non-negatively graded chain complex.

We endow QPi = F(C) with a filtration given by the total weight, that is the weight of an element
in F(C) is the sum of the weight of the elements which label the vertices. We have

do:Fp, — Fp_gand d; : F, = Fp_; and dg : F), — F,.
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This filtration is exhaustive and bounded below so we can apply the classical theorem of conver-
gence of spectral sequences (cf. Theorem 5.5.1 of [Wei94]) to obtain that

By, q = Hp4g(QPY).
The filtration F}, induces a filtration F,, on the homology of QP such that
B3, 2 Fy(Hyp g (0P)/ Fyp (g (QPY) =2 g (H, 4, (0P)).

Moreover, we have E) . = F,(F(C)ptq)/Fp-1(F(C)prq) = F(C)z(:er)qv that is the elements of syzygy

degree equal to p+q and of weight p. The differential d° on the first term of the spectral sequence is
given by ds. Hence, since P is Koszul and concentrated in syzygy degree 0, we have Ezl,, = qPZ(fgq
(Theorem 7.6 of [Val07] by means of the extension seen in the proof of Theorem 3.4.4 applies),

concentrated in the line p + ¢ = 0 and the spectral sequence collapses at rank 1. We have

El, = qP® = Ex gr® (Ho(QP1)
! gr®P) (Hp1,(QP1)) when p + g # 0.

— — oo
P, q - 0 - Ep,q

1R

For the syzygy degree, we have
Ho(QP) =2 F(V)/Im(dy + dy — da) 2 P.

So, the quotient gr® (Hy(QP1)) is equal to gr® (P). Finally, the morphism QPi =5 P is a
quasi-isomorphism. O

4.3.2. Theorem (Poincaré-Birkhoff-Witt theorem). When P is a Koszul properad, the natural
epimorphism of properads qP — grP is an isomorphism of bigraded properads, with respect to the
weight grading and the homological degree. Therefore, the following S-bimodules, graded by the
homological degree, are isomorphic:

P = gr(P) = qP.
PROOF. It is a direct corollary of the previous proof. O

To show Condition (IT), that is (R) N {I @ V @ F(V)®} = R, can be difficult. The following
proposition shows that we do not have to compute the full (R) but only the part {R®V +V ® R}.

4.3.3. Proposition. A properad P is Koszul if and only if it admits a presentation P = F(V)/(R)
such that RC I @V @ F(V)® satisfying the following conditions
) Rn{leV}={0};
(I {ReV+V@R}N{VaeF(V)?}CR;
(IIT) the associated quadratic properad qP := F(V)/(qR) is Koszul in the classical sense.

PROOF. Definition 4.3 always implies conditions (I), (II’) and (III). First, we have to remark that
the property (II') instead of (II) is enough to show Lemma 4.1.1 and to define Pi. Moreover,
Theorem 4.3.1 and Theorem 4.3.2 are still true. Then we can apply the Poincaré-Birkhoff-Witt
Theorem which gives in weight 2 that qR = q((R) N {I ® V @ F(V)?}). This last equality is
equivalent to (II) under the condition (I). O

4.3.4. Coloured properad. Following the ideas of van der Laan in [van03], we can extend this
curved Koszul duality to coloured properads. Martin Doubek told us that our construction applies
to the coloured operad Zso encoding chain complexes isomorphisms to recover the resolution
given by Markl in [Mar01]. Thanks to this resolution, Markl defines a notion of strong homotopy
equivalence and proves a relax version of the perturbation lemma, that he calls Ideal Perturbation
Lemma.

5. RESOLUTION OF ALGEBRAS

We now give a resolution of a semi-augmented dg properad (P, dp, €) as a P-bimodule. In the
operadic case, this provides functorial cofibrant resolutions for P-algebras. We use such resolutions
to define a cohomology theory associated to unital associative algebras in the next section.
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5.1. Resolutions of properads as bimodule. We generalize the resolution given by the bar
construction with coefficients to properads (not necessarily augmented). Moreover, for an inho-
mogeneous properad which is Koszul, we get a smaller resolution of it called the Koszul complex.

5.1.1. Dg composite product. Let (M, dys) and (N, dy) be two dg S-bimodules. Recall from
[MVO07] the differential on the monoidal product X of two S-bimodules. Let idy; X' dy : MXN —
M K N be the morphism of S-bimodules defined by

(idys R dn)(p(ma, ..., mp)o(ny, ..., ng)w) == Z tp(ma, ..., mp)o(na, ..., dy(nj), ..., ng)w
j=1
and let dp; ‘Widy : M X N — M X N be the morphism of S-bimodules defined by
b
(dp 'Ridy)(p(ma, ..., mp)o(ng, ..., ng)w) := Zip(ml, ey dpr(my), oo, mp)a(na, .y g )w.
i=1
This gives a differential on M X N by dyxy := dy \Ridy + idy X dy.

5.1.2. Twisted composite product. In this section, we study the free dg P-bimodules over a
curved coproperad (C, dc, ). To any map « : C — P of degree —n, we associate the unique
derivation (see Section 3.2 of [MV07] for precise definitions) of left P-modules d, : PKC — PXC
of degree —n which extends the map

A, L
C —)( b C'Xl(l,l) C —)04®ldc P@(Ll) C

By symmetry, we define also the derivation of right P-modules d], : CKP — C K P of degree —n.
We endow the free P-bimodule P X C X P with the following derivation of P-bimodules:

do = dpgerp — d.,\Ridp +idp X' d7,,

where dpgegp = dp ‘W idegp + (idp X’ dc) ‘K idp + idpge X' dp with (idp X’ dc) ‘Kidp =
idp X' (de ‘R idp) by associativity of the composite product.

5.1.3. Lemma. On the P-bimodule P X C X P, the derivation d, satisfies
thQ = _dg(a)Jra*af@ '™ idp +idp ' dg(a)+a*a7@‘

Thus, when o € Tw(C, P), we have da? = 0 and the derivation d, defines a differential on the
chain complex

PRL,CR,P:=(PRCRP,dy = dpgerp — d,\Ridp +idp X' d7).
PROOF. We do the computation for dp = 0, the general case follows immediately. We have

d 2

((idp X' de) R idp — d', R idp + idp X' d7,)?

(idp X' d2)‘Ridp + (d)? 'R idp + idp &' (d,)?

—((idp B de) o d, +d., o (idp B d¢)) R idp + idp X' ((de ‘R idp) o dr, + d7, o (dec ‘Ridp))
—(d',\Ridp) o (idp B dL,) — (idp R’ d%,) o (d', "R idp).

Since de® = (0 @ ide — ide ® 0) o A1, 1), we have (idp &' d¢®)'Ridp = dyy Ridp — idp X' df.
Moreover, the associativity of v and the coassociativity of A, 1) give (d,)? = —dl,, and (d},)? =
d;,.., where the sign is given by the Koszul sign rule and the fact that o has degree —1. Then
(idp W' d¢) o dl, + dl, o (idp W' d¢) = dl, 4, and (de ‘R idp) o dj, + di, o (de ‘K idp) = d, . since
dc is a coderivation. Finally, (d, ‘R idp) o (idp X' d") + (idp ®' d",) o (d,'Ridp) = 0 since a has
degree —1. This gives the result. O
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5.1.4. Koszul morphism. A curved twisting morphism « : (C, d¢, ) — (P, dp, €) is called a
Koszul morphism when the map ¢ defined by PR, CR, P - PRIRP X PRP L Pis a
resolution of P, that is

PR, CH,P = P.

5.1.5. Proposition. Let P be a wfdg semi-augmented properad. The curved twisting morphism
w:BP — P is a curved Koszul morphism, that is, the twisted composite product P X, BP K. P
is a resolution of the properad P called the augmented bar resolution

§:PX,BPX,P = P.

PROOF. The method is the same as in the proof of Theorem 3.4.4. The weight filtration on P
induces a filtration on BP given by the total weight. This gives a filtration F,, by the weight
on P X, BP X, P and a filtration FI’, by the weight on P. These filtrations are filtrations of
chain complexes since the differentials either preserve or decrease the weight. The filtrations are
exhaustive and bounded below and the map £ preserves the filtrations. We apply the classical
theorem of convergence of spectral sequences (cf. Theorem 5.5.1 of [Wei94]) to obtain

{ B2, = Hyiy(P R, BP K, P)

0
E/p,q = Hp+q(7)).
Since the differential of E97, is the weight preserving part of the differential of P X, BP X, P,
the isomorphism of graded vector spaces E97. > grP X, B(grP) X, grP is an isomorphism of dg
modules. Since grP is an augmented properad, we can apply Theorem 4.17 of [Val07] (we use the
same trick as in the proof of Theorem 3.4.4 for the fact that the properad is non reduced a priori)
to grP with R = grP to get that E} , = Hpyq(gr®PP) = E’;,q. Then EJ , and E’} , coincide for
r > 1 and ¢ induces an isomorphism between Ep°, and E')°, = gr®®H,; ,(P). This concludes the
proof. O

Let P be an inhomogeneous properad, Pi its Koszul dual cooperad and k : Pi — P the
associated curved twisting morphism. The chain complex P K, Pi K, P is called the total Koszul
complez.

5.1.6. Proposition. Let P be an inhomogeneous properad and P! be its Koszul dual coproperad.
When P is Koszul, the curved twisting morphism k : P — P is a curved Koszul morphism, that
is, the total Koszul complex P K,; PI X, P is a resolution of the properad P

¢: PR, PR, PP

PRrROOF. The proof is similar to the proof of Proposition 5.1.5. The differences are the following.
Since P is Koszul, the Poincaré-Birkhoff-Witt Theorem 4.3.2 gives E?}, =grP X, qP1 K, grP =
qP K, qPi K, qP. So the Koszul criterion (Theorem 7.8 of [Val07] with the trick of the proof
of Theorem 3.4.4 for the non reduced case) and the comparison Lemma (Theorem 5.4 of [Val07])
with L = qP X, qPI K, qP, L' = qP, P’ =qP, M = qP X, qP! and M’ = I, and the Poincaré-
Birkhoff-Witt Theorem 4.3.2 apply to give that E! . = H,1q(qP®) = Hypo(gr®P). O

5.2. Resolution of algebras. From now on, we consider only operads and cooperads since there
is in general no notion of free algebra over a properad. In this section, we use the resolutions of P
as a P-bimodule of the previous section to provide functorial resolutions for algebras over P as,
for example, for unital associative algebras (see Section 6).

5.2.1. Coalgebra over a curved cooperad. Let (C, d¢, 0) be a curved cooperad. A (C, dc, 0)-
coalgebra is a triple (C, Ag,d¢) where (C, A) is a C-coalgebra, and a coderivation d¢ : C — C of
degree —1 such that:
dcg = (9 o ch) o) Ac,

where the o inside the parentheses is the operadic composition product and the o outside the
parentheses is the composition of morphisms.

A morphism of (C, de¢, 8)-coalgebras f : (C, Ac,dc) — (C', Acr,der) is a morphism f : C —
C’ of C-coalgebras which commutes with the predifferentials dc and d¢.
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5.2.2. Relative composition product. Let (P, dp, ¢) be a sdg operad. A right P-module (L, p)
is an S-module endowed with a map p : £L o P — L compatible with the product and the unit
of the operad. We define similarly the notion of left P-module. We define the relative composite
product Lop R of a right P-module (L, p) and a left P-module (R, A) by the coequalizer diagram

poidn

EOPORﬁ; LoR—=LopR,

idro
where in the above line all o are the operadic composition product. These definitions extend to
the dg setting.

5.2.3. Bar construction of P-algebras. To any curved twisting morphism a : C — P from a
curved cooperad (C, d¢, 0) to an operad (P, dp, €), we associate a functor

B, : dg (P, dp, €)-algebras — (C, d¢, 0)-coalgebras.
For a P-algebra (A, v4), we define on C(A) = (C o P) op A the maps

{ d1:C(A)M>C(A)

A(q1yoi ; oi
dy :=dl opida : C(A) —w, da (ide®a)oida

C o) C(A) CoP(A) 24, ca),

where (CoP)o A Jacida, (CoP)o A — C(A) factors through C(A) to give dl, op ida since y4
is a dg map. (Here, A(;) corresponds to the infinitesimal decomposition map A 1y and C o(y) C
corresponds to C X ;) C when we restrict to cooperads.)

5.2.4. Lemma. Since « is a curved twisting morphism, we have
(di +d2)? = (B 0ide(a)) © Ac(a)-
ProOOF. We compute

dy? =dc® oida = ((0 ® ide —ide ® 0) 0 Agy)) 0ida

= (0 o idC(A)) o (A(l) o ZdA) - dg op idA

= (B oideiay) o Aciay — dg op ida (0 is non-zero only on P(1))
dy? = dfy0 P ida

d1d2 + d2d1 = dg(a) op ZdA

Thus (dy + d3)? = A0y +axa—e OP ida + (0 0 ide(a)) © Acay and we get the result since o is a

curved twisting morphism. O
The bar construction on A is the (C, d¢, 6)-coalgebra B, A := (C(A), d := di + do).

5.2.5. Cobar construction of a C-coalgebra. Similarly to the previous section, to any curved
twisting morphism « : (C, d¢, 8) — (P, dp, €), we associate a functor

Q, : (C, de, 0)-coalgebras — dg (P, dp, )-algebras.

For any (C, d¢, 6)-coalgebra (C, A¢, d¢), we define on P(C) the maps
di : P(C) dpoido+idpo’de P(C)
{ 2+ P(C) H27E5E P o) €(0) FEENL P o P(C) T P(C).

5.2.6. Lemma. Since « is a curved twisting morphism, we have

(dy —do)* = 0.
PrOOF. We compute
dy? =idp o' do® = idp o' ((# oidc) o Ag)
do? = —(yoideg)o (idp o (ax @) oide) o (idp o A¢)
—dldg - dgdl = —(’}/ o ch) o (de o 6(0&) o ch) o (de o’ Ac)
Thus (d; —d2)? = —(yoidc) o (idp o (d(a) + axa—O)oidc) o (idp o' Ac) = 0 since « is a curved
twisting morphism. O

The cobar construction on C' is the dg P-algebra Q,C := (P(C), da_c := d1 — d2).
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5.2.7. The bar-cobar resolution. The bar-cobar construction on a P-algebra provides a func-
torial cofibrant resolution of any P-algebra when the curved twisting morphism « is Koszul.

5.2.8. Proposition. Let o : (C, dc, 0) — (P, dp, €) be a curved Koszul morphism between a
curved cooperad (C, de, 60) and a sdg operad (P, dp, €) which are bounded below. Then the bar-
cobar resolution Q,BnA is a resolution of the P-algebra A, that is,

QaBaA=Po,Co, A= A.
Moreover when A is bounded below, it is a cofibrant resolution.

PROOF. There is a model category structure on the category of right P-modules given in Proposi-
tion 14.1.A of [Fre09]. The cofibrant objects are described in Proposition 14.2.2 of [Fre09] and since
the cooperad C and the operad P are bounded below, the right P-module P o, C o, P is cofibrant.
Finally, Theorem 15.1.A of [Fre09] gives that P o, Co4 A2 (Poy,CoqP)op A =5 Pop A Ais
a resolution.

In the (semi-)model category structure on P-algebras defined in [Fre09], cofibrant P-algebras
are retracts of quasi-free P-algebras endowed with a good filtration (Proposition 12.3.8 in [Fre09]).
This is the case here since the chain complexes are bounded below. O

5.2.9. Theorem. Let (P, dp, €) be a sdg operad. The curved Koszul morphism 7 : BP — P gives
a resolution

Q:BrA=Po,BPo, A= A,

which is cofibrant when A is bounded below. When P is a Koszul operad, the total Koszul complex
gives a smaller resolution

Q,BrA="Po,Plo, A A,

which is cofibrant when A is bounded below.

PROOF. It is a direct corollary of Proposition 5.2.8 and Propositions 5.1.5 and 5.1.6. O

6. HOMOTOPY AND COHOMOLOGY THEORIES FOR UNITAL ASSOCIATIVE ALGEBRAS

In this section we describe a simple resolution of the operad which encodes unital associative
algebras, u.As, obtained by the methods described in section 4. In fact, many of the theorems in
this section can be generalized in a straightforward way to any (inhomogeneous) Koszul properad.
Algebras over the resolution uA., are called homotopy unital As-algebras, or uA-algebras, for
short. We use some nice properties of our resolution to prove that uA..-algebras may be replaced
up to equivalence by strictly unital associative algebras. Using our explicit transfer formulae, we
show that a unital associative algebra may be transferred to homology as a strictly unital As.-
algebra (see Definition 6.5.1). This gives a proof that one may always choose a minimal model
for a uAy-algebra which is actually a strictly unital A.,-algebra. In this sense, it is “enough”
to resolve only the associative relation of u.As, obtaining the operad A, and then adjoin a unit,
giving the operad which encodes strictly unital A,.-algebras. As a corollary of our discussion, we
provide sufficient conditions so that: “When trying to find resolutions of algebraic structures with
units, it is ‘good enough’ to resolve the structure (without its units) first, and then append the
units to that resolution.” The notion of uA..-algebras is exactly the notion of “A..-algebras with
a homotopy unit” of [FOOO09]. Concerning the notion of co-morphism and the nice properties
of wA-algebras, we still have to compare them with the theory presented in [FOOO09].

6.1. Homotopy unital associative algebras. We give a presentation for the operad encoding
unital associative algebras. This presentation is an inhomogeneous quadratic presentation and we
can apply the theory of the previous sections to compute its Koszul dual cooperad, and hence an
explicit resolution.

We use the notation n := {1, ..., n}. The symbol i stands for an element in a cooperad and
the symbol p stands for an element in an operad.
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6.1.1. The operad encoding unital associative algebras. We denote by u.As the operad
whose representations in the category of dg modules are precisely differential graded unital asso-
ciative algebras. We consider the following presentation

wds = F(1.5) /5/ =\ =1 ).

REMARK. We fix this presentation to make our computations of the Koszul dual, uAsi and ul-
timately uA.,. Note that this presentation for u.4s is an inhomogeneous quadratic presentation
(see 4.1 for a definition).

To make the Koszul dual cooperad, uAs! of u.As explicit, we compute its associated quadratic

operad:
quAs' = F(1, )/ (/=N s ) = T e ds.

Let’s take a moment to explain the notation on the right-hand side of the equation above.

6.1.2. Definition. Let P, Q be augmented operads. Then the direct sum operad P @ Q is defined
to be F (73, Q) / (Rp,Rg, Rpg), where Rp, Rg are the relations in P, Q respectively, and Rpg is
the collection of all compositions of a pair of elements, one in P, one in Q.

REMARK. The direct sum operad is the product in the category of augmented operads.

6.1.3. Proposition. If P and Q are both quadratic augmented operads, then P @ Q is a quadratic
augmented operad.

PRrROOF. For any two presented operads, P = F (V1) /(R1),Q = F (V2)/ (Rz), the direct sum
operad P @ Q is naturally presented by F (V1,V2) / (R1, Rz, Ry,v,). If (V1, R1) and (Va, Rs) are
both quadratic presentations, then so is the natural presentation for P & Q. O

We will make use of the identification quAsi = * & As to compute the Koszul dual cooperad
of quAs! (see 6.1.4). Before we compute the resulting cooperad, qu.dsi, we first describe it.

Linearly, we have an isomorphism qu.Asi = K[ﬁi]nN’ Scn: The element ﬁg € quAs! corre-
sponds to a (co)operation with n — |S| inputs: however, we draw this operation as a corolla with

n leaves, and a cork covering each of the leaves in the set S. For example, ﬁél’“ corresponds to

. We point out here that the space of n-to-1 operations is infinite dimensional for every n > 0.

To see this, note that every n-to-1 corolla is an n-ary operation, and by adding a corked leaf,
we get a new n-to-1 operation. Continuing to add corked leaves gives infinitely many new n-ary
operations.

Also notice that 71, =~y for n > 1 spans the subcooperad corresponding to As! and {ﬁ? =
[, ﬁil} = T} spans the subcooperad corresponding to ?i (with ﬁ({) corresponding to the identity
cooperation in both cases).

Using this basis, the infinitesimal decomposition Ay is given by summing over all possible
(nontrivial) ways to split the corolla into two, preserving the number of leaves and the number
and positions of the corks. Pictorially:

V’_’Ei
20 (%) ==

We compute the Koszul dual cooperad, qu.As' by the following proposition.

For example,

6.1.4. Proposition. Let P = F(V)/(R) be a quadratic operad where V is finite-dimensional. Then
by Proposition 6.1.3 the operad Y@®P is given by (*®P)(0) := (K- ?)BP(0) and (*®P)(n) := P(n)

for all n # 0 and endowed with the operadic structure given by the (trivial) structure on ?, the



CURVED KOSZUL DUALITY THEORY 23

structure on P, and trivial composition between * and P. The Koszul dual cooperad of * ® P is
given by the coaugmented cooperad

(teP) 2K {ng, where m € Pi(n), S Cn and [ug| = 1| +|S|}
The set S is the set of the positions of the “corks” *. Let & € Pi(n) such that An)(§) =
S(@id, ..., id, v, id, ..., id), where i € Pi(m), v € Pi(q), p+1+r=m andp+q+r =n.
——— ——
P i
Then the infinitesimal decomposition map on £g € (* @ P)/, where S C n, is given by
Amy(€s) = Z(—l)ﬁ(ﬁsl;ict oy id, Us,, id, ..., id),
S—— ——
p—15il r—[SY]
where € = |7||S1| + |S2]|57],
St C p
Tis, € Pi(m —|S1]), Us, € Pi(q—[S2]) and { S2 C ¢ such that S =

Stoc {p+2,...,p+1+7r}
SiU(S2+p)U(SY+q—1) and S; =S USY.

PROOF. The operad * & P is a quadratic operad given by F(?* @ V)/(R®V ® ?) where
Ve t:={u* with u € V(n)and {k} C n}.

We follow Appendix B of [Lod01] defining P' := F(VV)/(R"*), where VV := V* ® (sgn) with the
signature representation (sgn) and R* is the orthogonal space for the natural pairing (—, —) :
VY@V — K. Since (V& 1)+ = Fo)(VY), we get

(teP) =F(aeVY)/(R"NFa(VY) = {u®, where u € P'(n) and S C n}

and the composition is induced, up to signs, by the composition on P'.
Following [LV], we have Pi := S™1° @ (P')* where S is the operadic desuspension. Then
the Koszul dual cooperad of * & P is equal to

(*@P)i = {g°, where i € Pi(n), S C n and [&°| = [a] +|S|}

and the (infinitesimal) cocomposition is given, up to signs, by the (infinitesimal) cocomposition of
Pi. To compute the signs, we recall that the corks ? have degree —1 and we apply the Koszul rule.
The sign (—1)/7!I51] in the formula of the proposition comes from the fact that 7 passes through
the corks indexed by S; and the sign (—1)'52“51/‘ comes from the fact that the corks indexed by
Sy pass through the corks indexed by SY. O

6.1.5. Corollary. The Koszul dual cooperad associated to quAs is equal to
quAs’ = (* & As)! 2 K[z ],

where Ti,, € Asi(n), S C n, sofis € udsi(n —|S|) and [G3| = n — 1 + |S|. The infinitesimal
decomposition map is given by

Awy() = Y (=)D Gy i, L id, g2, id, L dd),
_ —— ——
pt+qg+r=n ’ "
p+l4+r=m p7|51\ 7"*‘51|
S Cp
where § So C g such that S = S{ U (So +p)U (ST +q—1) and S; =
ST c {p+2,...,p+1+7r}
Siusy.
Moreover, the coproduct is given by

_S T _T; _T,,_
A(:un) = Z (_1)6(/“1’3;15/“['“17 RN /“‘Lim_llr:“%
i1 =|T1 |+ +im— 7| =T 7| =0~ S]
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T C m
where { T, C £ such that T = Ry U ...U R, 7| and
S = R()U(Tl + |R()|)L|(R1'|‘i1)L|...L|
(Tpo—jr) + |Ro| + - 4 [Rpp— =1 | + i1 4 - A ) —1) U (R + 81 4 -+ 7))
and where
m—|T|
= Tln—m)+ Y [(i = Dk =G +[Til+ -+ Tjma) + [R|(Ta] + -+ T3])].
j=1
PROOF. Provided that the degree of &, € Asi(n) is n — 1 and provided the formula for the
coproduct in Asi given in [LV], chapter 8, where we include the decomposition involving f,, = |
orfi, = |,

A(1) (ﬁn) = Z (71)(q+1)r(ﬁm1 1d7 ceey 1d7 ﬁqa lda RN} 1d)7
p+g+r=n ’ —

p+1l4+r=m P r
Proposition 6.1.4 gives the description of qu.Asi and of the infinitesimal decomposition map. The
coproduct is given in the same way as explained in the proof of Proposition 6.1.4 thanks to the
coproduct in As! given in [LV] by
A(ﬁn) = Z (_1)6 (ﬁm;ﬁila ey ﬁim)a
i1t tim=n
where € := Z;n:l(z] —1)(k— 7). O
6.1.6. Proposition. The operad quAs is Koszul, that is
quAs o, quAs’ = I.

PROOF. We remark that

quAs o, quAs = T @ @(As o, Asi)(n)

SCn n>1
Since H/ =0= Y‘ in quAs, the differential on (As o, Asi)(n) is given by the usual differential
on As o, Asl except for d(T) = T. Moreover, we know that (As o, Asi)(n) — I(n). Thus
quAs o, quAst = I. O
6.1.7. Lemma. The curved cooperad uAs’ is equal to the curved cooperad

uAs’ = (quAs’, Aquasi,0,0),
where Aqy s was made explicit in Corollary 6.1.5 and
0(i5) = { —1-] zfn:2 and, S = {1} or S = {2}
" 0 otherwise

PROOF. For the definitions given in 4.1, we remark that the space of generators defining u.4s
satisfies Conditions (I) and (II) of Section 4.1. According to the definition 4.2, we just have
to compute the predifferential d, 45 and its curvature 6. Since the relations in u.As have no
linear terms, the predifferential d, 45 = 0. To compute 6, we find the elements of weight 2,
which correspond to the relations in qu.4s. We identify each cooperation with the corresponding
leading quadratic term of a relation in w.4s, and then assign to that operation the opposite of the
corresponding constant term of the relation:

XN Y o
o -
Y
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6.1.8. Theorem. The cobar construction on the Koszul dual curved cooperad associated to uAs
provides a cofibrant resolution of uAs

UAoo = QuAs’ = uAs.
ProoF. By Proposition 6.1.6, qu.As is Koszul, and then Theorem 4.3.1 gives the result. O

We now make the operad uAs, more explicit.

The underlying operad of the dg operad Q u.As' is the free operad F (s’lquAsi) =F (5’1 {,uf;}),
n>2 SCnandn=1.5 = {1}, giving a free generating set for Qu.As. As a derivation of the
composition structure, the differential d = dy + 0 — dz is completely determined by its action on
the generators:

,
MV
,

" Voo oy T
VHE(—I)G \P

Y

where the last line means: for (n, S) # (2, {1}) and (n, S) # (2, {2}), we have

—S S Sal|S7 1/—=S1.: :1 —S2 :
Az = E : (_1)q(r+| 1)+1S2(151 [+p+ (mS1id, ..., id, i, id, ..., id),

+ +r= ’ 1"

R i P15 r—|Sy|

REMARK. On the right-hand side of equation (1), the two-level trees now represent the composi-
tions in the free operad.

We obtain the following description for a uA..-algebra structure.

6.1.9. Proposition. A uAy-algebra structure on a dg module (A, da) is given by a collection
of maps, uil}, {3} >0, scn where each ps is a map A®1SD — A of degree n + |S| — 2 which
together satisfy the following identities:

oSy = o (i -) —ida
o) = pho (= u") —ida
and for (n, S) # (2, {1}) and (n, S) # (2, {2})
() = Z (—1)arHSDHSAS 1 50 6 (1, i, el id, L id).
A e r|Sy|

PROOF. Since uA. is a quasi-free operad, a map py : uAs(A) — A of degree 0 is determined

by a collection of maps, ,u‘l{l}, {uS}n>2 scn Where each 3 is a map A®M=ISD) A of degree
n + |S| — 2, defined by:

pn (a1 @ - @ apys)) = pa(f, ® a1 @ @ apys)).
The fact that the map p4 is a dg map gives the uA,, relations among the y. O

REMARK. This notion of uA,,-algebra corresponds to the notion of homotopy unit for an A..-
algebra given in [FOOO09].

6.2. Infinity-morphisms. Following the classical case, we describe the infinity-morphisms of
algebras over the Koszul resolution of a Koszul inhomogeneous quadratic operad. We give explicit
formulae for infinity-morphism of uA.-algebras.

Unless we indicate otherwise, for the rest of this section, P will denote a Koszul inhomoge-
neous quadratic operad, Pi its curved Koszul dual cooperad and P, := QPi denotes the Koszul
resolution of P (see Section 4).
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Let A be a Poo-algebra, and denote its structure map by p4 € Homgg op(Poo, Enda). Then by
the bar-cobar adjunction 3.4.1, we have
Homyg operads (2P, End4) = Tw(Pi,Endy).
By classical Hom-tensor duality, we have the bijection
Homg mod(P1,Enda) =  Homgg mod(P(A), A)
HA — Apis-

We recall the classical lemma, that we can find for example in [LV].

6.2.1. Lemma. A coderivation of Pi(A) is completely characterized by its corestriction to the
cogenerators
Hommod. (P/(A), A) = Coder(Pi(4))
dy, — DZ "
We call a curved codifferential any coderivation D of degree —1 which satisfies
D? = (0 oidpi(a)) © Api(a).
We have the following extension of a classical result about codifferentials:

6.2.2. Lemma. A Py, -algebra structure on A is equivalent to a codifferential on PI(A)

Tw(P/, Ends) = curCodiff(Pi(A))
A — DHA = dp,-(A)—FDZA.
PROOF. The predifferential dp: is a coderivation so the map D,,, := dpi(a)+D),, is a coderivation.
The construction here is the same as the construction in Section 5.2.3 with D), = dj, opida, so
pa € Tw(Pi, Enda) implies D2 = (6 0 idpi(a)) © Api(a).
According to the proof of Lemma 5.2.4, we only have to remark that Dg( = DiA —
4 =0.

pA)Fpaxpa—06
(Hoidp;(A)) OAPi(A) = 0 implies dyod,,, +d;, Odpi(A) Fdyssps —do = (Dg(NA)‘FMA*MA*@)
Since da ody, +du, 0 dpicay +dyysp, — do is sent to O(pa) + pa* s — 6 and 0 is sent to 0 by
reversing the bijection in the Hom-tensor duality, we get the result. O

6.2.3. Infinity-morphism of P..-algebras. Let A and B be two P-algebras, with structure
maps i and pup. A co-morphism A ~~ B of P -algebras is a dg Pi-coalgebra map

F: (PY(A), Dy,) = (PA(B), Dyy)-

This description of co-morphisms makes it clear that P..-algebras, oo-morphisms, and compo-
sition given by composition of dg Pi-coalgebra maps forms a category.

A uAsi-coalgebras map F' : uAsi(A) — uAsi(B) is characterized by its corestriction to B, that
is F is determined by a collection of maps f2 : A®(»=I5)) — B. The fact that F commutes with
the differentials is equivalent to a family of equations on the . Pictorially, the collection of maps

¥ satisfy:

e AN

|
(4) r

e I £ o
0 &fﬁ//T :Zi\f%l/ - =+ \T(B)/,/
o

!
6.2.4. Proposition. Let A, B be two uA..-algebras, and let ps (A), s (B) be the respective struc-
ture maps. An oco-morphism between A and B is a collection of maps

(£ A1) — By sen of degree n+S| - 1,

satisfying: forn =1, dy o fP = flw odya, that is fP is a chain map, and for n + |S| > 2,
afy) =
> (—1)pHaCHISIDHS ST £50 6 (3 4, L ida, p52(A), ida, ..., ida)
—— ———

prgqt+r=n
p+l4+r=m p—1[51] r—[SY]
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—1)(n— - Trn—
+ 2. ()TN ST By o (£ ).
ilflTl‘+"'+im_‘T|7‘Tm_|T‘|:’I’L7|S|

S Cp
where £ S2 C ¢ such that S = S{U(Se+p)U(SY +¢—1) and S1 =
St c {p+2,...,p+1+47r}
T
STusy, where{ T E % such that T'= RoU...UR,,_|p| and
S = RoU(T1+|R0|)|.|(R1+i1)L|...L|

(To—jr) + |Rol + -+ [Rp— =1 + i1+ A pj—1) U (R + 81+ -+ 7))

and where e := |T|(n —m) + X7 (i = V) (k= j+ |Tu| + -+ [Ty1 ) + | R |(ITa | + - - +|T3])].

Jj=1

PROOF. An co-morphism A ~» B is a uAsi-coalgebra morphism F : uAsi(A) — uwAsi(B). Such
a morphism is completely determined by its image on the cogenerators of u.Asi(B), that is by a
map f : uAsi(A) — B (of degree 0), or equivalently by a collection of maps {f> : A2(=IS)
B}u>1, scn of degree n+ | S| — 1. The fact that F' commutes with the predifferential is equivalent
to the following commutative diagram

uAsi(A) 204 Asi o uAsi(A) _dor, uAsi(B)

d1+d2i ldBerLB

uAsi(A) - B.

Making this diagram explicit gives exactly the formulae of the Proposition. O

EXAMPLE. For n =1 and S = {1}, the formula gives

{1}T( ) ?
w1l (A
’ (ffrl}) = atm)
| f‘? |
that is, the element fl{l} bounds the failure of f1@ to preserve the unit.

REMARK. In [Lyul0Q], Lyubashenko proposes a definition for co-morphism between uA..-algebras
as a resolution of bimodule. It would be interesting to compare his definition with our definition.

Before we end the section, we use the results above to give the following definition.

6.2.5. Definition. A co-morphism of P -algebras F' : A ~ B is a quasi-isomorphism if the chain
map f{a : A — B induces an isomorphism in homology.

6.3. Rectification. We now prove that for every uA,,-algebra A there is a universal co-quasi-
morphism 14 between A and a uAs-algebra. This universal morphism takes the form of the unit
of an adjunction. We make use of the bar and cobar constructions of algebras over Koszul operads
(Sections 5.2.3, 5.2.5) for uAy-algebras and u.As-algebras.

The twisting morphisms ¢ : uAsi — QuAst = uA, and k : uAsi — uAs are defined in Section
3.4 and 4.3.

6.3.1. Lemma. Let A be uAy-algebra. The morphism of dg S-modules A — Q.B, A is a quasi-
isomorphism.

PrOOF. We endow uAs o, uAsi o, QuAst with a filtration F}, given by
F,(uAs o uAst o QuAst) = @ (uAs o uAs)“) o (QuAsH .

w+m<p
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Moreover we endow Qu.Asi with a filtration given by the homological degree, so that the morphism
QuAsi — uAs o, uAsio, QuAst preserves the filtrations. Since the weight on u.As o, uAsi is non-
negative and Qu.As! is non-negatively graded, the filtrations are bounded below. Moreover, the
filtrations are exhaustive. Thus, we can apply the classical theorem of convergence of spectral
sequences (cf. Theorem 5.5.1 of [Wei94]) to obtain

Ep = Hpiq(uAs o, udsio, QuAs') and E'} | = Hp i (QuAs')

and an induced morphism between the spectral sequences. The differential on Eg’ 4 coincides with
the differential on qu.As o qu.Asi, so Proposition 6.1.6 shows that E;,q ~ |’ le. It follows that
By = E’;q for all » > 1 and we get that Qu.Asi = uAs o, uAsi o, Qu.Asi.

We have Q,B, A = (uAs o, uAsi o, uA) 0ya., A. The short exact sequence

(uAs oy, uAst 0, UA ) o UAdo 0 A — (uAs o, uAsi o, uAds) 0 A — (wAhs o, uAsi o, uAs) oya,, A

induces a long exact sequence in homology. Since we work over a field of characteristic 0, the
ring K[S,,] is semi-simple by Maschke’s theorem, that is every K[S,]-module is projective. So the
Kiinneth formula implies that He ((uAso,uAdsi o, uAs)0tAac0A) = He(uAs ) o He(uAs) 0 He (A)
and He ((wAs o, uAdsio, uds)oA) = He(uAs ) oHe (A). Finally, this gives that He ((wAs o, uAsio,
UAs) oun, A) = He(uAo) on, (uar) He(A) = He(A). O

6.3.2. Theorem (Universal rectification). Let A be a uAx-algebra. There is a dg uAs-algebra,
Q:B,A and an oco-quasi-isomorphism I4 : A %= Q,B,A so that for any dg uAs-algebra B and
any oo-morphism F : A ~ B, there is a unique dg uAs-algebras map f : Q.,B,A — B so that

F = foly, that is the following diagram commutes:
Q.B,A

< -

IAT h \f

S
A

- B

PROOF. The map I, is defined by

-S
2%

(a1,...,Gn_|5)) = wi(ay,. .. yan—|s)) € BLA — Q,B,A.

By direct computation, this map is a co-morphism between the uA-algebras A and 2,B,A. To
see that this map is a quasi-isomorphism, observe that z? is equal to the inclusion map in Lemma
6.3.1. To define the map f, we note that the co-morphism of uAc-algebras F is determined by
the collection of maps f7, or by the collection of elements {fJ (a1, ..., a,_|s/)} in B. We define
the module map B,A — B by

:ug(ala R an—\Sl) = ff(alv CER) an—|S\)'
This map is a dg module map if and only if F' is a co-morphism. Since the u.As-algebra Q,B, A is
freely generated by {u2(ay, ..., an—|s))}, we define the map f to be the lift of the above dg map
to a uAs-algebras map Q,B,A — B. By construction we have fo Ip=F. O

Let us interpret the result above in terms of the categories of algebras. Since we have an
operad map uAy, — uAs, we have an inclusion functor (one-to-one on objects and on morphisms)
uAs-alg — uA,-alg, which we denote by i. Denote by R the assignment that takes each uAs.-

algebra A to the uAs-algebra R(A) = Q,,B,(A). Because the arrow A EEN iR(A) is universal, R
can be extended to morphisms so that it becomes a functor from uA.-alg — u.As-alg:

R(4)- " R(B)
.
A——B.

We summarize in the following proposition.
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6.3.3. Proposition. The functor i, the object-assignment R, and the universal morphisms A EER
tR(A) determine the extension of R to a functor R : uAs,-alg — uAs-alg so that I : id — iR is
the unit of an adjunction:

R
uAyo-alg ~ uAs-alg.

PROOF. See Mac Lane [Mac98] chapter 4, theorem 1.

It is tempting to try to put a model category structure on the right-hand side so that this
pair of functors becomes some kind of Quillen equivalence, as Lefevre-Hasegawa [LHO03] did for
Aso-algebras and As-algebras. (Actually, A,-algebras are not quite a model category, see the
referenced paper for more details). Instead we observe that each functor takes quasi-isomorphisms
to quasi-isomorphisms, and so each functor induces a functor between the homotopy categories
(localizations of each category by its quasi-isomorphisms). We claim these induced functors are
an adjoint-equivalence of the homotopy categories.

6.4. Transfer formulae. In this section we provide formulae, based on labelled trees, for the
pullback of a uAs-structure along a strong deformation retract.
For this entire section, suppose V, A are chain complexes, and

=240

is a strong deformation retract, i.e., p and ¢ are chain maps, where po¢ =idy and dah + hda =
id4 —i o p. Moreover, suppose A is a uAy-algebra, with structure map g 4.

6.4.1. Definition. Let n > 2,S C n, we define the set T,° be the set of planar, rooted trees, with
n leaves, and a cork above each ith leaf if i € S which is labelled by either the word “connected”
or “disconnected.” We define T? = {|} and ,]—1{1} = { poonnectedy

6.4.2. Definition. Let T € T,°, and let v be any internal vertex in T. We denote by in(v) the
ordered (left-to-right) set of incoming edges to the vertex v. For each element i € in(v), we define
l; and c; as follows:

(1) 1; is the total number of leaves without connected corks in the tree T whose (unique) path
to the root passes through edge i

(2) ¢; is the total number of incoming edges to v without connected corks to the right of edge
i.

6.4.3. Definition. For any T € T,° and any internal verter v € T, we define

)= > LG+ + > ci.
1<i<j<|in(v)| i€in(v)

with a connected
cork on it

For any tree T € T,°, we set

(2) e(T) = > e(v).

internal vertices
veT

6.4.4. Definition. Let gsyryciure ’Tns — Hom(V®(”*|S‘), V') be the set map that takes an element
5(v) (A) where S(v) are the positions of the

in(v)
connected corks, the operation ui to each disconnected cork, the homotopy h to each internal
edge (that is not the outgoing edge of a connected cork), and the map i to each leaf without
a cork above it, and the map p to the root of the tree. After this assignment, one composes
the operations as indicated by internal edges to arrive at an operation V®W=ISH v Let
Imorphism Tns — Hom(V‘g’("_‘SD7 A) be the set map that takes an element T € ’TnS and assigns
to the tree the same element as gsyructure (T'), but with the homotopy h assigned to the root, rather
than the map p.

T € T, and assigns to each vertex v the operation
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ExXAMPLES. Let T be the element of 7}){1’4} that looks like

disconnected

connected

The sign (—1)<(™) for this tree is given by

e(T) e(vy) + e(va) + e(v3) + €(vyg)

= [(1+1)-1+(1+1)-3+(1+1)-34+0+[1+1)-2+0]+[(1+1)-14+0+[(1+1)-1+1]
= 144+4+2+3

23

1 mod 2.

The operation assigned to the tree 7', gstructure(1'), is given by the following composition of oper-
ations:
Ta

R %

YGstructure (T) = >/
A A

while the morphism assigned to the tree T, gmorphism (I") is given by:

Ta
h Vi

<.

/n

Ymorphism (T> = >/
A A
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6.4.5. Proposition. The maps defined by
(3) /’Ls(v) = Z (_1)€(T)gstructure (T) .

TeTs

give V the structure of a uAs-algebra. Moreover, the maps defined by

(4) Zi = Z (_I)E(T)gmorphism (T)

TeTS
provide a co-quasi-isomorphism of uAs-algebras I :V = A.

PROOF. A combinatorial argument similar to the argument for transferring A.o-structures [Mar06]
will suffice. O

ExAMPLES. For small values of n, the transferred structure is given by
Ta
VP

Vi vi

pd(V) :=po ph(A) 0 i®? = \é
VP

ut (V) i=pout(4) =

T

R
i_
e K2

\Lh

For the reader familiar with transfer of A, -structures, restricting attention to the operations
12 (V) recovers the familiar transfer formulae [Kad83, Mer99, KS06, Mar06, LV].

REMARK. Though our signs differ from [Mar06], we use his ideas to develop a coherent sign
convention for our transfer formulae. The reader should note that our function e(v) differs from
the 0(v) in [Mar06] even on the operations 2 (V), in small ways, such as right-to-left orientation of
trees instead of left-to-right. Instead we choose our signs to agree with [Sta63, LV] when restricted
to the classical A, operations.

6.5. Comparing unital-(associative-infinity) and (unital-associative)-infinity. In previ-
ous sections, we have developed the definition of the operad uA., whose algebras are homo-
topy unital As.-algebras. There have been several definitions of homotopy unital A.,-algebras
[FOO009, KS06, Lyu02], and these notions have been compared in [LMO06]. There is also a def-
inition of strictly unital As-algebras [KS06, FOOO09]—we will refer to these as sud..-algebras
throughout this section—they may be thought of as unital-(associative-infinity) algebras as op-
posed to our (unital-associative)-infinity algebras. We will compare uwA..-algebras to sud,.-
algebras. This comparison includes Theorem 6.5.3, which states that every uA..-algebra has
an equivalent unital-A-structure on its homology. We demonstrate that this theorem is fairly
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general, and applies to many algebraic structures with units, including unital commutative asso-
ciative algebras, unital Batalin-Vilkovisky algebras, and co-algebraic versions of these structures.

First we define suA,.-algebras and their co-morphisms.

6.5.1. Definition. An suAs.-algebra (A, {{nn>1, €) is an Ax-algebra (A, {in}n>1) with e € A
such that ds(e) =0 and e is a left and right unit for pe, and e annihilates p, for n > 3 [KS06].

REMARKS. (1) There exists a dg-operad whose algebras are precisely sud..-algebras, and
we denote it by sud.,. Furthermore, the operad sud., is the quotient of uA,, by the
ideal generated by { “g}nzz, s|>1° A quick computation yields that this map is a quasi-
isomorphism.
(2) The operad sud., is not cofibrant. If it were, the lifting property would imply that it
is a retract of uA., by the quotient map uA,, — sud.,, which a computation shows is
impossible.

We now describe a diagram of categories of algebras. We will use the following notation

o As-alg: the category of associative algebras with algebra homomorphisms

o uAs-alg: the category of unital associative algebras with algebra homomorphisms that
preserve the unit

e 00-Aso-alg: the category of A, -algebras with co-morphisms

o co-uAy-alg: the category of uAd,, algebras with oco-morphisms

e suA.-alg: the category of sud.-algebras with the A,, co-morphisms for which f; pre-
serves the unit and f,, annihilates it (for n > 2)

First, we have the following diagram of operads:

uAds <— sud <— uAy

| |

AS Aoo

On the categories of algebras, the diagram becomes:

uAds-alg ——suAd-alg —— oo-uAl-alg

| |

As-alg 00-Ago-alg

We proved earlier (Section 6.3) that the first of the following composition of horizontal inclusions

uAds-alg — oo-uAy-alg,
As-alg  — oo-A-alg

has a left-adjoint, ,B,, which we called the universal rectification (it is known that the second
has a similarly defined left-adjoint). Each of the inclusions,

uAs-alg —  As-alg,
su-Ay-alg —  Agc-alg

has a left-adjoint as well, given by adjoining an element u and extending the product(s) to make
w a strict unit (with appropriate annihilation conditions, in the case of suA.-algebras).
We now analyze the relationship between uA., and suA,, via our transfer formulae.

6.5.2. Theorem. LetV __~ A Q h , be a strong deformation retract, and {*4, Y o} a strict
P

wAs-structure on A. Suppose further that h (TA) = 0. Then the operations 3 (V) given by the



CURVED KOSZUL DUALITY THEORY 33

transfer formulae (see definition in Proposition 6.4.5) have the property that
pa (V) =0

whenever n > 2 and |S| > 1. Furthermore, the uAs-morphism structure J on the chain map i
has the property that whenever |S| > 1,

JZ =0,
even when n = 1. In particular this means that the transferred uAso structure is an suA-algebra,
and the uAs-00 quasi-isomorphism is an suA.,-00 quasi-isomorphism.

PROOF. For n > 2,|S| > 1, each summand in u (V) contains as some part of the diagram (of
compositions) the following composite:

T4 — ey =o,

| h
so each of those operations is itself 0. The same fact gives the result for J, along with the fact
that

g =ta_y
| h
The vanishing of these higher operations and morphisms implies that the transferred Ay
structure and morphism are strictly-unital, because the operad suA. is the quotient of uA., by
precisely these operations. O

REMARK. We point out that since we are working over a field, and d(*4) = 0, it is always possible
to choose a strong deformation retract between V' and A so that h (?A) = 0 (provided, of course,
V is equivalent to A).

The following corollary of Theorem 6.5.2 is an analogue of Theorem 5.4.2” in [FOOO09], which
they prove in both the filtered and unfiltered setting.

6.5.3. Corollary. Let A be a uA-algebra. Then there exists a uAs-algebra R, and an suA-
algebra structure on He(A) so that A = R and He(A) — R. That is, for an arbitrary uAs-
algebra A, there is a minimal model for A which is an suA..-algebra.

PROOF. By Theorem 6.3.2, we have I4 : A % Q,B,A = R(A). Note that in particular, H, (A) ~;
H, (R(A)). We will denote both by H.

i
Since there exist strong deformation retracts H — R(AO h where h annihilates the unit,
P
transferring the u.As structure on 2,B, A along any such strong deformation retract, by Theorem
6.5.2, gives an equivalent sud,,-algebra structure on H. O

In what follows, we prove an analogous theorem for a wide class of properads P. First, we must
say what we mean by a “unital version” of P.

6.5.4. Definition. Let P = F(V)/(R) be an inhomogeneous quadratic properad. We say an
inhomogeneous quadratic properad uP = F(?@V)/(R® R') is a unital version of P if and only if

o the map of operads P — uP induced by the inclusion V. — * @V is injective,

o the induced map qP — quP together with the inclusion * — quP gives an isomorphism
of operads * & qP ~ quP,

e the inhomogeneous quadratic relations associated to a single composition of the cork with
an operation in P has only the leading quadratic term and a constant term.

REMARK. The name “unital version” for uP is not always appropriate. For example, if we take
for P the operad Lie, then the operad cLie, which governs Lie algebras with a designated central
element, is a unital version of Lie as in the above (where the constant term is taken to be zero),
though of course a central element is far from what we typically think of as a unit.
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Suppose uP is a unital version of P, and that both are inhomogeneous Koszul properads. Then
QuPi =: uP, = uP, and by Proposition 6.1.4, the underlying coproperad of uP! is isomorphic
to ik qPi. This observation allows us to define “strictly-unital P,.-algebras,” or suP..-algebras,
as we defined sud.: we can identify the “unital homotopies” as those made of a (co)operation
Lo € qPT with some configuration S of corks above the leaves.

6.5.5. Definition. Suppose uP is a unital version of P, and that both are inhomogeneous Koszul
properads. We define the properad suPs as the quotient of uPs, by the (differential) properadic
tdeal generated by the operations

{uS: for po € qPI and S # 0}.
That is, we quotient by all the “unital relations” and “unital homotopies.”

REMARK. Though it looks like we only quotient by unital homotopies in the above, taking the
differential ideal generated by the unital homotopies means we also quotient by the image under
dyp,, of the unital homotopies with weight 2, which are precisely the unital relations.

If uP is a unital version of P, and both are inhomogeneous Koszul properads, the quotient map
suP,, — uP is a quasi-isomorphism. In general, however, the operad suP,, is not cofibrant. Even
so, we have the following transfer theorem for suP.,-algebras.

6.5.6. Theorem. Let uP be a unital version of P, and suppose both are inhomogeneous Koszul.

3
Then given any uP-algebra A and a strong deformation retract V ~ A Qh, where the
)

homotopy h satisfies h(?4) = 0, the transferred (uP)so-algebra is an suPu-algebra structure, and
the uPs oo-morphism structure on J is an suPs, oco-morphism.

6.5.7. Corollary. Suppose we have properads P,uP as in Theorem 6.5.6, and suppose A is a uP-
algebra. Then there is an suPy-algebra structure on the homology of A and an suP., co-quasi
isomorphism H = A.

PRrOOF. 1t is a corollary of the proof for u.As, given the universal rectification and transfer formulae
for arbitrary Koszul inhomogeneous quadratic properads 4P (which are not made explicit in this
paper). O

6.5.8. Corollary. In the following list of pairs, (P,uP), uP is a unital model for P and both
are inhomogeneous Koszul. In particular, each uP-algebra structure may be transferred to an
equivalent suPs structure on homology in the above sense.

(1) (Com,uCom), where uCom is the operad governing unital commutative associative algebras,

(2) (Lie,cLie), where cLie is the operad governing Lie algebras with a designated central
element,

(3) (Gerst,uGerst), where uGerst is the operad governing unital Gerstenhaber algebras, ie,
Gerstenhaber algebras with a unit for the commutative associative product which is anni-
hilated by the bracket,

(4) (BV,uBYV), where uBV is the operad governing unital BY-algebras, ie, BV algebras with a
unit for the commutative associative product which is annihilated by the bracket and the
delta operator (see [GCTV09] for a treatment of BY as an inhomogeneous Koszul operad).

REMARK.

(1) Though we have spoken only about units, counits may be treated similarly.
(2) Treating ucFrob, the properad governing Frobenius algebras with unit and counit, would
be interesting to the authors.

6.6. Cohomology theory for unital associative algebra. In this section, we define the André-
Quillen cohomology theory for unital associative algebras following the general definition of [Mil08].
We prove that the cohomology can be written as an Ext-functor and we compare this definition
to the Hochschild cohomology theory.
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6.6.1. André-Quillen cohomology theory. We consider now the operad P = u.As and the
curved cooperad C = uAsi = (quAsi, 0, 0). The Koszul morphism between u.4s and u.As! is given
by

k:uAds — Y @Y — uds.

Let A be a u.As-algebra. Following Sections 1 and 2 of [Mil08], we use the cofibrant resolution
Q:BeA =uAso, uAdsi(A) = A
of Section 5 to compute the André-Quillen cohomology of A thanks to the cotangent complex
A uAsi(A) A
—_—

We denote an element in A %4 uAsi(A) by a ® (5 @by - - bn—|s)) ® ¢, where a, b; and c are
in A and where 775 is in uAsi(n — |S|). Following the end of Section 2 of [Mil08], we compute the
differential on A ®“A° uAsi(A), which is given by

A @A uAsi(A) = ~ A@udsi(A)® A.

dLP = dA®“'ASu.ASZ(A) — 550 + 5;.
The differential dguasyasi(a) depends only on da (since dyas = 0, dyasi = 0), the map ¢ :

uAsi(A) — A is the projection and the terms (550 and d;, are given by the following proposition.

6.6.2. Proposition. We have
6L(a® (715 ® by by_ys) ®c) =
c1a-b @ (721 @ba by s) @+ (1) 151a @ (Fin_y @b+ by_|5)-1) @ by_s| - €
where ¢; = (()—1)|a|+|bi|(n*2+|5|+|b1|+'“+|bi—1\) Z;ij;’se, and
55(a® (71 @by by_ys) ®c) = (54 +6,)(a® (I @by by_js)) @) =

_ Z (—1)‘a|+n+‘slla®(ﬁs\u®b1"'1A"'bnf|S|)®C
S=5,U{u}US]

_ 3 (=Dl 418l @ (@225 @ by by by b)) @ 6
{t, t+1}uS=S>{t, t+1}11S},

where max S1 < u < minS] and maxSe <t <t+1 < minSh and d¢ holds for the first sum and
by for the second. Moreover, d,(?) = 0.

ProOF. The differential on the cotangent complex is given following the end of Sections 2 of
[Mil08]. We make the computations explicit thanks to the infinitesimal decomposition map of
uAst, described in Corollary 6.1.5. O

6.6.3. Proposition. The André-Quillen cohomology groups of a uAs-algebra A with coefficients
in a unital A-bimodule M are given by

o as(A, M) = Hy(Homa pimod. (A @"* uAs/(A), M), 0),
where O(f) :=dar o f — (—1)/¥1f od, and A-bimod. is the category of unital A-bimodules.

6.6.4. Ext-functor and comparison with the Hochschild cohomology theory. To a unital
associative algebra, we can associate two abelian groups: the Hochschild cohomology groups of A
(as defined in [Hoc45], or [Lod98], chap. 1, for a modern reference), that is, the André-Quillen
cohomology groups of the associative algebra A (forgetting the unit), or the André-Quillen co-
homology groups of A seen as a unital associative algebra (previous section). We show that the
cohomology groups coincide.

6.6.5. Theorem. Let A be a uAs-algebra and let M be a unital A-bimodule. We have
'l.LAS (Av M) = EXtA@HASK(Qu.AS (A)v M)a
where Qa5 (A) is the unital A-bimodule of Kdhler differential forms (see [Mil08] for more details).
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PRrROOF. Similarly to the case of Hochschild cohomology theory, we define the map h on A ®
uAsi(4) ® A by
h(a @ (i, @by by_js) @ ¢) = =(=) N1 @ (@t @aby - by_j5)) ® ¢

It satisfies dh + hd = id on A ® uAsi(A) ® A. Thus the chain complex

AQUAS(A) @A A9 A® A — Quas(A) — 0

is acyclic since we derive the left-adjoint functor of Kéhler differential forms to obtain the cotangent
complex, and the cohomology is an Ext-functor. O

We use this theorem to compare this cohomology theory to the Hochschild cohomology theory.
6.6.6. Proposition. There is a quasi-isomorphism of unital A-bimodules
A" Asi(A) 2 A® Asi(A) @ A = A4 uds/(A) = A®uds/(A) @ A.
PRrROOF. First, we endowed A®u.Asi(A)® A with a filtration given by the number of corks, denoted
by
FyAoudsi(A) @A) = P A®(udsi(n—|8|)®s,_, A2y @ A
SCn, |S|<p

We have dA@uAsuAy(A) F, — Fp, 5l : Fy, — F,, 0y : F, - F,_y and 0, : F}, — F,. Thus the
filtration is a filtration of chaln complexes. It is bounded below and exhaustive so we can apply
the classical theorem of convergence of spectral sequences (cf. Theorem 5.5.1 of [Wei94]) and we
obtain a spectral sequence Ep  such that

ES, = Hyg(A® uds (A) @ A).

The differential d® on EJ , := F,,(A ® uAsi(A) ® A)piq/Fp-1(A @ uAsi(A) © A)pyq is given by
d’ = dpguAsyAsi(A) — 550 + 0,. There is an inclusion of chain complexes

1: A® Asi(A) ® A — @p,qu,q > AQudsi(A)® A,

n—|S|

where the last isomorphism is only of vector spaces. The projection p : ®p, quyq AR Asi(A) ®
A®Cs1 - A® Asi(A) @ A, where C>1 is given by elements with at least one cork, is a chain
complexes map. We define the map h by

h(a®(ﬂg®b1bn*\5|)®c) = _( 1)m1nsa®(uiii{®b1 bmmS) 11AbmmS bn—\S\)®c

With these definitions, we have poi = idsgyuasi(a)pa and idg,, B9, —iop= dh + hd. Hence, we
have a deformation retract

A® Asi(A )®AH@I,, 3

and the inclusion ¢ is a quasi-isomorphism. It follows that E; ¢ = 0 when p # 0 and the spectral
sequence collapses. Considering the filtration F}(A® Asi(A)® A) = A® Asi(A)® A for all p > 0
(bounded below and exhaustive), the inclusion induces a map of spectral sequences which is a
quasi-isomorphism on the E'-pages and higher. Since E’;q converges to Hyy,(A® Asi(A) @ A)
and EJ , converges to Hyi (A ® uAsi(A) ® A), we get the proposition. O

6.6.7. Corollary. Let A be a unital associative algebra. For ¢ > 1, we have
u.As(A M) H.+1(A’ M)

PROOF. The cohomology of u.As-algebras is given by the Ext-functor Ext% guacy (Quas(A4), M)

(Theorem 6.6.5) and we have the projective resolution A ® uAsi(A) ®@ A = Q,45(A). By Propo-
sition 6.6.6, the projective (quasi-free) A-bimodule A ® Asi(A) ® A is also a projective resolution
of Q,45(A) and computes the Hochschild cohomology (see the definition 1.1.3 in [Lod98]). O
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