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TOWARDS EFFECTIVE DETECTION OF THE BIFURCATION

LOCUS OF REAL POLYNOMIAL MAPS

LUIS RENATO G. DIAS, SUSUMU TANABÉ, AND MIHAI TIB�R

Abstract. We answer to a problem raised by recent work of Jelonek and Kurdyka: how
can one detect by rational arcs the bifurcation locus of a polynomial map Rn → Rp in
case p > 1. We describe an e�ective estimation of the �nontrivial� part of the bifurcation
locus.

1. Introduction

The bifurcation locus of a polynomial map f : Rn → Rp, n ≥ p, is the smallest subset
B(f) ⊂ Rp such that f is a locally trivial C∞-�bration over Rp \ B(f). It is well known
that B(f) is the union of the set of critical values f(Singf) and the set of bifurcation
values at in�nity B∞(f) (see De�nition 2.1) which may be non-empty and disjoint from
f(Singf) even in very simple examples. Finding the bifurcation locus in the cases p > 1
or p = 1 and n > 2 is yet an unreached ideal. Nevertheless one can obtain approximations
by supersets of B∞(f) from exploiting asymptotical regularity conditions, [ST], [Pa], [Ra],
[Ga], [Ti2], [KOS], [HP1], [DRT], [CT], [Je2], [NZ], [JT] etc.
Improving the e�ectivity of the detection of asymptotically non-regular values becomes

an important issue, for instance it leads to applications in optimisation problems [HP2],
[Sa]. Along this trend, Jelonek and Kurdyka [JK2] produced recently an algorithm for
�nding the set of asymptotically critical values K∞(f) in case p = 1. It is known that in
this case K∞(f) is �nite and includes B∞(f). A sharper estimation of B∞(f) has been
found in the real setting [DT] by approximating the set of asymptotic ρa-nonregular values
of f . The later method provides a �nite set of values A(f) with the following property:
B∞(f) ⊂ A(f) ⊂ K∞(f).
In case p > 1 the bifurcation locus B∞(f) may be no more �nite. Actually, by the

Morse-Sard result proved by Kurdyka, Orro and Simon [KOS] for K∞(f), or by the one
obtained in [DRT] for the sharper estimation B∞(f) ⊂ S0(f) ⊂ K∞(f), one only knows
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that the sets K∞(f) and S0(f) are contained in a 1-codimensional semi-algebraic subsets
of Rp.
Our approach is based on the set S∞(f) of non-regular values at in�nity with respect

to the Euclidean distance function from any point as origin, and which includes B∞(f).
Since the set of critical values f(Singf) is the image of an algebraic set and the well-known
estimation methods apply, we consider it as the �trivial� part of the job. The most di�cult
task is to apprehend the complements of f(Singf) to the bifurcation locus B∞(f).
We shall detect here the �nontrivial� part NS∞(f) of the bifurcation locus at in�nity

(de�ned at �2.6) which, roughly speaking, contains the values of S∞(f) which are not
comming from the branches at in�nity of the singular locus Singf .
This note answers a question raised by the results [JK2] and [DT], as of how can one

detect the bifurcation locus by rational arcs in the case p > 1.
More precisely, given a polynomial map f = (f1, . . . , fp) : Rn → Rp, deg fi ≤ d, we

�nd all the values of the �nontrivial� part NS∞(f) of S∞(f) and hence of nontrivial part
NB∞(f) of the bifurcation locus B∞(f), as follows:

(1). We consider a set of rational paths: (x(t), y(t)) =
(∑

−ds≤i≤s ait
i,
∑
−ds≤j≤0 bjt

j
)
⊂

Rn × Rp, where s = [p(d− 1) + 1]n−p[p(d− 1)(n− p) + 2]p−1.
This means a �nite number of vectorial coe�cients ai ∈ Rn, for −ds ≤ i ≤ s, and

bj ∈ Rp, for −ds ≤ j ≤ 0.

(2). The coe�cients are subject to several conditions, namely: ‖b0‖ = 1, ∃k > 0, ak 6= 0 ∈
Rn, we ask the annulation of the coe�cients of the terms with positive exponents in the
expansion of f(x(t)) and the annulation of the coe�cients of the terms with non-negative
exponents in the expressions xi(t)φj(x(t), y(t)), for all i, j ∈ {1, . . . , n} (cf (13) for the
de�nition).

We denote by Arc∞(f) the algebraic subset of arcs obtained by this construction (steps
(1) and (2) above), and by α0(Arc∞(f)) the set of limits limt→∞ f(x(t)), i.e. the free
coe�cient in the expansion of f(x(t) for (x(t), y(t)) ∈ Arc∞(f). Then our main result,
Theorem 3.5, proves the inclusions:

NS∞(f) ⊂ α0(Arc∞(f)) ⊂ K∞(f).

2. Regularity conditions at infinity and bifurcation loci

2.1. Bifurcation locus. Let f = (f1, . . . , fp) : Rn → Rp be a polynomial map, n ≥ p.

De�nition 2.1. We say that t0 ∈ Rp is a typical value of f if there exists a disk D ⊂ Rp

centered at t0 such that the restriction f| : f
−1(D) → D is a locally trivial C∞-�bration.

Otherwise we say that t0 is a bifurcation value (or atypical value). We denote by B(f)
the set of bifurcation values of f .
We say that f is topologically trivial at in�nity at t0 ∈ Rp if there exists a compact set
K ⊂ Rn and a disk D ⊂ Rp centered at t0 such that the restriction f| : f−1(D) \ K → D
is a locally trivial C∞-�bration. Otherwise we say that t0 is a bifurcation value at in�nity

of f . We denote by B∞(f) the bifurcation locus at in�nity of f .
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2.2. The rho-regularity. Let a = (a1, . . . , an) ∈ Rn and let ρa : Rn → R≥0, ρa(x) =
(x1− a1)2 + . . .+ (xn− an)2, be the Euclidian distance function to a. Let f : Rn → Rp be
a polynomial map, where n ≥ p.

De�nition 2.2 (Milnor set at in�nity and the ρa-nonregularity locus). [DT]
The critical setMa(f) of the map (f, ρa) : Rn → Rp+1 is called the Milnor set of f (with
respect to the distance function). The following semi-algebraic set, cf [DRT, Theorem
5.7] and [DT, Theorem 2.5]:

(1) Sa(f) := {t0 ∈ Rp | ∃{xj}j∈N ⊂Ma(f), lim
j→∞
‖xj‖ =∞ and lim

j→∞
f(xj) = t0}

will be called the set of asymptotic ρa-nonregular values. If t0 /∈ Sa(f) we say that t0 is
ρa-regular at in�nity. Let S∞(f) :=

⋂
a∈Rn Sa(f).

Lemma 2.3. S∞(f) is a semi-algebraic set.

Proof. Let f : Rn → Rp be a polynomial mapping and let us consider the following semi-
algebraic set:

W := {(x, a) ∈ Rn × Rn | x ∈Ma(f)}.
By the de�nition of S∞(f), we have:

S∞(f) := {y ∈ Rp | ∀a ∈ Rn, ∃{(xk, a)} ⊂ W such that f(xk)→ y},
which tells that S∞(f) can be writen by using �rst-order formulas. This means that
S∞(f) is a semi-algebraic set, see for instance [Co, pag. 28 and 29] and [BCR, Prop.
2.2.4]. �

It has been proved in [Ti2], [DRT], [DT] that one has the inclusion B∞(f) ⊂ Sa(f), for
any a ∈ Rn, thus in particular:

(2) B∞(f) ⊂ S∞(f).

It was believed, cf [DT, Conjecture 2.11], that (2) was an equality. We show here by
an example that this is not the case, at least in the real setting.

2.3. Example for B∞(f) 6= S∞(f). We consider the two-variable real polynomial1 con-
structed in [TZ], f : R2 → R, f(x, y) = y(2x2y2 − 9xy + 12). We show that S∞(f) = {0}
and B∞(f) = ∅.
It was already proved in [TZ] that f has no singular value, no bifurcation value and

that S0(f) ⊂ {0}. We shall prove here that this inclusion is an equality. Moreover, we
prove here that {0} ⊂ Sa(f) for any center a ∈ R2.
For any �xed a = (a1, a2) ∈ R2, we have:

Ma(f) = {(x, y) ∈ R2 | y2(4xy − 9)(y − a2) = 6(x− a1)(xy − 1)(xy − 2).}
For x = 0 we eventually get solutions of the above equation but which have no in�uence
on the set Sa(f). By removing these solutions fromMa(f), we pursue with the resulting

1We thank Y. Chen for suggesting us to test this example.
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set, which we denote by M′
a(f). Thus, assuming that x 6= 0 and multiply the equation

by x3, we obtain:

(3) M′
a(f) = {(x, y) ∈ R2 | x2y2(4xy − 9)(xy − xa2) = 6x3(x− a1)(xy − 1)(xy − 2)}.

We show that we can �nd solutions (xk, yk)k∈N of the equality in (3) such that ‖(xk, yk)‖ →
∞ and f(xk, yk) → 0. Indeed, setting z := xy our equation (3) becomes z2(4z − 9)(z −
a2x) = 6x3(x − a1)(z − 1)(z − 2). We then consider each side as a curve of variable z
with x as parameter. We consider the graphs of these two curves and observe that for
each sign of a2 the two graphs intersect at least once for any �xed and large enough |x|
and that this happens at some value of z in the interval ]0, 1[ (and in the interval ]1, 2[ in
case a2 = 0, respectively). This shows that we can �nd solutions (xk, yk) ∈ Ma(f) with
modulus tending to in�nity and, since zk = xkyk is bounded and yk tends to 0, we get
that f(xk, yk)→ 0.
In conclusion, we have shown that S∞(f) = {0}, which implies B∞(f) 6= S∞(f).

2.4. Generic dimension of the nonsingular part of the Milnor set.

The following statement has been noticed in case p = 1 in [HP1] (see also [Dut, Lemma
2.2] or [DT]). We outline the proof in case p > 1, some details of which will be used in
�3.

Lemma 2.4. Let f = (f1, . . . , fp) : Rn → Rp be a polynomial map, where n > p and

deg fi ≤ d,∀i. There exists an open dense subset Ωf ⊂ Rn such that, for every a ∈ Ωf ,

the setMa(f) \ Singf is either a smooth manifold of dimension p, or it is empty.

Proof. We denote byMI [D(f)(x)] (respectivelyMI [D(f, ρa)(x)]) the minor of the Jacobian
matrix D(f)(x) (respectively D(f, ρa)(x)) indexed by the multi-index I. We set

(4) Z := {(x, a) ∈ Rn × Rn | x ∈Ma(f) \ Singf}.
If Z = ∅, thenMa(f) \ Singf = ∅,∀a ∈ Rn. From now on let us consider the case that
Z 6= ∅. Let (x0, a0) ∈ Z. Since Singf is closed, there is a neighborhood U ⊂ Rn of x0
such that U ∩ Singf = ∅. This means that there exists a multi-index I = (i1, . . . , ip) of
size p, 1 ≤ i1 < . . . < ip ≤ n, such that MI [Df(x)] 6= 0, ∀x ∈ U .
Let SI := {J = (j1, . . . , jp+1) | I ⊂ J} be the set of multi-indices of size p+ 1 such that

1 ≤ j1 < . . . < jp+1 ≤ n and i1, . . . , ip ∈ {j1, . . . , jp+1}. There are (n − p) multi-indices
J ∈ SI ; we set

(5) mJ(x, a) := MJ [D(f, ρa)(x)], (x, a) ∈ U × Rn.

From the de�nitions of Z,U and the functions mJ , we have:

(6) Z ∩ (U × Rn) = {(x, a) ∈ U × Rn | mJ(x, a) = 0; ∀J ∈ SI}.
Let ϕ : U × Rn → Rn−p be the map consisting of the functions mJ for J ∈ SI . Then
ϕ−1(0) = Z∩(U×Rn) and we notice that Dϕ(x, a) has rank (n−p) at any (x, a) ∈ U×Rn.
Indeed, let (

∂ϕ

∂ak
(x, a)

)
(n−p)×(n−p)

, k /∈ I, (x, a) ∈ U × Rn.
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This is a minor of Dϕ(x, a) of size (n − p). Interchanging if necessary the order of its
lines, it is a diagonal matrix with all the entries on the diagonal equal to −MI [Df(x)]
and hence non-zero. This and (6) show that Z is a manifold of dimension n+ p.
We next consider the projection τ : Z → Rn, τ(x, a) = a. Thus, τ−1(a) = (Ma(f) \

Singf) × {a}. By Sard's Theorem, we conclude that, for almost all a ∈ Rn, τ−1(a) =
(Ma(f) \ Singf)× {a} ∼= (Ma(f) \ Singf) is either a smooth manifold of dimension p or
an empty set. �

2.5. The relation to the Malgrange-Rabier condition.

De�nition 2.5 ([Ra]). Let f : Rn → Rp be a polynomial map, n ≥ p. Denote by Df(x)
the Jacobian matrix of f at x. We consider

K∞(f) := {t ∈ Rp | ∃{xj}j∈N ⊂ Rn, lim
j→∞
‖xj‖ =∞,(7)

lim
j→∞

f(xj) = t and lim
j→∞
‖xj‖ν(Df(xj)) = 0},

where

(8) ν(A) := inf
‖y‖=1

‖A∗(y)‖,

for a linear map A and its adjoint A∗.
We call the set K∞(f) of asymptotic critical values of f . If t0 /∈ K∞(f) we say that f

veri�es the Malgrange-Rabier condition at t0.

We have the following relation between ρa-regularity and Malgrange-Rabier condition:

Theorem 2.6 ([DT, Th. 2.8]). Let f = (f1, . . . , fp) : Rn → Rp be a polynomial map, where

n > p. Let φ :]0, ε[→Ma(f) ⊂ Rn be an analytic path such that limt→0 ‖φ(t)‖ = ∞ and

limt→0 f(φ(t)) = c. Then limt→0 ‖φ(t)‖ν(Df(φ(t))) = 0. In particular Sa(f) ⊂ K∞(f) for

any a ∈ Rn, and S∞(f) ⊂ K∞(f). �

Remark 2.7. See [DRT] and more precisely [DT, Theorem 2.5] for a structure result and
a �bration result on S∞(f). The inclusion S∞(f) ⊂ K∞(f) may be strict (e.g. [PZ] and
[DT, Example 2.9]). The inclusion B∞(f) ⊂ S∞(f) may be strict, see the above Example
�2.3. One may also have Sa(f) 6= Sb(f) for some a 6= b, see [DT, Example 2.10].

2.6. The nontrivial bifurcation loci at in�nity. We have discussed up to now three
types of bifurcation loci: B∞(f), S∞(f) and K∞(f). All of them may contain points of
the critical locus f(Singf). This locus can be estimated separately since it is the image
by f of an algebraic set and the known estimation methods apply. What is more di�cult
to apprehend are the respective complements of f(Singf). We de�ne here the �nontrivial
parts� of the bifurcation loci and next describe a procedure to estimate the one of S∞(f).
From the de�nitions of Ma(f) and Sa(f), we have the equality Sa(f) = J(f|Ma(f)),

where J(f|Ma(f)) is the non-properness set of f|Ma(f). Jelonek de�ned this set in general:

De�nition 2.8. ([Je1, De�nition 3.3], [JK2]). Let g : M → N be a continuous map,
where M,N are topological spaces. One says that g is proper at the value t ∈ N if there
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exists an open neighbourhood U ⊂ N of t such that the restriction g|g−1(U) : g−1(U)→ U
is a proper map. We denote by J(g) the set of points at which g is not proper.

In our setting f : Rn → Rp, let us de�ne the nontrivial ρ-bifurcation set at in�nity

NS∞(f) :=
⋂

a∈Rn NSa(f), where:

NSa(f) := {t ∈ Rp | ∃{xj}j∈N ⊂Ma(f) \ Singf, lim
j→∞
‖xj‖ =∞, and lim

j→∞
f(xj) = t}

and note that S∞(f) = NS∞(f) ∪ J(f|Singf ) and that NS∞(f) is a closed set since each
set NSa(f) is closed, which fact follows from the arguments of [DRT, Theorem 5.7(a)].
Similarly, we introduce the following notation for the nontrivial bifurcation set at in�nity

which is the object of our main result, Theorem 3.5:

NB∞(f) := B∞(f) \ J(f|Singf ).(9)

By the above de�nitions and by Theorem 2.6, we immediately get:

Proposition 2.9.

NB∞(f) ⊂ NS∞(f) ⊂ K∞(f).

�

3. Detection of bifurcation values at infinity by parametrized curves

3.1. E�ective Curve Selection Lemma at in�nity via the Milnor set.

If t0 ∈ NS∞(f) then t0 ∈ NSa(f) for any a ∈ Rn and in particular for a ∈ Ωf , where
Ωf is as in Lemma 2.4.

Theorem 3.1. Let f = (f1, . . . , fp) : Rn → Rp be a polynomial mapping such that deg fi ≤
d,∀i = 1, . . . , p, and n > p. Let t0 ∈ NSa(f) for some a ∈ Ωf . Then there exists an

analytic path:

(10) x(t) =
∑

−∞≤i≤s

ait
i,

with

s ≤ [p(d− 1) + 1]n−p[p(d− 1)(n− p) + 2]p−1

and such that:

(a) x(t) ∈Ma(f) \ Singf , for any t ≥ R, for some large enough R ∈ R+;
(b) ‖x(t)‖ → ∞, as t→∞;
(c) f(x(t))→ t0, as t→∞.

Proof. The case p = 1 is [DT, Theorem 3.4]. We assume in the following that p > 1.
From Lemma 2.4 we have thatMa(f)\Singf is a smooth semi-algebraic set of dimension

p since non-empty by our hypothesis on t0. From the proof of Lemma 2.4 the setMa(f)\
Singf is locally a complete intersection de�ned by (n− p) equations, each of which is of
degree at most p(d− 1) + 1. So let us denote by g1, . . . , gn−p these functions.
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We use coordinates (x1, . . . , xn) for the a�ne space Rn and coordinates [x0 : x1 : . . . : xn]
for the projective space Pn. We identify the a�ne space Rn with the chart {x0 6= 0} of Pn.
Let X = graphf be the closure of the graph of f in Pn × Rp and let X∞ the intersection
of X with the hyperplane at in�nity {x0 = 0}. Let i : Rn → X ⊂ Pn × Rp, x 7→ (x, f(x))
be the graph embedding. Consider the closure in X of the image i(Ma(f) \ Singf) and

denote it (abusively) byMa(f) \ Singf .

Let then w := (x, t0) ∈ Ma(f) \ Singf ∩ X∞. We shall work in some a�ne chart
U ' Rn at in�nity of Pn assuming (without loss of generality) that the point x is the
origin. We may then use an �e�ective curve selection lemma� to show that there is a
curve Γ ⊂ Ma(f) \ Singf such that w ∈ Γ and that this curve has a one-sided bounded
parametrization. To do so, we combine Milnor's basic construction in [Mi] with the idea
of Jelonek and Kurdyka given in [JK2, Lemma 6.4].
Namely we consider small enough spheres centered at w ∈ U of equation ρw = β and a

function hl := x0l, for some linear function l in the local coordinates. One can then prove
like in [JK2, Lemma 6.4] (where an apparently more particular situation was considered,
but the proof works as well) that, for a general such linear function, the set of critical

points of the map (ρw, hl) : U ∩Ma(f) \ Singf → R+ × R is an analytic curve and its
branches are the singular points of the restrictions of the quadratic function hl to the
levels {ρw = β} ∩Ma(f) \ Singf . It is shown in [JK2, Lemmas 6.5 and 6.6] that these
singular points are all Morse for a generic choice of l, and that there is at least one Morse
point on each level, for small enough β > 0.
Let us then consider a branch of this analytic curve as our x(t). By its de�nition,

this curve is a solution of the following system of equations: g1 = 0, . . . , gn−p = 0 and
dg1 ∧ · · · ∧ dgn−p ∧ dρw ∧ dhl = 0, the �rst of which are of degree at most p(d− 1) + 1 and
the last one means the annulation of p− 1 minors of degree at most p(d− 1)(n− p) + 2.
Thus our algebraic set of solutions has degree δ verifying the inequality:

δ ≤ [p(d− 1) + 1]n−p[p(d− 1)(n− p) + 2]p−1.

Finally, by using the e�ective Curve Selection Lemma of Jelonek and Kurdyka [JK2,
Lemma 3.1 and Lemma 3.2] which says that there exists a parametrization of our curve
x(t) bounded by the degree δ of the curve, we get exactly an expansion like (10). This
�nishes the proof of our theorem. �

3.2. Finite length expansion for curves detecting asymptotically critical values.

We need a preliminary result which follows by applying [JK2, Lemma 3.3] to each
function hi in the following statement:

Lemma 3.2. Let h = (h1, . . . , hm) : Rk → Rm be a polynomial map and deg hi ≤ d̃,∀i. Let
x(t) =

∑
−∞≤i≤s ait

i, where t ∈ R , ai ∈ Rk, s > 0 and that ‖x(t)‖ → ∞ and h(x(t))→ b.

Then, for any D ≤ −d̃s+ s, the truncated curve

x̃(t) =
∑

D≤i≤s

ait
i,
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veri�es ‖x̃(t)‖ → ∞ and h(x̃(t))→ b. �

If we try to replace x(t) given in (10) by a truncated path, we may go out of the set
Ma(f) \ Singf . Bearing in mind the inclusion Sa(f) ⊂ K∞(f) of Theorem 2.6, instead
of searching in vain a truncated expansion inside the Milnor set, we may show that there
exists a truncation which veri�es the Malgrange-Rabier condition (7). The proof of the
following result employs the technique of [DRT, Theorem 3.2] and [Di1, Theorem 2.4.8],
where we have used the t-regularity to �nd a geometric interpretation for K∞(f).

Proposition 3.3. Let f = (f1, . . . , fp) : Rn → Rp be a polynomial map such that n > p
and that deg fi ≤ d,∀i. Let

x(t) = (x1(t), . . . , xn(t)) =
∑

−∞≤i≤s

ait
i,

where t ∈ R, ai ∈ Rn, s > 0 and such that:

(a) ‖x(t)‖ → ∞, as t→∞;

(b) f(x(t))→ b, as t→∞;

(c) ‖x(t)‖ν(Df(x(t)))→ 0, as t→∞.

Then the truncated expansion

x̃(t) =
∑

−ds≤i≤s

ait
i,

veri�es the following conditions:

(i) ‖x̃(t)‖ → ∞, as t→∞;

(ii) f(x̃(t))→ b, as t→∞;

(iii) ‖x̃(t)‖ν(Df(x̃(t)))→ 0, as t→∞.

Proof. We treat here the case p > 1. See Remark 3.4 for the case p = 1.
By the de�nition of ν (De�nition 2.5 and (8)), condition (c) means:

(11) ‖x(t)‖
(

inf
‖y‖=1

‖Df(x(t))∗(y)‖
)
→ 0, as t→∞,

where Df(x(t))∗ denotes the adjoint of Df(x(t)).
Since ν is a semi-algebraic mapping (see e.g [KOS, Proposition 2.4]), the Curve Selection

Lemma and (11) imply that there there exists an analytic path (see also the proofs of
[DRT, Theorem 3.2] and [CDTT, Proposition 2.4] for this argument):

y(t) =
∑

−∞≤i≤0

bjt
j = (y1(t), . . . , yp(t)), bj ∈ Rp,

such that ‖y(t)‖ = 1,∀t� 0, and that:

(12) ‖x(t)‖
∥∥∥∥y1(t)∂f1∂x

(x(t)) + · · ·+ yp(t)
∂fp
∂x

(x(t))

∥∥∥∥→ 0, as t→∞,
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where ∂fi
∂x

(x(t)) :=
(

∂fi
∂x1

(x(t)), . . . , ∂fi
∂xn

(x(t))
)
for i = 1, . . . , p.

For any �xed j ∈ {1, · · · , n} we set φj : Rn × Rp → R,

(13) φj(x, y) :=

(
y1
∂f1
∂xj

(x) + · · ·+ yp
∂fp
∂xj

(x)

)
.

It then follows that deg φj ≤ d and that our path:

(x(t), y(t)) :=

( ∑
−∞≤i≤s

ait
i,
∑

−∞≤i≤0

bjt
j

)
veri�es the conditions:

(1) ‖x(t)‖ → ∞ as t→∞, and ‖y(t)‖ = 1;
(2) xi(t)φj(x(t), y(t))→ 0 as t→∞, for any i, j ∈ {1, . . . , n}.
Applying Lemma 3.2 to the mapping (xiφj)

n
i,j=1, we get that, for anyD ≤ −(d+1)s+s =

−ds, the truncated path:

(x̃(t), ỹ(t)) :=

( ∑
D≤i≤s

ait
i,
∑

D≤i≤0

bjt
j

)
veri�es the conditions:

(1') ‖x̃(t)‖ → ∞ and ‖ỹ(t)‖ → 1 as t→∞;
(2') x̃i(t)φj(x̃(t), ỹ(t))→ 0, as t→∞, for any i, j ∈ {1, 2, . . . , n}.

These imply:

(14) ‖x̃(t)‖
∥∥∥∥ỹ1(t)∂f1∂x

(x̃(t)) + · · ·+ ỹp(t)
∂fp
∂x

(x̃(t))

∥∥∥∥→ 0 as t→∞,

and, since ‖ỹ(t)‖ → 1, we obtain:

(15) ‖x̃(t)‖ 1

‖ỹ(t)‖

∥∥∥∥ỹ1(t)∂f1∂x
(x̃(t)) + · · ·+ ỹp(t)

∂fp
∂x

(x̃(t))

∥∥∥∥→ 0, as t→∞.

The later implies that ‖x̃(t)‖ν(Df(x̃(t)))→ 0, as t→∞, which shows (iii).
Next, (i) follows by (1'), and (ii) follows from Lemma 3.2 for h := f , since−ds < −ds+s.

�

Remark 3.4. In case p = 1, in the proof of Proposition 3.3 we may consider φj : Rn →
R, φj(x, y) = ∂f

∂xj
(x) since in this case y = 1. Then deg φj ≤ d−1 and by applying Lemma

3.2 as above to the mapping (xiφj)
n
i,j=1 we get that, for any D ≤ −ds+ s, the truncation

˜̃x(t) =
∑

D≤i≤s ait
i satis�es (i), (ii) and (iii).

In the de�nition of Arc(f), the lower bound is −ds+ s instead of −ds. Since the value
of the degree s from Theorem 3.1 is dn−1 in case p = 1, we recover the result in [DT].
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3.3. Arc space and the main result. We may now apply to a polynomial map f =
(f1, . . . , fp) : Rn → Rp, deg fi ≤ d, a similar procedure as the one described by Jelonek
and Kurdyka [JK2] in case p = 1. Thus, in case p > 1, we consider the following space of
arcs associated to f :

(16) Arc(f) :=

{
(x(t), y(t)) =

( ∑
−ds≤i≤s

ait
i,
∑

−ds≤j≤0

bjt
j

)
, (ai, bi) ∈ Rn × Rp

}
,

where s := [p(d− 1) + 1]n−p[p(d− 1)(n− p) + 2]p−1, as in Theorem 3.1. Then Arc(f) is a
vector space of �nite dimension.
Referring to the notations in (16), we de�ne, in a similar manner as [JK2, De�nition

6.10], the asymptotic variety of arcs Arc∞(f) ⊂ Arc(f), as the algebraic subset of the
rational arcs (x(t), y(t)) ∈ Arc(f) verifying the following conditions:

(a') ∃k > 0 such that ak 6= 0 ∈ Rn, and ‖b0‖ = 1.
(b') ordtf(x(t)) ≤ 0.
(c') ordt (xi(t)φj(x(t), y(t))) < 0, for any i, j ∈ {1, . . . , n}, where φj is de�ned at (13)

in the proof of Proposition 3.3.

Let us then set α0 : Arc∞(f)→ Rp, α0(ξ(t)) := limt→∞ f(x(t)), where ξ(t) = (x(t), y(t)).

In view of the above results, we may now give an estimation of the nontrivial ρ-
bifurcation set at in�nity NS∞(f), thus of the nontrivial bifurcation locus NB∞(f), cf
Proposition 2.9:

Theorem 3.5. NS∞(f) ⊂ α0(Arc∞(f)) ⊂ K∞(f).

Proof. If α ∈ NS∞(f) then α ∈ NSa(f) for any �xed a ∈ Ωf . By Theorem 3.1, there
exists a path

x(t) =
∑

−∞≤i≤s

ait
i ∈Ma(f) \ Singf,

such that limt→∞ f(x(t)) = α. It follows from Theorem 2.6 that x(t) veri�es the conditions
(a)�(c) of Proposition 3.3. Moreover, the truncation x̃ de�ned in the same Proposition
3.3 veri�es the properties (i)�(iii). Since conditions (i)�(iii) are equivalent to conditions
(a')�(c'), we conclude that the �rst inclusion holds.
The second inclusion α0(Arc∞(f)) ⊂ K∞(f) is a direct consequence of the de�nitions of

Arc∞(f) and K∞(f) since properties (a'), (b') and (c') characterize the values α0 ∈ K∞(f)
as shown in the proof of Proposition 3.3. This completes our proof. �

Let us remark that the �rst inclusion can be strict, as shown by the next example:

Example 3.6 ([DT, Example 2.10]). Let f : R2 → R, f(x, y) = y(x2y2 + 3xy + 3). We
have NS∞(f) = ∅, 0 ∈ α0(Arc∞(f)) and 0 ∈ K∞(f).

In trying to prove the equality in place of the second inclusion in Theorem 3.5 one
notices that the inverse inclusion depends on the possibility of truncating paths which
detect some value α0 ∈ K∞(f) at the order provided by Theorem 3.1. But our Theorem
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3.1 is based on paths in the Milnor setMa(f) \ Singf , which provide in principle lower
degrees than working with the Malgrange-Rabier condition (7), and we know that the
later is not equivalent to ρ-regularity (cf �2). Else, for the same reason, it would be
di�cult to obtain examples to disprove the inverse inclusion.
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