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1 Introduction

1.1

Let K be a local field with finite residue class field ¥ of cardinality q. We fix
a prime element 7w of K. All algebraic extensions of K which we consider in
the following are subfields of a fixed separable closure K of K. In particular
K denotes the unramified extension of K of degree f and K, the union of all
finite abelian extensions F/K such that = € Ng;x(F*). A profinite group G
is called metabelian if the second commutator group of G is trivial. A finite
normal extension L of K will be called metabelian with respect to f and = if
Gal(LK;K./K;Ky) is abelian. Since by class field theory every finite abelian
extension of K is contained in Ky K, for suitable f it is clear that every finite
metabelian extension of K is metabelian with respect to a certain f.

The purpose of this paper is the development of a class field theory for metabelian
extensions by means of two-step towers of Lubin-Tate extensions: For natural num-
bers f we construct a locally compact group G, consisting of pairs (a,£(X)), where
a € K* and £(X) is a power series with coefficients in the algebraic closure t of 2,
such that there is a map ¥; from G, onto Gal(L/K) which defines a one-to-one
correspondence between all closed normal subgroups of finite index in G; and all
finite normal extensions L of K which are metabelian with respect to f and .

There is a simple description of the ramification groups of Gal(L/K) in terms
of the corresponding subgroups in G;.

I would like to thank S. Vostokov who read a preliminary version of the
manuscript and made valuable remarks.

1.2

In this section we recall basic facts of Lubin-Tate theory ([LT], [S}, [H]) in a form
which is convenient for our purposes.

O denotes the ring of integers and U the group of units of K. Let f(X) :=
X%+ xX and let a € O. Then there is a unique power series [a](X) in O[[X]] such
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that [a](N) = aX +as X + .- and

f([a)(X)) = [a)(S(X)).
[n particular {x](\\') = f(.Y).
Let F{X,Y) be the formal group law corresponding to f. Then
[ab](.X) [a]([8](X)),
(e + b](X) F([a](X), [6](.X))

for a,b € O.
For any integer n > 1 the quotient
[« 1(X)/ [**~'] (X)

is a separable Eisenstein polynomial. Let T =T, be a root of this polynomial in
K. Then K(T)/K is an abelian extension with

= = [u"? or
(l\'(T)/K)T [« '[(T) for uel

()=

Furthermore [u](7) = T if and only if u € U™ where U™ denotes the n-th group
of principal units of K.
If u= 1+ va* with v € O, then

and

[)(X) = X +vX? (mod X+ x) (1)

which shows that U is mapped by (m) onto the i-th ramification group of

Gal(K(T)/K) in the upper numeration. (1) can be proved by means of the formal
group law F(X,Y) corresponding to f(.X):

(1 +or'}(X) = F(XN, [oxf](X)) = X + [or](X) (mod X - [or'](X)).
But ) ’ : :
r'](X) = [P)([**)(X)) = vX? {(mod m, X7 *1).

for the following it is uscful to prove (1) without using F{.X,Y) by means of a
refinement, which is easily proved by induction (see also Lemma 13):

Lemma 1 Let u= | + vl withv € O and
()(X) = uX 4+ upX? 4.
Then for any integer j with 1 < j <i
e =0 (mod 7 IH) i 2<k< ¢ =1

and
= ppt—d i-f+1
Hyi = UT {mod 7 ).
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Now let K,, be the maximal unramified extension of K in K, let K be the com-
pletion of K\, O the ring of integers of K, and ¢ the Frobenius automorphism
of K/K. Then ¢ induces an automorphism of K[[X]] such that ¢(X) = X. This
extension of ¢ will be denoted by ¢, too.

Furthermore let ' be a prime element of X and f/(X) = X9+ #'X. Then
there exists a power series w(.X) € O[[X]] such that w(X) = wi X +woX? 4 -,
w, € 0% and

[ (Ww(X)) = pu(f(X)). (2)

If w; is a further solution of (2), then

wi(X) = w([u}(X)) with uel.

1.3

In this section we define the group G;.

Let a € K* and u = 77 *(%)a, where v denotes the exponential valuation of K
with v(m) = 1. Let
[W)(X) = uX + ua X* 4 - -

and let b be the residue class of b € O in k. We denote by {u}(.X') the power series
GX + @ X2 4 - -

in ¥[[.X]] corresponding to [u](X).
Furthermore let t be the algebraic closure of ¢ and let ¢ be the Frobenius
automorphism of &/k.

_ Then Gy is defined as the set of pairs (a,£(.X)) such that a € K> and £(X) €
B[[X]]™ satifies the equation

! €(X) = E(O{u} (DX (3)

It is well known (see e. g. [H, p. 48]) that (3) has always a solution and if £,(X)
is a fixed solution, then the set of all solutions of (3) is

{€a(XOn(X)In(X) € & [[X]]*},

where £; denotes the extension of b of degree f.
The multiplication in Gy is defined by

(a1, 6:00)@2,E2(X)) = (@102, ()™ e ({u) (1)

with a; = 7*(8)y; i =1,2.
The pair (a1az, £1{X)p™"*&({u}(X))) belongs to G;. In fact

el &1 (X)p/ e ({u) (X)) =
E (X {w HX)X ™1 o0& ({uy X)) {ua J{m X)) {ur HX) ™ =
(X)) G {ur X)) {uru} (X)X L
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It is easy to see that the multiplication is associative. The unit element is (1,1)
and the inverse of (a,£(.X)) is (a‘l,go"(“)f ({u"l}(l‘())_l). Hence Gy is a group.

We define a topology in Gy by means of a system of subgroups V,, 4, n,h € N,
in ng H

vn,h =
{(a,6(X) | v(@)=0 (mod hl), u=1 (mod 7"), (X)=1 (mod X™)},

where m := ¢* — ¢" 7!, I :=mqf(¢/ — 1) and u := ar—*(a),

It is clear that the intersection of the groups V, 4 is {1}. Hence we can take
them as a fundamental system of neighbourhoods of 1 for the topology of G;.
Later on (2.2) we will see that the groups V, » are normal subgroups of G;.

Remark. Let (a,£(X)) be a pair in G; and u = ar~*(®). Then u is uniquely
determined by £(X).

In fact,
{u}(X) + X/ E(X) - £(X)!

by {3). Furthermore let R be the system of representatives of  in O consisting of
0 and the ¢ — 1-th roots of unity and let

u=a+ayr+---, o € R.

We write u in the form u = b, + ¢, + d,, with

b = agtaim+ 47"
th = anm",
d, = (’frx-l\-ITrﬂ.ipl + an+27rn+2 +--

Then
[ul(X) = [an}(X) + [Ba}(X) + [cn](X) + Hn,
where Hp, is a power series in [a, J(X), [bn](X), [ca](X) without linear terms. Since
Ba)(X) = @n X" (mod =),
we have
Ugn = apn + gn(ao,...,an_y) (modw), n=0,1,...,
where gn(ag,...,@n-1) is a polynomialin ay, ..., @n—1. Now the assertion follows

by induction over n.

1.4

We define standard extensions K (") /K such that every finite extension of K which

is metabelian with respect to f and = is contained in K{"K,, for a certain n
(Theorem 3).
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Let f(X)=X%4+nX asin 1.2 and let {T, | n=1,2,...} be a sequence of
elements of A" such that

T, # {0}, fUUTn)=[""[(Tw) =0, Tn=f(Tas1), n=12,...

where f")(X) denotes the n-th iteration of the power series f(X). Furthermore
let

an(¥Y) =YY +TY

and let V;, be an element of i such that
g™ (Va) =0, gimH(Va) £ 0
with m = ¢" — ¢"~!. We put
K®) = Ky(Tn, Va), :=mqf(¢f —1).

By Lubin-Tate theory V,, is a prime element of the fully ramified extension K (™) /A,
Hence K((T,, Vo) = Ki(Va).

Proposition 2 K" /K is a normal extension.

Proof. By Lubin-Tate theory over i ;(T,), the extension K(“)/I{] (T,) belongs to
the subgroup H := (T, )'// (1 +P™) of K;(T5)*, where P denotes the prime ideal
of Ky(T,). Let n be an automorphism of K(75,)/K. For the proof of Proposition
2 it is sufficient to show that (5T, )/ belongs to H. More generally for any prime
element 7, of K;(T,) one has

(ma) € H. (4)

In fact
f

=Tl wel+p,

and
Wwm = Wi -Uepppm 0

We call K(*) a standard extension of K with respect to f.

1.5

Now we formulate our main results. Proofs will be given in the following chapters.

Theorem 3 For every finite metabelian ezxiension L of K with respect to f there

ezists a standard eztension K™) with respect to f such that L is conlained in
KK,
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Theorem 4 Let K{™) be a standard extension of K with respect to f. Then there
is a surjective homomorphism @, of Gy onto Gal(K\")/K) with kernel V, . The

restriction of ®y(a,6(X)) to K;(T,) is the automorphism corresponding to a=! by
class field theory.

Theorem 5 Let B; be the i-th ramification group of K™V /K in the lower numer-
ation. Then the jumps A of the series

Do20V12T22...
appear for A=¢/7 —1,j=0,1,...,m—1, m=¢q" —¢*~'. Furthermore,
O (Byrin) = :
{(v, (XNl u=1 (mod ') with j<g' -1, EN)=1 (mod X¥)}.
2 The Homomorphism &,

In this chapter we prove Theorem 4.

2.1

First we prove two propositions, which will be used in the following.

Proposition 6 Let ¢—1 be the homomorphism of O[[X]}* into itself which sends
a(X) to pa(X)/a(X). Then p — 1 is surjective and its kernel is O[[X]]*.

Proof. Let ug+u1 X +---bein the kernel of ¢ — 1. Then u; = pu; fori =0,1,.. .,

and it follows (see e. g. [SCL, p. 208]) that u; € O. On the other hand it is clear
that evety element of O[{X]]* is in the kernel of ¢ — 1.

Now we prove that ¢ — | is surjective. Let ag 4+ a1 X' + --- be an arbitrary
element of O[[X]]*. The elements of O[[X]]* can be written uniquely in the form

EU+HEX)1 46X, &e0*, &Lel.

We show by induction on i that there are &,&,.. ., & such that

Za’"’\m =96 & H(l + @€ NFY1 +£6.X%)"1 (mod X',

x=0 =1

For ¢ = 0 we have to solve the equation

ap = ¢éo &5
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which has a solution (see e. g. [SCL, p. 209]). Now assume that &g, ... & exists
and we are looking for &;y; with

i+l i+l
3 X = plo- €57 [ (1+ 06 X*)(1 +EX5)7T (mod X*+2)
k=0 m=1

Since

(14 @bt XA+ L X = 14 (9l = Gp) X (mod X742),
&;+1 has to satisfy an equation of the form
@&ivr —Eiv1 = fin (5)
with
i+1 i

Bint X' =Y " 0 X% — 6o &5 [T (1 + 06 X™)(1 +&X%)7! (mod Xi*2),
k=0 x=1

(5) has a solution by Hensel’s Lemma. O

Proposition 7 Let u(X) € O[[X]] be of the form
u(X) =X +upX? 4. with u € 0"
Then there is a sertes
w(X,Y) =w(X)Y 4w (X)YE4 ...

with w1 (X) € O[[X]}* and wi(X) € O((X)) fori=1,2,... (i. e. wi(X) has the

form

w,-(X) = Z E!,'J‘,\’j, 4 € é,
i=jo
with jo € Z), such thal
WX, V) + u(X)w(X,Y) = pu(X,¥? + XY). (6)

w (X)) is uniquely determined by (6) up to an arbitrary factor in O[[X]]*. Ifwy(X)
is fized, then wi(X') is uniquely determined fori =2,3,....

Proof. We determine w;(X) by induction over i. For ¢ = 1 the assertion is
Proposition 6. Assume that wi(.X), ..., w;(X) are already determined such that
for

X Y) i=w (XY 4 -+ wi(X)Y?
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the congruence
WX, Y)Y+ u(N ) (X, V) = (X, Y9+ XY) (mod Yi+!)
is satisfied. Then w;41{X) has to satisfy the equation
it (X)X — wi (X)u(X) = $(X), (M)
where ®(.X') denotes the coefficient of Y*** in the series
GO, Y)Y+ u(X)wX,Y) — (X YT + XY).
One can rewrite (7) as follows:
(1 = Bwig 1 (X) = —u~ (X)B(Y),
where the operator § is given by
5= Xt um (X))

Then
wirt(X) = —(1 46+ 6 + - Ju™ (X)@(X),

where the series on the right-hand is well defined since the series X**!'u(X)~! is
of order i > 1. O

2.2
Now we consider the extension K{")/K defined in 1.4. We fix n and write
T =T, V:=V,.

It follows from Lubin-Tate theory that K(T)/K and K;(V)/K; are fully ramified
abelian extensions of degree ¢ — ¢"~! and ¢/™ — ¢/(M=1) m =g — ¢»~1.
Let u € U and w(X,Y) a power series of the form

WX, ¥) = wi(X)Y +wa(X)Y2 4. .-
with wi(X) € O[[X))*, wi(X) € O((X)), i = 2,3,.. ., such that
WX Y)Y+ [W)(X)w(X,Y) = (X, Y? + XY). (8)

By Proposition 7, w(.X,Y) exists and is uniquely determined up to a factor in
O {[X]]* of wi(X). Furthermore the proof of Proposition 7 shows that w;(T) lies
in the ring of integers of the field K(T),i=1,2,...

Let 7, be the automorphism of K(T)/K with

1u(T) = [ul(T)
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and
Tulig, = L.

We put

gr(Y) = Y7 +TV.
Then (8) implies

i)W (T,Y)) = ¢! (T, g7 (Y)),
hence
gy (@(TY) = o ™w(T, g (V)

and

g (T, V) = 0

w(T,V) lies in K(V) and in the normal closure of K(V). Therefore w(T,V) is
contained in K;(V)= K and

w(V) = w(T,V),

Tulk, = 1
defines an automorphism of K{(")/K whose restriction to Kj(T) is 1.

By Proposition 7 w(X, Y') is uniquely determined by u and w;(.X). Let H; be
the set of all pairs

(a,w1 (X))
such that a € A%, w (X) € é{{f\']]x and

P (X)X =i (V)[u)(X), uw=ar*®,
We define a group structure in #; by means of
(a,01(X)) (@, w4(X)) = (ad', w1 (X)g™ @i ([](X)))
(compare 1.3).

Futhermore we associate to (a,w;(.X)) the automorphism r = ¥ (a,w;(X))
with

TV

T|’\'r

w(T, V),
V(@)

Theorem 8 ¥, is a surjective homomorphism from H; onto Gal(K(")/K).

Proof. Let (a,wi(X)),(a’,w)(X)) be two elements of H; and let 7,7’ be the
corresponding automorphisms of KN'(*)/R by ;. Then

'V = o7 O (7T, TV = O ([W)(T), w(T, V),
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where w(X,Y), w'(X,Y) are the power series determined by (a,w(X)),
(a’,wi(X)). The power series

™! ([u](X),w(X, Y))
has initial coefficient
Wi (X)W ([u](X))
and satisfies (8).
This shows that ¥, is a homomorphism. Let 7/, be an automorphism of K"/ K

whose restriction to K;(7") is ny. Then 7,7, ! is an automorphism of ")/ K\(T)
and contained in Im¥; by Lubin-Tate theory over A ;(T). O

Theorem @ The kernel of ¥y consists of the elements (a,w (X)) with
v{a) =0 (modi), u=1 (mod ") (9)
and

wi(X)=1 (med X™, 7). (10)

Proof. (9) means that W;(a,w (X)) fixes K;(T). Then, by class field theory
over K;(T), ws(T)~! corresponds to ¥y (a,w1(X)). Therefore ¥ (a,w (X)) is the
identity if and only if

wi(T)=1 (mod TT).

This is equivalent to (10) since K(T')/K is fully ramified of degree m = ¢* — ¢~ 1.
O

Theorem 9 shows that ¥; factors through the natural projection of H; onto G;.
We define ®; as in the corresponding homomorphism of G; onto Gal(K(M/K).
Then according to Theorem 9 the kernel of ®; is V,, ;. This shows Theorem 4.

2.3

Let K™ := K" K;,. Then repeating 2.2 for lh instead of { one proves the
following extension of Theorem 4.

Theorem 10 Let 'Il(f") be the mapping from Gy into Gal(K(™™) /K) with
w&h)tlk‘“) = ¥ (1), \Ff,h)ﬂh’u = P'”(a),

where t 1= (a,£(X)). Then l]l(fh) is a surjective homomorphism with kernel V, 4.
O
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3 The Ramification Groups

In this chapter we determine the ramification groups of the extensions K(®)/K.
But first we consider mote general extension of K.

3.1

Let n,m and f be arbitrary natural numbers, let L, = K (7,) with T,, as in 1.4,
and let qum)/L,, be the extension corresponding to the subgroup (T#)(1 + P™)

of LX with A := (¢/ = 1)¢™. In particular if m = ¢* — ¢"~!, then L C
K(")K”(,_l).

One shows as in 1.4 that the extension L&m)/l\’ is normal. We want to deter-
mine the orders of the ramification groups of Lg.m)/h’.

Theorem 11 The jumps r > 0 of the ramification filtration {D7| reR*} of
Gal(Ls,m)/K) in the upper numeration are

r=i=(¢ —1-w/(¢'-¢")
withpu=1,...,m—1, where i is determined by the condition
¢l -l<p<d -1,

andreZ withr<n,q¢ ~-12>m,
The order of U™ for such r is given as follows:

qn-iq,’(m—!ﬁ(f)) if i<n, Y(ry<m,
|| = { g/ (m=v(r) f i>n, P(r) <m,
qn——r ;f re Z, r<n, 1,[)(7‘) >m,

where Y(r) denotes the inverse of the Herbrand function of L, /K.
Proof. Let r € R*. Any 7 € 0" can be written uniquely in the lorm
T =70,

where 7 is a fixed extension of some n € V" (L,/K)and o € QT""(’)(LET)/LH). The
function ¥(r) is given by

Y(ry=q¢ -1 for reNU{0}
and linear interpolation for r ¢ NU {0}. Now the Theorem follows from

|7 (Lo /K) = ¢,
1YL L = e,

where {s} denotes the smallest integer i with s <. O
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3.2

In this section we prove Theorem 3. We have the following characterization of the
fields L™

Proposition 12 LY™ is mazimal in the set of all normal eztensions M/K with
the properties:

1. M contains L.
2. M/L, is abelian and its intertia degree divides h with h := (¢/ — 1)q™.

8. The ramification group V(™) (AM/K) is trivial, where @ denoles the Her-
brand function of L, /K.

Proof. The subgroup of LY corresponding to M by class field theory over L,

contains 1 + P™ and S for some prime clement S of L,,. In particular, Lg,m)/L,.
belongs to (T*)(1 + P™) and contains therefore S*.

Since Lg,m)/L,, is normal and has property 3, we see that LS,'") is maximal in
the set of extensions M /K with the properties 1.-3. O

Now we come to the proof of Theorem 3.

Every extension M of K which is metabelian with respect to f and = is
contained in K,,,.Ls,m) for some n and m. Furthermore the ramification group
QT"(LS."‘)(T,,')/K) is trivial for r > max{@(m),n’ — 1}. Hence M C K"K, for
n' > p(m) + 1 by Proposition 12.

3.3

In this section we consider the ramification groups of standard extensions. We fix
n and we write T :=T,,,V := V).
Let u:=1+ v’ with v € O and k:=¢' — 1. Then

[W)(T)= T + vT**' (mod T+?) (11)
by Lemma 1. Let £ € O such that
¢’ —£=v (mod 7).
Then there exists wy € O[[T}] such that
wi = 14+ €T* (mod TH) (12)

and
ul[u](T) = qafwl -T. (13)

We need the following lernma, which is a generalization of Lemma 1.
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Lemma 13 Let
w(Y)=w ¥ +w Y24 ...

be a power series with coefficients in O[[T) such that
w(Y) + [W(T(Y) = w(Y? +TY), (14)

where wy salisfies (12).
Then for all j with1 < j <k

we =0 (mod TFI+Yy i 2< < g/l —1
and 1
weri = &7 "TE=I (mod T*I+1).
Proof. w(Y) with (14) exists by usual Lubin-Tate theory (1.2). First of all let
j=1. Thenwy,=0for2< x < ¢/’ -1 and
Wy = (¢! wy —u'l’f Tl = f"jT"_l (mod T*).

Now we assume that Lemma 13 is proved for all &’ < k and ¢/7 < k < ¢/U+1)
& > ¢/. Then one has the following congruence for w,:
wz;q! +Twe = Qg +@wI™ (mod THIH) if /s,
Tux = @wT* (mod T* 3ty if ¢/ {x.

If k < ¢/+!, then wyypr =0 (mod T#=3+1) hence

we =0 (mod TFY).
If Kk = ¢'*!, then _
Wepet = 5"“T""i (mod T*=i+hy,

hence )
q!(.r+l)

Twy = ¢ T*=7 (mod T*1*Y). 0O

Now we come to the proof of Theorem 5. B
Let u =1+ vr', v € O. Then there is £(.X) € Y[[X]] with

EX)=1+EXT" (mod X7,

where ,
& —€£=v (mod 7},

such that (u,£(X)) € G; and

Sp(u,(XNV)=V +EQ“ ve't (mod quk_l_l)
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with k := ¢* — 1. Hence

By (u,6(X)) € Vyrry
and if v € U, then

&7(,(X)) ¢ By

Since any (u,£(X)) € G; has the form (u,£(X)n(X)) with n(X) € &/[[X]]. Theo-
rem 5 follows now from Lubin-Tate theory over K;(T). a
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